LLVM 17.0.0git
DebugHandlerBase.cpp
Go to the documentation of this file.
1//===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Common functionality for different debug information format backends.
10// LLVM currently supports DWARF and CodeView.
11//
12//===----------------------------------------------------------------------===//
13
20#include "llvm/IR/DebugInfo.h"
21#include "llvm/MC/MCStreamer.h"
23
24using namespace llvm;
25
26#define DEBUG_TYPE "dwarfdebug"
27
28/// If true, we drop variable location ranges which exist entirely outside the
29/// variable's lexical scope instruction ranges.
30static cl::opt<bool> TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true));
31
32std::optional<DbgVariableLocation>
35 DbgVariableLocation Location;
36 // Variables calculated from multiple locations can't be represented here.
37 if (Instruction.getNumDebugOperands() != 1)
38 return std::nullopt;
39 if (!Instruction.getDebugOperand(0).isReg())
40 return std::nullopt;
41 Location.Register = Instruction.getDebugOperand(0).getReg();
42 Location.FragmentInfo.reset();
43 // We only handle expressions generated by DIExpression::appendOffset,
44 // which doesn't require a full stack machine.
45 int64_t Offset = 0;
46 const DIExpression *DIExpr = Instruction.getDebugExpression();
47 auto Op = DIExpr->expr_op_begin();
48 // We can handle a DBG_VALUE_LIST iff it has exactly one location operand that
49 // appears exactly once at the start of the expression.
50 if (Instruction.isDebugValueList()) {
51 if (Instruction.getNumDebugOperands() == 1 &&
52 Op->getOp() == dwarf::DW_OP_LLVM_arg)
53 ++Op;
54 else
55 return std::nullopt;
56 }
57 while (Op != DIExpr->expr_op_end()) {
58 switch (Op->getOp()) {
59 case dwarf::DW_OP_constu: {
60 int Value = Op->getArg(0);
61 ++Op;
62 if (Op != DIExpr->expr_op_end()) {
63 switch (Op->getOp()) {
64 case dwarf::DW_OP_minus:
65 Offset -= Value;
66 break;
67 case dwarf::DW_OP_plus:
68 Offset += Value;
69 break;
70 default:
71 continue;
72 }
73 }
74 } break;
75 case dwarf::DW_OP_plus_uconst:
76 Offset += Op->getArg(0);
77 break;
79 Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)};
80 break;
81 case dwarf::DW_OP_deref:
82 Location.LoadChain.push_back(Offset);
83 Offset = 0;
84 break;
85 default:
86 return std::nullopt;
87 }
88 ++Op;
89 }
90
91 // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE
92 // instruction.
93 // FIXME: Replace these with DIExpression.
94 if (Instruction.isIndirectDebugValue())
95 Location.LoadChain.push_back(Offset);
96
97 return Location;
98}
99
101
103 if (M->debug_compile_units().empty())
104 Asm = nullptr;
105}
106
107// Each LexicalScope has first instruction and last instruction to mark
108// beginning and end of a scope respectively. Create an inverse map that list
109// scopes starts (and ends) with an instruction. One instruction may start (or
110// end) multiple scopes. Ignore scopes that are not reachable.
114 while (!WorkList.empty()) {
115 LexicalScope *S = WorkList.pop_back_val();
116
117 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
118 if (!Children.empty())
119 WorkList.append(Children.begin(), Children.end());
120
121 if (S->isAbstractScope())
122 continue;
123
124 for (const InsnRange &R : S->getRanges()) {
125 assert(R.first && "InsnRange does not have first instruction!");
126 assert(R.second && "InsnRange does not have second instruction!");
127 requestLabelBeforeInsn(R.first);
128 requestLabelAfterInsn(R.second);
129 }
130 }
131}
132
133// Return Label preceding the instruction.
135 MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
136 assert(Label && "Didn't insert label before instruction");
137 return Label;
138}
139
140// Return Label immediately following the instruction.
142 return LabelsAfterInsn.lookup(MI);
143}
144
145/// If this type is derived from a base type then return base type size.
147 assert(Ty);
148 const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty);
149 if (!DDTy)
150 return Ty->getSizeInBits();
151
152 unsigned Tag = DDTy->getTag();
153
154 if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef &&
155 Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type &&
156 Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type &&
157 Tag != dwarf::DW_TAG_immutable_type)
158 return DDTy->getSizeInBits();
159
160 DIType *BaseType = DDTy->getBaseType();
161
162 if (!BaseType)
163 return 0;
164
165 // If this is a derived type, go ahead and get the base type, unless it's a
166 // reference then it's just the size of the field. Pointer types have no need
167 // of this since they're a different type of qualification on the type.
168 if (BaseType->getTag() == dwarf::DW_TAG_reference_type ||
169 BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type)
170 return Ty->getSizeInBits();
171
173}
174
176 if (isa<DIStringType>(Ty)) {
177 // Some transformations (e.g. instcombine) may decide to turn a Fortran
178 // character object into an integer, and later ones (e.g. SROA) may
179 // further inject a constant integer in a llvm.dbg.value call to track
180 // the object's value. Here we trust the transformations are doing the
181 // right thing, and treat the constant as unsigned to preserve that value
182 // (i.e. avoid sign extension).
183 return true;
184 }
185
186 if (auto *CTy = dyn_cast<DICompositeType>(Ty)) {
187 if (CTy->getTag() == dwarf::DW_TAG_enumeration_type) {
188 if (!(Ty = CTy->getBaseType()))
189 // FIXME: Enums without a fixed underlying type have unknown signedness
190 // here, leading to incorrectly emitted constants.
191 return false;
192 } else
193 // (Pieces of) aggregate types that get hacked apart by SROA may be
194 // represented by a constant. Encode them as unsigned bytes.
195 return true;
196 }
197
198 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
199 dwarf::Tag T = (dwarf::Tag)Ty->getTag();
200 // Encode pointer constants as unsigned bytes. This is used at least for
201 // null pointer constant emission.
202 // FIXME: reference and rvalue_reference /probably/ shouldn't be allowed
203 // here, but accept them for now due to a bug in SROA producing bogus
204 // dbg.values.
205 if (T == dwarf::DW_TAG_pointer_type ||
206 T == dwarf::DW_TAG_ptr_to_member_type ||
207 T == dwarf::DW_TAG_reference_type ||
208 T == dwarf::DW_TAG_rvalue_reference_type)
209 return true;
210 assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type ||
211 T == dwarf::DW_TAG_volatile_type ||
212 T == dwarf::DW_TAG_restrict_type || T == dwarf::DW_TAG_atomic_type ||
213 T == dwarf::DW_TAG_immutable_type);
214 assert(DTy->getBaseType() && "Expected valid base type");
215 return isUnsignedDIType(DTy->getBaseType());
216 }
217
218 auto *BTy = cast<DIBasicType>(Ty);
219 unsigned Encoding = BTy->getEncoding();
220 assert((Encoding == dwarf::DW_ATE_unsigned ||
221 Encoding == dwarf::DW_ATE_unsigned_char ||
222 Encoding == dwarf::DW_ATE_signed ||
223 Encoding == dwarf::DW_ATE_signed_char ||
224 Encoding == dwarf::DW_ATE_float || Encoding == dwarf::DW_ATE_UTF ||
225 Encoding == dwarf::DW_ATE_boolean ||
226 (Ty->getTag() == dwarf::DW_TAG_unspecified_type &&
227 Ty->getName() == "decltype(nullptr)")) &&
228 "Unsupported encoding");
229 return Encoding == dwarf::DW_ATE_unsigned ||
230 Encoding == dwarf::DW_ATE_unsigned_char ||
231 Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean ||
232 Ty->getTag() == dwarf::DW_TAG_unspecified_type;
233}
234
235static bool hasDebugInfo(const MachineModuleInfo *MMI,
236 const MachineFunction *MF) {
237 if (!MMI->hasDebugInfo())
238 return false;
239 auto *SP = MF->getFunction().getSubprogram();
240 if (!SP)
241 return false;
242 assert(SP->getUnit());
243 auto EK = SP->getUnit()->getEmissionKind();
244 if (EK == DICompileUnit::NoDebug)
245 return false;
246 return true;
247}
248
250 PrevInstBB = nullptr;
251
252 if (!Asm || !hasDebugInfo(MMI, MF)) {
254 return;
255 }
256
257 // Grab the lexical scopes for the function, if we don't have any of those
258 // then we're not going to be able to do anything.
259 LScopes.initialize(*MF);
260 if (LScopes.empty()) {
262 return;
263 }
264
265 // Make sure that each lexical scope will have a begin/end label.
267
268 // Calculate history for local variables.
269 assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
270 assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!");
273 InstOrdering.initialize(*MF);
274 if (TrimVarLocs)
275 DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering);
277
278 // Request labels for the full history.
279 for (const auto &I : DbgValues) {
280 const auto &Entries = I.second;
281 if (Entries.empty())
282 continue;
283
284 auto IsDescribedByReg = [](const MachineInstr *MI) {
285 return any_of(MI->debug_operands(),
286 [](auto &MO) { return MO.isReg() && MO.getReg(); });
287 };
288
289 // The first mention of a function argument gets the CurrentFnBegin label,
290 // so arguments are visible when breaking at function entry.
291 //
292 // We do not change the label for values that are described by registers,
293 // as that could place them above their defining instructions. We should
294 // ideally not change the labels for constant debug values either, since
295 // doing that violates the ranges that are calculated in the history map.
296 // However, we currently do not emit debug values for constant arguments
297 // directly at the start of the function, so this code is still useful.
298 const DILocalVariable *DIVar =
299 Entries.front().getInstr()->getDebugVariable();
300 if (DIVar->isParameter() &&
301 getDISubprogram(DIVar->getScope())->describes(&MF->getFunction())) {
302 if (!IsDescribedByReg(Entries.front().getInstr()))
303 LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin();
304 if (Entries.front().getInstr()->getDebugExpression()->isFragment()) {
305 // Mark all non-overlapping initial fragments.
306 for (const auto *I = Entries.begin(); I != Entries.end(); ++I) {
307 if (!I->isDbgValue())
308 continue;
309 const DIExpression *Fragment = I->getInstr()->getDebugExpression();
310 if (std::any_of(Entries.begin(), I,
311 [&](DbgValueHistoryMap::Entry Pred) {
312 return Pred.isDbgValue() &&
313 Fragment->fragmentsOverlap(
314 Pred.getInstr()->getDebugExpression());
315 }))
316 break;
317 // The code that generates location lists for DWARF assumes that the
318 // entries' start labels are monotonically increasing, and since we
319 // don't change the label for fragments that are described by
320 // registers, we must bail out when encountering such a fragment.
321 if (IsDescribedByReg(I->getInstr()))
322 break;
323 LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin();
324 }
325 }
326 }
327
328 for (const auto &Entry : Entries) {
329 if (Entry.isDbgValue())
330 requestLabelBeforeInsn(Entry.getInstr());
331 else
332 requestLabelAfterInsn(Entry.getInstr());
333 }
334 }
335
336 // Ensure there is a symbol before DBG_LABEL.
337 for (const auto &I : DbgLabels) {
338 const MachineInstr *MI = I.second;
340 }
341
345}
346
348 if (!Asm || !MMI->hasDebugInfo())
349 return;
350
351 assert(CurMI == nullptr);
352 CurMI = MI;
353
354 // Insert labels where requested.
356 LabelsBeforeInsn.find(MI);
357
358 // No label needed.
359 if (I == LabelsBeforeInsn.end())
360 return;
361
362 // Label already assigned.
363 if (I->second)
364 return;
365
366 if (!PrevLabel) {
368 Asm->OutStreamer->emitLabel(PrevLabel);
369 }
370 I->second = PrevLabel;
371}
372
374 if (!Asm || !MMI->hasDebugInfo())
375 return;
376
377 assert(CurMI != nullptr);
378 // Don't create a new label after DBG_VALUE and other instructions that don't
379 // generate code.
380 if (!CurMI->isMetaInstruction()) {
381 PrevLabel = nullptr;
383 }
384
387
388 // No label needed or label already assigned.
389 if (I == LabelsAfterInsn.end() || I->second) {
390 CurMI = nullptr;
391 return;
392 }
393
394 // We need a label after this instruction. With basic block sections, just
395 // use the end symbol of the section if this is the last instruction of the
396 // section. This reduces the need for an additional label and also helps
397 // merging ranges.
398 if (CurMI->getParent()->isEndSection() && CurMI->getNextNode() == nullptr) {
400 } else if (!PrevLabel) {
402 Asm->OutStreamer->emitLabel(PrevLabel);
403 }
404 I->second = PrevLabel;
405 CurMI = nullptr;
406}
407
409 if (Asm && hasDebugInfo(MMI, MF))
410 endFunctionImpl(MF);
413 LabelsBeforeInsn.clear();
414 LabelsAfterInsn.clear();
415 InstOrdering.clear();
416}
417
419 EpilogBeginBlock = nullptr;
420 if (!MBB.isEntryBlock())
422}
423
425 PrevLabel = nullptr;
426}
MachineBasicBlock & MBB
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static cl::opt< bool > TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true))
If true, we drop variable location ranges which exist entirely outside the variable's lexical scope i...
static bool hasDebugInfo(const MachineModuleInfo *MMI, const MachineFunction *MF)
#define LLVM_DEBUG(X)
Definition: Debug.h:101
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition: MD5.cpp:58
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This class is intended to be used as a driving class for all asm writers.
Definition: AsmPrinter.h:84
MCSymbol * getFunctionBegin() const
Definition: AsmPrinter.h:278
MachineFunction * MF
The current machine function.
Definition: AsmPrinter.h:102
std::unique_ptr< MCStreamer > OutStreamer
This is the MCStreamer object for the file we are generating.
Definition: AsmPrinter.h:99
DWARF expression.
expr_op_iterator expr_op_begin() const
Visit the elements via ExprOperand wrappers.
expr_op_iterator expr_op_end() const
DILocalScope * getScope() const
Get the local scope for this variable.
dwarf::Tag getTag() const
Base class for types.
StringRef getName() const
uint64_t getSizeInBits() const
Specifies a change in a variable's debug value history.
void trimLocationRanges(const MachineFunction &MF, LexicalScopes &LScopes, const InstructionOrdering &Ordering)
Drop location ranges which exist entirely outside each variable's scope.
LLVM_DUMP_METHOD void dump(StringRef FuncName) const
static bool isUnsignedDIType(const DIType *Ty)
Return true if type encoding is unsigned.
const MachineInstr * CurMI
If nonnull, stores the current machine instruction we're processing.
AsmPrinter * Asm
Target of debug info emission.
virtual void endFunctionImpl(const MachineFunction *MF)=0
MCSymbol * getLabelBeforeInsn(const MachineInstr *MI)
Return Label preceding the instruction.
MachineModuleInfo * MMI
Collected machine module information.
void endBasicBlockSection(const MachineBasicBlock &MBB) override
Process the end of a basic-block-section within a function.
void identifyScopeMarkers()
Indentify instructions that are marking the beginning of or ending of a scope.
virtual void skippedNonDebugFunction()
void endFunction(const MachineFunction *MF) override
Gather post-function debug information.
DebugLoc PrevInstLoc
Previous instruction's location information.
void beginFunction(const MachineFunction *MF) override
Gather pre-function debug information.
void endInstruction() override
Process end of an instruction.
MCSymbol * getLabelAfterInsn(const MachineInstr *MI)
Return Label immediately following the instruction.
DebugHandlerBase(AsmPrinter *A)
void beginInstruction(const MachineInstr *MI) override
Process beginning of an instruction.
const MachineBasicBlock * PrevInstBB
virtual void beginFunctionImpl(const MachineFunction *MF)=0
void requestLabelAfterInsn(const MachineInstr *MI)
Ensure that a label will be emitted after MI.
void beginBasicBlockSection(const MachineBasicBlock &MBB) override
Process the beginning of a new basic-block-section within a function.
DbgValueHistoryMap DbgValues
History of DBG_VALUE and clobber instructions for each user variable.
DbgLabelInstrMap DbgLabels
Mapping of inlined labels and DBG_LABEL machine instruction.
DenseMap< const MachineInstr *, MCSymbol * > LabelsBeforeInsn
Maps instruction with label emitted before instruction.
void beginModule(Module *M) override
DenseMap< const MachineInstr *, MCSymbol * > LabelsAfterInsn
Maps instruction with label emitted after instruction.
void requestLabelBeforeInsn(const MachineInstr *MI)
Ensure that a label will be emitted before MI.
const MachineBasicBlock * EpilogBeginBlock
This block includes epilogue instructions.
static uint64_t getBaseTypeSize(const DIType *Ty)
If this type is derived from a base type then return base type size.
A debug info location.
Definition: DebugLoc.h:33
DISubprogram * getSubprogram() const
Get the attached subprogram.
Definition: Metadata.cpp:1725
void initialize(const MachineFunction &MF)
LexicalScope - This class is used to track scope information.
Definition: LexicalScopes.h:44
SmallVectorImpl< LexicalScope * > & getChildren()
Definition: LexicalScopes.h:65
SmallVectorImpl< InsnRange > & getRanges()
Definition: LexicalScopes.h:66
bool isAbstractScope() const
Definition: LexicalScopes.h:64
void initialize(const MachineFunction &)
initialize - Scan machine function and constuct lexical scope nest, resets the instance if necessary.
bool empty()
empty - Return true if there is any lexical scope information available.
LexicalScope * getCurrentFunctionScope() const
getCurrentFunctionScope - Return lexical scope for the current function.
MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
Definition: MCContext.cpp:318
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
MCSymbol * getSymbol() const
Return the MCSymbol for this basic block.
MCSymbol * getEndSymbol() const
Returns the MCSymbol marking the end of this basic block.
bool isEntryBlock() const
Returns true if this is the entry block of the function.
bool isEndSection() const
Returns true if this block ends any section.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
Function & getFunction()
Return the LLVM function that this machine code represents.
Representation of each machine instruction.
Definition: MachineInstr.h:68
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:313
bool isMetaInstruction(QueryType Type=IgnoreBundle) const
Return true if this instruction doesn't produce any output in the form of executable instructions.
Definition: MachineInstr.h:858
This class contains meta information specific to a module.
const MCContext & getContext() const
bool hasDebugInfo() const
Returns true if valid debug info is present.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
bool empty() const
Definition: SmallVector.h:94
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:577
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:687
void push_back(const T &Elt)
Definition: SmallVector.h:416
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
LLVM Value Representation.
Definition: Value.h:74
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:289
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:445
@ DW_OP_LLVM_fragment
Only used in LLVM metadata.
Definition: Dwarf.h:141
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition: Dwarf.h:146
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:406
void calculateDbgEntityHistory(const MachineFunction *MF, const TargetRegisterInfo *TRI, DbgValueHistoryMap &DbgValues, DbgLabelInstrMap &DbgLabels)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1826
std::pair< const MachineInstr *, const MachineInstr * > InsnRange
InsnRange - This is used to track range of instructions with identical lexical scope.
Definition: LexicalScopes.h:39
DISubprogram * getDISubprogram(const MDNode *Scope)
Find subprogram that is enclosing this scope.
Definition: DebugInfo.cpp:108
Represents the location at which a variable is stored.
static std::optional< DbgVariableLocation > extractFromMachineInstruction(const MachineInstr &Instruction)
Extract a VariableLocation from a MachineInstr.