LLVM 20.0.0git
RISCVInstrInfo.cpp
Go to the documentation of this file.
1//===-- RISCVInstrInfo.cpp - RISC-V Instruction Information -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the RISC-V implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "RISCVInstrInfo.h"
16#include "RISCV.h"
18#include "RISCVSubtarget.h"
19#include "llvm/ADT/STLExtras.h"
32#include "llvm/IR/Module.h"
36
37using namespace llvm;
38
39#define GEN_CHECK_COMPRESS_INSTR
40#include "RISCVGenCompressInstEmitter.inc"
41
42#define GET_INSTRINFO_CTOR_DTOR
43#define GET_INSTRINFO_NAMED_OPS
44#include "RISCVGenInstrInfo.inc"
45
47 "riscv-prefer-whole-register-move", cl::init(false), cl::Hidden,
48 cl::desc("Prefer whole register move for vector registers."));
49
51 "riscv-force-machine-combiner-strategy", cl::Hidden,
52 cl::desc("Force machine combiner to use a specific strategy for machine "
53 "trace metrics evaluation."),
54 cl::init(MachineTraceStrategy::TS_NumStrategies),
55 cl::values(clEnumValN(MachineTraceStrategy::TS_Local, "local",
56 "Local strategy."),
57 clEnumValN(MachineTraceStrategy::TS_MinInstrCount, "min-instr",
58 "MinInstrCount strategy.")));
59
61
62using namespace RISCV;
63
64#define GET_RISCVVPseudosTable_IMPL
65#include "RISCVGenSearchableTables.inc"
66
67} // namespace llvm::RISCVVPseudosTable
68
69namespace llvm::RISCV {
70
71#define GET_RISCVMaskedPseudosTable_IMPL
72#include "RISCVGenSearchableTables.inc"
73
74} // end namespace llvm::RISCV
75
77 : RISCVGenInstrInfo(RISCV::ADJCALLSTACKDOWN, RISCV::ADJCALLSTACKUP),
78 STI(STI) {}
79
81 if (STI.hasStdExtCOrZca())
82 return MCInstBuilder(RISCV::C_NOP);
83 return MCInstBuilder(RISCV::ADDI)
84 .addReg(RISCV::X0)
85 .addReg(RISCV::X0)
86 .addImm(0);
87}
88
90 int &FrameIndex) const {
91 unsigned Dummy;
92 return isLoadFromStackSlot(MI, FrameIndex, Dummy);
93}
94
96 int &FrameIndex,
97 unsigned &MemBytes) const {
98 switch (MI.getOpcode()) {
99 default:
100 return 0;
101 case RISCV::LB:
102 case RISCV::LBU:
103 MemBytes = 1;
104 break;
105 case RISCV::LH:
106 case RISCV::LH_INX:
107 case RISCV::LHU:
108 case RISCV::FLH:
109 MemBytes = 2;
110 break;
111 case RISCV::LW:
112 case RISCV::LW_INX:
113 case RISCV::FLW:
114 case RISCV::LWU:
115 MemBytes = 4;
116 break;
117 case RISCV::LD:
118 case RISCV::FLD:
119 MemBytes = 8;
120 break;
121 }
122
123 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
124 MI.getOperand(2).getImm() == 0) {
125 FrameIndex = MI.getOperand(1).getIndex();
126 return MI.getOperand(0).getReg();
127 }
128
129 return 0;
130}
131
133 int &FrameIndex) const {
134 unsigned Dummy;
135 return isStoreToStackSlot(MI, FrameIndex, Dummy);
136}
137
139 int &FrameIndex,
140 unsigned &MemBytes) const {
141 switch (MI.getOpcode()) {
142 default:
143 return 0;
144 case RISCV::SB:
145 MemBytes = 1;
146 break;
147 case RISCV::SH:
148 case RISCV::SH_INX:
149 case RISCV::FSH:
150 MemBytes = 2;
151 break;
152 case RISCV::SW:
153 case RISCV::SW_INX:
154 case RISCV::FSW:
155 MemBytes = 4;
156 break;
157 case RISCV::SD:
158 case RISCV::FSD:
159 MemBytes = 8;
160 break;
161 }
162
163 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
164 MI.getOperand(2).getImm() == 0) {
165 FrameIndex = MI.getOperand(1).getIndex();
166 return MI.getOperand(0).getReg();
167 }
168
169 return 0;
170}
171
173 const MachineInstr &MI) const {
174 switch (RISCV::getRVVMCOpcode(MI.getOpcode())) {
175 case RISCV::VMV_V_X:
176 case RISCV::VFMV_V_F:
177 case RISCV::VMV_V_I:
178 case RISCV::VMV_S_X:
179 case RISCV::VFMV_S_F:
180 case RISCV::VID_V:
181 return MI.getOperand(1).isUndef();
182 default:
184 }
185}
186
187static bool forwardCopyWillClobberTuple(unsigned DstReg, unsigned SrcReg,
188 unsigned NumRegs) {
189 return DstReg > SrcReg && (DstReg - SrcReg) < NumRegs;
190}
191
193 const MachineBasicBlock &MBB,
196 RISCVII::VLMUL LMul) {
198 return false;
199
200 assert(MBBI->getOpcode() == TargetOpcode::COPY &&
201 "Unexpected COPY instruction.");
202 Register SrcReg = MBBI->getOperand(1).getReg();
204
205 bool FoundDef = false;
206 bool FirstVSetVLI = false;
207 unsigned FirstSEW = 0;
208 while (MBBI != MBB.begin()) {
209 --MBBI;
210 if (MBBI->isMetaInstruction())
211 continue;
212
213 if (MBBI->getOpcode() == RISCV::PseudoVSETVLI ||
214 MBBI->getOpcode() == RISCV::PseudoVSETVLIX0 ||
215 MBBI->getOpcode() == RISCV::PseudoVSETIVLI) {
216 // There is a vsetvli between COPY and source define instruction.
217 // vy = def_vop ... (producing instruction)
218 // ...
219 // vsetvli
220 // ...
221 // vx = COPY vy
222 if (!FoundDef) {
223 if (!FirstVSetVLI) {
224 FirstVSetVLI = true;
225 unsigned FirstVType = MBBI->getOperand(2).getImm();
226 RISCVII::VLMUL FirstLMul = RISCVVType::getVLMUL(FirstVType);
227 FirstSEW = RISCVVType::getSEW(FirstVType);
228 // The first encountered vsetvli must have the same lmul as the
229 // register class of COPY.
230 if (FirstLMul != LMul)
231 return false;
232 }
233 // Only permit `vsetvli x0, x0, vtype` between COPY and the source
234 // define instruction.
235 if (MBBI->getOperand(0).getReg() != RISCV::X0)
236 return false;
237 if (MBBI->getOperand(1).isImm())
238 return false;
239 if (MBBI->getOperand(1).getReg() != RISCV::X0)
240 return false;
241 continue;
242 }
243
244 // MBBI is the first vsetvli before the producing instruction.
245 unsigned VType = MBBI->getOperand(2).getImm();
246 // If there is a vsetvli between COPY and the producing instruction.
247 if (FirstVSetVLI) {
248 // If SEW is different, return false.
249 if (RISCVVType::getSEW(VType) != FirstSEW)
250 return false;
251 }
252
253 // If the vsetvli is tail undisturbed, keep the whole register move.
254 if (!RISCVVType::isTailAgnostic(VType))
255 return false;
256
257 // The checking is conservative. We only have register classes for
258 // LMUL = 1/2/4/8. We should be able to convert vmv1r.v to vmv.v.v
259 // for fractional LMUL operations. However, we could not use the vsetvli
260 // lmul for widening operations. The result of widening operation is
261 // 2 x LMUL.
262 return LMul == RISCVVType::getVLMUL(VType);
263 } else if (MBBI->isInlineAsm() || MBBI->isCall()) {
264 return false;
265 } else if (MBBI->getNumDefs()) {
266 // Check all the instructions which will change VL.
267 // For example, vleff has implicit def VL.
268 if (MBBI->modifiesRegister(RISCV::VL, /*TRI=*/nullptr))
269 return false;
270
271 // Only converting whole register copies to vmv.v.v when the defining
272 // value appears in the explicit operands.
273 for (const MachineOperand &MO : MBBI->explicit_operands()) {
274 if (!MO.isReg() || !MO.isDef())
275 continue;
276 if (!FoundDef && TRI->regsOverlap(MO.getReg(), SrcReg)) {
277 // We only permit the source of COPY has the same LMUL as the defined
278 // operand.
279 // There are cases we need to keep the whole register copy if the LMUL
280 // is different.
281 // For example,
282 // $x0 = PseudoVSETIVLI 4, 73 // vsetivli zero, 4, e16,m2,ta,m
283 // $v28m4 = PseudoVWADD_VV_M2 $v26m2, $v8m2
284 // # The COPY may be created by vlmul_trunc intrinsic.
285 // $v26m2 = COPY renamable $v28m2, implicit killed $v28m4
286 //
287 // After widening, the valid value will be 4 x e32 elements. If we
288 // convert the COPY to vmv.v.v, it will only copy 4 x e16 elements.
289 // FIXME: The COPY of subregister of Zvlsseg register will not be able
290 // to convert to vmv.v.[v|i] under the constraint.
291 if (MO.getReg() != SrcReg)
292 return false;
293
294 // In widening reduction instructions with LMUL_1 input vector case,
295 // only checking the LMUL is insufficient due to reduction result is
296 // always LMUL_1.
297 // For example,
298 // $x11 = PseudoVSETIVLI 1, 64 // vsetivli a1, 1, e8, m1, ta, mu
299 // $v8m1 = PseudoVWREDSUM_VS_M1 $v26, $v27
300 // $v26 = COPY killed renamable $v8
301 // After widening, The valid value will be 1 x e16 elements. If we
302 // convert the COPY to vmv.v.v, it will only copy 1 x e8 elements.
303 uint64_t TSFlags = MBBI->getDesc().TSFlags;
305 return false;
306
307 // If the producing instruction does not depend on vsetvli, do not
308 // convert COPY to vmv.v.v. For example, VL1R_V or PseudoVRELOAD.
309 if (!RISCVII::hasSEWOp(TSFlags) || !RISCVII::hasVLOp(TSFlags))
310 return false;
311
312 // Found the definition.
313 FoundDef = true;
314 DefMBBI = MBBI;
315 break;
316 }
317 }
318 }
319 }
320
321 return false;
322}
323
326 const DebugLoc &DL, MCRegister DstReg, MCRegister SrcReg, bool KillSrc,
327 const TargetRegisterClass *RegClass) const {
329 RISCVII::VLMUL LMul = RISCVRI::getLMul(RegClass->TSFlags);
330 unsigned NF = RISCVRI::getNF(RegClass->TSFlags);
331
332 uint16_t SrcEncoding = TRI->getEncodingValue(SrcReg);
333 uint16_t DstEncoding = TRI->getEncodingValue(DstReg);
334 auto [LMulVal, Fractional] = RISCVVType::decodeVLMUL(LMul);
335 assert(!Fractional && "It is impossible be fractional lmul here.");
336 unsigned NumRegs = NF * LMulVal;
337 bool ReversedCopy =
338 forwardCopyWillClobberTuple(DstEncoding, SrcEncoding, NumRegs);
339 if (ReversedCopy) {
340 // If the src and dest overlap when copying a tuple, we need to copy the
341 // registers in reverse.
342 SrcEncoding += NumRegs - 1;
343 DstEncoding += NumRegs - 1;
344 }
345
346 unsigned I = 0;
347 auto GetCopyInfo = [&](uint16_t SrcEncoding, uint16_t DstEncoding)
348 -> std::tuple<RISCVII::VLMUL, const TargetRegisterClass &, unsigned,
349 unsigned, unsigned> {
350 if (ReversedCopy) {
351 // For reversed copying, if there are enough aligned registers(8/4/2), we
352 // can do a larger copy(LMUL8/4/2).
353 // Besides, we have already known that DstEncoding is larger than
354 // SrcEncoding in forwardCopyWillClobberTuple, so the difference between
355 // DstEncoding and SrcEncoding should be >= LMUL value we try to use to
356 // avoid clobbering.
357 uint16_t Diff = DstEncoding - SrcEncoding;
358 if (I + 8 <= NumRegs && Diff >= 8 && SrcEncoding % 8 == 7 &&
359 DstEncoding % 8 == 7)
360 return {RISCVII::LMUL_8, RISCV::VRM8RegClass, RISCV::VMV8R_V,
361 RISCV::PseudoVMV_V_V_M8, RISCV::PseudoVMV_V_I_M8};
362 if (I + 4 <= NumRegs && Diff >= 4 && SrcEncoding % 4 == 3 &&
363 DstEncoding % 4 == 3)
364 return {RISCVII::LMUL_4, RISCV::VRM4RegClass, RISCV::VMV4R_V,
365 RISCV::PseudoVMV_V_V_M4, RISCV::PseudoVMV_V_I_M4};
366 if (I + 2 <= NumRegs && Diff >= 2 && SrcEncoding % 2 == 1 &&
367 DstEncoding % 2 == 1)
368 return {RISCVII::LMUL_2, RISCV::VRM2RegClass, RISCV::VMV2R_V,
369 RISCV::PseudoVMV_V_V_M2, RISCV::PseudoVMV_V_I_M2};
370 // Or we should do LMUL1 copying.
371 return {RISCVII::LMUL_1, RISCV::VRRegClass, RISCV::VMV1R_V,
372 RISCV::PseudoVMV_V_V_M1, RISCV::PseudoVMV_V_I_M1};
373 }
374
375 // For forward copying, if source register encoding and destination register
376 // encoding are aligned to 8/4/2, we can do a LMUL8/4/2 copying.
377 if (I + 8 <= NumRegs && SrcEncoding % 8 == 0 && DstEncoding % 8 == 0)
378 return {RISCVII::LMUL_8, RISCV::VRM8RegClass, RISCV::VMV8R_V,
379 RISCV::PseudoVMV_V_V_M8, RISCV::PseudoVMV_V_I_M8};
380 if (I + 4 <= NumRegs && SrcEncoding % 4 == 0 && DstEncoding % 4 == 0)
381 return {RISCVII::LMUL_4, RISCV::VRM4RegClass, RISCV::VMV4R_V,
382 RISCV::PseudoVMV_V_V_M4, RISCV::PseudoVMV_V_I_M4};
383 if (I + 2 <= NumRegs && SrcEncoding % 2 == 0 && DstEncoding % 2 == 0)
384 return {RISCVII::LMUL_2, RISCV::VRM2RegClass, RISCV::VMV2R_V,
385 RISCV::PseudoVMV_V_V_M2, RISCV::PseudoVMV_V_I_M2};
386 // Or we should do LMUL1 copying.
387 return {RISCVII::LMUL_1, RISCV::VRRegClass, RISCV::VMV1R_V,
388 RISCV::PseudoVMV_V_V_M1, RISCV::PseudoVMV_V_I_M1};
389 };
390 auto FindRegWithEncoding = [TRI](const TargetRegisterClass &RegClass,
391 uint16_t Encoding) {
392 MCRegister Reg = RISCV::V0 + Encoding;
394 return Reg;
395 return TRI->getMatchingSuperReg(Reg, RISCV::sub_vrm1_0, &RegClass);
396 };
397 while (I != NumRegs) {
398 // For non-segment copying, we only do this once as the registers are always
399 // aligned.
400 // For segment copying, we may do this several times. If the registers are
401 // aligned to larger LMUL, we can eliminate some copyings.
402 auto [LMulCopied, RegClass, Opc, VVOpc, VIOpc] =
403 GetCopyInfo(SrcEncoding, DstEncoding);
404 auto [NumCopied, _] = RISCVVType::decodeVLMUL(LMulCopied);
405
407 if (LMul == LMulCopied &&
408 isConvertibleToVMV_V_V(STI, MBB, MBBI, DefMBBI, LMul)) {
409 Opc = VVOpc;
410 if (DefMBBI->getOpcode() == VIOpc)
411 Opc = VIOpc;
412 }
413
414 // Emit actual copying.
415 // For reversed copying, the encoding should be decreased.
416 MCRegister ActualSrcReg = FindRegWithEncoding(
417 RegClass, ReversedCopy ? (SrcEncoding - NumCopied + 1) : SrcEncoding);
418 MCRegister ActualDstReg = FindRegWithEncoding(
419 RegClass, ReversedCopy ? (DstEncoding - NumCopied + 1) : DstEncoding);
420
421 auto MIB = BuildMI(MBB, MBBI, DL, get(Opc), ActualDstReg);
422 bool UseVMV_V_I = RISCV::getRVVMCOpcode(Opc) == RISCV::VMV_V_I;
423 bool UseVMV = UseVMV_V_I || RISCV::getRVVMCOpcode(Opc) == RISCV::VMV_V_V;
424 if (UseVMV)
425 MIB.addReg(ActualDstReg, RegState::Undef);
426 if (UseVMV_V_I)
427 MIB = MIB.add(DefMBBI->getOperand(2));
428 else
429 MIB = MIB.addReg(ActualSrcReg, getKillRegState(KillSrc));
430 if (UseVMV) {
431 const MCInstrDesc &Desc = DefMBBI->getDesc();
432 MIB.add(DefMBBI->getOperand(RISCVII::getVLOpNum(Desc))); // AVL
433 unsigned Log2SEW =
434 DefMBBI->getOperand(RISCVII::getSEWOpNum(Desc)).getImm();
435 MIB.addImm(Log2SEW ? Log2SEW : 3); // SEW
436 MIB.addImm(0); // tu, mu
437 MIB.addReg(RISCV::VL, RegState::Implicit);
438 MIB.addReg(RISCV::VTYPE, RegState::Implicit);
439 }
440
441 // If we are copying reversely, we should decrease the encoding.
442 SrcEncoding += (ReversedCopy ? -NumCopied : NumCopied);
443 DstEncoding += (ReversedCopy ? -NumCopied : NumCopied);
444 I += NumCopied;
445 }
446}
447
450 const DebugLoc &DL, MCRegister DstReg,
451 MCRegister SrcReg, bool KillSrc,
452 bool RenamableDest, bool RenamableSrc) const {
454
455 if (RISCV::GPRRegClass.contains(DstReg, SrcReg)) {
456 BuildMI(MBB, MBBI, DL, get(RISCV::ADDI), DstReg)
457 .addReg(SrcReg,
458 getKillRegState(KillSrc) | getRenamableRegState(RenamableSrc))
459 .addImm(0);
460 return;
461 }
462
463 if (RISCV::GPRF16RegClass.contains(DstReg, SrcReg)) {
464 BuildMI(MBB, MBBI, DL, get(RISCV::PseudoMV_FPR16INX), DstReg)
465 .addReg(SrcReg,
466 getKillRegState(KillSrc) | getRenamableRegState(RenamableSrc));
467 return;
468 }
469
470 if (RISCV::GPRF32RegClass.contains(DstReg, SrcReg)) {
471 BuildMI(MBB, MBBI, DL, get(RISCV::PseudoMV_FPR32INX), DstReg)
472 .addReg(SrcReg,
473 getKillRegState(KillSrc) | getRenamableRegState(RenamableSrc));
474 return;
475 }
476
477 if (RISCV::GPRPairRegClass.contains(DstReg, SrcReg)) {
478 // Emit an ADDI for both parts of GPRPair.
479 BuildMI(MBB, MBBI, DL, get(RISCV::ADDI),
480 TRI->getSubReg(DstReg, RISCV::sub_gpr_even))
481 .addReg(TRI->getSubReg(SrcReg, RISCV::sub_gpr_even),
482 getKillRegState(KillSrc))
483 .addImm(0);
484 BuildMI(MBB, MBBI, DL, get(RISCV::ADDI),
485 TRI->getSubReg(DstReg, RISCV::sub_gpr_odd))
486 .addReg(TRI->getSubReg(SrcReg, RISCV::sub_gpr_odd),
487 getKillRegState(KillSrc))
488 .addImm(0);
489 return;
490 }
491
492 // Handle copy from csr
493 if (RISCV::VCSRRegClass.contains(SrcReg) &&
494 RISCV::GPRRegClass.contains(DstReg)) {
495 BuildMI(MBB, MBBI, DL, get(RISCV::CSRRS), DstReg)
496 .addImm(RISCVSysReg::lookupSysRegByName(TRI->getName(SrcReg))->Encoding)
497 .addReg(RISCV::X0);
498 return;
499 }
500
501 if (RISCV::FPR16RegClass.contains(DstReg, SrcReg)) {
502 unsigned Opc;
503 if (STI.hasStdExtZfh()) {
504 Opc = RISCV::FSGNJ_H;
505 } else {
506 assert(STI.hasStdExtF() &&
507 (STI.hasStdExtZfhmin() || STI.hasStdExtZfbfmin()) &&
508 "Unexpected extensions");
509 // Zfhmin/Zfbfmin doesn't have FSGNJ_H, replace FSGNJ_H with FSGNJ_S.
510 DstReg = TRI->getMatchingSuperReg(DstReg, RISCV::sub_16,
511 &RISCV::FPR32RegClass);
512 SrcReg = TRI->getMatchingSuperReg(SrcReg, RISCV::sub_16,
513 &RISCV::FPR32RegClass);
514 Opc = RISCV::FSGNJ_S;
515 }
516 BuildMI(MBB, MBBI, DL, get(Opc), DstReg)
517 .addReg(SrcReg, getKillRegState(KillSrc))
518 .addReg(SrcReg, getKillRegState(KillSrc));
519 return;
520 }
521
522 if (RISCV::FPR32RegClass.contains(DstReg, SrcReg)) {
523 BuildMI(MBB, MBBI, DL, get(RISCV::FSGNJ_S), DstReg)
524 .addReg(SrcReg, getKillRegState(KillSrc))
525 .addReg(SrcReg, getKillRegState(KillSrc));
526 return;
527 }
528
529 if (RISCV::FPR64RegClass.contains(DstReg, SrcReg)) {
530 BuildMI(MBB, MBBI, DL, get(RISCV::FSGNJ_D), DstReg)
531 .addReg(SrcReg, getKillRegState(KillSrc))
532 .addReg(SrcReg, getKillRegState(KillSrc));
533 return;
534 }
535
536 if (RISCV::FPR32RegClass.contains(DstReg) &&
537 RISCV::GPRRegClass.contains(SrcReg)) {
538 BuildMI(MBB, MBBI, DL, get(RISCV::FMV_W_X), DstReg)
539 .addReg(SrcReg, getKillRegState(KillSrc));
540 return;
541 }
542
543 if (RISCV::GPRRegClass.contains(DstReg) &&
544 RISCV::FPR32RegClass.contains(SrcReg)) {
545 BuildMI(MBB, MBBI, DL, get(RISCV::FMV_X_W), DstReg)
546 .addReg(SrcReg, getKillRegState(KillSrc));
547 return;
548 }
549
550 if (RISCV::FPR64RegClass.contains(DstReg) &&
551 RISCV::GPRRegClass.contains(SrcReg)) {
552 assert(STI.getXLen() == 64 && "Unexpected GPR size");
553 BuildMI(MBB, MBBI, DL, get(RISCV::FMV_D_X), DstReg)
554 .addReg(SrcReg, getKillRegState(KillSrc));
555 return;
556 }
557
558 if (RISCV::GPRRegClass.contains(DstReg) &&
559 RISCV::FPR64RegClass.contains(SrcReg)) {
560 assert(STI.getXLen() == 64 && "Unexpected GPR size");
561 BuildMI(MBB, MBBI, DL, get(RISCV::FMV_X_D), DstReg)
562 .addReg(SrcReg, getKillRegState(KillSrc));
563 return;
564 }
565
566 // VR->VR copies.
567 const TargetRegisterClass *RegClass =
568 TRI->getCommonMinimalPhysRegClass(SrcReg, DstReg);
569 if (RISCVRegisterInfo::isRVVRegClass(RegClass)) {
570 copyPhysRegVector(MBB, MBBI, DL, DstReg, SrcReg, KillSrc, RegClass);
571 return;
572 }
573
574 llvm_unreachable("Impossible reg-to-reg copy");
575}
576
579 Register SrcReg, bool IsKill, int FI,
580 const TargetRegisterClass *RC,
581 const TargetRegisterInfo *TRI,
582 Register VReg) const {
584 MachineFrameInfo &MFI = MF->getFrameInfo();
585
586 unsigned Opcode;
587 bool IsScalableVector = true;
588 if (RISCV::GPRRegClass.hasSubClassEq(RC)) {
589 Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
590 RISCV::SW : RISCV::SD;
591 IsScalableVector = false;
592 } else if (RISCV::GPRF16RegClass.hasSubClassEq(RC)) {
593 Opcode = RISCV::SH_INX;
594 IsScalableVector = false;
595 } else if (RISCV::GPRF32RegClass.hasSubClassEq(RC)) {
596 Opcode = RISCV::SW_INX;
597 IsScalableVector = false;
598 } else if (RISCV::GPRPairRegClass.hasSubClassEq(RC)) {
599 Opcode = RISCV::PseudoRV32ZdinxSD;
600 IsScalableVector = false;
601 } else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) {
602 Opcode = RISCV::FSH;
603 IsScalableVector = false;
604 } else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) {
605 Opcode = RISCV::FSW;
606 IsScalableVector = false;
607 } else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) {
608 Opcode = RISCV::FSD;
609 IsScalableVector = false;
610 } else if (RISCV::VRRegClass.hasSubClassEq(RC)) {
611 Opcode = RISCV::VS1R_V;
612 } else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) {
613 Opcode = RISCV::VS2R_V;
614 } else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) {
615 Opcode = RISCV::VS4R_V;
616 } else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) {
617 Opcode = RISCV::VS8R_V;
618 } else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC))
619 Opcode = RISCV::PseudoVSPILL2_M1;
620 else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC))
621 Opcode = RISCV::PseudoVSPILL2_M2;
622 else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC))
623 Opcode = RISCV::PseudoVSPILL2_M4;
624 else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC))
625 Opcode = RISCV::PseudoVSPILL3_M1;
626 else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC))
627 Opcode = RISCV::PseudoVSPILL3_M2;
628 else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC))
629 Opcode = RISCV::PseudoVSPILL4_M1;
630 else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC))
631 Opcode = RISCV::PseudoVSPILL4_M2;
632 else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC))
633 Opcode = RISCV::PseudoVSPILL5_M1;
634 else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC))
635 Opcode = RISCV::PseudoVSPILL6_M1;
636 else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC))
637 Opcode = RISCV::PseudoVSPILL7_M1;
638 else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC))
639 Opcode = RISCV::PseudoVSPILL8_M1;
640 else
641 llvm_unreachable("Can't store this register to stack slot");
642
643 if (IsScalableVector) {
647
649 BuildMI(MBB, I, DebugLoc(), get(Opcode))
650 .addReg(SrcReg, getKillRegState(IsKill))
651 .addFrameIndex(FI)
652 .addMemOperand(MMO);
653 } else {
656 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
657
658 BuildMI(MBB, I, DebugLoc(), get(Opcode))
659 .addReg(SrcReg, getKillRegState(IsKill))
660 .addFrameIndex(FI)
661 .addImm(0)
662 .addMemOperand(MMO);
663 }
664}
665
668 Register DstReg, int FI,
669 const TargetRegisterClass *RC,
670 const TargetRegisterInfo *TRI,
671 Register VReg) const {
673 MachineFrameInfo &MFI = MF->getFrameInfo();
674
675 unsigned Opcode;
676 bool IsScalableVector = true;
677 if (RISCV::GPRRegClass.hasSubClassEq(RC)) {
678 Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
679 RISCV::LW : RISCV::LD;
680 IsScalableVector = false;
681 } else if (RISCV::GPRF16RegClass.hasSubClassEq(RC)) {
682 Opcode = RISCV::LH_INX;
683 IsScalableVector = false;
684 } else if (RISCV::GPRF32RegClass.hasSubClassEq(RC)) {
685 Opcode = RISCV::LW_INX;
686 IsScalableVector = false;
687 } else if (RISCV::GPRPairRegClass.hasSubClassEq(RC)) {
688 Opcode = RISCV::PseudoRV32ZdinxLD;
689 IsScalableVector = false;
690 } else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) {
691 Opcode = RISCV::FLH;
692 IsScalableVector = false;
693 } else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) {
694 Opcode = RISCV::FLW;
695 IsScalableVector = false;
696 } else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) {
697 Opcode = RISCV::FLD;
698 IsScalableVector = false;
699 } else if (RISCV::VRRegClass.hasSubClassEq(RC)) {
700 Opcode = RISCV::VL1RE8_V;
701 } else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) {
702 Opcode = RISCV::VL2RE8_V;
703 } else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) {
704 Opcode = RISCV::VL4RE8_V;
705 } else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) {
706 Opcode = RISCV::VL8RE8_V;
707 } else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC))
708 Opcode = RISCV::PseudoVRELOAD2_M1;
709 else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC))
710 Opcode = RISCV::PseudoVRELOAD2_M2;
711 else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC))
712 Opcode = RISCV::PseudoVRELOAD2_M4;
713 else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC))
714 Opcode = RISCV::PseudoVRELOAD3_M1;
715 else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC))
716 Opcode = RISCV::PseudoVRELOAD3_M2;
717 else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC))
718 Opcode = RISCV::PseudoVRELOAD4_M1;
719 else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC))
720 Opcode = RISCV::PseudoVRELOAD4_M2;
721 else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC))
722 Opcode = RISCV::PseudoVRELOAD5_M1;
723 else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC))
724 Opcode = RISCV::PseudoVRELOAD6_M1;
725 else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC))
726 Opcode = RISCV::PseudoVRELOAD7_M1;
727 else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC))
728 Opcode = RISCV::PseudoVRELOAD8_M1;
729 else
730 llvm_unreachable("Can't load this register from stack slot");
731
732 if (IsScalableVector) {
736
738 BuildMI(MBB, I, DebugLoc(), get(Opcode), DstReg)
739 .addFrameIndex(FI)
740 .addMemOperand(MMO);
741 } else {
744 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
745
746 BuildMI(MBB, I, DebugLoc(), get(Opcode), DstReg)
747 .addFrameIndex(FI)
748 .addImm(0)
749 .addMemOperand(MMO);
750 }
751}
752
755 MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS,
756 VirtRegMap *VRM) const {
757 // The below optimizations narrow the load so they are only valid for little
758 // endian.
759 // TODO: Support big endian by adding an offset into the frame object?
760 if (MF.getDataLayout().isBigEndian())
761 return nullptr;
762
763 // Fold load from stack followed by sext.b/sext.h/sext.w/zext.b/zext.h/zext.w.
764 if (Ops.size() != 1 || Ops[0] != 1)
765 return nullptr;
766
767 unsigned LoadOpc;
768 switch (MI.getOpcode()) {
769 default:
770 if (RISCV::isSEXT_W(MI)) {
771 LoadOpc = RISCV::LW;
772 break;
773 }
774 if (RISCV::isZEXT_W(MI)) {
775 LoadOpc = RISCV::LWU;
776 break;
777 }
778 if (RISCV::isZEXT_B(MI)) {
779 LoadOpc = RISCV::LBU;
780 break;
781 }
782 if (RISCV::getRVVMCOpcode(MI.getOpcode()) == RISCV::VMV_X_S) {
783 unsigned Log2SEW =
784 MI.getOperand(RISCVII::getSEWOpNum(MI.getDesc())).getImm();
785 if (STI.getXLen() < (1U << Log2SEW))
786 return nullptr;
787 switch (Log2SEW) {
788 case 3:
789 LoadOpc = RISCV::LB;
790 break;
791 case 4:
792 LoadOpc = RISCV::LH;
793 break;
794 case 5:
795 LoadOpc = RISCV::LW;
796 break;
797 case 6:
798 LoadOpc = RISCV::LD;
799 break;
800 default:
801 llvm_unreachable("Unexpected SEW");
802 }
803 break;
804 }
805 if (RISCV::getRVVMCOpcode(MI.getOpcode()) == RISCV::VFMV_F_S) {
806 unsigned Log2SEW =
807 MI.getOperand(RISCVII::getSEWOpNum(MI.getDesc())).getImm();
808 switch (Log2SEW) {
809 case 4:
810 LoadOpc = RISCV::FLH;
811 break;
812 case 5:
813 LoadOpc = RISCV::FLW;
814 break;
815 case 6:
816 LoadOpc = RISCV::FLD;
817 break;
818 default:
819 llvm_unreachable("Unexpected SEW");
820 }
821 break;
822 }
823 return nullptr;
824 case RISCV::SEXT_H:
825 LoadOpc = RISCV::LH;
826 break;
827 case RISCV::SEXT_B:
828 LoadOpc = RISCV::LB;
829 break;
830 case RISCV::ZEXT_H_RV32:
831 case RISCV::ZEXT_H_RV64:
832 LoadOpc = RISCV::LHU;
833 break;
834 }
835
836 Register DstReg = MI.getOperand(0).getReg();
837 return BuildMI(*MI.getParent(), InsertPt, MI.getDebugLoc(), get(LoadOpc),
838 DstReg)
839 .addFrameIndex(FrameIndex)
840 .addImm(0);
841}
842
845 const DebugLoc &DL, Register DstReg, uint64_t Val,
846 MachineInstr::MIFlag Flag, bool DstRenamable,
847 bool DstIsDead) const {
848 Register SrcReg = RISCV::X0;
849
850 // For RV32, allow a sign or unsigned 32 bit value.
851 if (!STI.is64Bit() && !isInt<32>(Val)) {
852 // If have a uimm32 it will still fit in a register so we can allow it.
853 if (!isUInt<32>(Val))
854 report_fatal_error("Should only materialize 32-bit constants for RV32");
855
856 // Sign extend for generateInstSeq.
857 Val = SignExtend64<32>(Val);
858 }
859
861 assert(!Seq.empty());
862
863 bool SrcRenamable = false;
864 unsigned Num = 0;
865
866 for (const RISCVMatInt::Inst &Inst : Seq) {
867 bool LastItem = ++Num == Seq.size();
868 unsigned DstRegState = getDeadRegState(DstIsDead && LastItem) |
869 getRenamableRegState(DstRenamable);
870 unsigned SrcRegState = getKillRegState(SrcReg != RISCV::X0) |
871 getRenamableRegState(SrcRenamable);
872 switch (Inst.getOpndKind()) {
873 case RISCVMatInt::Imm:
874 BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()))
875 .addReg(DstReg, RegState::Define | DstRegState)
876 .addImm(Inst.getImm())
877 .setMIFlag(Flag);
878 break;
880 BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()))
881 .addReg(DstReg, RegState::Define | DstRegState)
882 .addReg(SrcReg, SrcRegState)
883 .addReg(RISCV::X0)
884 .setMIFlag(Flag);
885 break;
887 BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()))
888 .addReg(DstReg, RegState::Define | DstRegState)
889 .addReg(SrcReg, SrcRegState)
890 .addReg(SrcReg, SrcRegState)
891 .setMIFlag(Flag);
892 break;
894 BuildMI(MBB, MBBI, DL, get(Inst.getOpcode()))
895 .addReg(DstReg, RegState::Define | DstRegState)
896 .addReg(SrcReg, SrcRegState)
897 .addImm(Inst.getImm())
898 .setMIFlag(Flag);
899 break;
900 }
901
902 // Only the first instruction has X0 as its source.
903 SrcReg = DstReg;
904 SrcRenamable = DstRenamable;
905 }
906}
907
909 switch (Opc) {
910 default:
912 case RISCV::CV_BEQIMM:
913 return RISCVCC::COND_EQ;
914 case RISCV::CV_BNEIMM:
915 return RISCVCC::COND_NE;
916 case RISCV::BEQ:
917 return RISCVCC::COND_EQ;
918 case RISCV::BNE:
919 return RISCVCC::COND_NE;
920 case RISCV::BLT:
921 return RISCVCC::COND_LT;
922 case RISCV::BGE:
923 return RISCVCC::COND_GE;
924 case RISCV::BLTU:
925 return RISCVCC::COND_LTU;
926 case RISCV::BGEU:
927 return RISCVCC::COND_GEU;
928 }
929}
930
931// The contents of values added to Cond are not examined outside of
932// RISCVInstrInfo, giving us flexibility in what to push to it. For RISCV, we
933// push BranchOpcode, Reg1, Reg2.
936 // Block ends with fall-through condbranch.
937 assert(LastInst.getDesc().isConditionalBranch() &&
938 "Unknown conditional branch");
939 Target = LastInst.getOperand(2).getMBB();
940 unsigned CC = getCondFromBranchOpc(LastInst.getOpcode());
942 Cond.push_back(LastInst.getOperand(0));
943 Cond.push_back(LastInst.getOperand(1));
944}
945
947 switch (CC) {
948 default:
949 llvm_unreachable("Unknown condition code!");
950 case RISCVCC::COND_EQ:
951 return Imm ? RISCV::CV_BEQIMM : RISCV::BEQ;
952 case RISCVCC::COND_NE:
953 return Imm ? RISCV::CV_BNEIMM : RISCV::BNE;
954 case RISCVCC::COND_LT:
955 return RISCV::BLT;
956 case RISCVCC::COND_GE:
957 return RISCV::BGE;
959 return RISCV::BLTU;
961 return RISCV::BGEU;
962 }
963}
964
966 bool Imm) const {
967 return get(RISCVCC::getBrCond(CC, Imm));
968}
969
971 switch (CC) {
972 default:
973 llvm_unreachable("Unrecognized conditional branch");
974 case RISCVCC::COND_EQ:
975 return RISCVCC::COND_NE;
976 case RISCVCC::COND_NE:
977 return RISCVCC::COND_EQ;
978 case RISCVCC::COND_LT:
979 return RISCVCC::COND_GE;
980 case RISCVCC::COND_GE:
981 return RISCVCC::COND_LT;
983 return RISCVCC::COND_GEU;
985 return RISCVCC::COND_LTU;
986 }
987}
988
991 MachineBasicBlock *&FBB,
993 bool AllowModify) const {
994 TBB = FBB = nullptr;
995 Cond.clear();
996
997 // If the block has no terminators, it just falls into the block after it.
999 if (I == MBB.end() || !isUnpredicatedTerminator(*I))
1000 return false;
1001
1002 // Count the number of terminators and find the first unconditional or
1003 // indirect branch.
1004 MachineBasicBlock::iterator FirstUncondOrIndirectBr = MBB.end();
1005 int NumTerminators = 0;
1006 for (auto J = I.getReverse(); J != MBB.rend() && isUnpredicatedTerminator(*J);
1007 J++) {
1008 NumTerminators++;
1009 if (J->getDesc().isUnconditionalBranch() ||
1010 J->getDesc().isIndirectBranch()) {
1011 FirstUncondOrIndirectBr = J.getReverse();
1012 }
1013 }
1014
1015 // If AllowModify is true, we can erase any terminators after
1016 // FirstUncondOrIndirectBR.
1017 if (AllowModify && FirstUncondOrIndirectBr != MBB.end()) {
1018 while (std::next(FirstUncondOrIndirectBr) != MBB.end()) {
1019 std::next(FirstUncondOrIndirectBr)->eraseFromParent();
1020 NumTerminators--;
1021 }
1022 I = FirstUncondOrIndirectBr;
1023 }
1024
1025 // We can't handle blocks that end in an indirect branch.
1026 if (I->getDesc().isIndirectBranch())
1027 return true;
1028
1029 // We can't handle Generic branch opcodes from Global ISel.
1030 if (I->isPreISelOpcode())
1031 return true;
1032
1033 // We can't handle blocks with more than 2 terminators.
1034 if (NumTerminators > 2)
1035 return true;
1036
1037 // Handle a single unconditional branch.
1038 if (NumTerminators == 1 && I->getDesc().isUnconditionalBranch()) {
1040 return false;
1041 }
1042
1043 // Handle a single conditional branch.
1044 if (NumTerminators == 1 && I->getDesc().isConditionalBranch()) {
1046 return false;
1047 }
1048
1049 // Handle a conditional branch followed by an unconditional branch.
1050 if (NumTerminators == 2 && std::prev(I)->getDesc().isConditionalBranch() &&
1051 I->getDesc().isUnconditionalBranch()) {
1052 parseCondBranch(*std::prev(I), TBB, Cond);
1053 FBB = getBranchDestBlock(*I);
1054 return false;
1055 }
1056
1057 // Otherwise, we can't handle this.
1058 return true;
1059}
1060
1062 int *BytesRemoved) const {
1063 if (BytesRemoved)
1064 *BytesRemoved = 0;
1066 if (I == MBB.end())
1067 return 0;
1068
1069 if (!I->getDesc().isUnconditionalBranch() &&
1070 !I->getDesc().isConditionalBranch())
1071 return 0;
1072
1073 // Remove the branch.
1074 if (BytesRemoved)
1075 *BytesRemoved += getInstSizeInBytes(*I);
1076 I->eraseFromParent();
1077
1078 I = MBB.end();
1079
1080 if (I == MBB.begin())
1081 return 1;
1082 --I;
1083 if (!I->getDesc().isConditionalBranch())
1084 return 1;
1085
1086 // Remove the branch.
1087 if (BytesRemoved)
1088 *BytesRemoved += getInstSizeInBytes(*I);
1089 I->eraseFromParent();
1090 return 2;
1091}
1092
1093// Inserts a branch into the end of the specific MachineBasicBlock, returning
1094// the number of instructions inserted.
1097 ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
1098 if (BytesAdded)
1099 *BytesAdded = 0;
1100
1101 // Shouldn't be a fall through.
1102 assert(TBB && "insertBranch must not be told to insert a fallthrough");
1103 assert((Cond.size() == 3 || Cond.size() == 0) &&
1104 "RISC-V branch conditions have two components!");
1105
1106 // Unconditional branch.
1107 if (Cond.empty()) {
1108 MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(TBB);
1109 if (BytesAdded)
1110 *BytesAdded += getInstSizeInBytes(MI);
1111 return 1;
1112 }
1113
1114 // Either a one or two-way conditional branch.
1115 auto CC = static_cast<RISCVCC::CondCode>(Cond[0].getImm());
1116 MachineInstr &CondMI = *BuildMI(&MBB, DL, getBrCond(CC, Cond[2].isImm()))
1117 .add(Cond[1])
1118 .add(Cond[2])
1119 .addMBB(TBB);
1120 if (BytesAdded)
1121 *BytesAdded += getInstSizeInBytes(CondMI);
1122
1123 // One-way conditional branch.
1124 if (!FBB)
1125 return 1;
1126
1127 // Two-way conditional branch.
1128 MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(FBB);
1129 if (BytesAdded)
1130 *BytesAdded += getInstSizeInBytes(MI);
1131 return 2;
1132}
1133
1135 MachineBasicBlock &DestBB,
1136 MachineBasicBlock &RestoreBB,
1137 const DebugLoc &DL, int64_t BrOffset,
1138 RegScavenger *RS) const {
1139 assert(RS && "RegScavenger required for long branching");
1140 assert(MBB.empty() &&
1141 "new block should be inserted for expanding unconditional branch");
1142 assert(MBB.pred_size() == 1);
1143 assert(RestoreBB.empty() &&
1144 "restore block should be inserted for restoring clobbered registers");
1145
1150
1151 if (!isInt<32>(BrOffset))
1153 "Branch offsets outside of the signed 32-bit range not supported");
1154
1155 // FIXME: A virtual register must be used initially, as the register
1156 // scavenger won't work with empty blocks (SIInstrInfo::insertIndirectBranch
1157 // uses the same workaround).
1158 Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRJALRRegClass);
1159 auto II = MBB.end();
1160 // We may also update the jump target to RestoreBB later.
1161 MachineInstr &MI = *BuildMI(MBB, II, DL, get(RISCV::PseudoJump))
1162 .addReg(ScratchReg, RegState::Define | RegState::Dead)
1163 .addMBB(&DestBB, RISCVII::MO_CALL);
1164
1166 Register TmpGPR =
1167 RS->scavengeRegisterBackwards(RISCV::GPRRegClass, MI.getIterator(),
1168 /*RestoreAfter=*/false, /*SpAdj=*/0,
1169 /*AllowSpill=*/false);
1170 if (TmpGPR != RISCV::NoRegister)
1171 RS->setRegUsed(TmpGPR);
1172 else {
1173 // The case when there is no scavenged register needs special handling.
1174
1175 // Pick s11 because it doesn't make a difference.
1176 TmpGPR = RISCV::X27;
1177
1178 int FrameIndex = RVFI->getBranchRelaxationScratchFrameIndex();
1179 if (FrameIndex == -1)
1180 report_fatal_error("underestimated function size");
1181
1182 storeRegToStackSlot(MBB, MI, TmpGPR, /*IsKill=*/true, FrameIndex,
1183 &RISCV::GPRRegClass, TRI, Register());
1184 TRI->eliminateFrameIndex(std::prev(MI.getIterator()),
1185 /*SpAdj=*/0, /*FIOperandNum=*/1);
1186
1187 MI.getOperand(1).setMBB(&RestoreBB);
1188
1189 loadRegFromStackSlot(RestoreBB, RestoreBB.end(), TmpGPR, FrameIndex,
1190 &RISCV::GPRRegClass, TRI, Register());
1191 TRI->eliminateFrameIndex(RestoreBB.back(),
1192 /*SpAdj=*/0, /*FIOperandNum=*/1);
1193 }
1194
1195 MRI.replaceRegWith(ScratchReg, TmpGPR);
1196 MRI.clearVirtRegs();
1197}
1198
1201 assert((Cond.size() == 3) && "Invalid branch condition!");
1202 auto CC = static_cast<RISCVCC::CondCode>(Cond[0].getImm());
1204 return false;
1205}
1206
1208 MachineBasicBlock *MBB = MI.getParent();
1210
1211 MachineBasicBlock *TBB, *FBB;
1213 if (analyzeBranch(*MBB, TBB, FBB, Cond, /*AllowModify=*/false))
1214 return false;
1215
1216 RISCVCC::CondCode CC = static_cast<RISCVCC::CondCode>(Cond[0].getImm());
1218
1220 return false;
1221
1222 // For two constants C0 and C1 from
1223 // ```
1224 // li Y, C0
1225 // li Z, C1
1226 // ```
1227 // 1. if C1 = C0 + 1
1228 // we can turn:
1229 // (a) blt Y, X -> bge X, Z
1230 // (b) bge Y, X -> blt X, Z
1231 //
1232 // 2. if C1 = C0 - 1
1233 // we can turn:
1234 // (a) blt X, Y -> bge Z, X
1235 // (b) bge X, Y -> blt Z, X
1236 //
1237 // To make sure this optimization is really beneficial, we only
1238 // optimize for cases where Y had only one use (i.e. only used by the branch).
1239
1240 // Right now we only care about LI (i.e. ADDI x0, imm)
1241 auto isLoadImm = [](const MachineInstr *MI, int64_t &Imm) -> bool {
1242 if (MI->getOpcode() == RISCV::ADDI && MI->getOperand(1).isReg() &&
1243 MI->getOperand(1).getReg() == RISCV::X0) {
1244 Imm = MI->getOperand(2).getImm();
1245 return true;
1246 }
1247 return false;
1248 };
1249 // Either a load from immediate instruction or X0.
1250 auto isFromLoadImm = [&](const MachineOperand &Op, int64_t &Imm) -> bool {
1251 if (!Op.isReg())
1252 return false;
1253 Register Reg = Op.getReg();
1254 return Reg.isVirtual() && isLoadImm(MRI.getVRegDef(Reg), Imm);
1255 };
1256
1257 MachineOperand &LHS = MI.getOperand(0);
1258 MachineOperand &RHS = MI.getOperand(1);
1259 // Try to find the register for constant Z; return
1260 // invalid register otherwise.
1261 auto searchConst = [&](int64_t C1) -> Register {
1263 auto DefC1 = std::find_if(++II, E, [&](const MachineInstr &I) -> bool {
1264 int64_t Imm;
1265 return isLoadImm(&I, Imm) && Imm == C1 &&
1266 I.getOperand(0).getReg().isVirtual();
1267 });
1268 if (DefC1 != E)
1269 return DefC1->getOperand(0).getReg();
1270
1271 return Register();
1272 };
1273
1274 bool Modify = false;
1275 int64_t C0;
1276 if (isFromLoadImm(LHS, C0) && MRI.hasOneUse(LHS.getReg())) {
1277 // Might be case 1.
1278 // Signed integer overflow is UB. (UINT64_MAX is bigger so we don't need
1279 // to worry about unsigned overflow here)
1280 if (C0 < INT64_MAX)
1281 if (Register RegZ = searchConst(C0 + 1)) {
1283 Cond[1] = MachineOperand::CreateReg(RHS.getReg(), /*isDef=*/false);
1284 Cond[2] = MachineOperand::CreateReg(RegZ, /*isDef=*/false);
1285 // We might extend the live range of Z, clear its kill flag to
1286 // account for this.
1287 MRI.clearKillFlags(RegZ);
1288 Modify = true;
1289 }
1290 } else if (isFromLoadImm(RHS, C0) && MRI.hasOneUse(RHS.getReg())) {
1291 // Might be case 2.
1292 // For unsigned cases, we don't want C1 to wrap back to UINT64_MAX
1293 // when C0 is zero.
1294 if ((CC == RISCVCC::COND_GE || CC == RISCVCC::COND_LT) || C0)
1295 if (Register RegZ = searchConst(C0 - 1)) {
1297 Cond[1] = MachineOperand::CreateReg(RegZ, /*isDef=*/false);
1298 Cond[2] = MachineOperand::CreateReg(LHS.getReg(), /*isDef=*/false);
1299 // We might extend the live range of Z, clear its kill flag to
1300 // account for this.
1301 MRI.clearKillFlags(RegZ);
1302 Modify = true;
1303 }
1304 }
1305
1306 if (!Modify)
1307 return false;
1308
1309 // Build the new branch and remove the old one.
1310 BuildMI(*MBB, MI, MI.getDebugLoc(),
1311 getBrCond(static_cast<RISCVCC::CondCode>(Cond[0].getImm())))
1312 .add(Cond[1])
1313 .add(Cond[2])
1314 .addMBB(TBB);
1315 MI.eraseFromParent();
1316
1317 return true;
1318}
1319
1322 assert(MI.getDesc().isBranch() && "Unexpected opcode!");
1323 // The branch target is always the last operand.
1324 int NumOp = MI.getNumExplicitOperands();
1325 return MI.getOperand(NumOp - 1).getMBB();
1326}
1327
1329 int64_t BrOffset) const {
1330 unsigned XLen = STI.getXLen();
1331 // Ideally we could determine the supported branch offset from the
1332 // RISCVII::FormMask, but this can't be used for Pseudo instructions like
1333 // PseudoBR.
1334 switch (BranchOp) {
1335 default:
1336 llvm_unreachable("Unexpected opcode!");
1337 case RISCV::BEQ:
1338 case RISCV::BNE:
1339 case RISCV::BLT:
1340 case RISCV::BGE:
1341 case RISCV::BLTU:
1342 case RISCV::BGEU:
1343 case RISCV::CV_BEQIMM:
1344 case RISCV::CV_BNEIMM:
1345 return isIntN(13, BrOffset);
1346 case RISCV::JAL:
1347 case RISCV::PseudoBR:
1348 return isIntN(21, BrOffset);
1349 case RISCV::PseudoJump:
1350 return isIntN(32, SignExtend64(BrOffset + 0x800, XLen));
1351 }
1352}
1353
1354// If the operation has a predicated pseudo instruction, return the pseudo
1355// instruction opcode. Otherwise, return RISCV::INSTRUCTION_LIST_END.
1356// TODO: Support more operations.
1357unsigned getPredicatedOpcode(unsigned Opcode) {
1358 switch (Opcode) {
1359 case RISCV::ADD: return RISCV::PseudoCCADD; break;
1360 case RISCV::SUB: return RISCV::PseudoCCSUB; break;
1361 case RISCV::SLL: return RISCV::PseudoCCSLL; break;
1362 case RISCV::SRL: return RISCV::PseudoCCSRL; break;
1363 case RISCV::SRA: return RISCV::PseudoCCSRA; break;
1364 case RISCV::AND: return RISCV::PseudoCCAND; break;
1365 case RISCV::OR: return RISCV::PseudoCCOR; break;
1366 case RISCV::XOR: return RISCV::PseudoCCXOR; break;
1367
1368 case RISCV::ADDI: return RISCV::PseudoCCADDI; break;
1369 case RISCV::SLLI: return RISCV::PseudoCCSLLI; break;
1370 case RISCV::SRLI: return RISCV::PseudoCCSRLI; break;
1371 case RISCV::SRAI: return RISCV::PseudoCCSRAI; break;
1372 case RISCV::ANDI: return RISCV::PseudoCCANDI; break;
1373 case RISCV::ORI: return RISCV::PseudoCCORI; break;
1374 case RISCV::XORI: return RISCV::PseudoCCXORI; break;
1375
1376 case RISCV::ADDW: return RISCV::PseudoCCADDW; break;
1377 case RISCV::SUBW: return RISCV::PseudoCCSUBW; break;
1378 case RISCV::SLLW: return RISCV::PseudoCCSLLW; break;
1379 case RISCV::SRLW: return RISCV::PseudoCCSRLW; break;
1380 case RISCV::SRAW: return RISCV::PseudoCCSRAW; break;
1381
1382 case RISCV::ADDIW: return RISCV::PseudoCCADDIW; break;
1383 case RISCV::SLLIW: return RISCV::PseudoCCSLLIW; break;
1384 case RISCV::SRLIW: return RISCV::PseudoCCSRLIW; break;
1385 case RISCV::SRAIW: return RISCV::PseudoCCSRAIW; break;
1386
1387 case RISCV::ANDN: return RISCV::PseudoCCANDN; break;
1388 case RISCV::ORN: return RISCV::PseudoCCORN; break;
1389 case RISCV::XNOR: return RISCV::PseudoCCXNOR; break;
1390 }
1391
1392 return RISCV::INSTRUCTION_LIST_END;
1393}
1394
1395/// Identify instructions that can be folded into a CCMOV instruction, and
1396/// return the defining instruction.
1398 const MachineRegisterInfo &MRI,
1399 const TargetInstrInfo *TII) {
1400 if (!Reg.isVirtual())
1401 return nullptr;
1402 if (!MRI.hasOneNonDBGUse(Reg))
1403 return nullptr;
1404 MachineInstr *MI = MRI.getVRegDef(Reg);
1405 if (!MI)
1406 return nullptr;
1407 // Check if MI can be predicated and folded into the CCMOV.
1408 if (getPredicatedOpcode(MI->getOpcode()) == RISCV::INSTRUCTION_LIST_END)
1409 return nullptr;
1410 // Don't predicate li idiom.
1411 if (MI->getOpcode() == RISCV::ADDI && MI->getOperand(1).isReg() &&
1412 MI->getOperand(1).getReg() == RISCV::X0)
1413 return nullptr;
1414 // Check if MI has any other defs or physreg uses.
1415 for (const MachineOperand &MO : llvm::drop_begin(MI->operands())) {
1416 // Reject frame index operands, PEI can't handle the predicated pseudos.
1417 if (MO.isFI() || MO.isCPI() || MO.isJTI())
1418 return nullptr;
1419 if (!MO.isReg())
1420 continue;
1421 // MI can't have any tied operands, that would conflict with predication.
1422 if (MO.isTied())
1423 return nullptr;
1424 if (MO.isDef())
1425 return nullptr;
1426 // Allow constant physregs.
1427 if (MO.getReg().isPhysical() && !MRI.isConstantPhysReg(MO.getReg()))
1428 return nullptr;
1429 }
1430 bool DontMoveAcrossStores = true;
1431 if (!MI->isSafeToMove(DontMoveAcrossStores))
1432 return nullptr;
1433 return MI;
1434}
1435
1438 unsigned &TrueOp, unsigned &FalseOp,
1439 bool &Optimizable) const {
1440 assert(MI.getOpcode() == RISCV::PseudoCCMOVGPR &&
1441 "Unknown select instruction");
1442 // CCMOV operands:
1443 // 0: Def.
1444 // 1: LHS of compare.
1445 // 2: RHS of compare.
1446 // 3: Condition code.
1447 // 4: False use.
1448 // 5: True use.
1449 TrueOp = 5;
1450 FalseOp = 4;
1451 Cond.push_back(MI.getOperand(1));
1452 Cond.push_back(MI.getOperand(2));
1453 Cond.push_back(MI.getOperand(3));
1454 // We can only fold when we support short forward branch opt.
1455 Optimizable = STI.hasShortForwardBranchOpt();
1456 return false;
1457}
1458
1462 bool PreferFalse) const {
1463 assert(MI.getOpcode() == RISCV::PseudoCCMOVGPR &&
1464 "Unknown select instruction");
1465 if (!STI.hasShortForwardBranchOpt())
1466 return nullptr;
1467
1468 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
1470 canFoldAsPredicatedOp(MI.getOperand(5).getReg(), MRI, this);
1471 bool Invert = !DefMI;
1472 if (!DefMI)
1473 DefMI = canFoldAsPredicatedOp(MI.getOperand(4).getReg(), MRI, this);
1474 if (!DefMI)
1475 return nullptr;
1476
1477 // Find new register class to use.
1478 MachineOperand FalseReg = MI.getOperand(Invert ? 5 : 4);
1479 Register DestReg = MI.getOperand(0).getReg();
1480 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
1481 if (!MRI.constrainRegClass(DestReg, PreviousClass))
1482 return nullptr;
1483
1484 unsigned PredOpc = getPredicatedOpcode(DefMI->getOpcode());
1485 assert(PredOpc != RISCV::INSTRUCTION_LIST_END && "Unexpected opcode!");
1486
1487 // Create a new predicated version of DefMI.
1488 MachineInstrBuilder NewMI =
1489 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(PredOpc), DestReg);
1490
1491 // Copy the condition portion.
1492 NewMI.add(MI.getOperand(1));
1493 NewMI.add(MI.getOperand(2));
1494
1495 // Add condition code, inverting if necessary.
1496 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
1497 if (Invert)
1499 NewMI.addImm(CC);
1500
1501 // Copy the false register.
1502 NewMI.add(FalseReg);
1503
1504 // Copy all the DefMI operands.
1505 const MCInstrDesc &DefDesc = DefMI->getDesc();
1506 for (unsigned i = 1, e = DefDesc.getNumOperands(); i != e; ++i)
1507 NewMI.add(DefMI->getOperand(i));
1508
1509 // Update SeenMIs set: register newly created MI and erase removed DefMI.
1510 SeenMIs.insert(NewMI);
1511 SeenMIs.erase(DefMI);
1512
1513 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
1514 // DefMI would be invalid when tranferred inside the loop. Checking for a
1515 // loop is expensive, but at least remove kill flags if they are in different
1516 // BBs.
1517 if (DefMI->getParent() != MI.getParent())
1518 NewMI->clearKillInfo();
1519
1520 // The caller will erase MI, but not DefMI.
1522 return NewMI;
1523}
1524
1526 if (MI.isMetaInstruction())
1527 return 0;
1528
1529 unsigned Opcode = MI.getOpcode();
1530
1531 if (Opcode == TargetOpcode::INLINEASM ||
1532 Opcode == TargetOpcode::INLINEASM_BR) {
1533 const MachineFunction &MF = *MI.getParent()->getParent();
1534 return getInlineAsmLength(MI.getOperand(0).getSymbolName(),
1535 *MF.getTarget().getMCAsmInfo());
1536 }
1537
1538 if (!MI.memoperands_empty()) {
1539 MachineMemOperand *MMO = *(MI.memoperands_begin());
1540 if (STI.hasStdExtZihintntl() && MMO->isNonTemporal()) {
1541 if (STI.hasStdExtCOrZca() && STI.enableRVCHintInstrs()) {
1542 if (isCompressibleInst(MI, STI))
1543 return 4; // c.ntl.all + c.load/c.store
1544 return 6; // c.ntl.all + load/store
1545 }
1546 return 8; // ntl.all + load/store
1547 }
1548 }
1549
1550 if (Opcode == TargetOpcode::BUNDLE)
1551 return getInstBundleLength(MI);
1552
1553 if (MI.getParent() && MI.getParent()->getParent()) {
1554 if (isCompressibleInst(MI, STI))
1555 return 2;
1556 }
1557
1558 switch (Opcode) {
1559 case RISCV::PseudoMV_FPR16INX:
1560 case RISCV::PseudoMV_FPR32INX:
1561 // MV is always compressible to either c.mv or c.li rd, 0.
1562 return STI.hasStdExtCOrZca() ? 2 : 4;
1563 case TargetOpcode::STACKMAP:
1564 // The upper bound for a stackmap intrinsic is the full length of its shadow
1566 case TargetOpcode::PATCHPOINT:
1567 // The size of the patchpoint intrinsic is the number of bytes requested
1569 case TargetOpcode::STATEPOINT: {
1570 // The size of the statepoint intrinsic is the number of bytes requested
1571 unsigned NumBytes = StatepointOpers(&MI).getNumPatchBytes();
1572 // No patch bytes means at most a PseudoCall is emitted
1573 return std::max(NumBytes, 8U);
1574 }
1575 case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
1576 case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
1577 case TargetOpcode::PATCHABLE_TAIL_CALL: {
1578 const MachineFunction &MF = *MI.getParent()->getParent();
1579 const Function &F = MF.getFunction();
1580 if (Opcode == TargetOpcode::PATCHABLE_FUNCTION_ENTER &&
1581 F.hasFnAttribute("patchable-function-entry")) {
1582 unsigned Num;
1583 if (F.getFnAttribute("patchable-function-entry")
1584 .getValueAsString()
1585 .getAsInteger(10, Num))
1586 return get(Opcode).getSize();
1587
1588 // Number of C.NOP or NOP
1589 return (STI.hasStdExtCOrZca() ? 2 : 4) * Num;
1590 }
1591 // XRay uses C.JAL + 21 or 33 C.NOP for each sled in RV32 and RV64,
1592 // respectively.
1593 return STI.is64Bit() ? 68 : 44;
1594 }
1595 default:
1596 return get(Opcode).getSize();
1597 }
1598}
1599
1600unsigned RISCVInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
1601 unsigned Size = 0;
1603 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
1604 while (++I != E && I->isInsideBundle()) {
1605 assert(!I->isBundle() && "No nested bundle!");
1607 }
1608 return Size;
1609}
1610
1612 const unsigned Opcode = MI.getOpcode();
1613 switch (Opcode) {
1614 default:
1615 break;
1616 case RISCV::FSGNJ_D:
1617 case RISCV::FSGNJ_S:
1618 case RISCV::FSGNJ_H:
1619 case RISCV::FSGNJ_D_INX:
1620 case RISCV::FSGNJ_D_IN32X:
1621 case RISCV::FSGNJ_S_INX:
1622 case RISCV::FSGNJ_H_INX:
1623 // The canonical floating-point move is fsgnj rd, rs, rs.
1624 return MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
1625 MI.getOperand(1).getReg() == MI.getOperand(2).getReg();
1626 case RISCV::ADDI:
1627 case RISCV::ORI:
1628 case RISCV::XORI:
1629 return (MI.getOperand(1).isReg() &&
1630 MI.getOperand(1).getReg() == RISCV::X0) ||
1631 (MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0);
1632 }
1633 return MI.isAsCheapAsAMove();
1634}
1635
1636std::optional<DestSourcePair>
1638 if (MI.isMoveReg())
1639 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1640 switch (MI.getOpcode()) {
1641 default:
1642 break;
1643 case RISCV::ADDI:
1644 // Operand 1 can be a frameindex but callers expect registers
1645 if (MI.getOperand(1).isReg() && MI.getOperand(2).isImm() &&
1646 MI.getOperand(2).getImm() == 0)
1647 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1648 break;
1649 case RISCV::FSGNJ_D:
1650 case RISCV::FSGNJ_S:
1651 case RISCV::FSGNJ_H:
1652 case RISCV::FSGNJ_D_INX:
1653 case RISCV::FSGNJ_D_IN32X:
1654 case RISCV::FSGNJ_S_INX:
1655 case RISCV::FSGNJ_H_INX:
1656 // The canonical floating-point move is fsgnj rd, rs, rs.
1657 if (MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
1658 MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
1659 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1660 break;
1661 }
1662 return std::nullopt;
1663}
1664
1666 if (ForceMachineCombinerStrategy.getNumOccurrences() == 0) {
1667 // The option is unused. Choose Local strategy only for in-order cores. When
1668 // scheduling model is unspecified, use MinInstrCount strategy as more
1669 // generic one.
1670 const auto &SchedModel = STI.getSchedModel();
1671 return (!SchedModel.hasInstrSchedModel() || SchedModel.isOutOfOrder())
1674 }
1675 // The strategy was forced by the option.
1677}
1678
1680 MachineInstr &Root, unsigned &Pattern,
1681 SmallVectorImpl<MachineInstr *> &InsInstrs) const {
1682 int16_t FrmOpIdx =
1683 RISCV::getNamedOperandIdx(Root.getOpcode(), RISCV::OpName::frm);
1684 if (FrmOpIdx < 0) {
1685 assert(all_of(InsInstrs,
1686 [](MachineInstr *MI) {
1687 return RISCV::getNamedOperandIdx(MI->getOpcode(),
1688 RISCV::OpName::frm) < 0;
1689 }) &&
1690 "New instructions require FRM whereas the old one does not have it");
1691 return;
1692 }
1693
1694 const MachineOperand &FRM = Root.getOperand(FrmOpIdx);
1695 MachineFunction &MF = *Root.getMF();
1696
1697 for (auto *NewMI : InsInstrs) {
1698 // We'd already added the FRM operand.
1699 if (static_cast<unsigned>(RISCV::getNamedOperandIdx(
1700 NewMI->getOpcode(), RISCV::OpName::frm)) != NewMI->getNumOperands())
1701 continue;
1702 MachineInstrBuilder MIB(MF, NewMI);
1703 MIB.add(FRM);
1704 if (FRM.getImm() == RISCVFPRndMode::DYN)
1705 MIB.addUse(RISCV::FRM, RegState::Implicit);
1706 }
1707}
1708
1709static bool isFADD(unsigned Opc) {
1710 switch (Opc) {
1711 default:
1712 return false;
1713 case RISCV::FADD_H:
1714 case RISCV::FADD_S:
1715 case RISCV::FADD_D:
1716 return true;
1717 }
1718}
1719
1720static bool isFSUB(unsigned Opc) {
1721 switch (Opc) {
1722 default:
1723 return false;
1724 case RISCV::FSUB_H:
1725 case RISCV::FSUB_S:
1726 case RISCV::FSUB_D:
1727 return true;
1728 }
1729}
1730
1731static bool isFMUL(unsigned Opc) {
1732 switch (Opc) {
1733 default:
1734 return false;
1735 case RISCV::FMUL_H:
1736 case RISCV::FMUL_S:
1737 case RISCV::FMUL_D:
1738 return true;
1739 }
1740}
1741
1742bool RISCVInstrInfo::isVectorAssociativeAndCommutative(const MachineInstr &Inst,
1743 bool Invert) const {
1744#define OPCODE_LMUL_CASE(OPC) \
1745 case RISCV::OPC##_M1: \
1746 case RISCV::OPC##_M2: \
1747 case RISCV::OPC##_M4: \
1748 case RISCV::OPC##_M8: \
1749 case RISCV::OPC##_MF2: \
1750 case RISCV::OPC##_MF4: \
1751 case RISCV::OPC##_MF8
1752
1753#define OPCODE_LMUL_MASK_CASE(OPC) \
1754 case RISCV::OPC##_M1_MASK: \
1755 case RISCV::OPC##_M2_MASK: \
1756 case RISCV::OPC##_M4_MASK: \
1757 case RISCV::OPC##_M8_MASK: \
1758 case RISCV::OPC##_MF2_MASK: \
1759 case RISCV::OPC##_MF4_MASK: \
1760 case RISCV::OPC##_MF8_MASK
1761
1762 unsigned Opcode = Inst.getOpcode();
1763 if (Invert) {
1764 if (auto InvOpcode = getInverseOpcode(Opcode))
1765 Opcode = *InvOpcode;
1766 else
1767 return false;
1768 }
1769
1770 // clang-format off
1771 switch (Opcode) {
1772 default:
1773 return false;
1774 OPCODE_LMUL_CASE(PseudoVADD_VV):
1775 OPCODE_LMUL_MASK_CASE(PseudoVADD_VV):
1776 OPCODE_LMUL_CASE(PseudoVMUL_VV):
1777 OPCODE_LMUL_MASK_CASE(PseudoVMUL_VV):
1778 return true;
1779 }
1780 // clang-format on
1781
1782#undef OPCODE_LMUL_MASK_CASE
1783#undef OPCODE_LMUL_CASE
1784}
1785
1786bool RISCVInstrInfo::areRVVInstsReassociable(const MachineInstr &Root,
1787 const MachineInstr &Prev) const {
1788 if (!areOpcodesEqualOrInverse(Root.getOpcode(), Prev.getOpcode()))
1789 return false;
1790
1791 assert(Root.getMF() == Prev.getMF());
1792 const MachineRegisterInfo *MRI = &Root.getMF()->getRegInfo();
1793 const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
1794
1795 // Make sure vtype operands are also the same.
1796 const MCInstrDesc &Desc = get(Root.getOpcode());
1797 const uint64_t TSFlags = Desc.TSFlags;
1798
1799 auto checkImmOperand = [&](unsigned OpIdx) {
1800 return Root.getOperand(OpIdx).getImm() == Prev.getOperand(OpIdx).getImm();
1801 };
1802
1803 auto checkRegOperand = [&](unsigned OpIdx) {
1804 return Root.getOperand(OpIdx).getReg() == Prev.getOperand(OpIdx).getReg();
1805 };
1806
1807 // PassThru
1808 // TODO: Potentially we can loosen the condition to consider Root to be
1809 // associable with Prev if Root has NoReg as passthru. In which case we
1810 // also need to loosen the condition on vector policies between these.
1811 if (!checkRegOperand(1))
1812 return false;
1813
1814 // SEW
1815 if (RISCVII::hasSEWOp(TSFlags) &&
1816 !checkImmOperand(RISCVII::getSEWOpNum(Desc)))
1817 return false;
1818
1819 // Mask
1820 if (RISCVII::usesMaskPolicy(TSFlags)) {
1821 const MachineBasicBlock *MBB = Root.getParent();
1824 Register MI1VReg;
1825
1826 bool SeenMI2 = false;
1827 for (auto End = MBB->rend(), It = It1; It != End; ++It) {
1828 if (It == It2) {
1829 SeenMI2 = true;
1830 if (!MI1VReg.isValid())
1831 // There is no V0 def between Root and Prev; they're sharing the
1832 // same V0.
1833 break;
1834 }
1835
1836 if (It->modifiesRegister(RISCV::V0, TRI)) {
1837 Register SrcReg = It->getOperand(1).getReg();
1838 // If it's not VReg it'll be more difficult to track its defs, so
1839 // bailing out here just to be safe.
1840 if (!SrcReg.isVirtual())
1841 return false;
1842
1843 if (!MI1VReg.isValid()) {
1844 // This is the V0 def for Root.
1845 MI1VReg = SrcReg;
1846 continue;
1847 }
1848
1849 // Some random mask updates.
1850 if (!SeenMI2)
1851 continue;
1852
1853 // This is the V0 def for Prev; check if it's the same as that of
1854 // Root.
1855 if (MI1VReg != SrcReg)
1856 return false;
1857 else
1858 break;
1859 }
1860 }
1861
1862 // If we haven't encountered Prev, it's likely that this function was
1863 // called in a wrong way (e.g. Root is before Prev).
1864 assert(SeenMI2 && "Prev is expected to appear before Root");
1865 }
1866
1867 // Tail / Mask policies
1868 if (RISCVII::hasVecPolicyOp(TSFlags) &&
1869 !checkImmOperand(RISCVII::getVecPolicyOpNum(Desc)))
1870 return false;
1871
1872 // VL
1873 if (RISCVII::hasVLOp(TSFlags)) {
1874 unsigned OpIdx = RISCVII::getVLOpNum(Desc);
1875 const MachineOperand &Op1 = Root.getOperand(OpIdx);
1876 const MachineOperand &Op2 = Prev.getOperand(OpIdx);
1877 if (Op1.getType() != Op2.getType())
1878 return false;
1879 switch (Op1.getType()) {
1881 if (Op1.getReg() != Op2.getReg())
1882 return false;
1883 break;
1885 if (Op1.getImm() != Op2.getImm())
1886 return false;
1887 break;
1888 default:
1889 llvm_unreachable("Unrecognized VL operand type");
1890 }
1891 }
1892
1893 // Rounding modes
1894 if (RISCVII::hasRoundModeOp(TSFlags) &&
1895 !checkImmOperand(RISCVII::getVLOpNum(Desc) - 1))
1896 return false;
1897
1898 return true;
1899}
1900
1901// Most of our RVV pseudos have passthru operand, so the real operands
1902// start from index = 2.
1903bool RISCVInstrInfo::hasReassociableVectorSibling(const MachineInstr &Inst,
1904 bool &Commuted) const {
1905 const MachineBasicBlock *MBB = Inst.getParent();
1908 "Expect the present of passthrough operand.");
1909 MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
1910 MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(3).getReg());
1911
1912 // If only one operand has the same or inverse opcode and it's the second
1913 // source operand, the operands must be commuted.
1914 Commuted = !areRVVInstsReassociable(Inst, *MI1) &&
1915 areRVVInstsReassociable(Inst, *MI2);
1916 if (Commuted)
1917 std::swap(MI1, MI2);
1918
1919 return areRVVInstsReassociable(Inst, *MI1) &&
1920 (isVectorAssociativeAndCommutative(*MI1) ||
1921 isVectorAssociativeAndCommutative(*MI1, /* Invert */ true)) &&
1923 MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
1924}
1925
1927 const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
1928 if (!isVectorAssociativeAndCommutative(Inst) &&
1929 !isVectorAssociativeAndCommutative(Inst, /*Invert=*/true))
1931
1932 const MachineOperand &Op1 = Inst.getOperand(2);
1933 const MachineOperand &Op2 = Inst.getOperand(3);
1935
1936 // We need virtual register definitions for the operands that we will
1937 // reassociate.
1938 MachineInstr *MI1 = nullptr;
1939 MachineInstr *MI2 = nullptr;
1940 if (Op1.isReg() && Op1.getReg().isVirtual())
1941 MI1 = MRI.getUniqueVRegDef(Op1.getReg());
1942 if (Op2.isReg() && Op2.getReg().isVirtual())
1943 MI2 = MRI.getUniqueVRegDef(Op2.getReg());
1944
1945 // And at least one operand must be defined in MBB.
1946 return MI1 && MI2 && (MI1->getParent() == MBB || MI2->getParent() == MBB);
1947}
1948
1950 const MachineInstr &Root, unsigned Pattern,
1951 std::array<unsigned, 5> &OperandIndices) const {
1953 if (RISCV::getRVVMCOpcode(Root.getOpcode())) {
1954 // Skip the passthrough operand, so increment all indices by one.
1955 for (unsigned I = 0; I < 5; ++I)
1956 ++OperandIndices[I];
1957 }
1958}
1959
1961 bool &Commuted) const {
1962 if (isVectorAssociativeAndCommutative(Inst) ||
1963 isVectorAssociativeAndCommutative(Inst, /*Invert=*/true))
1964 return hasReassociableVectorSibling(Inst, Commuted);
1965
1966 if (!TargetInstrInfo::hasReassociableSibling(Inst, Commuted))
1967 return false;
1968
1969 const MachineRegisterInfo &MRI = Inst.getMF()->getRegInfo();
1970 unsigned OperandIdx = Commuted ? 2 : 1;
1971 const MachineInstr &Sibling =
1972 *MRI.getVRegDef(Inst.getOperand(OperandIdx).getReg());
1973
1974 int16_t InstFrmOpIdx =
1975 RISCV::getNamedOperandIdx(Inst.getOpcode(), RISCV::OpName::frm);
1976 int16_t SiblingFrmOpIdx =
1977 RISCV::getNamedOperandIdx(Sibling.getOpcode(), RISCV::OpName::frm);
1978
1979 return (InstFrmOpIdx < 0 && SiblingFrmOpIdx < 0) ||
1980 RISCV::hasEqualFRM(Inst, Sibling);
1981}
1982
1984 bool Invert) const {
1985 if (isVectorAssociativeAndCommutative(Inst, Invert))
1986 return true;
1987
1988 unsigned Opc = Inst.getOpcode();
1989 if (Invert) {
1990 auto InverseOpcode = getInverseOpcode(Opc);
1991 if (!InverseOpcode)
1992 return false;
1993 Opc = *InverseOpcode;
1994 }
1995
1996 if (isFADD(Opc) || isFMUL(Opc))
1999
2000 switch (Opc) {
2001 default:
2002 return false;
2003 case RISCV::ADD:
2004 case RISCV::ADDW:
2005 case RISCV::AND:
2006 case RISCV::OR:
2007 case RISCV::XOR:
2008 // From RISC-V ISA spec, if both the high and low bits of the same product
2009 // are required, then the recommended code sequence is:
2010 //
2011 // MULH[[S]U] rdh, rs1, rs2
2012 // MUL rdl, rs1, rs2
2013 // (source register specifiers must be in same order and rdh cannot be the
2014 // same as rs1 or rs2)
2015 //
2016 // Microarchitectures can then fuse these into a single multiply operation
2017 // instead of performing two separate multiplies.
2018 // MachineCombiner may reassociate MUL operands and lose the fusion
2019 // opportunity.
2020 case RISCV::MUL:
2021 case RISCV::MULW:
2022 case RISCV::MIN:
2023 case RISCV::MINU:
2024 case RISCV::MAX:
2025 case RISCV::MAXU:
2026 case RISCV::FMIN_H:
2027 case RISCV::FMIN_S:
2028 case RISCV::FMIN_D:
2029 case RISCV::FMAX_H:
2030 case RISCV::FMAX_S:
2031 case RISCV::FMAX_D:
2032 return true;
2033 }
2034
2035 return false;
2036}
2037
2038std::optional<unsigned>
2039RISCVInstrInfo::getInverseOpcode(unsigned Opcode) const {
2040#define RVV_OPC_LMUL_CASE(OPC, INV) \
2041 case RISCV::OPC##_M1: \
2042 return RISCV::INV##_M1; \
2043 case RISCV::OPC##_M2: \
2044 return RISCV::INV##_M2; \
2045 case RISCV::OPC##_M4: \
2046 return RISCV::INV##_M4; \
2047 case RISCV::OPC##_M8: \
2048 return RISCV::INV##_M8; \
2049 case RISCV::OPC##_MF2: \
2050 return RISCV::INV##_MF2; \
2051 case RISCV::OPC##_MF4: \
2052 return RISCV::INV##_MF4; \
2053 case RISCV::OPC##_MF8: \
2054 return RISCV::INV##_MF8
2055
2056#define RVV_OPC_LMUL_MASK_CASE(OPC, INV) \
2057 case RISCV::OPC##_M1_MASK: \
2058 return RISCV::INV##_M1_MASK; \
2059 case RISCV::OPC##_M2_MASK: \
2060 return RISCV::INV##_M2_MASK; \
2061 case RISCV::OPC##_M4_MASK: \
2062 return RISCV::INV##_M4_MASK; \
2063 case RISCV::OPC##_M8_MASK: \
2064 return RISCV::INV##_M8_MASK; \
2065 case RISCV::OPC##_MF2_MASK: \
2066 return RISCV::INV##_MF2_MASK; \
2067 case RISCV::OPC##_MF4_MASK: \
2068 return RISCV::INV##_MF4_MASK; \
2069 case RISCV::OPC##_MF8_MASK: \
2070 return RISCV::INV##_MF8_MASK
2071
2072 switch (Opcode) {
2073 default:
2074 return std::nullopt;
2075 case RISCV::FADD_H:
2076 return RISCV::FSUB_H;
2077 case RISCV::FADD_S:
2078 return RISCV::FSUB_S;
2079 case RISCV::FADD_D:
2080 return RISCV::FSUB_D;
2081 case RISCV::FSUB_H:
2082 return RISCV::FADD_H;
2083 case RISCV::FSUB_S:
2084 return RISCV::FADD_S;
2085 case RISCV::FSUB_D:
2086 return RISCV::FADD_D;
2087 case RISCV::ADD:
2088 return RISCV::SUB;
2089 case RISCV::SUB:
2090 return RISCV::ADD;
2091 case RISCV::ADDW:
2092 return RISCV::SUBW;
2093 case RISCV::SUBW:
2094 return RISCV::ADDW;
2095 // clang-format off
2096 RVV_OPC_LMUL_CASE(PseudoVADD_VV, PseudoVSUB_VV);
2097 RVV_OPC_LMUL_MASK_CASE(PseudoVADD_VV, PseudoVSUB_VV);
2098 RVV_OPC_LMUL_CASE(PseudoVSUB_VV, PseudoVADD_VV);
2099 RVV_OPC_LMUL_MASK_CASE(PseudoVSUB_VV, PseudoVADD_VV);
2100 // clang-format on
2101 }
2102
2103#undef RVV_OPC_LMUL_MASK_CASE
2104#undef RVV_OPC_LMUL_CASE
2105}
2106
2108 const MachineOperand &MO,
2109 bool DoRegPressureReduce) {
2110 if (!MO.isReg() || !MO.getReg().isVirtual())
2111 return false;
2112 const MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
2113 MachineInstr *MI = MRI.getVRegDef(MO.getReg());
2114 if (!MI || !isFMUL(MI->getOpcode()))
2115 return false;
2116
2119 return false;
2120
2121 // Try combining even if fmul has more than one use as it eliminates
2122 // dependency between fadd(fsub) and fmul. However, it can extend liveranges
2123 // for fmul operands, so reject the transformation in register pressure
2124 // reduction mode.
2125 if (DoRegPressureReduce && !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
2126 return false;
2127
2128 // Do not combine instructions from different basic blocks.
2129 if (Root.getParent() != MI->getParent())
2130 return false;
2131 return RISCV::hasEqualFRM(Root, *MI);
2132}
2133
2135 SmallVectorImpl<unsigned> &Patterns,
2136 bool DoRegPressureReduce) {
2137 unsigned Opc = Root.getOpcode();
2138 bool IsFAdd = isFADD(Opc);
2139 if (!IsFAdd && !isFSUB(Opc))
2140 return false;
2141 bool Added = false;
2142 if (canCombineFPFusedMultiply(Root, Root.getOperand(1),
2143 DoRegPressureReduce)) {
2146 Added = true;
2147 }
2148 if (canCombineFPFusedMultiply(Root, Root.getOperand(2),
2149 DoRegPressureReduce)) {
2152 Added = true;
2153 }
2154 return Added;
2155}
2156
2157static bool getFPPatterns(MachineInstr &Root,
2158 SmallVectorImpl<unsigned> &Patterns,
2159 bool DoRegPressureReduce) {
2160 return getFPFusedMultiplyPatterns(Root, Patterns, DoRegPressureReduce);
2161}
2162
2163/// Utility routine that checks if \param MO is defined by an
2164/// \param CombineOpc instruction in the basic block \param MBB
2166 const MachineOperand &MO,
2167 unsigned CombineOpc) {
2169 const MachineInstr *MI = nullptr;
2170
2171 if (MO.isReg() && MO.getReg().isVirtual())
2172 MI = MRI.getUniqueVRegDef(MO.getReg());
2173 // And it needs to be in the trace (otherwise, it won't have a depth).
2174 if (!MI || MI->getParent() != &MBB || MI->getOpcode() != CombineOpc)
2175 return nullptr;
2176 // Must only used by the user we combine with.
2177 if (!MRI.hasOneNonDBGUse(MI->getOperand(0).getReg()))
2178 return nullptr;
2179
2180 return MI;
2181}
2182
2183/// Utility routine that checks if \param MO is defined by a SLLI in \param
2184/// MBB that can be combined by splitting across 2 SHXADD instructions. The
2185/// first SHXADD shift amount is given by \param OuterShiftAmt.
2187 const MachineOperand &MO,
2188 unsigned OuterShiftAmt) {
2189 const MachineInstr *ShiftMI = canCombine(MBB, MO, RISCV::SLLI);
2190 if (!ShiftMI)
2191 return false;
2192
2193 unsigned InnerShiftAmt = ShiftMI->getOperand(2).getImm();
2194 if (InnerShiftAmt < OuterShiftAmt || (InnerShiftAmt - OuterShiftAmt) > 3)
2195 return false;
2196
2197 return true;
2198}
2199
2200// Returns the shift amount from a SHXADD instruction. Returns 0 if the
2201// instruction is not a SHXADD.
2202static unsigned getSHXADDShiftAmount(unsigned Opc) {
2203 switch (Opc) {
2204 default:
2205 return 0;
2206 case RISCV::SH1ADD:
2207 return 1;
2208 case RISCV::SH2ADD:
2209 return 2;
2210 case RISCV::SH3ADD:
2211 return 3;
2212 }
2213}
2214
2215// Look for opportunities to combine (sh3add Z, (add X, (slli Y, 5))) into
2216// (sh3add (sh2add Y, Z), X).
2217static bool getSHXADDPatterns(const MachineInstr &Root,
2218 SmallVectorImpl<unsigned> &Patterns) {
2219 unsigned ShiftAmt = getSHXADDShiftAmount(Root.getOpcode());
2220 if (!ShiftAmt)
2221 return false;
2222
2223 const MachineBasicBlock &MBB = *Root.getParent();
2224
2225 const MachineInstr *AddMI = canCombine(MBB, Root.getOperand(2), RISCV::ADD);
2226 if (!AddMI)
2227 return false;
2228
2229 bool Found = false;
2230 if (canCombineShiftIntoShXAdd(MBB, AddMI->getOperand(1), ShiftAmt)) {
2232 Found = true;
2233 }
2234 if (canCombineShiftIntoShXAdd(MBB, AddMI->getOperand(2), ShiftAmt)) {
2236 Found = true;
2237 }
2238
2239 return Found;
2240}
2241
2243 switch (Pattern) {
2249 default:
2251 }
2252}
2253
2255 MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns,
2256 bool DoRegPressureReduce) const {
2257
2258 if (getFPPatterns(Root, Patterns, DoRegPressureReduce))
2259 return true;
2260
2261 if (getSHXADDPatterns(Root, Patterns))
2262 return true;
2263
2264 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
2265 DoRegPressureReduce);
2266}
2267
2268static unsigned getFPFusedMultiplyOpcode(unsigned RootOpc, unsigned Pattern) {
2269 switch (RootOpc) {
2270 default:
2271 llvm_unreachable("Unexpected opcode");
2272 case RISCV::FADD_H:
2273 return RISCV::FMADD_H;
2274 case RISCV::FADD_S:
2275 return RISCV::FMADD_S;
2276 case RISCV::FADD_D:
2277 return RISCV::FMADD_D;
2278 case RISCV::FSUB_H:
2279 return Pattern == RISCVMachineCombinerPattern::FMSUB ? RISCV::FMSUB_H
2280 : RISCV::FNMSUB_H;
2281 case RISCV::FSUB_S:
2282 return Pattern == RISCVMachineCombinerPattern::FMSUB ? RISCV::FMSUB_S
2283 : RISCV::FNMSUB_S;
2284 case RISCV::FSUB_D:
2285 return Pattern == RISCVMachineCombinerPattern::FMSUB ? RISCV::FMSUB_D
2286 : RISCV::FNMSUB_D;
2287 }
2288}
2289
2290static unsigned getAddendOperandIdx(unsigned Pattern) {
2291 switch (Pattern) {
2292 default:
2293 llvm_unreachable("Unexpected pattern");
2296 return 2;
2299 return 1;
2300 }
2301}
2302
2304 unsigned Pattern,
2307 MachineFunction *MF = Root.getMF();
2310
2311 MachineOperand &Mul1 = Prev.getOperand(1);
2312 MachineOperand &Mul2 = Prev.getOperand(2);
2313 MachineOperand &Dst = Root.getOperand(0);
2315
2316 Register DstReg = Dst.getReg();
2317 unsigned FusedOpc = getFPFusedMultiplyOpcode(Root.getOpcode(), Pattern);
2318 uint32_t IntersectedFlags = Root.getFlags() & Prev.getFlags();
2319 DebugLoc MergedLoc =
2321
2322 bool Mul1IsKill = Mul1.isKill();
2323 bool Mul2IsKill = Mul2.isKill();
2324 bool AddendIsKill = Addend.isKill();
2325
2326 // We need to clear kill flags since we may be extending the live range past
2327 // a kill. If the mul had kill flags, we can preserve those since we know
2328 // where the previous range stopped.
2329 MRI.clearKillFlags(Mul1.getReg());
2330 MRI.clearKillFlags(Mul2.getReg());
2331
2333 BuildMI(*MF, MergedLoc, TII->get(FusedOpc), DstReg)
2334 .addReg(Mul1.getReg(), getKillRegState(Mul1IsKill))
2335 .addReg(Mul2.getReg(), getKillRegState(Mul2IsKill))
2336 .addReg(Addend.getReg(), getKillRegState(AddendIsKill))
2337 .setMIFlags(IntersectedFlags);
2338
2339 InsInstrs.push_back(MIB);
2340 if (MRI.hasOneNonDBGUse(Prev.getOperand(0).getReg()))
2341 DelInstrs.push_back(&Prev);
2342 DelInstrs.push_back(&Root);
2343}
2344
2345// Combine patterns like (sh3add Z, (add X, (slli Y, 5))) to
2346// (sh3add (sh2add Y, Z), X) if the shift amount can be split across two
2347// shXadd instructions. The outer shXadd keeps its original opcode.
2348static void
2349genShXAddAddShift(MachineInstr &Root, unsigned AddOpIdx,
2352 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) {
2353 MachineFunction *MF = Root.getMF();
2356
2357 unsigned OuterShiftAmt = getSHXADDShiftAmount(Root.getOpcode());
2358 assert(OuterShiftAmt != 0 && "Unexpected opcode");
2359
2360 MachineInstr *AddMI = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
2361 MachineInstr *ShiftMI =
2362 MRI.getUniqueVRegDef(AddMI->getOperand(AddOpIdx).getReg());
2363
2364 unsigned InnerShiftAmt = ShiftMI->getOperand(2).getImm();
2365 assert(InnerShiftAmt >= OuterShiftAmt && "Unexpected shift amount");
2366
2367 unsigned InnerOpc;
2368 switch (InnerShiftAmt - OuterShiftAmt) {
2369 default:
2370 llvm_unreachable("Unexpected shift amount");
2371 case 0:
2372 InnerOpc = RISCV::ADD;
2373 break;
2374 case 1:
2375 InnerOpc = RISCV::SH1ADD;
2376 break;
2377 case 2:
2378 InnerOpc = RISCV::SH2ADD;
2379 break;
2380 case 3:
2381 InnerOpc = RISCV::SH3ADD;
2382 break;
2383 }
2384
2385 const MachineOperand &X = AddMI->getOperand(3 - AddOpIdx);
2386 const MachineOperand &Y = ShiftMI->getOperand(1);
2387 const MachineOperand &Z = Root.getOperand(1);
2388
2389 Register NewVR = MRI.createVirtualRegister(&RISCV::GPRRegClass);
2390
2391 auto MIB1 = BuildMI(*MF, MIMetadata(Root), TII->get(InnerOpc), NewVR)
2392 .addReg(Y.getReg(), getKillRegState(Y.isKill()))
2393 .addReg(Z.getReg(), getKillRegState(Z.isKill()));
2394 auto MIB2 = BuildMI(*MF, MIMetadata(Root), TII->get(Root.getOpcode()),
2395 Root.getOperand(0).getReg())
2396 .addReg(NewVR, RegState::Kill)
2397 .addReg(X.getReg(), getKillRegState(X.isKill()));
2398
2399 InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
2400 InsInstrs.push_back(MIB1);
2401 InsInstrs.push_back(MIB2);
2402 DelInstrs.push_back(ShiftMI);
2403 DelInstrs.push_back(AddMI);
2404 DelInstrs.push_back(&Root);
2405}
2406
2408 MachineInstr &Root, unsigned Pattern,
2411 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
2413 switch (Pattern) {
2414 default:
2416 DelInstrs, InstrIdxForVirtReg);
2417 return;
2420 MachineInstr &Prev = *MRI.getVRegDef(Root.getOperand(1).getReg());
2421 combineFPFusedMultiply(Root, Prev, Pattern, InsInstrs, DelInstrs);
2422 return;
2423 }
2426 MachineInstr &Prev = *MRI.getVRegDef(Root.getOperand(2).getReg());
2427 combineFPFusedMultiply(Root, Prev, Pattern, InsInstrs, DelInstrs);
2428 return;
2429 }
2431 genShXAddAddShift(Root, 1, InsInstrs, DelInstrs, InstrIdxForVirtReg);
2432 return;
2434 genShXAddAddShift(Root, 2, InsInstrs, DelInstrs, InstrIdxForVirtReg);
2435 return;
2436 }
2437}
2438
2440 StringRef &ErrInfo) const {
2441 MCInstrDesc const &Desc = MI.getDesc();
2442
2443 for (const auto &[Index, Operand] : enumerate(Desc.operands())) {
2444 unsigned OpType = Operand.OperandType;
2445 if (OpType >= RISCVOp::OPERAND_FIRST_RISCV_IMM &&
2447 const MachineOperand &MO = MI.getOperand(Index);
2448 if (MO.isReg()) {
2449 ErrInfo = "Expected a non-register operand.";
2450 return false;
2451 }
2452 if (MO.isImm()) {
2453 int64_t Imm = MO.getImm();
2454 bool Ok;
2455 switch (OpType) {
2456 default:
2457 llvm_unreachable("Unexpected operand type");
2458
2459 // clang-format off
2460#define CASE_OPERAND_UIMM(NUM) \
2461 case RISCVOp::OPERAND_UIMM##NUM: \
2462 Ok = isUInt<NUM>(Imm); \
2463 break;
2464#define CASE_OPERAND_SIMM(NUM) \
2465 case RISCVOp::OPERAND_SIMM##NUM: \
2466 Ok = isInt<NUM>(Imm); \
2467 break;
2479 // clang-format on
2481 Ok = isShiftedUInt<1, 1>(Imm);
2482 break;
2484 Ok = isShiftedUInt<4, 1>(Imm);
2485 break;
2487 Ok = isShiftedUInt<5, 1>(Imm);
2488 break;
2490 Ok = isShiftedUInt<5, 2>(Imm);
2491 break;
2493 Ok = isShiftedUInt<6, 2>(Imm);
2494 break;
2496 Ok = isShiftedUInt<5, 3>(Imm);
2497 break;
2499 Ok = isUInt<8>(Imm) && Imm >= 32;
2500 break;
2502 Ok = isShiftedUInt<6, 3>(Imm);
2503 break;
2505 Ok = isShiftedInt<6, 4>(Imm) && (Imm != 0);
2506 break;
2508 Ok = isShiftedUInt<8, 2>(Imm) && (Imm != 0);
2509 break;
2511 Ok = Imm == 0;
2512 break;
2513 // clang-format off
2517 // clang-format on
2519 Ok = (isInt<5>(Imm) && Imm != -16) || Imm == 16;
2520 break;
2522 Ok = Imm != 0 && isInt<6>(Imm);
2523 break;
2525 Ok = isUInt<10>(Imm);
2526 break;
2528 Ok = isUInt<11>(Imm);
2529 break;
2531 Ok = isShiftedInt<7, 5>(Imm);
2532 break;
2534 Ok = STI.is64Bit() ? isUInt<6>(Imm) : isUInt<5>(Imm);
2535 break;
2537 Ok = STI.is64Bit() ? isUInt<6>(Imm) : isUInt<5>(Imm);
2538 Ok = Ok && Imm != 0;
2539 break;
2541 Ok = (isUInt<5>(Imm) && Imm != 0) ||
2542 (Imm >= 0xfffe0 && Imm <= 0xfffff);
2543 break;
2545 Ok = Imm >= 0 && Imm <= 10;
2546 break;
2548 Ok = Imm >= 0 && Imm <= 7;
2549 break;
2551 Ok = Imm >= 1 && Imm <= 10;
2552 break;
2554 Ok = Imm >= 2 && Imm <= 14;
2555 break;
2557 Ok = (Imm & 0xf) == 0;
2558 break;
2561 break;
2563 Ok = Imm == RISCVFPRndMode::RTZ;
2564 break;
2566 Ok = Imm >= 0 && Imm < RISCVCC::COND_INVALID;
2567 break;
2569 Ok = (Imm & (RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC)) == Imm;
2570 break;
2572 Ok = (isUInt<5>(Imm) && RISCVVType::isValidSEW(1 << Imm));
2573 break;
2575 Ok = Imm == 0;
2576 break;
2579 if (RISCVII::usesVXRM(Desc.TSFlags))
2580 Ok = isUInt<2>(Imm);
2581 else
2583 break;
2584 }
2585 if (!Ok) {
2586 ErrInfo = "Invalid immediate";
2587 return false;
2588 }
2589 }
2590 }
2591 }
2592
2593 const uint64_t TSFlags = Desc.TSFlags;
2594 if (RISCVII::hasVLOp(TSFlags)) {
2595 const MachineOperand &Op = MI.getOperand(RISCVII::getVLOpNum(Desc));
2596 if (!Op.isImm() && !Op.isReg()) {
2597 ErrInfo = "Invalid operand type for VL operand";
2598 return false;
2599 }
2600 if (Op.isReg() && Op.getReg() != RISCV::NoRegister) {
2601 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2602 auto *RC = MRI.getRegClass(Op.getReg());
2603 if (!RISCV::GPRRegClass.hasSubClassEq(RC)) {
2604 ErrInfo = "Invalid register class for VL operand";
2605 return false;
2606 }
2607 }
2608 if (!RISCVII::hasSEWOp(TSFlags)) {
2609 ErrInfo = "VL operand w/o SEW operand?";
2610 return false;
2611 }
2612 }
2613 if (RISCVII::hasSEWOp(TSFlags)) {
2614 unsigned OpIdx = RISCVII::getSEWOpNum(Desc);
2615 if (!MI.getOperand(OpIdx).isImm()) {
2616 ErrInfo = "SEW value expected to be an immediate";
2617 return false;
2618 }
2619 uint64_t Log2SEW = MI.getOperand(OpIdx).getImm();
2620 if (Log2SEW > 31) {
2621 ErrInfo = "Unexpected SEW value";
2622 return false;
2623 }
2624 unsigned SEW = Log2SEW ? 1 << Log2SEW : 8;
2625 if (!RISCVVType::isValidSEW(SEW)) {
2626 ErrInfo = "Unexpected SEW value";
2627 return false;
2628 }
2629 }
2630 if (RISCVII::hasVecPolicyOp(TSFlags)) {
2631 unsigned OpIdx = RISCVII::getVecPolicyOpNum(Desc);
2632 if (!MI.getOperand(OpIdx).isImm()) {
2633 ErrInfo = "Policy operand expected to be an immediate";
2634 return false;
2635 }
2636 uint64_t Policy = MI.getOperand(OpIdx).getImm();
2638 ErrInfo = "Invalid Policy Value";
2639 return false;
2640 }
2641 if (!RISCVII::hasVLOp(TSFlags)) {
2642 ErrInfo = "policy operand w/o VL operand?";
2643 return false;
2644 }
2645
2646 // VecPolicy operands can only exist on instructions with passthru/merge
2647 // arguments. Note that not all arguments with passthru have vec policy
2648 // operands- some instructions have implicit policies.
2649 unsigned UseOpIdx;
2650 if (!MI.isRegTiedToUseOperand(0, &UseOpIdx)) {
2651 ErrInfo = "policy operand w/o tied operand?";
2652 return false;
2653 }
2654 }
2655
2656 if (int Idx = RISCVII::getFRMOpNum(Desc);
2657 Idx >= 0 && MI.getOperand(Idx).getImm() == RISCVFPRndMode::DYN &&
2658 !MI.readsRegister(RISCV::FRM, /*TRI=*/nullptr)) {
2659 ErrInfo = "dynamic rounding mode should read FRM";
2660 return false;
2661 }
2662
2663 return true;
2664}
2665
2667 const MachineInstr &AddrI,
2668 ExtAddrMode &AM) const {
2669 switch (MemI.getOpcode()) {
2670 default:
2671 return false;
2672 case RISCV::LB:
2673 case RISCV::LBU:
2674 case RISCV::LH:
2675 case RISCV::LH_INX:
2676 case RISCV::LHU:
2677 case RISCV::LW:
2678 case RISCV::LW_INX:
2679 case RISCV::LWU:
2680 case RISCV::LD:
2681 case RISCV::FLH:
2682 case RISCV::FLW:
2683 case RISCV::FLD:
2684 case RISCV::SB:
2685 case RISCV::SH:
2686 case RISCV::SH_INX:
2687 case RISCV::SW:
2688 case RISCV::SW_INX:
2689 case RISCV::SD:
2690 case RISCV::FSH:
2691 case RISCV::FSW:
2692 case RISCV::FSD:
2693 break;
2694 }
2695
2696 if (MemI.getOperand(0).getReg() == Reg)
2697 return false;
2698
2699 if (AddrI.getOpcode() != RISCV::ADDI || !AddrI.getOperand(1).isReg() ||
2700 !AddrI.getOperand(2).isImm())
2701 return false;
2702
2703 int64_t OldOffset = MemI.getOperand(2).getImm();
2704 int64_t Disp = AddrI.getOperand(2).getImm();
2705 int64_t NewOffset = OldOffset + Disp;
2706 if (!STI.is64Bit())
2707 NewOffset = SignExtend64<32>(NewOffset);
2708
2709 if (!isInt<12>(NewOffset))
2710 return false;
2711
2712 AM.BaseReg = AddrI.getOperand(1).getReg();
2713 AM.ScaledReg = 0;
2714 AM.Scale = 0;
2715 AM.Displacement = NewOffset;
2717 return true;
2718}
2719
2721 const ExtAddrMode &AM) const {
2722
2723 const DebugLoc &DL = MemI.getDebugLoc();
2724 MachineBasicBlock &MBB = *MemI.getParent();
2725
2726 assert(AM.ScaledReg == 0 && AM.Scale == 0 &&
2727 "Addressing mode not supported for folding");
2728
2729 return BuildMI(MBB, MemI, DL, get(MemI.getOpcode()))
2730 .addReg(MemI.getOperand(0).getReg(),
2731 MemI.mayLoad() ? RegState::Define : 0)
2732 .addReg(AM.BaseReg)
2733 .addImm(AM.Displacement)
2734 .setMemRefs(MemI.memoperands())
2735 .setMIFlags(MemI.getFlags());
2736}
2737
2740 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
2741 const TargetRegisterInfo *TRI) const {
2742 if (!LdSt.mayLoadOrStore())
2743 return false;
2744
2745 // Conservatively, only handle scalar loads/stores for now.
2746 switch (LdSt.getOpcode()) {
2747 case RISCV::LB:
2748 case RISCV::LBU:
2749 case RISCV::SB:
2750 case RISCV::LH:
2751 case RISCV::LH_INX:
2752 case RISCV::LHU:
2753 case RISCV::FLH:
2754 case RISCV::SH:
2755 case RISCV::SH_INX:
2756 case RISCV::FSH:
2757 case RISCV::LW:
2758 case RISCV::LW_INX:
2759 case RISCV::LWU:
2760 case RISCV::FLW:
2761 case RISCV::SW:
2762 case RISCV::SW_INX:
2763 case RISCV::FSW:
2764 case RISCV::LD:
2765 case RISCV::FLD:
2766 case RISCV::SD:
2767 case RISCV::FSD:
2768 break;
2769 default:
2770 return false;
2771 }
2772 const MachineOperand *BaseOp;
2773 OffsetIsScalable = false;
2774 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
2775 return false;
2776 BaseOps.push_back(BaseOp);
2777 return true;
2778}
2779
2780// TODO: This was copied from SIInstrInfo. Could it be lifted to a common
2781// helper?
2784 const MachineInstr &MI2,
2786 // Only examine the first "base" operand of each instruction, on the
2787 // assumption that it represents the real base address of the memory access.
2788 // Other operands are typically offsets or indices from this base address.
2789 if (BaseOps1.front()->isIdenticalTo(*BaseOps2.front()))
2790 return true;
2791
2792 if (!MI1.hasOneMemOperand() || !MI2.hasOneMemOperand())
2793 return false;
2794
2795 auto MO1 = *MI1.memoperands_begin();
2796 auto MO2 = *MI2.memoperands_begin();
2797 if (MO1->getAddrSpace() != MO2->getAddrSpace())
2798 return false;
2799
2800 auto Base1 = MO1->getValue();
2801 auto Base2 = MO2->getValue();
2802 if (!Base1 || !Base2)
2803 return false;
2804 Base1 = getUnderlyingObject(Base1);
2805 Base2 = getUnderlyingObject(Base2);
2806
2807 if (isa<UndefValue>(Base1) || isa<UndefValue>(Base2))
2808 return false;
2809
2810 return Base1 == Base2;
2811}
2812
2814 ArrayRef<const MachineOperand *> BaseOps1, int64_t Offset1,
2815 bool OffsetIsScalable1, ArrayRef<const MachineOperand *> BaseOps2,
2816 int64_t Offset2, bool OffsetIsScalable2, unsigned ClusterSize,
2817 unsigned NumBytes) const {
2818 // If the mem ops (to be clustered) do not have the same base ptr, then they
2819 // should not be clustered
2820 if (!BaseOps1.empty() && !BaseOps2.empty()) {
2821 const MachineInstr &FirstLdSt = *BaseOps1.front()->getParent();
2822 const MachineInstr &SecondLdSt = *BaseOps2.front()->getParent();
2823 if (!memOpsHaveSameBasePtr(FirstLdSt, BaseOps1, SecondLdSt, BaseOps2))
2824 return false;
2825 } else if (!BaseOps1.empty() || !BaseOps2.empty()) {
2826 // If only one base op is empty, they do not have the same base ptr
2827 return false;
2828 }
2829
2830 unsigned CacheLineSize =
2831 BaseOps1.front()->getParent()->getMF()->getSubtarget().getCacheLineSize();
2832 // Assume a cache line size of 64 bytes if no size is set in RISCVSubtarget.
2834 // Cluster if the memory operations are on the same or a neighbouring cache
2835 // line, but limit the maximum ClusterSize to avoid creating too much
2836 // additional register pressure.
2837 return ClusterSize <= 4 && std::abs(Offset1 - Offset2) < CacheLineSize;
2838}
2839
2840// Set BaseReg (the base register operand), Offset (the byte offset being
2841// accessed) and the access Width of the passed instruction that reads/writes
2842// memory. Returns false if the instruction does not read/write memory or the
2843// BaseReg/Offset/Width can't be determined. Is not guaranteed to always
2844// recognise base operands and offsets in all cases.
2845// TODO: Add an IsScalable bool ref argument (like the equivalent AArch64
2846// function) and set it as appropriate.
2848 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
2849 LocationSize &Width, const TargetRegisterInfo *TRI) const {
2850 if (!LdSt.mayLoadOrStore())
2851 return false;
2852
2853 // Here we assume the standard RISC-V ISA, which uses a base+offset
2854 // addressing mode. You'll need to relax these conditions to support custom
2855 // load/store instructions.
2856 if (LdSt.getNumExplicitOperands() != 3)
2857 return false;
2858 if ((!LdSt.getOperand(1).isReg() && !LdSt.getOperand(1).isFI()) ||
2859 !LdSt.getOperand(2).isImm())
2860 return false;
2861
2862 if (!LdSt.hasOneMemOperand())
2863 return false;
2864
2865 Width = (*LdSt.memoperands_begin())->getSize();
2866 BaseReg = &LdSt.getOperand(1);
2867 Offset = LdSt.getOperand(2).getImm();
2868 return true;
2869}
2870
2872 const MachineInstr &MIa, const MachineInstr &MIb) const {
2873 assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
2874 assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
2875
2878 return false;
2879
2880 // Retrieve the base register, offset from the base register and width. Width
2881 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
2882 // base registers are identical, and the offset of a lower memory access +
2883 // the width doesn't overlap the offset of a higher memory access,
2884 // then the memory accesses are different.
2886 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
2887 int64_t OffsetA = 0, OffsetB = 0;
2888 LocationSize WidthA = 0, WidthB = 0;
2889 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
2890 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
2891 if (BaseOpA->isIdenticalTo(*BaseOpB)) {
2892 int LowOffset = std::min(OffsetA, OffsetB);
2893 int HighOffset = std::max(OffsetA, OffsetB);
2894 LocationSize LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
2895 if (LowWidth.hasValue() &&
2896 LowOffset + (int)LowWidth.getValue() <= HighOffset)
2897 return true;
2898 }
2899 }
2900 return false;
2901}
2902
2903std::pair<unsigned, unsigned>
2905 const unsigned Mask = RISCVII::MO_DIRECT_FLAG_MASK;
2906 return std::make_pair(TF & Mask, TF & ~Mask);
2907}
2908
2911 using namespace RISCVII;
2912 static const std::pair<unsigned, const char *> TargetFlags[] = {
2913 {MO_CALL, "riscv-call"},
2914 {MO_LO, "riscv-lo"},
2915 {MO_HI, "riscv-hi"},
2916 {MO_PCREL_LO, "riscv-pcrel-lo"},
2917 {MO_PCREL_HI, "riscv-pcrel-hi"},
2918 {MO_GOT_HI, "riscv-got-hi"},
2919 {MO_TPREL_LO, "riscv-tprel-lo"},
2920 {MO_TPREL_HI, "riscv-tprel-hi"},
2921 {MO_TPREL_ADD, "riscv-tprel-add"},
2922 {MO_TLS_GOT_HI, "riscv-tls-got-hi"},
2923 {MO_TLS_GD_HI, "riscv-tls-gd-hi"},
2924 {MO_TLSDESC_HI, "riscv-tlsdesc-hi"},
2925 {MO_TLSDESC_LOAD_LO, "riscv-tlsdesc-load-lo"},
2926 {MO_TLSDESC_ADD_LO, "riscv-tlsdesc-add-lo"},
2927 {MO_TLSDESC_CALL, "riscv-tlsdesc-call"}};
2928 return ArrayRef(TargetFlags);
2929}
2931 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
2932 const Function &F = MF.getFunction();
2933
2934 // Can F be deduplicated by the linker? If it can, don't outline from it.
2935 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
2936 return false;
2937
2938 // Don't outline from functions with section markings; the program could
2939 // expect that all the code is in the named section.
2940 if (F.hasSection())
2941 return false;
2942
2943 // It's safe to outline from MF.
2944 return true;
2945}
2946
2948 unsigned &Flags) const {
2949 // More accurate safety checking is done in getOutliningCandidateInfo.
2951}
2952
2953// Enum values indicating how an outlined call should be constructed.
2958
2960 MachineFunction &MF) const {
2961 return MF.getFunction().hasMinSize();
2962}
2963
2965 const MachineFunction *MF = MBB.getParent();
2966 const Function &F = MF->getFunction();
2967 return F.getFnAttribute("fentry-call").getValueAsBool() ||
2968 F.hasFnAttribute("patchable-function-entry");
2969}
2970
2972 unsigned RegNo) {
2973 return MI.readsRegister(RegNo, TRI) ||
2974 MI.getDesc().hasImplicitUseOfPhysReg(RegNo);
2975}
2976
2978 const TargetRegisterInfo *TRI, unsigned RegNo) {
2979 return MI.modifiesRegister(RegNo, TRI) ||
2980 MI.getDesc().hasImplicitDefOfPhysReg(RegNo);
2981}
2982
2984 if (!MBB.back().isReturn())
2985 return true;
2987 return true;
2988
2989 // If the candidate reads the pre-set register
2990 // that can be used for expanding PseudoTAIL instruction,
2991 // then we cannot insert tail call.
2993 unsigned TailExpandUseRegNo =
2995 for (const MachineInstr &MI : MBB) {
2996 if (isMIReadsReg(MI, STI.getRegisterInfo(), TailExpandUseRegNo))
2997 return true;
2998 if (isMIModifiesReg(MI, STI.getRegisterInfo(), TailExpandUseRegNo))
2999 break;
3000 }
3001 return false;
3002}
3003
3004static std::optional<MachineOutlinerConstructionID>
3006 // If last instruction is return then we can rely on
3007 // the verification already performed in the getOutliningTypeImpl.
3008 if (C.back().isReturn()) {
3009 assert(!cannotInsertTailCall(*C.getMBB()) &&
3010 "The candidate who uses return instruction must be outlined "
3011 "using tail call");
3013 }
3014
3015 auto CandidateUsesX5 = [](outliner::Candidate &C) {
3016 const TargetRegisterInfo *TRI = C.getMF()->getSubtarget().getRegisterInfo();
3017 if (std::any_of(C.begin(), C.end(), [TRI](const MachineInstr &MI) {
3018 return isMIModifiesReg(MI, TRI, RISCV::X5);
3019 }))
3020 return true;
3021 return !C.isAvailableAcrossAndOutOfSeq(RISCV::X5, *TRI);
3022 };
3023
3024 if (!CandidateUsesX5(C))
3026
3027 return std::nullopt;
3028}
3029
3030std::optional<std::unique_ptr<outliner::OutlinedFunction>>
3032 const MachineModuleInfo &MMI,
3033 std::vector<outliner::Candidate> &RepeatedSequenceLocs,
3034 unsigned MinRepeats) const {
3035
3036 // Each RepeatedSequenceLoc is identical.
3037 outliner::Candidate &Candidate = RepeatedSequenceLocs[0];
3038 auto CandidateInfo = analyzeCandidate(Candidate);
3039 if (!CandidateInfo)
3040 RepeatedSequenceLocs.clear();
3041
3042 // If the sequence doesn't have enough candidates left, then we're done.
3043 if (RepeatedSequenceLocs.size() < MinRepeats)
3044 return std::nullopt;
3045
3046 unsigned InstrSizeCExt =
3047 Candidate.getMF()->getSubtarget<RISCVSubtarget>().hasStdExtCOrZca() ? 2
3048 : 4;
3049 unsigned CallOverhead = 0, FrameOverhead = 0;
3050
3051 MachineOutlinerConstructionID MOCI = CandidateInfo.value();
3052 switch (MOCI) {
3054 // call t0, function = 8 bytes.
3055 CallOverhead = 8;
3056 // jr t0 = 4 bytes, 2 bytes if compressed instructions are enabled.
3057 FrameOverhead = InstrSizeCExt;
3058 break;
3060 // tail call = auipc + jalr in the worst case without linker relaxation.
3061 CallOverhead = 4 + InstrSizeCExt;
3062 // Using tail call we move ret instruction from caller to callee.
3063 FrameOverhead = 0;
3064 break;
3065 }
3066
3067 for (auto &C : RepeatedSequenceLocs)
3068 C.setCallInfo(MOCI, CallOverhead);
3069
3070 unsigned SequenceSize = 0;
3071 for (auto &MI : Candidate)
3072 SequenceSize += getInstSizeInBytes(MI);
3073
3074 return std::make_unique<outliner::OutlinedFunction>(
3075 RepeatedSequenceLocs, SequenceSize, FrameOverhead, MOCI);
3076}
3077
3081 unsigned Flags) const {
3082 MachineInstr &MI = *MBBI;
3083 MachineBasicBlock *MBB = MI.getParent();
3084 const TargetRegisterInfo *TRI =
3086 const auto &F = MI.getMF()->getFunction();
3087
3088 // We can manually strip out CFI instructions later.
3089 if (MI.isCFIInstruction())
3090 // If current function has exception handling code, we can't outline &
3091 // strip these CFI instructions since it may break .eh_frame section
3092 // needed in unwinding.
3093 return F.needsUnwindTableEntry() ? outliner::InstrType::Illegal
3095
3096 if (cannotInsertTailCall(*MBB) &&
3097 (MI.isReturn() || isMIModifiesReg(MI, TRI, RISCV::X5)))
3099
3100 // Make sure the operands don't reference something unsafe.
3101 for (const auto &MO : MI.operands()) {
3102
3103 // pcrel-hi and pcrel-lo can't put in separate sections, filter that out
3104 // if any possible.
3105 if (MO.getTargetFlags() == RISCVII::MO_PCREL_LO &&
3106 (MI.getMF()->getTarget().getFunctionSections() || F.hasComdat() ||
3107 F.hasSection() || F.getSectionPrefix()))
3109 }
3110
3112}
3113
3116 const outliner::OutlinedFunction &OF) const {
3117
3118 // Strip out any CFI instructions
3119 bool Changed = true;
3120 while (Changed) {
3121 Changed = false;
3122 auto I = MBB.begin();
3123 auto E = MBB.end();
3124 for (; I != E; ++I) {
3125 if (I->isCFIInstruction()) {
3126 I->removeFromParent();
3127 Changed = true;
3128 break;
3129 }
3130 }
3131 }
3132
3134 return;
3135
3136 MBB.addLiveIn(RISCV::X5);
3137
3138 // Add in a return instruction to the end of the outlined frame.
3139 MBB.insert(MBB.end(), BuildMI(MF, DebugLoc(), get(RISCV::JALR))
3140 .addReg(RISCV::X0, RegState::Define)
3141 .addReg(RISCV::X5)
3142 .addImm(0));
3143}
3144
3148
3149 if (C.CallConstructionID == MachineOutlinerTailCall) {
3150 It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(RISCV::PseudoTAIL))
3151 .addGlobalAddress(M.getNamedValue(MF.getName()),
3152 /*Offset=*/0, RISCVII::MO_CALL));
3153 return It;
3154 }
3155
3156 // Add in a call instruction to the outlined function at the given location.
3157 It = MBB.insert(It,
3158 BuildMI(MF, DebugLoc(), get(RISCV::PseudoCALLReg), RISCV::X5)
3159 .addGlobalAddress(M.getNamedValue(MF.getName()), 0,
3161 return It;
3162}
3163
3164std::optional<RegImmPair> RISCVInstrInfo::isAddImmediate(const MachineInstr &MI,
3165 Register Reg) const {
3166 // TODO: Handle cases where Reg is a super- or sub-register of the
3167 // destination register.
3168 const MachineOperand &Op0 = MI.getOperand(0);
3169 if (!Op0.isReg() || Reg != Op0.getReg())
3170 return std::nullopt;
3171
3172 // Don't consider ADDIW as a candidate because the caller may not be aware
3173 // of its sign extension behaviour.
3174 if (MI.getOpcode() == RISCV::ADDI && MI.getOperand(1).isReg() &&
3175 MI.getOperand(2).isImm())
3176 return RegImmPair{MI.getOperand(1).getReg(), MI.getOperand(2).getImm()};
3177
3178 return std::nullopt;
3179}
3180
3181// MIR printer helper function to annotate Operands with a comment.
3183 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
3184 const TargetRegisterInfo *TRI) const {
3185 // Print a generic comment for this operand if there is one.
3186 std::string GenericComment =
3188 if (!GenericComment.empty())
3189 return GenericComment;
3190
3191 // If not, we must have an immediate operand.
3192 if (!Op.isImm())
3193 return std::string();
3194
3195 const MCInstrDesc &Desc = MI.getDesc();
3196 if (OpIdx >= Desc.getNumOperands())
3197 return std::string();
3198
3199 std::string Comment;
3200 raw_string_ostream OS(Comment);
3201
3202 const MCOperandInfo &OpInfo = Desc.operands()[OpIdx];
3203
3204 // Print the full VType operand of vsetvli/vsetivli instructions, and the SEW
3205 // operand of vector codegen pseudos.
3206 switch (OpInfo.OperandType) {
3209 unsigned Imm = Op.getImm();
3211 break;
3212 }
3215 unsigned Log2SEW = Op.getImm();
3216 unsigned SEW = Log2SEW ? 1 << Log2SEW : 8;
3217 assert(RISCVVType::isValidSEW(SEW) && "Unexpected SEW");
3218 OS << "e" << SEW;
3219 break;
3220 }
3222 unsigned Policy = Op.getImm();
3224 "Invalid Policy Value");
3225 OS << (Policy & RISCVII::TAIL_AGNOSTIC ? "ta" : "tu") << ", "
3226 << (Policy & RISCVII::MASK_AGNOSTIC ? "ma" : "mu");
3227 break;
3228 }
3229
3230 return Comment;
3231}
3232
3233// clang-format off
3234#define CASE_RVV_OPCODE_UNMASK_LMUL(OP, LMUL) \
3235 RISCV::Pseudo##OP##_##LMUL
3236
3237#define CASE_RVV_OPCODE_MASK_LMUL(OP, LMUL) \
3238 RISCV::Pseudo##OP##_##LMUL##_MASK
3239
3240#define CASE_RVV_OPCODE_LMUL(OP, LMUL) \
3241 CASE_RVV_OPCODE_UNMASK_LMUL(OP, LMUL): \
3242 case CASE_RVV_OPCODE_MASK_LMUL(OP, LMUL)
3243
3244#define CASE_RVV_OPCODE_UNMASK_WIDEN(OP) \
3245 CASE_RVV_OPCODE_UNMASK_LMUL(OP, MF8): \
3246 case CASE_RVV_OPCODE_UNMASK_LMUL(OP, MF4): \
3247 case CASE_RVV_OPCODE_UNMASK_LMUL(OP, MF2): \
3248 case CASE_RVV_OPCODE_UNMASK_LMUL(OP, M1): \
3249 case CASE_RVV_OPCODE_UNMASK_LMUL(OP, M2): \
3250 case CASE_RVV_OPCODE_UNMASK_LMUL(OP, M4)
3251
3252#define CASE_RVV_OPCODE_UNMASK(OP) \
3253 CASE_RVV_OPCODE_UNMASK_WIDEN(OP): \
3254 case CASE_RVV_OPCODE_UNMASK_LMUL(OP, M8)
3255
3256#define CASE_RVV_OPCODE_MASK_WIDEN(OP) \
3257 CASE_RVV_OPCODE_MASK_LMUL(OP, MF8): \
3258 case CASE_RVV_OPCODE_MASK_LMUL(OP, MF4): \
3259 case CASE_RVV_OPCODE_MASK_LMUL(OP, MF2): \
3260 case CASE_RVV_OPCODE_MASK_LMUL(OP, M1): \
3261 case CASE_RVV_OPCODE_MASK_LMUL(OP, M2): \
3262 case CASE_RVV_OPCODE_MASK_LMUL(OP, M4)
3263
3264#define CASE_RVV_OPCODE_MASK(OP) \
3265 CASE_RVV_OPCODE_MASK_WIDEN(OP): \
3266 case CASE_RVV_OPCODE_MASK_LMUL(OP, M8)
3267
3268#define CASE_RVV_OPCODE_WIDEN(OP) \
3269 CASE_RVV_OPCODE_UNMASK_WIDEN(OP): \
3270 case CASE_RVV_OPCODE_MASK_WIDEN(OP)
3271
3272#define CASE_RVV_OPCODE(OP) \
3273 CASE_RVV_OPCODE_UNMASK(OP): \
3274 case CASE_RVV_OPCODE_MASK(OP)
3275// clang-format on
3276
3277// clang-format off
3278#define CASE_VMA_OPCODE_COMMON(OP, TYPE, LMUL) \
3279 RISCV::PseudoV##OP##_##TYPE##_##LMUL
3280
3281#define CASE_VMA_OPCODE_LMULS_M1(OP, TYPE) \
3282 CASE_VMA_OPCODE_COMMON(OP, TYPE, M1): \
3283 case CASE_VMA_OPCODE_COMMON(OP, TYPE, M2): \
3284 case CASE_VMA_OPCODE_COMMON(OP, TYPE, M4): \
3285 case CASE_VMA_OPCODE_COMMON(OP, TYPE, M8)
3286
3287#define CASE_VMA_OPCODE_LMULS_MF2(OP, TYPE) \
3288 CASE_VMA_OPCODE_COMMON(OP, TYPE, MF2): \
3289 case CASE_VMA_OPCODE_LMULS_M1(OP, TYPE)
3290
3291#define CASE_VMA_OPCODE_LMULS_MF4(OP, TYPE) \
3292 CASE_VMA_OPCODE_COMMON(OP, TYPE, MF4): \
3293 case CASE_VMA_OPCODE_LMULS_MF2(OP, TYPE)
3294
3295#define CASE_VMA_OPCODE_LMULS(OP, TYPE) \
3296 CASE_VMA_OPCODE_COMMON(OP, TYPE, MF8): \
3297 case CASE_VMA_OPCODE_LMULS_MF4(OP, TYPE)
3298
3299// VFMA instructions are SEW specific.
3300#define CASE_VFMA_OPCODE_COMMON(OP, TYPE, LMUL, SEW) \
3301 RISCV::PseudoV##OP##_##TYPE##_##LMUL##_##SEW
3302
3303#define CASE_VFMA_OPCODE_LMULS_M1(OP, TYPE, SEW) \
3304 CASE_VFMA_OPCODE_COMMON(OP, TYPE, M1, SEW): \
3305 case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M2, SEW): \
3306 case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M4, SEW): \
3307 case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M8, SEW)
3308
3309#define CASE_VFMA_OPCODE_LMULS_MF2(OP, TYPE, SEW) \
3310 CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF2, SEW): \
3311 case CASE_VFMA_OPCODE_LMULS_M1(OP, TYPE, SEW)
3312
3313#define CASE_VFMA_OPCODE_LMULS_MF4(OP, TYPE, SEW) \
3314 CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF4, SEW): \
3315 case CASE_VFMA_OPCODE_LMULS_MF2(OP, TYPE, SEW)
3316
3317#define CASE_VFMA_OPCODE_VV(OP) \
3318 CASE_VFMA_OPCODE_LMULS_MF4(OP, VV, E16): \
3319 case CASE_VFMA_OPCODE_LMULS_MF2(OP, VV, E32): \
3320 case CASE_VFMA_OPCODE_LMULS_M1(OP, VV, E64)
3321
3322#define CASE_VFMA_SPLATS(OP) \
3323 CASE_VFMA_OPCODE_LMULS_MF4(OP, VFPR16, E16): \
3324 case CASE_VFMA_OPCODE_LMULS_MF2(OP, VFPR32, E32): \
3325 case CASE_VFMA_OPCODE_LMULS_M1(OP, VFPR64, E64)
3326// clang-format on
3327
3329 unsigned &SrcOpIdx1,
3330 unsigned &SrcOpIdx2) const {
3331 const MCInstrDesc &Desc = MI.getDesc();
3332 if (!Desc.isCommutable())
3333 return false;
3334
3335 switch (MI.getOpcode()) {
3336 case RISCV::TH_MVEQZ:
3337 case RISCV::TH_MVNEZ:
3338 // We can't commute operands if operand 2 (i.e., rs1 in
3339 // mveqz/mvnez rd,rs1,rs2) is the zero-register (as it is
3340 // not valid as the in/out-operand 1).
3341 if (MI.getOperand(2).getReg() == RISCV::X0)
3342 return false;
3343 // Operands 1 and 2 are commutable, if we switch the opcode.
3344 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1, 2);
3345 case RISCV::TH_MULA:
3346 case RISCV::TH_MULAW:
3347 case RISCV::TH_MULAH:
3348 case RISCV::TH_MULS:
3349 case RISCV::TH_MULSW:
3350 case RISCV::TH_MULSH:
3351 // Operands 2 and 3 are commutable.
3352 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
3353 case RISCV::PseudoCCMOVGPRNoX0:
3354 case RISCV::PseudoCCMOVGPR:
3355 // Operands 4 and 5 are commutable.
3356 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 4, 5);
3357 case CASE_RVV_OPCODE(VADD_VV):
3358 case CASE_RVV_OPCODE(VAND_VV):
3359 case CASE_RVV_OPCODE(VOR_VV):
3360 case CASE_RVV_OPCODE(VXOR_VV):
3361 case CASE_RVV_OPCODE_MASK(VMSEQ_VV):
3362 case CASE_RVV_OPCODE_MASK(VMSNE_VV):
3363 case CASE_RVV_OPCODE(VMIN_VV):
3364 case CASE_RVV_OPCODE(VMINU_VV):
3365 case CASE_RVV_OPCODE(VMAX_VV):
3366 case CASE_RVV_OPCODE(VMAXU_VV):
3367 case CASE_RVV_OPCODE(VMUL_VV):
3368 case CASE_RVV_OPCODE(VMULH_VV):
3369 case CASE_RVV_OPCODE(VMULHU_VV):
3370 case CASE_RVV_OPCODE_WIDEN(VWADD_VV):
3371 case CASE_RVV_OPCODE_WIDEN(VWADDU_VV):
3372 case CASE_RVV_OPCODE_WIDEN(VWMUL_VV):
3373 case CASE_RVV_OPCODE_WIDEN(VWMULU_VV):
3374 case CASE_RVV_OPCODE_WIDEN(VWMACC_VV):
3375 case CASE_RVV_OPCODE_WIDEN(VWMACCU_VV):
3376 case CASE_RVV_OPCODE_UNMASK(VADC_VVM):
3377 case CASE_RVV_OPCODE(VSADD_VV):
3378 case CASE_RVV_OPCODE(VSADDU_VV):
3379 case CASE_RVV_OPCODE(VAADD_VV):
3380 case CASE_RVV_OPCODE(VAADDU_VV):
3381 case CASE_RVV_OPCODE(VSMUL_VV):
3382 // Operands 2 and 3 are commutable.
3383 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
3384 case CASE_VFMA_SPLATS(FMADD):
3385 case CASE_VFMA_SPLATS(FMSUB):
3386 case CASE_VFMA_SPLATS(FMACC):
3387 case CASE_VFMA_SPLATS(FMSAC):
3390 case CASE_VFMA_SPLATS(FNMACC):
3391 case CASE_VFMA_SPLATS(FNMSAC):
3392 case CASE_VFMA_OPCODE_VV(FMACC):
3393 case CASE_VFMA_OPCODE_VV(FMSAC):
3394 case CASE_VFMA_OPCODE_VV(FNMACC):
3395 case CASE_VFMA_OPCODE_VV(FNMSAC):
3396 case CASE_VMA_OPCODE_LMULS(MADD, VX):
3397 case CASE_VMA_OPCODE_LMULS(NMSUB, VX):
3398 case CASE_VMA_OPCODE_LMULS(MACC, VX):
3399 case CASE_VMA_OPCODE_LMULS(NMSAC, VX):
3400 case CASE_VMA_OPCODE_LMULS(MACC, VV):
3401 case CASE_VMA_OPCODE_LMULS(NMSAC, VV): {
3402 // If the tail policy is undisturbed we can't commute.
3403 assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags));
3404 if ((MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 1) == 0)
3405 return false;
3406
3407 // For these instructions we can only swap operand 1 and operand 3 by
3408 // changing the opcode.
3409 unsigned CommutableOpIdx1 = 1;
3410 unsigned CommutableOpIdx2 = 3;
3411 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
3412 CommutableOpIdx2))
3413 return false;
3414 return true;
3415 }
3416 case CASE_VFMA_OPCODE_VV(FMADD):
3420 case CASE_VMA_OPCODE_LMULS(MADD, VV):
3421 case CASE_VMA_OPCODE_LMULS(NMSUB, VV): {
3422 // If the tail policy is undisturbed we can't commute.
3423 assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags));
3424 if ((MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 1) == 0)
3425 return false;
3426
3427 // For these instructions we have more freedom. We can commute with the
3428 // other multiplicand or with the addend/subtrahend/minuend.
3429
3430 // Any fixed operand must be from source 1, 2 or 3.
3431 if (SrcOpIdx1 != CommuteAnyOperandIndex && SrcOpIdx1 > 3)
3432 return false;
3433 if (SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx2 > 3)
3434 return false;
3435
3436 // It both ops are fixed one must be the tied source.
3437 if (SrcOpIdx1 != CommuteAnyOperandIndex &&
3438 SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx1 != 1 && SrcOpIdx2 != 1)
3439 return false;
3440
3441 // Look for two different register operands assumed to be commutable
3442 // regardless of the FMA opcode. The FMA opcode is adjusted later if
3443 // needed.
3444 if (SrcOpIdx1 == CommuteAnyOperandIndex ||
3445 SrcOpIdx2 == CommuteAnyOperandIndex) {
3446 // At least one of operands to be commuted is not specified and
3447 // this method is free to choose appropriate commutable operands.
3448 unsigned CommutableOpIdx1 = SrcOpIdx1;
3449 if (SrcOpIdx1 == SrcOpIdx2) {
3450 // Both of operands are not fixed. Set one of commutable
3451 // operands to the tied source.
3452 CommutableOpIdx1 = 1;
3453 } else if (SrcOpIdx1 == CommuteAnyOperandIndex) {
3454 // Only one of the operands is not fixed.
3455 CommutableOpIdx1 = SrcOpIdx2;
3456 }
3457
3458 // CommutableOpIdx1 is well defined now. Let's choose another commutable
3459 // operand and assign its index to CommutableOpIdx2.
3460 unsigned CommutableOpIdx2;
3461 if (CommutableOpIdx1 != 1) {
3462 // If we haven't already used the tied source, we must use it now.
3463 CommutableOpIdx2 = 1;
3464 } else {
3465 Register Op1Reg = MI.getOperand(CommutableOpIdx1).getReg();
3466
3467 // The commuted operands should have different registers.
3468 // Otherwise, the commute transformation does not change anything and
3469 // is useless. We use this as a hint to make our decision.
3470 if (Op1Reg != MI.getOperand(2).getReg())
3471 CommutableOpIdx2 = 2;
3472 else
3473 CommutableOpIdx2 = 3;
3474 }
3475
3476 // Assign the found pair of commutable indices to SrcOpIdx1 and
3477 // SrcOpIdx2 to return those values.
3478 if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
3479 CommutableOpIdx2))
3480 return false;
3481 }
3482
3483 return true;
3484 }
3485 }
3486
3487 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
3488}
3489
3490// clang-format off
3491#define CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, LMUL) \
3492 case RISCV::PseudoV##OLDOP##_##TYPE##_##LMUL: \
3493 Opc = RISCV::PseudoV##NEWOP##_##TYPE##_##LMUL; \
3494 break;
3495
3496#define CASE_VMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE) \
3497 CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M1) \
3498 CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M2) \
3499 CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M4) \
3500 CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M8)
3501
3502#define CASE_VMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE) \
3503 CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF2) \
3504 CASE_VMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE)
3505
3506#define CASE_VMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE) \
3507 CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF4) \
3508 CASE_VMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE)
3509
3510#define CASE_VMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, TYPE) \
3511 CASE_VMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF8) \
3512 CASE_VMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE)
3513
3514#define CASE_VMA_CHANGE_OPCODE_SPLATS(OLDOP, NEWOP) \
3515 CASE_VMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, VFPR16) \
3516 CASE_VMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, VFPR32) \
3517 CASE_VMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, VFPR64)
3518
3519// VFMA depends on SEW.
3520#define CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, LMUL, SEW) \
3521 case RISCV::PseudoV##OLDOP##_##TYPE##_##LMUL##_##SEW: \
3522 Opc = RISCV::PseudoV##NEWOP##_##TYPE##_##LMUL##_##SEW; \
3523 break;
3524
3525#define CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE, SEW) \
3526 CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M1, SEW) \
3527 CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M2, SEW) \
3528 CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M4, SEW) \
3529 CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M8, SEW)
3530
3531#define CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE, SEW) \
3532 CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF2, SEW) \
3533 CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, TYPE, SEW)
3534
3535#define CASE_VFMA_CHANGE_OPCODE_VV(OLDOP, NEWOP) \
3536 CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, VV, E16) \
3537 CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, VV, E32) \
3538 CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, VV, E64)
3539
3540#define CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE, SEW) \
3541 CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF4, SEW) \
3542 CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, TYPE, SEW)
3543
3544#define CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, TYPE, SEW) \
3545 CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF8, SEW) \
3546 CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, TYPE, SEW)
3547
3548#define CASE_VFMA_CHANGE_OPCODE_SPLATS(OLDOP, NEWOP) \
3549 CASE_VFMA_CHANGE_OPCODE_LMULS_MF4(OLDOP, NEWOP, VFPR16, E16) \
3550 CASE_VFMA_CHANGE_OPCODE_LMULS_MF2(OLDOP, NEWOP, VFPR32, E32) \
3551 CASE_VFMA_CHANGE_OPCODE_LMULS_M1(OLDOP, NEWOP, VFPR64, E64)
3552
3554 bool NewMI,
3555 unsigned OpIdx1,
3556 unsigned OpIdx2) const {
3557 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
3558 if (NewMI)
3559 return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
3560 return MI;
3561 };
3562
3563 switch (MI.getOpcode()) {
3564 case RISCV::TH_MVEQZ:
3565 case RISCV::TH_MVNEZ: {
3566 auto &WorkingMI = cloneIfNew(MI);
3567 WorkingMI.setDesc(get(MI.getOpcode() == RISCV::TH_MVEQZ ? RISCV::TH_MVNEZ
3568 : RISCV::TH_MVEQZ));
3569 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, false, OpIdx1,
3570 OpIdx2);
3571 }
3572 case RISCV::PseudoCCMOVGPRNoX0:
3573 case RISCV::PseudoCCMOVGPR: {
3574 // CCMOV can be commuted by inverting the condition.
3575 auto CC = static_cast<RISCVCC::CondCode>(MI.getOperand(3).getImm());
3577 auto &WorkingMI = cloneIfNew(MI);
3578 WorkingMI.getOperand(3).setImm(CC);
3579 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI*/ false,
3580 OpIdx1, OpIdx2);
3581 }
3582 case CASE_VFMA_SPLATS(FMACC):
3583 case CASE_VFMA_SPLATS(FMADD):
3584 case CASE_VFMA_SPLATS(FMSAC):
3585 case CASE_VFMA_SPLATS(FMSUB):
3586 case CASE_VFMA_SPLATS(FNMACC):
3588 case CASE_VFMA_SPLATS(FNMSAC):
3590 case CASE_VFMA_OPCODE_VV(FMACC):
3591 case CASE_VFMA_OPCODE_VV(FMSAC):
3592 case CASE_VFMA_OPCODE_VV(FNMACC):
3593 case CASE_VFMA_OPCODE_VV(FNMSAC):
3594 case CASE_VMA_OPCODE_LMULS(MADD, VX):
3595 case CASE_VMA_OPCODE_LMULS(NMSUB, VX):
3596 case CASE_VMA_OPCODE_LMULS(MACC, VX):
3597 case CASE_VMA_OPCODE_LMULS(NMSAC, VX):
3598 case CASE_VMA_OPCODE_LMULS(MACC, VV):
3599 case CASE_VMA_OPCODE_LMULS(NMSAC, VV): {
3600 // It only make sense to toggle these between clobbering the
3601 // addend/subtrahend/minuend one of the multiplicands.
3602 assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index");
3603 assert((OpIdx1 == 3 || OpIdx2 == 3) && "Unexpected opcode index");
3604 unsigned Opc;
3605 switch (MI.getOpcode()) {
3606 default:
3607 llvm_unreachable("Unexpected opcode");
3608 CASE_VFMA_CHANGE_OPCODE_SPLATS(FMACC, FMADD)
3609 CASE_VFMA_CHANGE_OPCODE_SPLATS(FMADD, FMACC)
3616 CASE_VFMA_CHANGE_OPCODE_VV(FMACC, FMADD)
3620 CASE_VMA_CHANGE_OPCODE_LMULS(MACC, MADD, VX)
3621 CASE_VMA_CHANGE_OPCODE_LMULS(MADD, MACC, VX)
3622 CASE_VMA_CHANGE_OPCODE_LMULS(NMSAC, NMSUB, VX)
3623 CASE_VMA_CHANGE_OPCODE_LMULS(NMSUB, NMSAC, VX)
3624 CASE_VMA_CHANGE_OPCODE_LMULS(MACC, MADD, VV)
3625 CASE_VMA_CHANGE_OPCODE_LMULS(NMSAC, NMSUB, VV)
3626 }
3627
3628 auto &WorkingMI = cloneIfNew(MI);
3629 WorkingMI.setDesc(get(Opc));
3630 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
3631 OpIdx1, OpIdx2);
3632 }
3633 case CASE_VFMA_OPCODE_VV(FMADD):
3637 case CASE_VMA_OPCODE_LMULS(MADD, VV):
3638 case CASE_VMA_OPCODE_LMULS(NMSUB, VV): {
3639 assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index");
3640 // If one of the operands, is the addend we need to change opcode.
3641 // Otherwise we're just swapping 2 of the multiplicands.
3642 if (OpIdx1 == 3 || OpIdx2 == 3) {
3643 unsigned Opc;
3644 switch (MI.getOpcode()) {
3645 default:
3646 llvm_unreachable("Unexpected opcode");
3647 CASE_VFMA_CHANGE_OPCODE_VV(FMADD, FMACC)
3651 CASE_VMA_CHANGE_OPCODE_LMULS(MADD, MACC, VV)
3652 CASE_VMA_CHANGE_OPCODE_LMULS(NMSUB, NMSAC, VV)
3653 }
3654
3655 auto &WorkingMI = cloneIfNew(MI);
3656 WorkingMI.setDesc(get(Opc));
3657 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
3658 OpIdx1, OpIdx2);
3659 }
3660 // Let the default code handle it.
3661 break;
3662 }
3663 }
3664
3665 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
3666}
3667
3668#undef CASE_RVV_OPCODE_UNMASK_LMUL
3669#undef CASE_RVV_OPCODE_MASK_LMUL
3670#undef CASE_RVV_OPCODE_LMUL
3671#undef CASE_RVV_OPCODE_UNMASK_WIDEN
3672#undef CASE_RVV_OPCODE_UNMASK
3673#undef CASE_RVV_OPCODE_MASK_WIDEN
3674#undef CASE_RVV_OPCODE_MASK
3675#undef CASE_RVV_OPCODE_WIDEN
3676#undef CASE_RVV_OPCODE
3677
3678#undef CASE_VMA_OPCODE_COMMON
3679#undef CASE_VMA_OPCODE_LMULS_M1
3680#undef CASE_VMA_OPCODE_LMULS_MF2
3681#undef CASE_VMA_OPCODE_LMULS_MF4
3682#undef CASE_VMA_OPCODE_LMULS
3683#undef CASE_VFMA_OPCODE_COMMON
3684#undef CASE_VFMA_OPCODE_LMULS_M1
3685#undef CASE_VFMA_OPCODE_LMULS_MF2
3686#undef CASE_VFMA_OPCODE_LMULS_MF4
3687#undef CASE_VFMA_OPCODE_VV
3688#undef CASE_VFMA_SPLATS
3689
3690// clang-format off
3691#define CASE_WIDEOP_OPCODE_COMMON(OP, LMUL) \
3692 RISCV::PseudoV##OP##_##LMUL##_TIED
3693
3694#define CASE_WIDEOP_OPCODE_LMULS_MF4(OP) \
3695 CASE_WIDEOP_OPCODE_COMMON(OP, MF4): \
3696 case CASE_WIDEOP_OPCODE_COMMON(OP, MF2): \
3697 case CASE_WIDEOP_OPCODE_COMMON(OP, M1): \
3698 case CASE_WIDEOP_OPCODE_COMMON(OP, M2): \
3699 case CASE_WIDEOP_OPCODE_COMMON(OP, M4)
3700
3701#define CASE_WIDEOP_OPCODE_LMULS(OP) \
3702 CASE_WIDEOP_OPCODE_COMMON(OP, MF8): \
3703 case CASE_WIDEOP_OPCODE_LMULS_MF4(OP)
3704
3705#define CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, LMUL) \
3706 case RISCV::PseudoV##OP##_##LMUL##_TIED: \
3707 NewOpc = RISCV::PseudoV##OP##_##LMUL; \
3708 break;
3709
3710#define CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP) \
3711 CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF4) \
3712 CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF2) \
3713 CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M1) \
3714 CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M2) \
3715 CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, M4)
3716
3717#define CASE_WIDEOP_CHANGE_OPCODE_LMULS(OP) \
3718 CASE_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF8) \
3719 CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP)
3720
3721// FP Widening Ops may by SEW aware. Create SEW aware cases for these cases.
3722#define CASE_FP_WIDEOP_OPCODE_COMMON(OP, LMUL, SEW) \
3723 RISCV::PseudoV##OP##_##LMUL##_##SEW##_TIED
3724
3725#define CASE_FP_WIDEOP_OPCODE_LMULS_MF4(OP) \
3726 CASE_FP_WIDEOP_OPCODE_COMMON(OP, MF4, E16): \
3727 case CASE_FP_WIDEOP_OPCODE_COMMON(OP, MF2, E16): \
3728 case CASE_FP_WIDEOP_OPCODE_COMMON(OP, MF2, E32): \
3729 case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M1, E16): \
3730 case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M1, E32): \
3731 case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M2, E16): \
3732 case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M2, E32): \
3733 case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M4, E16): \
3734 case CASE_FP_WIDEOP_OPCODE_COMMON(OP, M4, E32) \
3735
3736#define CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, LMUL, SEW) \
3737 case RISCV::PseudoV##OP##_##LMUL##_##SEW##_TIED: \
3738 NewOpc = RISCV::PseudoV##OP##_##LMUL##_##SEW; \
3739 break;
3740
3741#define CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP) \
3742 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF4, E16) \
3743 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF2, E16) \
3744 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, MF2, E32) \
3745 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M1, E16) \
3746 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M1, E32) \
3747 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M2, E16) \
3748 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M2, E32) \
3749 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M4, E16) \
3750 CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON(OP, M4, E32) \
3751
3752#define CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS(OP) \
3753 CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP)
3754// clang-format on
3755
3757 LiveVariables *LV,
3758 LiveIntervals *LIS) const {
3760 switch (MI.getOpcode()) {
3761 default:
3762 return nullptr;
3763 case CASE_FP_WIDEOP_OPCODE_LMULS_MF4(FWADD_WV):
3764 case CASE_FP_WIDEOP_OPCODE_LMULS_MF4(FWSUB_WV): {
3765 assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags) &&
3766 MI.getNumExplicitOperands() == 7 &&
3767 "Expect 7 explicit operands rd, rs2, rs1, rm, vl, sew, policy");
3768 // If the tail policy is undisturbed we can't convert.
3769 if ((MI.getOperand(RISCVII::getVecPolicyOpNum(MI.getDesc())).getImm() &
3770 1) == 0)
3771 return nullptr;
3772 // clang-format off
3773 unsigned NewOpc;
3774 switch (MI.getOpcode()) {
3775 default:
3776 llvm_unreachable("Unexpected opcode");
3779 }
3780 // clang-format on
3781
3782 MachineBasicBlock &MBB = *MI.getParent();
3783 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
3784 .add(MI.getOperand(0))
3785 .addReg(MI.getOperand(0).getReg(), RegState::Undef)
3786 .add(MI.getOperand(1))
3787 .add(MI.getOperand(2))
3788 .add(MI.getOperand(3))
3789 .add(MI.getOperand(4))
3790 .add(MI.getOperand(5))
3791 .add(MI.getOperand(6));
3792 break;
3793 }
3794 case CASE_WIDEOP_OPCODE_LMULS(WADD_WV):
3795 case CASE_WIDEOP_OPCODE_LMULS(WADDU_WV):
3796 case CASE_WIDEOP_OPCODE_LMULS(WSUB_WV):
3797 case CASE_WIDEOP_OPCODE_LMULS(WSUBU_WV): {
3798 // If the tail policy is undisturbed we can't convert.
3799 assert(RISCVII::hasVecPolicyOp(MI.getDesc().TSFlags) &&
3800 MI.getNumExplicitOperands() == 6);
3801 if ((MI.getOperand(5).getImm() & 1) == 0)
3802 return nullptr;
3803
3804 // clang-format off
3805 unsigned NewOpc;
3806 switch (MI.getOpcode()) {
3807 default:
3808 llvm_unreachable("Unexpected opcode");
3813 }
3814 // clang-format on
3815
3816 MachineBasicBlock &MBB = *MI.getParent();
3817 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
3818 .add(MI.getOperand(0))
3819 .addReg(MI.getOperand(0).getReg(), RegState::Undef)
3820 .add(MI.getOperand(1))
3821 .add(MI.getOperand(2))
3822 .add(MI.getOperand(3))
3823 .add(MI.getOperand(4))
3824 .add(MI.getOperand(5));
3825 break;
3826 }
3827 }
3828 MIB.copyImplicitOps(MI);
3829
3830 if (LV) {
3831 unsigned NumOps = MI.getNumOperands();
3832 for (unsigned I = 1; I < NumOps; ++I) {
3833 MachineOperand &Op = MI.getOperand(I);
3834 if (Op.isReg() && Op.isKill())
3835 LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
3836 }
3837 }
3838
3839 if (LIS) {
3841
3842 if (MI.getOperand(0).isEarlyClobber()) {
3843 // Use operand 1 was tied to early-clobber def operand 0, so its live
3844 // interval could have ended at an early-clobber slot. Now they are not
3845 // tied we need to update it to the normal register slot.
3846 LiveInterval &LI = LIS->getInterval(MI.getOperand(1).getReg());
3848 if (S->end == Idx.getRegSlot(true))
3849 S->end = Idx.getRegSlot();
3850 }
3851 }
3852
3853 return MIB;
3854}
3855
3856#undef CASE_WIDEOP_OPCODE_COMMON
3857#undef CASE_WIDEOP_OPCODE_LMULS_MF4
3858#undef CASE_WIDEOP_OPCODE_LMULS
3859#undef CASE_WIDEOP_CHANGE_OPCODE_COMMON
3860#undef CASE_WIDEOP_CHANGE_OPCODE_LMULS_MF4
3861#undef CASE_WIDEOP_CHANGE_OPCODE_LMULS
3862#undef CASE_FP_WIDEOP_OPCODE_COMMON
3863#undef CASE_FP_WIDEOP_OPCODE_LMULS_MF4
3864#undef CASE_FP_WIDEOP_CHANGE_OPCODE_COMMON
3865#undef CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS_MF4
3866#undef CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS
3867
3870 Register DestReg, uint32_t Amount,
3871 MachineInstr::MIFlag Flag) const {
3873 if (llvm::has_single_bit<uint32_t>(Amount)) {
3874 uint32_t ShiftAmount = Log2_32(Amount);
3875 if (ShiftAmount == 0)
3876 return;
3877 BuildMI(MBB, II, DL, get(RISCV::SLLI), DestReg)
3878 .addReg(DestReg, RegState::Kill)
3879 .addImm(ShiftAmount)
3880 .setMIFlag(Flag);
3881 } else if (STI.hasStdExtZba() &&
3882 ((Amount % 3 == 0 && isPowerOf2_64(Amount / 3)) ||
3883 (Amount % 5 == 0 && isPowerOf2_64(Amount / 5)) ||
3884 (Amount % 9 == 0 && isPowerOf2_64(Amount / 9)))) {
3885 // We can use Zba SHXADD+SLLI instructions for multiply in some cases.
3886 unsigned Opc;
3887 uint32_t ShiftAmount;
3888 if (Amount % 9 == 0) {
3889 Opc = RISCV::SH3ADD;
3890 ShiftAmount = Log2_64(Amount / 9);
3891 } else if (Amount % 5 == 0) {
3892 Opc = RISCV::SH2ADD;
3893 ShiftAmount = Log2_64(Amount / 5);
3894 } else if (Amount % 3 == 0) {
3895 Opc = RISCV::SH1ADD;
3896 ShiftAmount = Log2_64(Amount / 3);
3897 } else {
3898 llvm_unreachable("implied by if-clause");
3899 }
3900 if (ShiftAmount)
3901 BuildMI(MBB, II, DL, get(RISCV::SLLI), DestReg)
3902 .addReg(DestReg, RegState::Kill)
3903 .addImm(ShiftAmount)
3904 .setMIFlag(Flag);
3905 BuildMI(MBB, II, DL, get(Opc), DestReg)
3906 .addReg(DestReg, RegState::Kill)
3907 .addReg(DestReg)
3908 .setMIFlag(Flag);
3909 } else if (llvm::has_single_bit<uint32_t>(Amount - 1)) {
3910 Register ScaledRegister = MRI.createVirtualRegister(&RISCV::GPRRegClass);
3911 uint32_t ShiftAmount = Log2_32(Amount - 1);
3912 BuildMI(MBB, II, DL, get(RISCV::SLLI), ScaledRegister)
3913 .addReg(DestReg)
3914 .addImm(ShiftAmount)
3915 .setMIFlag(Flag);
3916 BuildMI(MBB, II, DL, get(RISCV::ADD), DestReg)
3917 .addReg(ScaledRegister, RegState::Kill)
3918 .addReg(DestReg, RegState::Kill)
3919 .setMIFlag(Flag);
3920 } else if (llvm::has_single_bit<uint32_t>(Amount + 1)) {
3921 Register ScaledRegister = MRI.createVirtualRegister(&RISCV::GPRRegClass);
3922 uint32_t ShiftAmount = Log2_32(Amount + 1);
3923 BuildMI(MBB, II, DL, get(RISCV::SLLI), ScaledRegister)
3924 .addReg(DestReg)
3925 .addImm(ShiftAmount)
3926 .setMIFlag(Flag);
3927 BuildMI(MBB, II, DL, get(RISCV::SUB), DestReg)
3928 .addReg(ScaledRegister, RegState::Kill)
3929 .addReg(DestReg, RegState::Kill)
3930 .setMIFlag(Flag);
3931 } else if (STI.hasStdExtZmmul()) {
3932 Register N = MRI.createVirtualRegister(&RISCV::GPRRegClass);
3933 movImm(MBB, II, DL, N, Amount, Flag);
3934 BuildMI(MBB, II, DL, get(RISCV::MUL), DestReg)
3935 .addReg(DestReg, RegState::Kill)
3937 .setMIFlag(Flag);
3938 } else {
3939 Register Acc;
3940 uint32_t PrevShiftAmount = 0;
3941 for (uint32_t ShiftAmount = 0; Amount >> ShiftAmount; ShiftAmount++) {
3942 if (Amount & (1U << ShiftAmount)) {
3943 if (ShiftAmount)
3944 BuildMI(MBB, II, DL, get(RISCV::SLLI), DestReg)
3945 .addReg(DestReg, RegState::Kill)
3946 .addImm(ShiftAmount - PrevShiftAmount)
3947 .setMIFlag(Flag);
3948 if (Amount >> (ShiftAmount + 1)) {
3949 // If we don't have an accmulator yet, create it and copy DestReg.
3950 if (!Acc) {
3951 Acc = MRI.createVirtualRegister(&RISCV::GPRRegClass);
3952 BuildMI(MBB, II, DL, get(TargetOpcode::COPY), Acc)
3953 .addReg(DestReg)
3954 .setMIFlag(Flag);
3955 } else {
3956 BuildMI(MBB, II, DL, get(RISCV::ADD), Acc)
3957 .addReg(Acc, RegState::Kill)
3958 .addReg(DestReg)
3959 .setMIFlag(Flag);
3960 }
3961 }
3962 PrevShiftAmount = ShiftAmount;
3963 }
3964 }
3965 assert(Acc && "Expected valid accumulator");
3966 BuildMI(MBB, II, DL, get(RISCV::ADD), DestReg)
3967 .addReg(DestReg, RegState::Kill)
3968 .addReg(Acc, RegState::Kill)
3969 .setMIFlag(Flag);
3970 }
3971}
3972
3975 static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] =
3976 {{MONontemporalBit0, "riscv-nontemporal-domain-bit-0"},
3977 {MONontemporalBit1, "riscv-nontemporal-domain-bit-1"}};
3978 return ArrayRef(TargetFlags);
3979}
3980
3982 return OptLevel >= CodeGenOptLevel::Aggressive
3984 : 2;
3985}
3986
3987// Returns true if this is the sext.w pattern, addiw rd, rs1, 0.
3989 return MI.getOpcode() == RISCV::ADDIW && MI.getOperand(1).isReg() &&
3990 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0;
3991}
3992
3993// Returns true if this is the zext.w pattern, adduw rd, rs1, x0.
3995 return MI.getOpcode() == RISCV::ADD_UW && MI.getOperand(1).isReg() &&
3996 MI.getOperand(2).isReg() && MI.getOperand(2).getReg() == RISCV::X0;
3997}
3998
3999// Returns true if this is the zext.b pattern, andi rd, rs1, 255.
4001 return MI.getOpcode() == RISCV::ANDI && MI.getOperand(1).isReg() &&
4002 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 255;
4003}
4004
4005static bool isRVVWholeLoadStore(unsigned Opcode) {
4006 switch (Opcode) {
4007 default:
4008 return false;
4009 case RISCV::VS1R_V:
4010 case RISCV::VS2R_V:
4011 case RISCV::VS4R_V:
4012 case RISCV::VS8R_V:
4013 case RISCV::VL1RE8_V:
4014 case RISCV::VL2RE8_V:
4015 case RISCV::VL4RE8_V:
4016 case RISCV::VL8RE8_V:
4017 case RISCV::VL1RE16_V:
4018 case RISCV::VL2RE16_V:
4019 case RISCV::VL4RE16_V:
4020 case RISCV::VL8RE16_V:
4021 case RISCV::VL1RE32_V:
4022 case RISCV::VL2RE32_V:
4023 case RISCV::VL4RE32_V:
4024 case RISCV::VL8RE32_V:
4025 case RISCV::VL1RE64_V:
4026 case RISCV::VL2RE64_V:
4027 case RISCV::VL4RE64_V:
4028 case RISCV::VL8RE64_V:
4029 return true;
4030 }
4031}
4032
4034 // RVV lacks any support for immediate addressing for stack addresses, so be
4035 // conservative.
4036 unsigned Opcode = MI.getOpcode();
4037 if (!RISCVVPseudosTable::getPseudoInfo(Opcode) &&
4038 !isRVVWholeLoadStore(Opcode) && !isRVVSpillForZvlsseg(Opcode))
4039 return false;
4040 return true;
4041}
4042
4043std::optional<std::pair<unsigned, unsigned>>
4045 switch (Opcode) {
4046 default:
4047 return std::nullopt;
4048 case RISCV::PseudoVSPILL2_M1:
4049 case RISCV::PseudoVRELOAD2_M1:
4050 return std::make_pair(2u, 1u);
4051 case RISCV::PseudoVSPILL2_M2:
4052 case RISCV::PseudoVRELOAD2_M2:
4053 return std::make_pair(2u, 2u);
4054 case RISCV::PseudoVSPILL2_M4:
4055 case RISCV::PseudoVRELOAD2_M4:
4056 return std::make_pair(2u, 4u);
4057 case RISCV::PseudoVSPILL3_M1:
4058 case RISCV::PseudoVRELOAD3_M1:
4059 return std::make_pair(3u, 1u);
4060 case RISCV::PseudoVSPILL3_M2:
4061 case RISCV::PseudoVRELOAD3_M2:
4062 return std::make_pair(3u, 2u);
4063 case RISCV::PseudoVSPILL4_M1:
4064 case RISCV::PseudoVRELOAD4_M1:
4065 return std::make_pair(4u, 1u);
4066 case RISCV::PseudoVSPILL4_M2:
4067 case RISCV::PseudoVRELOAD4_M2:
4068 return std::make_pair(4u, 2u);
4069 case RISCV::PseudoVSPILL5_M1:
4070 case RISCV::PseudoVRELOAD5_M1:
4071 return std::make_pair(5u, 1u);
4072 case RISCV::PseudoVSPILL6_M1:
4073 case RISCV::PseudoVRELOAD6_M1:
4074 return std::make_pair(6u, 1u);
4075 case RISCV::PseudoVSPILL7_M1:
4076 case RISCV::PseudoVRELOAD7_M1:
4077 return std::make_pair(7u, 1u);
4078 case RISCV::PseudoVSPILL8_M1:
4079 case RISCV::PseudoVRELOAD8_M1:
4080 return std::make_pair(8u, 1u);
4081 }
4082}
4083
4085 return MI.getNumExplicitDefs() == 2 &&
4086 MI.modifiesRegister(RISCV::VL, /*TRI=*/nullptr) && !MI.isInlineAsm();
4087}
4088
4089bool RISCV::hasEqualFRM(const MachineInstr &MI1, const MachineInstr &MI2) {
4090 int16_t MI1FrmOpIdx =
4091 RISCV::getNamedOperandIdx(MI1.getOpcode(), RISCV::OpName::frm);
4092 int16_t MI2FrmOpIdx =
4093 RISCV::getNamedOperandIdx(MI2.getOpcode(), RISCV::OpName::frm);
4094 if (MI1FrmOpIdx < 0 || MI2FrmOpIdx < 0)
4095 return false;
4096 MachineOperand FrmOp1 = MI1.getOperand(MI1FrmOpIdx);
4097 MachineOperand FrmOp2 = MI2.getOperand(MI2FrmOpIdx);
4098 return FrmOp1.getImm() == FrmOp2.getImm();
4099}
4100
4101std::optional<unsigned>
4103 // TODO: Handle Zvbb instructions
4104 switch (Opcode) {
4105 default:
4106 return std::nullopt;
4107
4108 // 11.6. Vector Single-Width Shift Instructions
4109 case RISCV::VSLL_VX:
4110 case RISCV::VSRL_VX:
4111 case RISCV::VSRA_VX:
4112 // 12.4. Vector Single-Width Scaling Shift Instructions
4113 case RISCV::VSSRL_VX:
4114 case RISCV::VSSRA_VX:
4115 // Only the low lg2(SEW) bits of the shift-amount value are used.
4116 return Log2SEW;
4117
4118 // 11.7 Vector Narrowing Integer Right Shift Instructions
4119 case RISCV::VNSRL_WX:
4120 case RISCV::VNSRA_WX:
4121 // 12.5. Vector Narrowing Fixed-Point Clip Instructions
4122 case RISCV::VNCLIPU_WX:
4123 case RISCV::VNCLIP_WX:
4124 // Only the low lg2(2*SEW) bits of the shift-amount value are used.
4125 return Log2SEW + 1;
4126
4127 // 11.1. Vector Single-Width Integer Add and Subtract
4128 case RISCV::VADD_VX:
4129 case RISCV::VSUB_VX:
4130 case RISCV::VRSUB_VX:
4131 // 11.2. Vector Widening Integer Add/Subtract
4132 case RISCV::VWADDU_VX:
4133 case RISCV::VWSUBU_VX:
4134 case RISCV::VWADD_VX:
4135 case RISCV::VWSUB_VX:
4136 case RISCV::VWADDU_WX:
4137 case RISCV::VWSUBU_WX:
4138 case RISCV::VWADD_WX:
4139 case RISCV::VWSUB_WX:
4140 // 11.4. Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions
4141 case RISCV::VADC_VXM:
4142 case RISCV::VADC_VIM:
4143 case RISCV::VMADC_VXM:
4144 case RISCV::VMADC_VIM:
4145 case RISCV::VMADC_VX:
4146 case RISCV::VSBC_VXM:
4147 case RISCV::VMSBC_VXM:
4148 case RISCV::VMSBC_VX:
4149 // 11.5 Vector Bitwise Logical Instructions
4150 case RISCV::VAND_VX:
4151 case RISCV::VOR_VX:
4152 case RISCV::VXOR_VX:
4153 // 11.8. Vector Integer Compare Instructions
4154 case RISCV::VMSEQ_VX:
4155 case RISCV::VMSNE_VX:
4156 case RISCV::VMSLTU_VX:
4157 case RISCV::VMSLT_VX:
4158 case RISCV::VMSLEU_VX:
4159 case RISCV::VMSLE_VX:
4160 case RISCV::VMSGTU_VX:
4161 case RISCV::VMSGT_VX:
4162 // 11.9. Vector Integer Min/Max Instructions
4163 case RISCV::VMINU_VX:
4164 case RISCV::VMIN_VX:
4165 case RISCV::VMAXU_VX:
4166 case RISCV::VMAX_VX:
4167 // 11.10. Vector Single-Width Integer Multiply Instructions
4168 case RISCV::VMUL_VX:
4169 case RISCV::VMULH_VX:
4170 case RISCV::VMULHU_VX:
4171 case RISCV::VMULHSU_VX:
4172 // 11.11. Vector Integer Divide Instructions
4173 case RISCV::VDIVU_VX:
4174 case RISCV::VDIV_VX:
4175 case RISCV::VREMU_VX:
4176 case RISCV::VREM_VX:
4177 // 11.12. Vector Widening Integer Multiply Instructions
4178 case RISCV::VWMUL_VX:
4179 case RISCV::VWMULU_VX:
4180 case RISCV::VWMULSU_VX:
4181 // 11.13. Vector Single-Width Integer Multiply-Add Instructions
4182 case RISCV::VMACC_VX:
4183 case RISCV::VNMSAC_VX:
4184 case RISCV::VMADD_VX:
4185 case RISCV::VNMSUB_VX:
4186 // 11.14. Vector Widening Integer Multiply-Add Instructions
4187 case RISCV::VWMACCU_VX:
4188 case RISCV::VWMACC_VX:
4189 case RISCV::VWMACCSU_VX:
4190 case RISCV::VWMACCUS_VX:
4191 // 11.15. Vector Integer Merge Instructions
4192 case RISCV::VMERGE_VXM:
4193 // 11.16. Vector Integer Move Instructions
4194 case RISCV::VMV_V_X:
4195 // 12.1. Vector Single-Width Saturating Add and Subtract
4196 case RISCV::VSADDU_VX:
4197 case RISCV::VSADD_VX:
4198 case RISCV::VSSUBU_VX:
4199 case RISCV::VSSUB_VX:
4200 // 12.2. Vector Single-Width Averaging Add and Subtract
4201 case RISCV::VAADDU_VX:
4202 case RISCV::VAADD_VX:
4203 case RISCV::VASUBU_VX:
4204 case RISCV::VASUB_VX:
4205 // 12.3. Vector Single-Width Fractional Multiply with Rounding and Saturation
4206 case RISCV::VSMUL_VX:
4207 // 16.1. Integer Scalar Move Instructions
4208 case RISCV::VMV_S_X:
4209 return 1U << Log2SEW;
4210 }
4211}
4212
4213unsigned RISCV::getRVVMCOpcode(unsigned RVVPseudoOpcode) {
4215 RISCVVPseudosTable::getPseudoInfo(RVVPseudoOpcode);
4216 if (!RVV)
4217 return 0;
4218 return RVV->BaseInstr;
4219}
4220
4221unsigned RISCV::getDestLog2EEW(const MCInstrDesc &Desc, unsigned Log2SEW) {
4222 unsigned DestEEW =
4224 // EEW = 1
4225 if (DestEEW == 0)
4226 return 0;
4227 // EEW = SEW * n
4228 unsigned Scaled = Log2SEW + (DestEEW - 1);
4229 assert(Scaled >= 3 && Scaled <= 6);
4230 return Scaled;
4231}
4232
4233/// Given two VL operands, do we know that LHS <= RHS?
4235 if (LHS.isReg() && RHS.isReg() && LHS.getReg().isVirtual() &&
4236 LHS.getReg() == RHS.getReg())
4237 return true;
4238 if (RHS.isImm() && RHS.getImm() == RISCV::VLMaxSentinel)
4239 return true;
4240 if (LHS.isImm() && LHS.getImm() == RISCV::VLMaxSentinel)
4241 return false;
4242 if (!LHS.isImm() || !RHS.isImm())
4243 return false;
4244 return LHS.getImm() <= RHS.getImm();
4245}
4246
4247namespace {
4248class RISCVPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
4249 const MachineInstr *LHS;
4250 const MachineInstr *RHS;
4252
4253public:
4254 RISCVPipelinerLoopInfo(const MachineInstr *LHS, const MachineInstr *RHS,
4256 : LHS(LHS), RHS(RHS), Cond(Cond.begin(), Cond.end()) {}
4257
4258 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
4259 // Make the instructions for loop control be placed in stage 0.
4260 // The predecessors of LHS/RHS are considered by the caller.
4261 if (LHS && MI == LHS)
4262 return true;
4263 if (RHS && MI == RHS)
4264 return true;
4265 return false;
4266 }
4267
4268 std::optional<bool> createTripCountGreaterCondition(
4269 int TC, MachineBasicBlock &MBB,
4270 SmallVectorImpl<MachineOperand> &CondParam) override {
4271 // A branch instruction will be inserted as "if (Cond) goto epilogue".
4272 // Cond is normalized for such use.
4273 // The predecessors of the branch are assumed to have already been inserted.
4274 CondParam = Cond;
4275 return {};
4276 }
4277
4278 void setPreheader(MachineBasicBlock *NewPreheader) override {}
4279
4280 void adjustTripCount(int TripCountAdjust) override {}
4281
4282 void disposed() override {}
4283};
4284} // namespace
4285
4286std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
4288 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
4290 if (analyzeBranch(*LoopBB, TBB, FBB, Cond, /*AllowModify=*/false))
4291 return nullptr;
4292
4293 // Infinite loops are not supported
4294 if (TBB == LoopBB && FBB == LoopBB)
4295 return nullptr;
4296
4297 // Must be conditional branch
4298 if (FBB == nullptr)
4299 return nullptr;
4300
4301 assert((TBB == LoopBB || FBB == LoopBB) &&
4302 "The Loop must be a single-basic-block loop");
4303
4304 // Normalization for createTripCountGreaterCondition()
4305 if (TBB == LoopBB)
4307
4308 const MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo();
4309 auto FindRegDef = [&MRI](MachineOperand &Op) -> const MachineInstr * {
4310 if (!Op.isReg())
4311 return nullptr;
4312 Register Reg = Op.getReg();
4313 if (!Reg.isVirtual())
4314 return nullptr;
4315 return MRI.getVRegDef(Reg);
4316 };
4317
4318 const MachineInstr *LHS = FindRegDef(Cond[1]);
4319 const MachineInstr *RHS = FindRegDef(Cond[2]);
4320 if (LHS && LHS->isPHI())
4321 return nullptr;
4322 if (RHS && RHS->isPHI())
4323 return nullptr;
4324
4325 return std::make_unique<RISCVPipelinerLoopInfo>(LHS, RHS, Cond);
4326}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder MachineInstrBuilder & DefMI
static bool forwardCopyWillClobberTuple(unsigned DestReg, unsigned SrcReg, unsigned NumRegs)
static bool canCombine(MachineBasicBlock &MBB, MachineOperand &MO, unsigned CombineOpc, unsigned ZeroReg=0, bool CheckZeroReg=false)
static void parseCondBranch(MachineInstr *LastInst, MachineBasicBlock *&Target, SmallVectorImpl< MachineOperand > &Cond)
@ MachineOutlinerTailCall
Emit a save, restore, call, and return.
@ MachineOutlinerDefault
@ Scaled
static ARCCC::CondCode getOppositeBranchCondition(ARCCC::CondCode CC)
Return the inverse of passed condition, i.e. turning COND_E to COND_NE.
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
basic Basic Alias true
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
Definition: CommandLine.h:686
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
const HexagonInstrInfo * TII
#define _
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
static M68k::CondCode getCondFromBranchOpc(unsigned BrOpc)
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
This file provides utility analysis objects describing memory locations.
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
static bool cannotInsertTailCall(const MachineBasicBlock &MBB)
#define CASE_VFMA_CHANGE_OPCODE_SPLATS(OLDOP, NEWOP)
#define CASE_OPERAND_SIMM(NUM)
static bool isRVVWholeLoadStore(unsigned Opcode)
#define CASE_VFMA_CHANGE_OPCODE_VV(OLDOP, NEWOP)
static unsigned getFPFusedMultiplyOpcode(unsigned RootOpc, unsigned Pattern)
#define RVV_OPC_LMUL_CASE(OPC, INV)
static void combineFPFusedMultiply(MachineInstr &Root, MachineInstr &Prev, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs)
static unsigned getAddendOperandIdx(unsigned Pattern)
#define CASE_RVV_OPCODE_UNMASK(OP)
#define CASE_WIDEOP_CHANGE_OPCODE_LMULS(OP)
static std::optional< MachineOutlinerConstructionID > analyzeCandidate(outliner::Candidate &C)
static cl::opt< bool > PreferWholeRegisterMove("riscv-prefer-whole-register-move", cl::init(false), cl::Hidden, cl::desc("Prefer whole register move for vector registers."))
#define CASE_VFMA_SPLATS(OP)
unsigned getPredicatedOpcode(unsigned Opcode)
static void genShXAddAddShift(MachineInstr &Root, unsigned AddOpIdx, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< unsigned, unsigned > &InstrIdxForVirtReg)
#define CASE_WIDEOP_OPCODE_LMULS(OP)
#define OPCODE_LMUL_MASK_CASE(OPC)
static bool isFSUB(unsigned Opc)
#define CASE_VMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, TYPE)
#define CASE_RVV_OPCODE(OP)
#define CASE_VFMA_OPCODE_VV(OP)
MachineOutlinerConstructionID
#define CASE_RVV_OPCODE_WIDEN(OP)
#define CASE_VMA_OPCODE_LMULS(OP, TYPE)
static bool isFMUL(unsigned Opc)
static bool getFPPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce)
#define OPCODE_LMUL_CASE(OPC)
#define CASE_OPERAND_UIMM(NUM)
static bool canCombineShiftIntoShXAdd(const MachineBasicBlock &MBB, const MachineOperand &MO, unsigned OuterShiftAmt)
Utility routine that checks if.
static bool isCandidatePatchable(const MachineBasicBlock &MBB)
static bool isMIReadsReg(const MachineInstr &MI, const TargetRegisterInfo *TRI, unsigned RegNo)
static bool isFADD(unsigned Opc)
#define CASE_FP_WIDEOP_OPCODE_LMULS_MF4(OP)
static bool isConvertibleToVMV_V_V(const RISCVSubtarget &STI, const MachineBasicBlock &MBB, MachineBasicBlock::const_iterator MBBI, MachineBasicBlock::const_iterator &DefMBBI, RISCVII::VLMUL LMul)
static bool isMIModifiesReg(const MachineInstr &MI, const TargetRegisterInfo *TRI, unsigned RegNo)
static MachineInstr * canFoldAsPredicatedOp(Register Reg, const MachineRegisterInfo &MRI, const TargetInstrInfo *TII)
Identify instructions that can be folded into a CCMOV instruction, and return the defining instructio...
static bool canCombineFPFusedMultiply(const MachineInstr &Root, const MachineOperand &MO, bool DoRegPressureReduce)
static bool getSHXADDPatterns(const MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns)
static bool getFPFusedMultiplyPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce)
static cl::opt< MachineTraceStrategy > ForceMachineCombinerStrategy("riscv-force-machine-combiner-strategy", cl::Hidden, cl::desc("Force machine combiner to use a specific strategy for machine " "trace metrics evaluation."), cl::init(MachineTraceStrategy::TS_NumStrategies), cl::values(clEnumValN(MachineTraceStrategy::TS_Local, "local", "Local strategy."), clEnumValN(MachineTraceStrategy::TS_MinInstrCount, "min-instr", "MinInstrCount strategy.")))
static unsigned getSHXADDShiftAmount(unsigned Opc)
#define CASE_RVV_OPCODE_MASK(OP)
#define RVV_OPC_LMUL_MASK_CASE(OPC, INV)
#define CASE_FP_WIDEOP_CHANGE_OPCODE_LMULS_MF4(OP)
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
This file declares the machine register scavenger class.
static bool memOpsHaveSameBasePtr(const MachineInstr &MI1, ArrayRef< const MachineOperand * > BaseOps1, const MachineInstr &MI2, ArrayRef< const MachineOperand * > BaseOps2)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool isImm(const MachineOperand &MO, MachineRegisterInfo *MRI)
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition: Value.cpp:469
This file defines the SmallVector class.
static cl::opt< unsigned > CacheLineSize("cache-line-size", cl::init(0), cl::Hidden, cl::desc("Use this to override the target cache line size when " "specified by the user."))
Value * RHS
Value * LHS
static unsigned getSize(unsigned Kind)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
const T & front() const
front - Get the first element.
Definition: ArrayRef.h:171
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:163
static DILocation * getMergedLocation(DILocation *LocA, DILocation *LocB)
When two instructions are combined into a single instruction we also need to combine the original loc...
This class represents an Operation in the Expression.
bool isBigEndian() const
Definition: DataLayout.h:198
A debug info location.
Definition: DebugLoc.h:33
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:211
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition: Function.h:704
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:687
LiveInterval & getInterval(Register Reg)
SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI)
const Segment * getSegmentContaining(SlotIndex Idx) const
Return the segment that contains the specified index, or null if there is none.
Definition: LiveInterval.h:408
void replaceKillInstruction(Register Reg, MachineInstr &OldMI, MachineInstr &NewMI)
replaceKillInstruction - Update register kill info by replacing a kill instruction with a new one.
bool hasValue() const
static constexpr LocationSize beforeOrAfterPointer()
Any location before or after the base pointer (but still within the underlying object).
TypeSize getValue() const
MCInstBuilder & addReg(MCRegister Reg)
Add a new register operand.
Definition: MCInstBuilder.h:37
MCInstBuilder & addImm(int64_t Val)
Add a new integer immediate operand.
Definition: MCInstBuilder.h:43
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:185
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
Definition: MCInstrDesc.h:237
bool isConditionalBranch() const
Return true if this is a branch which may fall through to the next instruction or may transfer contro...
Definition: MCInstrDesc.h:317
This holds information about one operand of a machine instruction, indicating the register class for ...
Definition: MCInstrDesc.h:85
uint8_t OperandType
Information about the type of the operand.
Definition: MCInstrDesc.h:97
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
const FeatureBitset & getFeatureBits() const
Set of metadata that should be preserved when using BuildMI().
unsigned pred_size() const
reverse_iterator rend()
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
iterator getLastNonDebugInstr(bool SkipPseudoOp=true)
Returns an iterator to the last non-debug instruction in the basic block, or end().
Instructions::const_iterator const_instr_iterator
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setStackID(int ObjectIdx, uint8_t ID)
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & setMemRefs(ArrayRef< MachineMemOperand * > MMOs) const
const MachineInstrBuilder & setMIFlag(MachineInstr::MIFlag Flag) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & setMIFlags(unsigned Flags) const
const MachineInstrBuilder & copyImplicitOps(const MachineInstr &OtherMI) const
Copy all the implicit operands from OtherMI onto this one.
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
reverse_iterator getReverse() const
Get a reverse iterator to the same node.
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:575
bool isReturn(QueryType Type=AnyInBundle) const
Definition: MachineInstr.h:946
bool mayLoadOrStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read or modify memory.
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:347
bool getFlag(MIFlag Flag) const
Return whether an MI flag is set.
Definition: MachineInstr.h:397
unsigned getNumExplicitOperands() const
Returns the number of non-implicit operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:572
bool hasUnmodeledSideEffects() const
Return true if this instruction has side effects that are not modeled by mayLoad / mayStore,...
bool hasOneMemOperand() const
Return true if this instruction has exactly one MachineMemOperand.
Definition: MachineInstr.h:821
mmo_iterator memoperands_begin() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:806
bool hasOrderedMemoryRef() const
Return true if this instruction may have an ordered or volatile memory reference, or if the informati...
const MachineFunction * getMF() const
Return the function that contains the basic block that this instruction belongs to.
ArrayRef< MachineMemOperand * > memoperands() const
Access to memory operands of the instruction.
Definition: MachineInstr.h:788
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:499
void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:585
uint32_t getFlags() const
Return the MI flags bitvector.
Definition: MachineInstr.h:392
void clearKillInfo()
Clears kill flags on all operands.
A description of a memory reference used in the backend.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
This class contains meta information specific to a module.
MachineOperand class - Representation of each machine instruction operand.
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
static MachineOperand CreateImm(int64_t Val)
MachineOperandType getType() const
getType - Returns the MachineOperandType for this operand.
Register getReg() const
getReg - Returns the register number.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
bool isIdenticalTo(const MachineOperand &Other) const
Returns true if this operand is identical to the specified operand except for liveness related flags ...
@ MO_Immediate
Immediate operand.
@ MO_Register
Register operand.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
MI-level patchpoint operands.
Definition: StackMaps.h:76
uint32_t getNumPatchBytes() const
Return the number of patchable bytes the given patchpoint should emit.
Definition: StackMaps.h:104
MachineInstr * convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, LiveIntervals *LIS) const override
Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const override
std::optional< std::unique_ptr< outliner::OutlinedFunction > > getOutliningCandidateInfo(const MachineModuleInfo &MMI, std::vector< outliner::Candidate > &RepeatedSequenceLocs, unsigned MinRepeats) const override
unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved=nullptr) const override
void movImm(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, Register DstReg, uint64_t Val, MachineInstr::MIFlag Flag=MachineInstr::NoFlags, bool DstRenamable=false, bool DstIsDead=false) const
MachineInstr * emitLdStWithAddr(MachineInstr &MemI, const ExtAddrMode &AM) const override
void mulImm(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator II, const DebugLoc &DL, Register DestReg, uint32_t Amt, MachineInstr::MIFlag Flag) const
Generate code to multiply the value in DestReg by Amt - handles all the common optimizations for this...
bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const override
bool isFunctionSafeToOutlineFrom(MachineFunction &MF, bool OutlineFromLinkOnceODRs) const override
std::unique_ptr< TargetInstrInfo::PipelinerLoopInfo > analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &dl, int *BytesAdded=nullptr) const override
bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const override
RISCVInstrInfo(RISCVSubtarget &STI)
void copyPhysRegVector(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, MCRegister DstReg, MCRegister SrcReg, bool KillSrc, const TargetRegisterClass *RegClass) const
void genAlternativeCodeSequence(MachineInstr &Root, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< unsigned, unsigned > &InstrIdxForVirtReg) const override
const MCInstrDesc & getBrCond(RISCVCC::CondCode CC, bool Imm=false) const
MachineInstr * optimizeSelect(MachineInstr &MI, SmallPtrSetImpl< MachineInstr * > &SeenMIs, bool) const override
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, MCRegister DstReg, MCRegister SrcReg, bool KillSrc, bool RenamableDest=false, bool RenamableSrc=false) const override
bool canFoldIntoAddrMode(const MachineInstr &MemI, Register Reg, const MachineInstr &AddrI, ExtAddrMode &AM) const override
void insertIndirectBranch(MachineBasicBlock &MBB, MachineBasicBlock &NewDestBB, MachineBasicBlock &RestoreBB, const DebugLoc &DL, int64_t BrOffset, RegScavenger *RS) const override
bool isAsCheapAsAMove(const MachineInstr &MI) const override
bool verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const override
bool getMemOperandWithOffsetWidth(const MachineInstr &LdSt, const MachineOperand *&BaseOp, int64_t &Offset, LocationSize &Width, const TargetRegisterInfo *TRI) const
unsigned getTailDuplicateSize(CodeGenOptLevel OptLevel) const override
void getReassociateOperandIndices(const MachineInstr &Root, unsigned Pattern, std::array< unsigned, 5 > &OperandIndices) const override
const RISCVSubtarget & STI
Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const override
std::optional< unsigned > getInverseOpcode(unsigned Opcode) const override
ArrayRef< std::pair< unsigned, const char * > > getSerializableDirectMachineOperandTargetFlags() const override
virtual outliner::InstrType getOutliningTypeImpl(const MachineModuleInfo &MMI, MachineBasicBlock::iterator &MBBI, unsigned Flags) const override
MachineTraceStrategy getMachineCombinerTraceStrategy() const override
unsigned getInstSizeInBytes(const MachineInstr &MI) const override
std::optional< RegImmPair > isAddImmediate(const MachineInstr &MI, Register Reg) const override
bool reverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const override
ArrayRef< std::pair< MachineMemOperand::Flags, const char * > > getSerializableMachineMemOperandTargetFlags() const override
MCInst getNop() const override
MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const override
bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, unsigned &Flags) const override
bool getMemOperandsWithOffsetWidth(const MachineInstr &MI, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const override
void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF, const outliner::OutlinedFunction &OF) const override
void finalizeInsInstrs(MachineInstr &Root, unsigned &Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs) const override
std::pair< unsigned, unsigned > decomposeMachineOperandsTargetFlags(unsigned TF) const override
MachineInstr * commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const override
bool hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const override
MachineBasicBlock * getBranchDestBlock(const MachineInstr &MI) const override
std::string createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, const TargetRegisterInfo *TRI) const override
bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const override
bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const override
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const override
MachineBasicBlock::iterator insertOutlinedCall(Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, MachineFunction &MF, outliner::Candidate &C) const override
bool isBranchOffsetInRange(unsigned BranchOpc, int64_t BrOffset) const override
void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DstReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const override
bool isAssociativeAndCommutative(const MachineInstr &Inst, bool Invert) const override
CombinerObjective getCombinerObjective(unsigned Pattern) const override
bool getMachineCombinerPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce) const override
bool optimizeCondBranch(MachineInstr &MI) const override
std::optional< DestSourcePair > isCopyInstrImpl(const MachineInstr &MI) const override
bool analyzeSelect(const MachineInstr &MI, SmallVectorImpl< MachineOperand > &Cond, unsigned &TrueOp, unsigned &FalseOp, bool &Optimizable) const override
bool shouldClusterMemOps(ArrayRef< const MachineOperand * > BaseOps1, int64_t Offset1, bool OffsetIsScalable1, ArrayRef< const MachineOperand * > BaseOps2, int64_t Offset2, bool OffsetIsScalable2, unsigned ClusterSize, unsigned NumBytes) const override
bool areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, const MachineInstr &MIb) const override
void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg, bool IsKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const override
RISCVMachineFunctionInfo - This class is derived from MachineFunctionInfo and contains private RISCV-...
bool hasStdExtCOrZca() const
unsigned getTailDupAggressiveThreshold() const
unsigned getXLen() const
const RISCVRegisterInfo * getRegisterInfo() const override
void enterBasicBlockEnd(MachineBasicBlock &MBB)
Start tracking liveness from the end of basic block MBB.
void setRegUsed(Register Reg, LaneBitmask LaneMask=LaneBitmask::getAll())
Tell the scavenger a register is used.
Register scavengeRegisterBackwards(const TargetRegisterClass &RC, MachineBasicBlock::iterator To, bool RestoreAfter, int SPAdj, bool AllowSpill=true)
Make a register of the specific register class available from the current position backwards to the p...
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isValid() const
Definition: Register.h:116
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:91
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:65
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:363
bool erase(PtrType Ptr)
Remove pointer from the set.
Definition: SmallPtrSet.h:401
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
MI-level stackmap operands.
Definition: StackMaps.h:35
uint32_t getNumPatchBytes() const
Return the number of patchable bytes the given stackmap should emit.
Definition: StackMaps.h:50
MI-level Statepoint operands.
Definition: StackMaps.h:158
uint32_t getNumPatchBytes() const
Return the number of patchable bytes the given statepoint should emit.
Definition: StackMaps.h:207
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
Object returned by analyzeLoopForPipelining.
TargetInstrInfo - Interface to description of machine instruction set.
virtual bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const
Returns true iff the routine could find two commutable operands in the given machine instruction.
virtual bool hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const
Return true when \P Inst has reassociable operands in the same \P MBB.
virtual void genAlternativeCodeSequence(MachineInstr &Root, unsigned Pattern, SmallVectorImpl< MachineInstr * > &InsInstrs, SmallVectorImpl< MachineInstr * > &DelInstrs, DenseMap< unsigned, unsigned > &InstIdxForVirtReg) const
When getMachineCombinerPatterns() finds patterns, this function generates the instructions that could...
virtual bool getMachineCombinerPatterns(MachineInstr &Root, SmallVectorImpl< unsigned > &Patterns, bool DoRegPressureReduce) const
Return true when there is potentially a faster code sequence for an instruction chain ending in Root.
virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, unsigned &Flags) const
Optional target hook that returns true if MBB is safe to outline from, and returns any target-specifi...
virtual void getReassociateOperandIndices(const MachineInstr &Root, unsigned Pattern, std::array< unsigned, 5 > &OperandIndices) const
The returned array encodes the operand index for each parameter because the operands may be commuted;...
virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const
For instructions with opcodes for which the M_REMATERIALIZABLE flag is set, this hook lets the target...
virtual CombinerObjective getCombinerObjective(unsigned Pattern) const
Return the objective of a combiner pattern.
virtual MachineInstr * commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const
This method commutes the operands of the given machine instruction MI.
virtual bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const
Return true when \P Inst has reassociable sibling.
virtual std::string createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, const TargetRegisterInfo *TRI) const
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
const uint8_t TSFlags
Configurable target specific flags.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
virtual const TargetInstrInfo * getInstrInfo() const
Target - Wrapper for Target specific information.
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
#define INT64_MAX
Definition: DataTypes.h:71
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
CondCode getOppositeBranchCondition(CondCode)
unsigned getBrCond(CondCode CC, bool Imm=false)
static bool isValidRoundingMode(unsigned Mode)
static unsigned getVecPolicyOpNum(const MCInstrDesc &Desc)
static bool usesMaskPolicy(uint64_t TSFlags)
static bool hasRoundModeOp(uint64_t TSFlags)
static unsigned getVLOpNum(const MCInstrDesc &Desc)
static bool hasVLOp(uint64_t TSFlags)
static int getFRMOpNum(const MCInstrDesc &Desc)
static bool hasVecPolicyOp(uint64_t TSFlags)
static bool usesVXRM(uint64_t TSFlags)
static unsigned getTailExpandUseRegNo(const FeatureBitset &FeatureBits)
static bool isRVVWideningReduction(uint64_t TSFlags)
static unsigned getSEWOpNum(const MCInstrDesc &Desc)
static bool hasSEWOp(uint64_t TSFlags)
static bool isFirstDefTiedToFirstUse(const MCInstrDesc &Desc)
InstSeq generateInstSeq(int64_t Val, const MCSubtargetInfo &STI)
@ OPERAND_UIMMLOG2XLEN_NONZERO
@ OPERAND_UIMM10_LSB00_NONZERO
@ OPERAND_SIMM10_LSB0000_NONZERO
static RISCVII::VLMUL getLMul(uint64_t TSFlags)
static unsigned getNF(uint64_t TSFlags)
static bool isTailAgnostic(unsigned VType)
static RISCVII::VLMUL getVLMUL(unsigned VType)
std::pair< unsigned, bool > decodeVLMUL(RISCVII::VLMUL VLMUL)
static bool isValidSEW(unsigned SEW)
void printVType(unsigned VType, raw_ostream &OS)
static unsigned getSEW(unsigned VType)
bool hasEqualFRM(const MachineInstr &MI1, const MachineInstr &MI2)
bool isVLKnownLE(const MachineOperand &LHS, const MachineOperand &RHS)
Given two VL operands, do we know that LHS <= RHS?
std::optional< unsigned > getVectorLowDemandedScalarBits(uint16_t Opcode, unsigned Log2SEW)
int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex)
unsigned getRVVMCOpcode(unsigned RVVPseudoOpcode)
unsigned getDestLog2EEW(const MCInstrDesc &Desc, unsigned Log2SEW)
bool isSEXT_W(const MachineInstr &MI)
bool isFaultFirstLoad(const MachineInstr &MI)
std::optional< std::pair< unsigned, unsigned > > isRVVSpillForZvlsseg(unsigned Opcode)
bool isZEXT_B(const MachineInstr &MI)
bool isRVVSpill(const MachineInstr &MI)
static constexpr int64_t VLMaxSentinel
bool isZEXT_W(const MachineInstr &MI)
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Dead
Unused definition.
@ Define
Register definition.
@ Kill
The last use of a register.
@ Undef
Value of the register doesn't matter.
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
Definition: CommandLine.h:711
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
InstrType
Represents how an instruction should be mapped by the outliner.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
@ Offset
Definition: DWP.cpp:480
@ SHXADD_ADD_SLLI_OP2
@ FMADD_AX
@ FMADD_XA
@ SHXADD_ADD_SLLI_OP1
MachineTraceStrategy
Strategies for selecting traces.
@ TS_MinInstrCount
Select the trace through a block that has the fewest instructions.
@ TS_Local
Select the trace that contains only the current basic block.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
static const MachineMemOperand::Flags MONontemporalBit1
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition: STLExtras.h:2448
static const MachineMemOperand::Flags MONontemporalBit0
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
unsigned getDeadRegState(bool B)
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:296
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:346
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:340
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
CombinerObjective
The combiner's goal may differ based on which pattern it is attempting to optimize.
CodeGenOptLevel
Code generation optimization level.
Definition: CodeGen.h:54
unsigned getKillRegState(bool B)
bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
Definition: MathExtras.h:260
unsigned getRenamableRegState(bool B)
DWARFExpression::Operation Op
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition: MathExtras.h:581
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define N
Description of the encoding of one expression Op.
Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
This represents a simple continuous liveness interval for a value.
Definition: LiveInterval.h:162
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
static bool isRVVRegClass(const TargetRegisterClass *RC)
Used to describe a register and immediate addition.
An individual sequence of instructions to be replaced with a call to an outlined function.
MachineFunction * getMF() const
The information necessary to create an outlined function for some class of candidate.
unsigned FrameConstructionID
Target-defined identifier for constructing a frame for this function.