LLVM 19.0.0git
DebugHandlerBase.cpp
Go to the documentation of this file.
1//===-- llvm/lib/CodeGen/AsmPrinter/DebugHandlerBase.cpp -------*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Common functionality for different debug information format backends.
10// LLVM currently supports DWARF and CodeView.
11//
12//===----------------------------------------------------------------------===//
13
20#include "llvm/IR/DebugInfo.h"
21#include "llvm/IR/Module.h"
22#include "llvm/MC/MCStreamer.h"
24
25using namespace llvm;
26
27#define DEBUG_TYPE "dwarfdebug"
28
29/// If true, we drop variable location ranges which exist entirely outside the
30/// variable's lexical scope instruction ranges.
31static cl::opt<bool> TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true));
32
33std::optional<DbgVariableLocation>
36 DbgVariableLocation Location;
37 // Variables calculated from multiple locations can't be represented here.
38 if (Instruction.getNumDebugOperands() != 1)
39 return std::nullopt;
40 if (!Instruction.getDebugOperand(0).isReg())
41 return std::nullopt;
42 Location.Register = Instruction.getDebugOperand(0).getReg();
43 Location.FragmentInfo.reset();
44 // We only handle expressions generated by DIExpression::appendOffset,
45 // which doesn't require a full stack machine.
46 int64_t Offset = 0;
47 const DIExpression *DIExpr = Instruction.getDebugExpression();
48 auto Op = DIExpr->expr_op_begin();
49 // We can handle a DBG_VALUE_LIST iff it has exactly one location operand that
50 // appears exactly once at the start of the expression.
51 if (Instruction.isDebugValueList()) {
52 if (Instruction.getNumDebugOperands() == 1 &&
53 Op->getOp() == dwarf::DW_OP_LLVM_arg)
54 ++Op;
55 else
56 return std::nullopt;
57 }
58 while (Op != DIExpr->expr_op_end()) {
59 switch (Op->getOp()) {
60 case dwarf::DW_OP_constu: {
61 int Value = Op->getArg(0);
62 ++Op;
63 if (Op != DIExpr->expr_op_end()) {
64 switch (Op->getOp()) {
65 case dwarf::DW_OP_minus:
66 Offset -= Value;
67 break;
68 case dwarf::DW_OP_plus:
69 Offset += Value;
70 break;
71 default:
72 continue;
73 }
74 }
75 } break;
76 case dwarf::DW_OP_plus_uconst:
77 Offset += Op->getArg(0);
78 break;
80 Location.FragmentInfo = {Op->getArg(1), Op->getArg(0)};
81 break;
82 case dwarf::DW_OP_deref:
83 Location.LoadChain.push_back(Offset);
84 Offset = 0;
85 break;
86 default:
87 return std::nullopt;
88 }
89 ++Op;
90 }
91
92 // Do one final implicit DW_OP_deref if this was an indirect DBG_VALUE
93 // instruction.
94 // FIXME: Replace these with DIExpression.
95 if (Instruction.isIndirectDebugValue())
96 Location.LoadChain.push_back(Offset);
97
98 return Location;
99}
100
102
104 if (M->debug_compile_units().empty())
105 Asm = nullptr;
106}
107
108// Each LexicalScope has first instruction and last instruction to mark
109// beginning and end of a scope respectively. Create an inverse map that list
110// scopes starts (and ends) with an instruction. One instruction may start (or
111// end) multiple scopes. Ignore scopes that are not reachable.
115 while (!WorkList.empty()) {
116 LexicalScope *S = WorkList.pop_back_val();
117
118 const SmallVectorImpl<LexicalScope *> &Children = S->getChildren();
119 if (!Children.empty())
120 WorkList.append(Children.begin(), Children.end());
121
122 if (S->isAbstractScope())
123 continue;
124
125 for (const InsnRange &R : S->getRanges()) {
126 assert(R.first && "InsnRange does not have first instruction!");
127 assert(R.second && "InsnRange does not have second instruction!");
128 requestLabelBeforeInsn(R.first);
129 requestLabelAfterInsn(R.second);
130 }
131 }
132}
133
134// Return Label preceding the instruction.
136 MCSymbol *Label = LabelsBeforeInsn.lookup(MI);
137 assert(Label && "Didn't insert label before instruction");
138 return Label;
139}
140
141// Return Label immediately following the instruction.
143 return LabelsAfterInsn.lookup(MI);
144}
145
146/// If this type is derived from a base type then return base type size.
148 assert(Ty);
149 const DIDerivedType *DDTy = dyn_cast<DIDerivedType>(Ty);
150 if (!DDTy)
151 return Ty->getSizeInBits();
152
153 unsigned Tag = DDTy->getTag();
154
155 if (Tag != dwarf::DW_TAG_member && Tag != dwarf::DW_TAG_typedef &&
156 Tag != dwarf::DW_TAG_const_type && Tag != dwarf::DW_TAG_volatile_type &&
157 Tag != dwarf::DW_TAG_restrict_type && Tag != dwarf::DW_TAG_atomic_type &&
158 Tag != dwarf::DW_TAG_immutable_type &&
159 Tag != dwarf::DW_TAG_template_alias)
160 return DDTy->getSizeInBits();
161
162 DIType *BaseType = DDTy->getBaseType();
163
164 if (!BaseType)
165 return 0;
166
167 // If this is a derived type, go ahead and get the base type, unless it's a
168 // reference then it's just the size of the field. Pointer types have no need
169 // of this since they're a different type of qualification on the type.
170 if (BaseType->getTag() == dwarf::DW_TAG_reference_type ||
171 BaseType->getTag() == dwarf::DW_TAG_rvalue_reference_type)
172 return Ty->getSizeInBits();
173
175}
176
178 if (isa<DIStringType>(Ty)) {
179 // Some transformations (e.g. instcombine) may decide to turn a Fortran
180 // character object into an integer, and later ones (e.g. SROA) may
181 // further inject a constant integer in a llvm.dbg.value call to track
182 // the object's value. Here we trust the transformations are doing the
183 // right thing, and treat the constant as unsigned to preserve that value
184 // (i.e. avoid sign extension).
185 return true;
186 }
187
188 if (auto *CTy = dyn_cast<DICompositeType>(Ty)) {
189 if (CTy->getTag() == dwarf::DW_TAG_enumeration_type) {
190 if (!(Ty = CTy->getBaseType()))
191 // FIXME: Enums without a fixed underlying type have unknown signedness
192 // here, leading to incorrectly emitted constants.
193 return false;
194 } else
195 // (Pieces of) aggregate types that get hacked apart by SROA may be
196 // represented by a constant. Encode them as unsigned bytes.
197 return true;
198 }
199
200 if (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
201 dwarf::Tag T = (dwarf::Tag)Ty->getTag();
202 // Encode pointer constants as unsigned bytes. This is used at least for
203 // null pointer constant emission.
204 // FIXME: reference and rvalue_reference /probably/ shouldn't be allowed
205 // here, but accept them for now due to a bug in SROA producing bogus
206 // dbg.values.
207 if (T == dwarf::DW_TAG_pointer_type ||
208 T == dwarf::DW_TAG_ptr_to_member_type ||
209 T == dwarf::DW_TAG_reference_type ||
210 T == dwarf::DW_TAG_rvalue_reference_type)
211 return true;
212 assert(T == dwarf::DW_TAG_typedef || T == dwarf::DW_TAG_const_type ||
213 T == dwarf::DW_TAG_volatile_type ||
214 T == dwarf::DW_TAG_restrict_type || T == dwarf::DW_TAG_atomic_type ||
215 T == dwarf::DW_TAG_immutable_type ||
216 T == dwarf::DW_TAG_template_alias);
217 assert(DTy->getBaseType() && "Expected valid base type");
218 return isUnsignedDIType(DTy->getBaseType());
219 }
220
221 auto *BTy = cast<DIBasicType>(Ty);
222 unsigned Encoding = BTy->getEncoding();
223 assert((Encoding == dwarf::DW_ATE_unsigned ||
224 Encoding == dwarf::DW_ATE_unsigned_char ||
225 Encoding == dwarf::DW_ATE_signed ||
226 Encoding == dwarf::DW_ATE_signed_char ||
227 Encoding == dwarf::DW_ATE_float || Encoding == dwarf::DW_ATE_UTF ||
228 Encoding == dwarf::DW_ATE_boolean ||
229 Encoding == dwarf::DW_ATE_complex_float ||
230 Encoding == dwarf::DW_ATE_signed_fixed ||
231 Encoding == dwarf::DW_ATE_unsigned_fixed ||
232 (Ty->getTag() == dwarf::DW_TAG_unspecified_type &&
233 Ty->getName() == "decltype(nullptr)")) &&
234 "Unsupported encoding");
235 return Encoding == dwarf::DW_ATE_unsigned ||
236 Encoding == dwarf::DW_ATE_unsigned_char ||
237 Encoding == dwarf::DW_ATE_UTF || Encoding == dwarf::DW_ATE_boolean ||
238 Encoding == llvm::dwarf::DW_ATE_unsigned_fixed ||
239 Ty->getTag() == dwarf::DW_TAG_unspecified_type;
240}
241
242static bool hasDebugInfo(const MachineModuleInfo *MMI,
243 const MachineFunction *MF) {
244 if (!MMI->hasDebugInfo())
245 return false;
246 auto *SP = MF->getFunction().getSubprogram();
247 if (!SP)
248 return false;
249 assert(SP->getUnit());
250 auto EK = SP->getUnit()->getEmissionKind();
251 if (EK == DICompileUnit::NoDebug)
252 return false;
253 return true;
254}
255
257 PrevInstBB = nullptr;
258
259 if (!Asm || !hasDebugInfo(MMI, MF)) {
261 return;
262 }
263
264 // Grab the lexical scopes for the function, if we don't have any of those
265 // then we're not going to be able to do anything.
266 LScopes.initialize(*MF);
267 if (LScopes.empty()) {
269 return;
270 }
271
272 // Make sure that each lexical scope will have a begin/end label.
274
275 // Calculate history for local variables.
276 assert(DbgValues.empty() && "DbgValues map wasn't cleaned!");
277 assert(DbgLabels.empty() && "DbgLabels map wasn't cleaned!");
280 InstOrdering.initialize(*MF);
281 if (TrimVarLocs)
282 DbgValues.trimLocationRanges(*MF, LScopes, InstOrdering);
284
285 // Request labels for the full history.
286 for (const auto &I : DbgValues) {
287 const auto &Entries = I.second;
288 if (Entries.empty())
289 continue;
290
291 auto IsDescribedByReg = [](const MachineInstr *MI) {
292 return any_of(MI->debug_operands(),
293 [](auto &MO) { return MO.isReg() && MO.getReg(); });
294 };
295
296 // The first mention of a function argument gets the CurrentFnBegin label,
297 // so arguments are visible when breaking at function entry.
298 //
299 // We do not change the label for values that are described by registers,
300 // as that could place them above their defining instructions. We should
301 // ideally not change the labels for constant debug values either, since
302 // doing that violates the ranges that are calculated in the history map.
303 // However, we currently do not emit debug values for constant arguments
304 // directly at the start of the function, so this code is still useful.
305 const DILocalVariable *DIVar =
306 Entries.front().getInstr()->getDebugVariable();
307 if (DIVar->isParameter() &&
308 getDISubprogram(DIVar->getScope())->describes(&MF->getFunction())) {
309 if (!IsDescribedByReg(Entries.front().getInstr()))
310 LabelsBeforeInsn[Entries.front().getInstr()] = Asm->getFunctionBegin();
311 if (Entries.front().getInstr()->getDebugExpression()->isFragment()) {
312 // Mark all non-overlapping initial fragments.
313 for (const auto *I = Entries.begin(); I != Entries.end(); ++I) {
314 if (!I->isDbgValue())
315 continue;
316 const DIExpression *Fragment = I->getInstr()->getDebugExpression();
317 if (std::any_of(Entries.begin(), I,
318 [&](DbgValueHistoryMap::Entry Pred) {
319 return Pred.isDbgValue() &&
320 Fragment->fragmentsOverlap(
321 Pred.getInstr()->getDebugExpression());
322 }))
323 break;
324 // The code that generates location lists for DWARF assumes that the
325 // entries' start labels are monotonically increasing, and since we
326 // don't change the label for fragments that are described by
327 // registers, we must bail out when encountering such a fragment.
328 if (IsDescribedByReg(I->getInstr()))
329 break;
330 LabelsBeforeInsn[I->getInstr()] = Asm->getFunctionBegin();
331 }
332 }
333 }
334
335 for (const auto &Entry : Entries) {
336 if (Entry.isDbgValue())
337 requestLabelBeforeInsn(Entry.getInstr());
338 else
339 requestLabelAfterInsn(Entry.getInstr());
340 }
341 }
342
343 // Ensure there is a symbol before DBG_LABEL.
344 for (const auto &I : DbgLabels) {
345 const MachineInstr *MI = I.second;
347 }
348
352}
353
355 if (!Asm || !MMI->hasDebugInfo())
356 return;
357
358 assert(CurMI == nullptr);
359 CurMI = MI;
360
361 // Insert labels where requested.
363 LabelsBeforeInsn.find(MI);
364
365 // No label needed.
366 if (I == LabelsBeforeInsn.end())
367 return;
368
369 // Label already assigned.
370 if (I->second)
371 return;
372
373 if (!PrevLabel) {
375 Asm->OutStreamer->emitLabel(PrevLabel);
376 }
377 I->second = PrevLabel;
378}
379
381 if (!Asm || !MMI->hasDebugInfo())
382 return;
383
384 assert(CurMI != nullptr);
385 // Don't create a new label after DBG_VALUE and other instructions that don't
386 // generate code.
387 if (!CurMI->isMetaInstruction()) {
388 PrevLabel = nullptr;
390 }
391
394
395 // No label needed or label already assigned.
396 if (I == LabelsAfterInsn.end() || I->second) {
397 CurMI = nullptr;
398 return;
399 }
400
401 // We need a label after this instruction. With basic block sections, just
402 // use the end symbol of the section if this is the last instruction of the
403 // section. This reduces the need for an additional label and also helps
404 // merging ranges.
405 if (CurMI->getParent()->isEndSection() && CurMI->getNextNode() == nullptr) {
407 } else if (!PrevLabel) {
409 Asm->OutStreamer->emitLabel(PrevLabel);
410 }
411 I->second = PrevLabel;
412 CurMI = nullptr;
413}
414
416 if (Asm && hasDebugInfo(MMI, MF))
417 endFunctionImpl(MF);
420 LabelsBeforeInsn.clear();
421 LabelsAfterInsn.clear();
422 InstOrdering.clear();
423}
424
426 EpilogBeginBlock = nullptr;
427 if (!MBB.isEntryBlock())
429}
430
432 PrevLabel = nullptr;
433}
MachineBasicBlock & MBB
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static cl::opt< bool > TrimVarLocs("trim-var-locs", cl::Hidden, cl::init(true))
If true, we drop variable location ranges which exist entirely outside the variable's lexical scope i...
static bool hasDebugInfo(const MachineModuleInfo *MMI, const MachineFunction *MF)
#define LLVM_DEBUG(X)
Definition: Debug.h:101
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition: MD5.cpp:58
Module.h This file contains the declarations for the Module class.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This class is intended to be used as a driving class for all asm writers.
Definition: AsmPrinter.h:85
MCSymbol * getFunctionBegin() const
Definition: AsmPrinter.h:275
MachineFunction * MF
The current machine function.
Definition: AsmPrinter.h:103
std::unique_ptr< MCStreamer > OutStreamer
This is the MCStreamer object for the file we are generating.
Definition: AsmPrinter.h:100
DWARF expression.
expr_op_iterator expr_op_begin() const
Visit the elements via ExprOperand wrappers.
expr_op_iterator expr_op_end() const
DILocalScope * getScope() const
Get the local scope for this variable.
dwarf::Tag getTag() const
Base class for types.
StringRef getName() const
uint64_t getSizeInBits() const
This class represents an Operation in the Expression.
Specifies a change in a variable's debug value history.
void trimLocationRanges(const MachineFunction &MF, LexicalScopes &LScopes, const InstructionOrdering &Ordering)
Drop location ranges which exist entirely outside each variable's scope.
LLVM_DUMP_METHOD void dump(StringRef FuncName) const
static bool isUnsignedDIType(const DIType *Ty)
Return true if type encoding is unsigned.
const MachineInstr * CurMI
If nonnull, stores the current machine instruction we're processing.
AsmPrinter * Asm
Target of debug info emission.
virtual void endFunctionImpl(const MachineFunction *MF)=0
MCSymbol * getLabelBeforeInsn(const MachineInstr *MI)
Return Label preceding the instruction.
MachineModuleInfo * MMI
Collected machine module information.
void endBasicBlockSection(const MachineBasicBlock &MBB) override
Process the end of a basic-block-section within a function.
void identifyScopeMarkers()
Indentify instructions that are marking the beginning of or ending of a scope.
virtual void skippedNonDebugFunction()
void endFunction(const MachineFunction *MF) override
Gather post-function debug information.
DebugLoc PrevInstLoc
Previous instruction's location information.
void beginFunction(const MachineFunction *MF) override
Gather pre-function debug information.
void endInstruction() override
Process end of an instruction.
MCSymbol * getLabelAfterInsn(const MachineInstr *MI)
Return Label immediately following the instruction.
DebugHandlerBase(AsmPrinter *A)
void beginInstruction(const MachineInstr *MI) override
Process beginning of an instruction.
const MachineBasicBlock * PrevInstBB
virtual void beginFunctionImpl(const MachineFunction *MF)=0
void requestLabelAfterInsn(const MachineInstr *MI)
Ensure that a label will be emitted after MI.
void beginBasicBlockSection(const MachineBasicBlock &MBB) override
Process the beginning of a new basic-block-section within a function.
DbgValueHistoryMap DbgValues
History of DBG_VALUE and clobber instructions for each user variable.
DbgLabelInstrMap DbgLabels
Mapping of inlined labels and DBG_LABEL machine instruction.
DenseMap< const MachineInstr *, MCSymbol * > LabelsBeforeInsn
Maps instruction with label emitted before instruction.
void beginModule(Module *M) override
DenseMap< const MachineInstr *, MCSymbol * > LabelsAfterInsn
Maps instruction with label emitted after instruction.
void requestLabelBeforeInsn(const MachineInstr *MI)
Ensure that a label will be emitted before MI.
const MachineBasicBlock * EpilogBeginBlock
This block includes epilogue instructions.
static uint64_t getBaseTypeSize(const DIType *Ty)
If this type is derived from a base type then return base type size.
A debug info location.
Definition: DebugLoc.h:33
DISubprogram * getSubprogram() const
Get the attached subprogram.
Definition: Metadata.cpp:1830
void initialize(const MachineFunction &MF)
LexicalScope - This class is used to track scope information.
Definition: LexicalScopes.h:44
SmallVectorImpl< LexicalScope * > & getChildren()
Definition: LexicalScopes.h:65
SmallVectorImpl< InsnRange > & getRanges()
Definition: LexicalScopes.h:66
bool isAbstractScope() const
Definition: LexicalScopes.h:64
void initialize(const MachineFunction &)
initialize - Scan machine function and constuct lexical scope nest, resets the instance if necessary.
bool empty()
empty - Return true if there is any lexical scope information available.
LexicalScope * getCurrentFunctionScope() const
getCurrentFunctionScope - Return lexical scope for the current function.
MCSymbol * createTempSymbol()
Create a temporary symbol with a unique name.
Definition: MCContext.cpp:345
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
MCSymbol * getSymbol() const
Return the MCSymbol for this basic block.
MCSymbol * getEndSymbol() const
Returns the MCSymbol marking the end of this basic block.
bool isEntryBlock() const
Returns true if this is the entry block of the function.
bool isEndSection() const
Returns true if this block ends any section.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
Function & getFunction()
Return the LLVM function that this machine code represents.
Representation of each machine instruction.
Definition: MachineInstr.h:69
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:346
bool isMetaInstruction(QueryType Type=IgnoreBundle) const
Return true if this instruction doesn't produce any output in the form of executable instructions.
Definition: MachineInstr.h:936
This class contains meta information specific to a module.
const MCContext & getContext() const
bool hasDebugInfo() const
Returns true if valid debug info is present.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
bool empty() const
Definition: SmallVector.h:94
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
Definition: SmallVector.h:696
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
LLVM Value Representation.
Definition: Value.h:74
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:353
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
@ DW_OP_LLVM_fragment
Only used in LLVM metadata.
Definition: Dwarf.h:142
@ DW_OP_LLVM_arg
Only used in LLVM metadata.
Definition: Dwarf.h:147
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
void calculateDbgEntityHistory(const MachineFunction *MF, const TargetRegisterInfo *TRI, DbgValueHistoryMap &DbgValues, DbgLabelInstrMap &DbgLabels)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
DWARFExpression::Operation Op
std::pair< const MachineInstr *, const MachineInstr * > InsnRange
InsnRange - This is used to track range of instructions with identical lexical scope.
Definition: LexicalScopes.h:39
DISubprogram * getDISubprogram(const MDNode *Scope)
Find subprogram that is enclosing this scope.
Definition: DebugInfo.cpp:152
Represents the location at which a variable is stored.
static std::optional< DbgVariableLocation > extractFromMachineInstruction(const MachineInstr &Instruction)
Extract a VariableLocation from a MachineInstr.