LLVM 20.0.0git
MipsLegalizerInfo.cpp
Go to the documentation of this file.
1//===- MipsLegalizerInfo.cpp ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements the targeting of the Machinelegalizer class for Mips.
10/// \todo This should be generated by TableGen.
11//===----------------------------------------------------------------------===//
12
13#include "MipsLegalizerInfo.h"
14#include "MipsTargetMachine.h"
18#include "llvm/IR/IntrinsicsMips.h"
19
20using namespace llvm;
21
25 unsigned MemSize;
27};
28
29// Assumes power of 2 memory size. Subtargets that have only naturally-aligned
30// memory access need to perform additional legalization here.
31static bool isUnalignedMemmoryAccess(uint64_t MemSize, uint64_t AlignInBits) {
32 assert(isPowerOf2_64(MemSize) && "Expected power of 2 memory size");
33 assert(isPowerOf2_64(AlignInBits) && "Expected power of 2 align");
34 if (MemSize > AlignInBits)
35 return true;
36 return false;
37}
38
39static bool
41 std::initializer_list<TypesAndMemOps> SupportedValues) {
42 unsigned QueryMemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
43
44 // Non power of two memory access is never legal.
45 if (!isPowerOf2_64(QueryMemSize))
46 return false;
47
48 for (auto &Val : SupportedValues) {
49 if (Val.ValTy != Query.Types[0])
50 continue;
51 if (Val.PtrTy != Query.Types[1])
52 continue;
53 if (Val.MemSize != QueryMemSize)
54 continue;
55 if (!Val.SystemSupportsUnalignedAccess &&
56 isUnalignedMemmoryAccess(QueryMemSize, Query.MMODescrs[0].AlignInBits))
57 return false;
58 return true;
59 }
60 return false;
61}
62
63static bool CheckTyN(unsigned N, const LegalityQuery &Query,
64 std::initializer_list<LLT> SupportedValues) {
65 return llvm::is_contained(SupportedValues, Query.Types[N]);
66}
67
69 using namespace TargetOpcode;
70
71 const LLT s1 = LLT::scalar(1);
72 const LLT s8 = LLT::scalar(8);
73 const LLT s16 = LLT::scalar(16);
74 const LLT s32 = LLT::scalar(32);
75 const LLT s64 = LLT::scalar(64);
76 const LLT v16s8 = LLT::fixed_vector(16, 8);
77 const LLT v8s16 = LLT::fixed_vector(8, 16);
78 const LLT v4s32 = LLT::fixed_vector(4, 32);
79 const LLT v2s64 = LLT::fixed_vector(2, 64);
80 const LLT p0 = LLT::pointer(0, 32);
81
82 getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
83 .legalIf([=, &ST](const LegalityQuery &Query) {
84 if (CheckTyN(0, Query, {s32}))
85 return true;
86 if (ST.hasMSA() && CheckTyN(0, Query, {v16s8, v8s16, v4s32, v2s64}))
87 return true;
88 return false;
89 })
90 .clampScalar(0, s32, s32);
91
92 getActionDefinitionsBuilder({G_UADDO, G_UADDE, G_USUBO, G_USUBE, G_UMULO})
93 .lowerFor({{s32, s1}});
94
96 .legalFor({s32})
97 .maxScalar(0, s32);
98
99 // MIPS32r6 does not have alignment restrictions for memory access.
100 // For MIPS32r5 and older memory access must be naturally-aligned i.e. aligned
101 // to at least a multiple of its own size. There is however a two instruction
102 // combination that performs 4 byte unaligned access (lwr/lwl and swl/swr)
103 // therefore 4 byte load and store are legal and will use NoAlignRequirements.
104 bool NoAlignRequirements = true;
105
106 getActionDefinitionsBuilder({G_LOAD, G_STORE})
107 .legalIf([=, &ST](const LegalityQuery &Query) {
109 Query, {{s32, p0, 8, NoAlignRequirements},
110 {s32, p0, 16, ST.systemSupportsUnalignedAccess()},
111 {s32, p0, 32, NoAlignRequirements},
112 {p0, p0, 32, NoAlignRequirements},
113 {s64, p0, 64, ST.systemSupportsUnalignedAccess()}}))
114 return true;
115 if (ST.hasMSA() && CheckTy0Ty1MemSizeAlign(
116 Query, {{v16s8, p0, 128, NoAlignRequirements},
117 {v8s16, p0, 128, NoAlignRequirements},
118 {v4s32, p0, 128, NoAlignRequirements},
119 {v2s64, p0, 128, NoAlignRequirements}}))
120 return true;
121 return false;
122 })
123 // Custom lower scalar memory access, up to 8 bytes, for:
124 // - non-power-of-2 MemSizes
125 // - unaligned 2 or 8 byte MemSizes for MIPS32r5 and older
126 .customIf([=, &ST](const LegalityQuery &Query) {
127 if (!Query.Types[0].isScalar() || Query.Types[1] != p0 ||
128 Query.Types[0] == s1)
129 return false;
130
131 unsigned Size = Query.Types[0].getSizeInBits();
132 unsigned QueryMemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
133 assert(QueryMemSize <= Size && "Scalar can't hold MemSize");
134
135 if (Size > 64 || QueryMemSize > 64)
136 return false;
137
138 if (!isPowerOf2_64(Query.MMODescrs[0].MemoryTy.getSizeInBits()))
139 return true;
140
141 if (!ST.systemSupportsUnalignedAccess() &&
142 isUnalignedMemmoryAccess(QueryMemSize,
143 Query.MMODescrs[0].AlignInBits)) {
144 assert(QueryMemSize != 32 && "4 byte load and store are legal");
145 return true;
146 }
147
148 return false;
149 })
150 .minScalar(0, s32)
151 .lower();
152
153 getActionDefinitionsBuilder(G_IMPLICIT_DEF)
154 .legalFor({s32, s64});
155
156 getActionDefinitionsBuilder(G_UNMERGE_VALUES)
157 .legalFor({{s32, s64}});
158
159 getActionDefinitionsBuilder(G_MERGE_VALUES)
160 .legalFor({{s64, s32}});
161
162 getActionDefinitionsBuilder({G_ZEXTLOAD, G_SEXTLOAD})
163 .legalForTypesWithMemDesc({{s32, p0, s8, 8},
164 {s32, p0, s16, 8}})
165 .clampScalar(0, s32, s32);
166
167 getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
168 .legalIf([](const LegalityQuery &Query) { return false; })
169 .maxScalar(0, s32);
170
172 .legalIf([](const LegalityQuery &Query) { return false; })
173 .maxScalar(1, s32);
174
176 .legalForCartesianProduct({p0, s32, s64}, {s32})
177 .minScalar(0, s32)
178 .minScalar(1, s32);
179
181 .legalFor({s32})
182 .minScalar(0, s32);
183
185 .legalFor({{p0, s32}});
186
187 getActionDefinitionsBuilder(G_BRINDIRECT)
188 .legalFor({p0});
189
191 .legalFor({p0, s32, s64})
192 .minScalar(0, s32);
193
194 getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
195 .legalFor({s32})
196 .clampScalar(0, s32, s32);
197
198 getActionDefinitionsBuilder({G_SDIV, G_SREM, G_UDIV, G_UREM})
199 .legalIf([=, &ST](const LegalityQuery &Query) {
200 if (CheckTyN(0, Query, {s32}))
201 return true;
202 if (ST.hasMSA() && CheckTyN(0, Query, {v16s8, v8s16, v4s32, v2s64}))
203 return true;
204 return false;
205 })
206 .minScalar(0, s32)
207 .libcallFor({s64});
208
209 getActionDefinitionsBuilder({G_SHL, G_ASHR, G_LSHR})
210 .legalFor({{s32, s32}})
211 .clampScalar(1, s32, s32)
212 .clampScalar(0, s32, s32);
213
215 .legalForCartesianProduct({s32}, {s32, p0})
216 .clampScalar(1, s32, s32)
217 .minScalar(0, s32);
218
220 .legalFor({s32})
221 .clampScalar(0, s32, s32);
222
223 getActionDefinitionsBuilder({G_PTR_ADD, G_INTTOPTR})
224 .legalFor({{p0, s32}});
225
227 .legalFor({{s32, p0}});
228
229 getActionDefinitionsBuilder(G_FRAME_INDEX)
230 .legalFor({p0});
231
232 getActionDefinitionsBuilder({G_GLOBAL_VALUE, G_JUMP_TABLE})
233 .legalFor({p0});
234
235 getActionDefinitionsBuilder(G_DYN_STACKALLOC)
236 .lowerFor({{p0, s32}});
237
239 .legalFor({p0});
240
242 .legalIf([=, &ST](const LegalityQuery &Query) {
243 if (ST.hasMips32r2() && CheckTyN(0, Query, {s32}))
244 return true;
245 return false;
246 })
247 .lowerIf([=, &ST](const LegalityQuery &Query) {
248 if (!ST.hasMips32r2() && CheckTyN(0, Query, {s32}))
249 return true;
250 return false;
251 })
252 .maxScalar(0, s32);
253
254 getActionDefinitionsBuilder(G_BITREVERSE)
255 .lowerFor({s32})
256 .maxScalar(0, s32);
257
259 .legalFor({{s32, s32}})
260 .maxScalar(0, s32)
261 .maxScalar(1, s32);
262 getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
263 .lowerFor({{s32, s32}});
264
266 .lowerFor({{s32, s32}})
267 .maxScalar(0, s32)
268 .maxScalar(1, s32);
269 getActionDefinitionsBuilder(G_CTTZ_ZERO_UNDEF)
270 .lowerFor({{s32, s32}, {s64, s64}});
271
273 .lowerFor({{s32, s32}})
274 .clampScalar(0, s32, s32)
275 .clampScalar(1, s32, s32);
276
277 // FP instructions
278 getActionDefinitionsBuilder(G_FCONSTANT)
279 .legalFor({s32, s64});
280
281 getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FABS, G_FSQRT})
282 .legalIf([=, &ST](const LegalityQuery &Query) {
283 if (CheckTyN(0, Query, {s32, s64}))
284 return true;
285 if (ST.hasMSA() && CheckTyN(0, Query, {v16s8, v8s16, v4s32, v2s64}))
286 return true;
287 return false;
288 });
289
291 .legalFor({{s32, s32}, {s32, s64}})
292 .minScalar(0, s32);
293
294 getActionDefinitionsBuilder({G_FCEIL, G_FFLOOR})
295 .libcallFor({s32, s64});
296
298 .legalFor({{s64, s32}});
299
301 .legalFor({{s32, s64}});
302
303 // FP to int conversion instructions
305 .legalForCartesianProduct({s32}, {s64, s32})
306 .libcallForCartesianProduct({s64}, {s64, s32})
307 .minScalar(0, s32);
308
310 .libcallForCartesianProduct({s64}, {s64, s32})
311 .lowerForCartesianProduct({s32}, {s64, s32})
312 .minScalar(0, s32);
313
314 // Int to FP conversion instructions
316 .legalForCartesianProduct({s64, s32}, {s32})
317 .libcallForCartesianProduct({s64, s32}, {s64})
318 .minScalar(1, s32);
319
321 .libcallForCartesianProduct({s64, s32}, {s64})
322 .customForCartesianProduct({s64, s32}, {s32})
323 .minScalar(1, s32);
324
325 getActionDefinitionsBuilder(G_SEXT_INREG).lower();
326
327 getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall();
328
330 verify(*ST.getInstrInfo());
331}
332
335 LostDebugLocObserver &LocObserver) const {
336 using namespace TargetOpcode;
337
338 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
339 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
340
341 const LLT s32 = LLT::scalar(32);
342 const LLT s64 = LLT::scalar(64);
343
344 switch (MI.getOpcode()) {
345 case G_LOAD:
346 case G_STORE: {
347 unsigned MemSize = (**MI.memoperands_begin()).getSize().getValue();
348 Register Val = MI.getOperand(0).getReg();
349 unsigned Size = MRI.getType(Val).getSizeInBits();
350
351 MachineMemOperand *MMOBase = *MI.memoperands_begin();
352
353 assert(MemSize <= 8 && "MemSize is too large");
354 assert(Size <= 64 && "Scalar size is too large");
355
356 // Split MemSize into two, P2HalfMemSize is largest power of two smaller
357 // then MemSize. e.g. 8 = 4 + 4 , 6 = 4 + 2, 3 = 2 + 1.
358 unsigned P2HalfMemSize, RemMemSize;
359 if (isPowerOf2_64(MemSize)) {
360 P2HalfMemSize = RemMemSize = MemSize / 2;
361 } else {
362 P2HalfMemSize = 1 << Log2_32(MemSize);
363 RemMemSize = MemSize - P2HalfMemSize;
364 }
365
366 Register BaseAddr = MI.getOperand(1).getReg();
367 LLT PtrTy = MRI.getType(BaseAddr);
368 MachineFunction &MF = MIRBuilder.getMF();
369
370 auto P2HalfMemOp = MF.getMachineMemOperand(MMOBase, 0, P2HalfMemSize);
371 auto RemMemOp = MF.getMachineMemOperand(MMOBase, P2HalfMemSize, RemMemSize);
372
373 if (MI.getOpcode() == G_STORE) {
374 // Widen Val to s32 or s64 in order to create legal G_LSHR or G_UNMERGE.
375 if (Size < 32)
376 Val = MIRBuilder.buildAnyExt(s32, Val).getReg(0);
377 if (Size > 32 && Size < 64)
378 Val = MIRBuilder.buildAnyExt(s64, Val).getReg(0);
379
380 auto C_P2HalfMemSize = MIRBuilder.buildConstant(s32, P2HalfMemSize);
381 auto Addr = MIRBuilder.buildPtrAdd(PtrTy, BaseAddr, C_P2HalfMemSize);
382
383 if (MI.getOpcode() == G_STORE && MemSize <= 4) {
384 MIRBuilder.buildStore(Val, BaseAddr, *P2HalfMemOp);
385 auto C_P2Half_InBits = MIRBuilder.buildConstant(s32, P2HalfMemSize * 8);
386 auto Shift = MIRBuilder.buildLShr(s32, Val, C_P2Half_InBits);
387 MIRBuilder.buildStore(Shift, Addr, *RemMemOp);
388 } else {
389 auto Unmerge = MIRBuilder.buildUnmerge(s32, Val);
390 MIRBuilder.buildStore(Unmerge.getReg(0), BaseAddr, *P2HalfMemOp);
391 MIRBuilder.buildStore(Unmerge.getReg(1), Addr, *RemMemOp);
392 }
393 }
394
395 if (MI.getOpcode() == G_LOAD) {
396
397 if (MemSize <= 4) {
398 // This is anyextending load, use 4 byte lwr/lwl.
399 auto *Load4MMO = MF.getMachineMemOperand(MMOBase, 0, 4);
400
401 if (Size == 32)
402 MIRBuilder.buildLoad(Val, BaseAddr, *Load4MMO);
403 else {
404 auto Load = MIRBuilder.buildLoad(s32, BaseAddr, *Load4MMO);
405 MIRBuilder.buildTrunc(Val, Load.getReg(0));
406 }
407
408 } else {
409 auto C_P2HalfMemSize = MIRBuilder.buildConstant(s32, P2HalfMemSize);
410 auto Addr = MIRBuilder.buildPtrAdd(PtrTy, BaseAddr, C_P2HalfMemSize);
411
412 auto Load_P2Half = MIRBuilder.buildLoad(s32, BaseAddr, *P2HalfMemOp);
413 auto Load_Rem = MIRBuilder.buildLoad(s32, Addr, *RemMemOp);
414
415 if (Size == 64)
416 MIRBuilder.buildMergeLikeInstr(Val, {Load_P2Half, Load_Rem});
417 else {
418 auto Merge =
419 MIRBuilder.buildMergeLikeInstr(s64, {Load_P2Half, Load_Rem});
420 MIRBuilder.buildTrunc(Val, Merge);
421 }
422 }
423 }
424 MI.eraseFromParent();
425 break;
426 }
427 case G_UITOFP: {
428 Register Dst = MI.getOperand(0).getReg();
429 Register Src = MI.getOperand(1).getReg();
430 LLT DstTy = MRI.getType(Dst);
431 LLT SrcTy = MRI.getType(Src);
432
433 if (SrcTy != s32)
434 return false;
435 if (DstTy != s32 && DstTy != s64)
436 return false;
437
438 // Let 0xABCDEFGH be given unsigned in MI.getOperand(1). First let's convert
439 // unsigned to double. Mantissa has 52 bits so we use following trick:
440 // First make floating point bit mask 0x43300000ABCDEFGH.
441 // Mask represents 2^52 * 0x1.00000ABCDEFGH i.e. 0x100000ABCDEFGH.0 .
442 // Next, subtract 2^52 * 0x1.0000000000000 i.e. 0x10000000000000.0 from it.
443 // Done. Trunc double to float if needed.
444
445 auto C_HiMask = MIRBuilder.buildConstant(s32, UINT32_C(0x43300000));
446 auto Bitcast =
447 MIRBuilder.buildMergeLikeInstr(s64, {Src, C_HiMask.getReg(0)});
448
449 MachineInstrBuilder TwoP52FP = MIRBuilder.buildFConstant(
450 s64, llvm::bit_cast<double>(UINT64_C(0x4330000000000000)));
451
452 if (DstTy == s64)
453 MIRBuilder.buildFSub(Dst, Bitcast, TwoP52FP);
454 else {
455 MachineInstrBuilder ResF64 = MIRBuilder.buildFSub(s64, Bitcast, TwoP52FP);
456 MIRBuilder.buildFPTrunc(Dst, ResF64);
457 }
458
459 MI.eraseFromParent();
460 break;
461 }
462 default:
463 return false;
464 }
465
466 return true;
467}
468
469static bool SelectMSA3OpIntrinsic(MachineInstr &MI, unsigned Opcode,
470 MachineIRBuilder &MIRBuilder,
471 const MipsSubtarget &ST) {
472 assert(ST.hasMSA() && "MSA intrinsic not supported on target without MSA.");
473 if (!MIRBuilder.buildInstr(Opcode)
474 .add(MI.getOperand(0))
475 .add(MI.getOperand(2))
476 .add(MI.getOperand(3))
477 .constrainAllUses(MIRBuilder.getTII(), *ST.getRegisterInfo(),
478 *ST.getRegBankInfo()))
479 return false;
480 MI.eraseFromParent();
481 return true;
482}
483
484static bool MSA3OpIntrinsicToGeneric(MachineInstr &MI, unsigned Opcode,
485 MachineIRBuilder &MIRBuilder,
486 const MipsSubtarget &ST) {
487 assert(ST.hasMSA() && "MSA intrinsic not supported on target without MSA.");
488 MIRBuilder.buildInstr(Opcode)
489 .add(MI.getOperand(0))
490 .add(MI.getOperand(2))
491 .add(MI.getOperand(3));
492 MI.eraseFromParent();
493 return true;
494}
495
496static bool MSA2OpIntrinsicToGeneric(MachineInstr &MI, unsigned Opcode,
497 MachineIRBuilder &MIRBuilder,
498 const MipsSubtarget &ST) {
499 assert(ST.hasMSA() && "MSA intrinsic not supported on target without MSA.");
500 MIRBuilder.buildInstr(Opcode)
501 .add(MI.getOperand(0))
502 .add(MI.getOperand(2));
503 MI.eraseFromParent();
504 return true;
505}
506
508 MachineInstr &MI) const {
509 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
510 const MipsSubtarget &ST = MI.getMF()->getSubtarget<MipsSubtarget>();
511
512 switch (cast<GIntrinsic>(MI).getIntrinsicID()) {
513 case Intrinsic::vacopy: {
515 LLT PtrTy = LLT::pointer(0, 32);
516 auto Tmp =
517 MIRBuilder.buildLoad(PtrTy, MI.getOperand(2),
518 *MI.getMF()->getMachineMemOperand(
519 MPO, MachineMemOperand::MOLoad, PtrTy, Align(4)));
520 MIRBuilder.buildStore(Tmp, MI.getOperand(1),
521 *MI.getMF()->getMachineMemOperand(
522 MPO, MachineMemOperand::MOStore, PtrTy, Align(4)));
523 MI.eraseFromParent();
524 return true;
525 }
526 case Intrinsic::mips_addv_b:
527 case Intrinsic::mips_addv_h:
528 case Intrinsic::mips_addv_w:
529 case Intrinsic::mips_addv_d:
530 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_ADD, MIRBuilder, ST);
531 case Intrinsic::mips_addvi_b:
532 return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_B, MIRBuilder, ST);
533 case Intrinsic::mips_addvi_h:
534 return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_H, MIRBuilder, ST);
535 case Intrinsic::mips_addvi_w:
536 return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_W, MIRBuilder, ST);
537 case Intrinsic::mips_addvi_d:
538 return SelectMSA3OpIntrinsic(MI, Mips::ADDVI_D, MIRBuilder, ST);
539 case Intrinsic::mips_subv_b:
540 case Intrinsic::mips_subv_h:
541 case Intrinsic::mips_subv_w:
542 case Intrinsic::mips_subv_d:
543 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_SUB, MIRBuilder, ST);
544 case Intrinsic::mips_subvi_b:
545 return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_B, MIRBuilder, ST);
546 case Intrinsic::mips_subvi_h:
547 return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_H, MIRBuilder, ST);
548 case Intrinsic::mips_subvi_w:
549 return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_W, MIRBuilder, ST);
550 case Intrinsic::mips_subvi_d:
551 return SelectMSA3OpIntrinsic(MI, Mips::SUBVI_D, MIRBuilder, ST);
552 case Intrinsic::mips_mulv_b:
553 case Intrinsic::mips_mulv_h:
554 case Intrinsic::mips_mulv_w:
555 case Intrinsic::mips_mulv_d:
556 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_MUL, MIRBuilder, ST);
557 case Intrinsic::mips_div_s_b:
558 case Intrinsic::mips_div_s_h:
559 case Intrinsic::mips_div_s_w:
560 case Intrinsic::mips_div_s_d:
561 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_SDIV, MIRBuilder, ST);
562 case Intrinsic::mips_mod_s_b:
563 case Intrinsic::mips_mod_s_h:
564 case Intrinsic::mips_mod_s_w:
565 case Intrinsic::mips_mod_s_d:
566 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_SREM, MIRBuilder, ST);
567 case Intrinsic::mips_div_u_b:
568 case Intrinsic::mips_div_u_h:
569 case Intrinsic::mips_div_u_w:
570 case Intrinsic::mips_div_u_d:
571 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_UDIV, MIRBuilder, ST);
572 case Intrinsic::mips_mod_u_b:
573 case Intrinsic::mips_mod_u_h:
574 case Intrinsic::mips_mod_u_w:
575 case Intrinsic::mips_mod_u_d:
576 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_UREM, MIRBuilder, ST);
577 case Intrinsic::mips_fadd_w:
578 case Intrinsic::mips_fadd_d:
579 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FADD, MIRBuilder, ST);
580 case Intrinsic::mips_fsub_w:
581 case Intrinsic::mips_fsub_d:
582 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FSUB, MIRBuilder, ST);
583 case Intrinsic::mips_fmul_w:
584 case Intrinsic::mips_fmul_d:
585 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FMUL, MIRBuilder, ST);
586 case Intrinsic::mips_fdiv_w:
587 case Intrinsic::mips_fdiv_d:
588 return MSA3OpIntrinsicToGeneric(MI, TargetOpcode::G_FDIV, MIRBuilder, ST);
589 case Intrinsic::mips_fmax_a_w:
590 return SelectMSA3OpIntrinsic(MI, Mips::FMAX_A_W, MIRBuilder, ST);
591 case Intrinsic::mips_fmax_a_d:
592 return SelectMSA3OpIntrinsic(MI, Mips::FMAX_A_D, MIRBuilder, ST);
593 case Intrinsic::mips_fsqrt_w:
594 return MSA2OpIntrinsicToGeneric(MI, TargetOpcode::G_FSQRT, MIRBuilder, ST);
595 case Intrinsic::mips_fsqrt_d:
596 return MSA2OpIntrinsicToGeneric(MI, TargetOpcode::G_FSQRT, MIRBuilder, ST);
597 default:
598 break;
599 }
600 return true;
601}
unsigned const MachineRegisterInfo * MRI
uint64_t Addr
uint64_t Size
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
IRTranslator LLVM IR MI
This file declares the MachineIRBuilder class.
static bool CheckTy0Ty1MemSizeAlign(const LegalityQuery &Query, std::initializer_list< TypesAndMemOps > SupportedValues)
static bool CheckTyN(unsigned N, const LegalityQuery &Query, std::initializer_list< LLT > SupportedValues)
static bool MSA2OpIntrinsicToGeneric(MachineInstr &MI, unsigned Opcode, MachineIRBuilder &MIRBuilder, const MipsSubtarget &ST)
static bool SelectMSA3OpIntrinsic(MachineInstr &MI, unsigned Opcode, MachineIRBuilder &MIRBuilder, const MipsSubtarget &ST)
static bool isUnalignedMemmoryAccess(uint64_t MemSize, uint64_t AlignInBits)
static bool MSA3OpIntrinsicToGeneric(MachineInstr &MI, unsigned Opcode, MachineIRBuilder &MIRBuilder, const MipsSubtarget &ST)
This file declares the targeting of the Machinelegalizer class for Mips.
ppc ctr loops verify
if(PassOpts->AAPipeline)
R600 Clause Merge
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static unsigned getSize(unsigned Kind)
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
Definition: LowLevelType.h:42
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
Definition: LowLevelType.h:57
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
Definition: LowLevelType.h:100
void computeTables()
Compute any ancillary tables needed to quickly decide how an operation should be handled.
LegalizeRuleSet & minScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at least as wide as Ty.
LegalizeRuleSet & legalFor(std::initializer_list< LLT > Types)
The instruction is legal when type index 0 is any type in the given list.
LegalizeRuleSet & libcallFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & maxScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet & libcallForCartesianProduct(std::initializer_list< LLT > Types)
LegalizeRuleSet & lower()
The instruction is lowered.
LegalizeRuleSet & lowerFor(std::initializer_list< LLT > Types)
The instruction is lowered when type index 0 is any type in the given list.
LegalizeRuleSet & clampScalar(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet & legalForCartesianProduct(std::initializer_list< LLT > Types)
The instruction is legal when type indexes 0 and 1 are both in the given list.
LegalizeRuleSet & legalIf(LegalityPredicate Predicate)
The instruction is legal if predicate is true.
MachineIRBuilder & MIRBuilder
Expose MIRBuilder so clients can set their own RecordInsertInstruction functions.
LegalizeRuleSet & getActionDefinitionsBuilder(unsigned Opcode)
Get the action definition builder for the given opcode.
const LegacyLegalizerInfo & getLegacyLegalizerInfo() const
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
Helper class to build MachineInstr.
MachineInstrBuilder buildFSub(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_FSUB Op0, Op1.
MachineInstrBuilder buildUnmerge(ArrayRef< LLT > Res, const SrcOp &Op)
Build and insert Res0, ... = G_UNMERGE_VALUES Op.
const TargetInstrInfo & getTII()
MachineInstrBuilder buildLShr(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
MachineInstrBuilder buildMergeLikeInstr(const DstOp &Res, ArrayRef< Register > Ops)
Build and insert Res = G_MERGE_VALUES Op0, ... or Res = G_BUILD_VECTOR Op0, ... or Res = G_CONCAT_VEC...
MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert Res = G_LOAD Addr, MMO.
MachineInstrBuilder buildPtrAdd(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_PTR_ADD Op0, Op1.
virtual MachineInstrBuilder buildFConstant(const DstOp &Res, const ConstantFP &Val)
Build and insert Res = G_FCONSTANT Val.
MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert G_STORE Val, Addr, MMO.
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineFunction & getMF()
Getter for the function we currently build.
MachineInstrBuilder buildTrunc(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_TRUNC Op.
MachineInstrBuilder buildAnyExt(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_ANYEXT Op0.
MachineRegisterInfo * getMRI()
Getter for MRI.
MachineInstrBuilder buildFPTrunc(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_FPTRUNC Op.
virtual MachineInstrBuilder buildConstant(const DstOp &Res, const ConstantInt &Val)
Build and insert Res = G_CONSTANT Val.
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & add(const MachineOperand &MO) const
bool constrainAllUses(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI) const
Representation of each machine instruction.
Definition: MachineInstr.h:69
A description of a memory reference used in the backend.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
MipsLegalizerInfo(const MipsSubtarget &ST)
bool legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI, LostDebugLocObserver &LocObserver) const override
Called for instructions with the Custom LegalizationAction.
bool legalizeIntrinsic(LegalizerHelper &Helper, MachineInstr &MI) const override
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:296
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:340
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1903
#define N
bool SystemSupportsUnalignedAccess
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
The LegalityQuery object bundles together all the information that's needed to decide whether a given...
ArrayRef< MemDesc > MMODescrs
Operations which require memory can use this to place requirements on the memory type for each MMO.
ArrayRef< LLT > Types
This class contains a discriminated union of information about pointers in memory operands,...