LLVM 20.0.0git
StraightLineStrengthReduce.cpp
Go to the documentation of this file.
1//===- StraightLineStrengthReduce.cpp - -----------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements straight-line strength reduction (SLSR). Unlike loop
10// strength reduction, this algorithm is designed to reduce arithmetic
11// redundancy in straight-line code instead of loops. It has proven to be
12// effective in simplifying arithmetic statements derived from an unrolled loop.
13// It can also simplify the logic of SeparateConstOffsetFromGEP.
14//
15// There are many optimizations we can perform in the domain of SLSR. This file
16// for now contains only an initial step. Specifically, we look for strength
17// reduction candidates in the following forms:
18//
19// Form 1: B + i * S
20// Form 2: (B + i) * S
21// Form 3: &B[i * S]
22//
23// where S is an integer variable, and i is a constant integer. If we found two
24// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
25// in a simpler way with respect to S1. For example,
26//
27// S1: X = B + i * S
28// S2: Y = B + i' * S => X + (i' - i) * S
29//
30// S1: X = (B + i) * S
31// S2: Y = (B + i') * S => X + (i' - i) * S
32//
33// S1: X = &B[i * S]
34// S2: Y = &B[i' * S] => &X[(i' - i) * S]
35//
36// Note: (i' - i) * S is folded to the extent possible.
37//
38// This rewriting is in general a good idea. The code patterns we focus on
39// usually come from loop unrolling, so (i' - i) * S is likely the same
40// across iterations and can be reused. When that happens, the optimized form
41// takes only one add starting from the second iteration.
42//
43// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
44// multiple bases, we choose to rewrite S2 with respect to its "immediate"
45// basis, the basis that is the closest ancestor in the dominator tree.
46//
47// TODO:
48//
49// - Floating point arithmetics when fast math is enabled.
50//
51// - SLSR may decrease ILP at the architecture level. Targets that are very
52// sensitive to ILP may want to disable it. Having SLSR to consider ILP is
53// left as future work.
54//
55// - When (i' - i) is constant but i and i' are not, we could still perform
56// SLSR.
57
59#include "llvm/ADT/APInt.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DataLayout.h"
68#include "llvm/IR/Dominators.h"
70#include "llvm/IR/IRBuilder.h"
71#include "llvm/IR/Instruction.h"
73#include "llvm/IR/Module.h"
74#include "llvm/IR/Operator.h"
76#include "llvm/IR/Type.h"
77#include "llvm/IR/Value.h"
79#include "llvm/Pass.h"
85#include <cassert>
86#include <cstdint>
87#include <limits>
88#include <list>
89#include <vector>
90
91using namespace llvm;
92using namespace PatternMatch;
93
94static const unsigned UnknownAddressSpace =
95 std::numeric_limits<unsigned>::max();
96
97DEBUG_COUNTER(StraightLineStrengthReduceCounter, "slsr-counter",
98 "Controls whether rewriteCandidateWithBasis is executed.");
99
100namespace {
101
102class StraightLineStrengthReduceLegacyPass : public FunctionPass {
103 const DataLayout *DL = nullptr;
104
105public:
106 static char ID;
107
108 StraightLineStrengthReduceLegacyPass() : FunctionPass(ID) {
111 }
112
113 void getAnalysisUsage(AnalysisUsage &AU) const override {
117 // We do not modify the shape of the CFG.
118 AU.setPreservesCFG();
119 }
120
121 bool doInitialization(Module &M) override {
122 DL = &M.getDataLayout();
123 return false;
124 }
125
126 bool runOnFunction(Function &F) override;
127};
128
129class StraightLineStrengthReduce {
130public:
131 StraightLineStrengthReduce(const DataLayout *DL, DominatorTree *DT,
133 : DL(DL), DT(DT), SE(SE), TTI(TTI) {}
134
135 // SLSR candidate. Such a candidate must be in one of the forms described in
136 // the header comments.
137 struct Candidate {
138 enum Kind {
139 Invalid, // reserved for the default constructor
140 Add, // B + i * S
141 Mul, // (B + i) * S
142 GEP, // &B[..][i * S][..]
143 };
144
145 Candidate() = default;
146 Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
147 Instruction *I)
148 : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {}
149
150 Kind CandidateKind = Invalid;
151
152 const SCEV *Base = nullptr;
153
154 // Note that Index and Stride of a GEP candidate do not necessarily have the
155 // same integer type. In that case, during rewriting, Stride will be
156 // sign-extended or truncated to Index's type.
157 ConstantInt *Index = nullptr;
158
159 Value *Stride = nullptr;
160
161 // The instruction this candidate corresponds to. It helps us to rewrite a
162 // candidate with respect to its immediate basis. Note that one instruction
163 // can correspond to multiple candidates depending on how you associate the
164 // expression. For instance,
165 //
166 // (a + 1) * (b + 2)
167 //
168 // can be treated as
169 //
170 // <Base: a, Index: 1, Stride: b + 2>
171 //
172 // or
173 //
174 // <Base: b, Index: 2, Stride: a + 1>
175 Instruction *Ins = nullptr;
176
177 // Points to the immediate basis of this candidate, or nullptr if we cannot
178 // find any basis for this candidate.
179 Candidate *Basis = nullptr;
180 };
181
182 bool runOnFunction(Function &F);
183
184private:
185 // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
186 // share the same base and stride.
187 bool isBasisFor(const Candidate &Basis, const Candidate &C);
188
189 // Returns whether the candidate can be folded into an addressing mode.
190 bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
191 const DataLayout *DL);
192
193 // Returns true if C is already in a simplest form and not worth being
194 // rewritten.
195 bool isSimplestForm(const Candidate &C);
196
197 // Checks whether I is in a candidate form. If so, adds all the matching forms
198 // to Candidates, and tries to find the immediate basis for each of them.
199 void allocateCandidatesAndFindBasis(Instruction *I);
200
201 // Allocate candidates and find bases for Add instructions.
202 void allocateCandidatesAndFindBasisForAdd(Instruction *I);
203
204 // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
205 // candidate.
206 void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
207 Instruction *I);
208 // Allocate candidates and find bases for Mul instructions.
209 void allocateCandidatesAndFindBasisForMul(Instruction *I);
210
211 // Splits LHS into Base + Index and, if succeeds, calls
212 // allocateCandidatesAndFindBasis.
213 void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
214 Instruction *I);
215
216 // Allocate candidates and find bases for GetElementPtr instructions.
217 void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
218
219 // A helper function that scales Idx with ElementSize before invoking
220 // allocateCandidatesAndFindBasis.
221 void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
222 Value *S, uint64_t ElementSize,
223 Instruction *I);
224
225 // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
226 // basis.
227 void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
228 ConstantInt *Idx, Value *S,
229 Instruction *I);
230
231 // Rewrites candidate C with respect to Basis.
232 void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
233
234 // A helper function that factors ArrayIdx to a product of a stride and a
235 // constant index, and invokes allocateCandidatesAndFindBasis with the
236 // factorings.
237 void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
239
240 // Emit code that computes the "bump" from Basis to C.
241 static Value *emitBump(const Candidate &Basis, const Candidate &C,
242 IRBuilder<> &Builder, const DataLayout *DL);
243
244 const DataLayout *DL = nullptr;
245 DominatorTree *DT = nullptr;
246 ScalarEvolution *SE;
247 TargetTransformInfo *TTI = nullptr;
248 std::list<Candidate> Candidates;
249
250 // Temporarily holds all instructions that are unlinked (but not deleted) by
251 // rewriteCandidateWithBasis. These instructions will be actually removed
252 // after all rewriting finishes.
253 std::vector<Instruction *> UnlinkedInstructions;
254};
255
256} // end anonymous namespace
257
258char StraightLineStrengthReduceLegacyPass::ID = 0;
259
260INITIALIZE_PASS_BEGIN(StraightLineStrengthReduceLegacyPass, "slsr",
261 "Straight line strength reduction", false, false)
265INITIALIZE_PASS_END(StraightLineStrengthReduceLegacyPass, "slsr",
266 "Straight line strength reduction", false, false)
267
269 return new StraightLineStrengthReduceLegacyPass();
270}
271
272bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
273 const Candidate &C) {
274 return (Basis.Ins != C.Ins && // skip the same instruction
275 // They must have the same type too. Basis.Base == C.Base
276 // doesn't guarantee their types are the same (PR23975).
277 Basis.Ins->getType() == C.Ins->getType() &&
278 // Basis must dominate C in order to rewrite C with respect to Basis.
279 DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
280 // They share the same base, stride, and candidate kind.
281 Basis.Base == C.Base && Basis.Stride == C.Stride &&
282 Basis.CandidateKind == C.CandidateKind);
283}
284
286 const TargetTransformInfo *TTI) {
287 SmallVector<const Value *, 4> Indices(GEP->indices());
288 return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
290}
291
292// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
293static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
295 // Index->getSExtValue() may crash if Index is wider than 64-bit.
296 return Index->getBitWidth() <= 64 &&
297 TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
298 Index->getSExtValue(), UnknownAddressSpace);
299}
300
301bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
303 const DataLayout *DL) {
304 if (C.CandidateKind == Candidate::Add)
305 return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
306 if (C.CandidateKind == Candidate::GEP)
307 return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI);
308 return false;
309}
310
311// Returns true if GEP has zero or one non-zero index.
313 unsigned NumNonZeroIndices = 0;
314 for (Use &Idx : GEP->indices()) {
315 ConstantInt *ConstIdx = dyn_cast<ConstantInt>(Idx);
316 if (ConstIdx == nullptr || !ConstIdx->isZero())
317 ++NumNonZeroIndices;
318 }
319 return NumNonZeroIndices <= 1;
320}
321
322bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
323 if (C.CandidateKind == Candidate::Add) {
324 // B + 1 * S or B + (-1) * S
325 return C.Index->isOne() || C.Index->isMinusOne();
326 }
327 if (C.CandidateKind == Candidate::Mul) {
328 // (B + 0) * S
329 return C.Index->isZero();
330 }
331 if (C.CandidateKind == Candidate::GEP) {
332 // (char*)B + S or (char*)B - S
333 return ((C.Index->isOne() || C.Index->isMinusOne()) &&
334 hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
335 }
336 return false;
337}
338
339// TODO: We currently implement an algorithm whose time complexity is linear in
340// the number of existing candidates. However, we could do better by using
341// ScopedHashTable. Specifically, while traversing the dominator tree, we could
342// maintain all the candidates that dominate the basic block being traversed in
343// a ScopedHashTable. This hash table is indexed by the base and the stride of
344// a candidate. Therefore, finding the immediate basis of a candidate boils down
345// to one hash-table look up.
346void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
347 Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
348 Instruction *I) {
349 Candidate C(CT, B, Idx, S, I);
350 // SLSR can complicate an instruction in two cases:
351 //
352 // 1. If we can fold I into an addressing mode, computing I is likely free or
353 // takes only one instruction.
354 //
355 // 2. I is already in a simplest form. For example, when
356 // X = B + 8 * S
357 // Y = B + S,
358 // rewriting Y to X - 7 * S is probably a bad idea.
359 //
360 // In the above cases, we still add I to the candidate list so that I can be
361 // the basis of other candidates, but we leave I's basis blank so that I
362 // won't be rewritten.
363 if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
364 // Try to compute the immediate basis of C.
365 unsigned NumIterations = 0;
366 // Limit the scan radius to avoid running in quadratice time.
367 static const unsigned MaxNumIterations = 50;
368 for (auto Basis = Candidates.rbegin();
369 Basis != Candidates.rend() && NumIterations < MaxNumIterations;
370 ++Basis, ++NumIterations) {
371 if (isBasisFor(*Basis, C)) {
372 C.Basis = &(*Basis);
373 break;
374 }
375 }
376 }
377 // Regardless of whether we find a basis for C, we need to push C to the
378 // candidate list so that it can be the basis of other candidates.
379 Candidates.push_back(C);
380}
381
382void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
383 Instruction *I) {
384 switch (I->getOpcode()) {
385 case Instruction::Add:
386 allocateCandidatesAndFindBasisForAdd(I);
387 break;
388 case Instruction::Mul:
389 allocateCandidatesAndFindBasisForMul(I);
390 break;
391 case Instruction::GetElementPtr:
392 allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
393 break;
394 }
395}
396
397void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
398 Instruction *I) {
399 // Try matching B + i * S.
400 if (!isa<IntegerType>(I->getType()))
401 return;
402
403 assert(I->getNumOperands() == 2 && "isn't I an add?");
404 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
405 allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
406 if (LHS != RHS)
407 allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
408}
409
410void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
411 Value *LHS, Value *RHS, Instruction *I) {
412 Value *S = nullptr;
413 ConstantInt *Idx = nullptr;
414 if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
415 // I = LHS + RHS = LHS + Idx * S
416 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
417 } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
418 // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
419 APInt One(Idx->getBitWidth(), 1);
420 Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
421 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
422 } else {
423 // At least, I = LHS + 1 * RHS
424 ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
425 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
426 I);
427 }
428}
429
430// Returns true if A matches B + C where C is constant.
431static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
432 return match(A, m_c_Add(m_Value(B), m_ConstantInt(C)));
433}
434
435// Returns true if A matches B | C where C is constant.
436static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
437 return match(A, m_c_Or(m_Value(B), m_ConstantInt(C)));
438}
439
440void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
441 Value *LHS, Value *RHS, Instruction *I) {
442 Value *B = nullptr;
443 ConstantInt *Idx = nullptr;
444 if (matchesAdd(LHS, B, Idx)) {
445 // If LHS is in the form of "Base + Index", then I is in the form of
446 // "(Base + Index) * RHS".
447 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
448 } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
449 // If LHS is in the form of "Base | Index" and Base and Index have no common
450 // bits set, then
451 // Base | Index = Base + Index
452 // and I is thus in the form of "(Base + Index) * RHS".
453 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
454 } else {
455 // Otherwise, at least try the form (LHS + 0) * RHS.
456 ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
457 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
458 I);
459 }
460}
461
462void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
463 Instruction *I) {
464 // Try matching (B + i) * S.
465 // TODO: we could extend SLSR to float and vector types.
466 if (!isa<IntegerType>(I->getType()))
467 return;
468
469 assert(I->getNumOperands() == 2 && "isn't I a mul?");
470 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
471 allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
472 if (LHS != RHS) {
473 // Symmetrically, try to split RHS to Base + Index.
474 allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
475 }
476}
477
478void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
479 const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
480 Instruction *I) {
481 // I = B + sext(Idx *nsw S) * ElementSize
482 // = B + (sext(Idx) * sext(S)) * ElementSize
483 // = B + (sext(Idx) * ElementSize) * sext(S)
484 // Casting to IntegerType is safe because we skipped vector GEPs.
485 IntegerType *PtrIdxTy = cast<IntegerType>(DL->getIndexType(I->getType()));
486 ConstantInt *ScaledIdx = ConstantInt::get(
487 PtrIdxTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
488 allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
489}
490
491void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
492 const SCEV *Base,
493 uint64_t ElementSize,
495 // At least, ArrayIdx = ArrayIdx *nsw 1.
496 allocateCandidatesAndFindBasisForGEP(
497 Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
498 ArrayIdx, ElementSize, GEP);
499 Value *LHS = nullptr;
500 ConstantInt *RHS = nullptr;
501 // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
502 // itself. This would allow us to handle the shl case for free. However,
503 // matching SCEVs has two issues:
504 //
505 // 1. this would complicate rewriting because the rewriting procedure
506 // would have to translate SCEVs back to IR instructions. This translation
507 // is difficult when LHS is further evaluated to a composite SCEV.
508 //
509 // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
510 // to strip nsw/nuw flags which are critical for SLSR to trace into
511 // sext'ed multiplication.
512 if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
513 // SLSR is currently unsafe if i * S may overflow.
514 // GEP = Base + sext(LHS *nsw RHS) * ElementSize
515 allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
516 } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
517 // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
518 // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
519 APInt One(RHS->getBitWidth(), 1);
520 ConstantInt *PowerOf2 =
521 ConstantInt::get(RHS->getContext(), One << RHS->getValue());
522 allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
523 }
524}
525
526void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
528 // TODO: handle vector GEPs
529 if (GEP->getType()->isVectorTy())
530 return;
531
533 for (Use &Idx : GEP->indices())
534 IndexExprs.push_back(SE->getSCEV(Idx));
535
537 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
538 if (GTI.isStruct())
539 continue;
540
541 const SCEV *OrigIndexExpr = IndexExprs[I - 1];
542 IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
543
544 // The base of this candidate is GEP's base plus the offsets of all
545 // indices except this current one.
546 const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs);
547 Value *ArrayIdx = GEP->getOperand(I);
548 uint64_t ElementSize = GTI.getSequentialElementStride(*DL);
549 if (ArrayIdx->getType()->getIntegerBitWidth() <=
550 DL->getIndexSizeInBits(GEP->getAddressSpace())) {
551 // Skip factoring if ArrayIdx is wider than the index size, because
552 // ArrayIdx is implicitly truncated to the index size.
553 factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
554 }
555 // When ArrayIdx is the sext of a value, we try to factor that value as
556 // well. Handling this case is important because array indices are
557 // typically sign-extended to the pointer index size.
558 Value *TruncatedArrayIdx = nullptr;
559 if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) &&
560 TruncatedArrayIdx->getType()->getIntegerBitWidth() <=
561 DL->getIndexSizeInBits(GEP->getAddressSpace())) {
562 // Skip factoring if TruncatedArrayIdx is wider than the pointer size,
563 // because TruncatedArrayIdx is implicitly truncated to the pointer size.
564 factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
565 }
566
567 IndexExprs[I - 1] = OrigIndexExpr;
568 }
569}
570
571// A helper function that unifies the bitwidth of A and B.
572static void unifyBitWidth(APInt &A, APInt &B) {
573 if (A.getBitWidth() < B.getBitWidth())
574 A = A.sext(B.getBitWidth());
575 else if (A.getBitWidth() > B.getBitWidth())
576 B = B.sext(A.getBitWidth());
577}
578
579Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
580 const Candidate &C,
581 IRBuilder<> &Builder,
582 const DataLayout *DL) {
583 APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
584 unifyBitWidth(Idx, BasisIdx);
585 APInt IndexOffset = Idx - BasisIdx;
586
587 // Compute Bump = C - Basis = (i' - i) * S.
588 // Common case 1: if (i' - i) is 1, Bump = S.
589 if (IndexOffset == 1)
590 return C.Stride;
591 // Common case 2: if (i' - i) is -1, Bump = -S.
592 if (IndexOffset.isAllOnes())
593 return Builder.CreateNeg(C.Stride);
594
595 // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
596 // have different bit widths.
597 IntegerType *DeltaType =
598 IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
599 Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
600 if (IndexOffset.isPowerOf2()) {
601 // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
602 ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
603 return Builder.CreateShl(ExtendedStride, Exponent);
604 }
605 if (IndexOffset.isNegatedPowerOf2()) {
606 // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
608 ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
609 return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
610 }
611 Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
612 return Builder.CreateMul(ExtendedStride, Delta);
613}
614
615void StraightLineStrengthReduce::rewriteCandidateWithBasis(
616 const Candidate &C, const Candidate &Basis) {
617 if (!DebugCounter::shouldExecute(StraightLineStrengthReduceCounter))
618 return;
619
620 assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
621 C.Stride == Basis.Stride);
622 // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
623 // basis of a candidate cannot be unlinked before the candidate.
624 assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
625
626 // An instruction can correspond to multiple candidates. Therefore, instead of
627 // simply deleting an instruction when we rewrite it, we mark its parent as
628 // nullptr (i.e. unlink it) so that we can skip the candidates whose
629 // instruction is already rewritten.
630 if (!C.Ins->getParent())
631 return;
632
633 IRBuilder<> Builder(C.Ins);
634 Value *Bump = emitBump(Basis, C, Builder, DL);
635 Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
636 switch (C.CandidateKind) {
637 case Candidate::Add:
638 case Candidate::Mul: {
639 // C = Basis + Bump
640 Value *NegBump;
641 if (match(Bump, m_Neg(m_Value(NegBump)))) {
642 // If Bump is a neg instruction, emit C = Basis - (-Bump).
643 Reduced = Builder.CreateSub(Basis.Ins, NegBump);
644 // We only use the negative argument of Bump, and Bump itself may be
645 // trivially dead.
647 } else {
648 // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
649 // usually unsound, e.g.,
650 //
651 // X = (-2 +nsw 1) *nsw INT_MAX
652 // Y = (-2 +nsw 3) *nsw INT_MAX
653 // =>
654 // Y = X + 2 * INT_MAX
655 //
656 // Neither + and * in the resultant expression are nsw.
657 Reduced = Builder.CreateAdd(Basis.Ins, Bump);
658 }
659 break;
660 }
661 case Candidate::GEP: {
662 bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
663 // C = (char *)Basis + Bump
664 Reduced = Builder.CreatePtrAdd(Basis.Ins, Bump, "", InBounds);
665 break;
666 }
667 default:
668 llvm_unreachable("C.CandidateKind is invalid");
669 };
670 Reduced->takeName(C.Ins);
671 C.Ins->replaceAllUsesWith(Reduced);
672 // Unlink C.Ins so that we can skip other candidates also corresponding to
673 // C.Ins. The actual deletion is postponed to the end of runOnFunction.
674 C.Ins->removeFromParent();
675 UnlinkedInstructions.push_back(C.Ins);
676}
677
678bool StraightLineStrengthReduceLegacyPass::runOnFunction(Function &F) {
679 if (skipFunction(F))
680 return false;
681
682 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
683 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
684 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
685 return StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F);
686}
687
688bool StraightLineStrengthReduce::runOnFunction(Function &F) {
689 // Traverse the dominator tree in the depth-first order. This order makes sure
690 // all bases of a candidate are in Candidates when we process it.
691 for (const auto Node : depth_first(DT))
692 for (auto &I : *(Node->getBlock()))
693 allocateCandidatesAndFindBasis(&I);
694
695 // Rewrite candidates in the reverse depth-first order. This order makes sure
696 // a candidate being rewritten is not a basis for any other candidate.
697 while (!Candidates.empty()) {
698 const Candidate &C = Candidates.back();
699 if (C.Basis != nullptr) {
700 rewriteCandidateWithBasis(C, *C.Basis);
701 }
702 Candidates.pop_back();
703 }
704
705 // Delete all unlink instructions.
706 for (auto *UnlinkedInst : UnlinkedInstructions) {
707 for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
708 Value *Op = UnlinkedInst->getOperand(I);
709 UnlinkedInst->setOperand(I, nullptr);
711 }
712 UnlinkedInst->deleteValue();
713 }
714 bool Ret = !UnlinkedInstructions.empty();
715 UnlinkedInstructions.clear();
716 return Ret;
717}
718
719namespace llvm {
720
723 const DataLayout *DL = &F.getDataLayout();
724 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
725 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
726 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
727
728 if (!StraightLineStrengthReduce(DL, DT, SE, TTI).runOnFunction(F))
729 return PreservedAnalyses::all();
730
736 return PA;
737}
738
739} // namespace llvm
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
Definition: DebugCounter.h:190
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
static bool runOnFunction(Function &F, bool PostInlining)
Hexagon Common GEP
Module.h This file contains the declarations for the Module class.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
static bool matchesOr(Value *A, Value *&B, ConstantInt *&C)
static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride, TargetTransformInfo *TTI)
static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP)
static void unifyBitWidth(APInt &A, APInt &B)
static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C)
static bool isGEPFoldable(GetElementPtrInst *GEP, const TargetTransformInfo *TTI)
static const unsigned UnknownAddressSpace
Straight line strength reduction
This pass exposes codegen information to IR-level passes.
Value * RHS
Value * LHS
BinaryOperator * Mul
Class for arbitrary precision integers.
Definition: APInt.h:78
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
Definition: APInt.h:449
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition: APInt.h:371
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1468
unsigned logBase2() const
Definition: APInt.h:1739
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition: APInt.h:440
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:410
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:256
Represents analyses that only rely on functions' control flow.
Definition: Analysis.h:72
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:208
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
static bool shouldExecute(unsigned CounterName)
Definition: DebugCounter.h:87
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
Legacy analysis pass which computes a DominatorTree.
Definition: Dominators.h:317
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
virtual bool runOnFunction(Function &F)=0
runOnFunction - Virtual method overriden by subclasses to do the per-function processing of the pass.
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:933
Value * CreatePtrAdd(Value *Ptr, Value *Offset, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
Definition: IRBuilder.h:2002
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
Definition: IRBuilder.h:1744
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1367
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1439
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1350
Value * CreateSExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a SExt or Trunc from the integer value V to DestTy.
Definition: IRBuilder.h:2081
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1384
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2697
Class to represent integer types.
Definition: DerivedTypes.h:42
static IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition: Type.cpp:311
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual void getAnalysisUsage(AnalysisUsage &) const
getAnalysisUsage - This function should be overriden by passes that need analysis information to do t...
Definition: Pass.cpp:98
virtual bool doInitialization(Module &)
doInitialization - Virtual method overridden by subclasses to do any necessary initialization before ...
Definition: Pass.h:119
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
void preserveSet()
Mark an analysis set as preserved.
Definition: Analysis.h:146
void preserve()
Mark an analysis as preserved.
Definition: Analysis.h:131
This class represents an analyzed expression in the program.
Type * getType() const
Return the LLVM type of this SCEV expression.
Analysis pass that exposes the ScalarEvolution for a function.
The main scalar evolution driver.
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Analysis pass providing the TargetTransformInfo.
Wrapper pass for TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType=nullptr, TargetCostKind CostKind=TCK_SizeAndLatency) const
Estimate the cost of a GEP operation when lowered.
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace=0, Instruction *I=nullptr, int64_t ScalableOffset=0) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
@ TCC_Free
Expected to fold away in lowering.
unsigned getIntegerBitWidth() const
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1075
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:383
TypeSize getSequentialElementStride(const DataLayout &DL) const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:168
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a 'Neg' as 'sub 0, V'.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoSignedWrap > m_NSWShl(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
bool RecursivelyDeleteTriviallyDeadInstructions(Value *V, const TargetLibraryInfo *TLI=nullptr, MemorySSAUpdater *MSSAU=nullptr, std::function< void(Value *)> AboutToDeleteCallback=std::function< void(Value *)>())
If the specified value is a trivially dead instruction, delete it.
Definition: Local.cpp:546
void initializeStraightLineStrengthReduceLegacyPassPass(PassRegistry &)
gep_type_iterator gep_type_begin(const User *GEP)
iterator_range< df_iterator< T > > depth_first(const T &G)
FunctionPass * createStraightLineStrengthReducePass()