LLVM 20.0.0git
X86Subtarget.cpp
Go to the documentation of this file.
1//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the X86 specific subclass of TargetSubtargetInfo.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86Subtarget.h"
18#include "X86.h"
19#include "X86MacroFusion.h"
20#include "X86TargetMachine.h"
25#include "llvm/IR/Attributes.h"
27#include "llvm/IR/Function.h"
28#include "llvm/IR/GlobalValue.h"
29#include "llvm/IR/Module.h"
33#include "llvm/Support/Debug.h"
38
39#if defined(_MSC_VER)
40#include <intrin.h>
41#endif
42
43using namespace llvm;
44
45#define DEBUG_TYPE "subtarget"
46
47#define GET_SUBTARGETINFO_TARGET_DESC
48#define GET_SUBTARGETINFO_CTOR
49#include "X86GenSubtargetInfo.inc"
50
51// Temporary option to control early if-conversion for x86 while adding machine
52// models.
53static cl::opt<bool>
54X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
55 cl::desc("Enable early if-conversion on X86"));
56
57
58/// Classify a blockaddress reference for the current subtarget according to how
59/// we should reference it in a non-pcrel context.
61 return classifyLocalReference(nullptr);
62}
63
64/// Classify a global variable reference for the current subtarget according to
65/// how we should reference it in a non-pcrel context.
66unsigned char
68 return classifyGlobalReference(GV, *GV->getParent());
69}
70
71unsigned char
74 // Tagged globals have non-zero upper bits, which makes direct references
75 // require a 64-bit immediate. With the small/medium code models this causes
76 // relocation errors, so we go through the GOT instead.
77 if (AllowTaggedGlobals && CM != CodeModel::Large && GV && !isa<Function>(GV))
79
80 // If we're not PIC, it's not very interesting.
82 return X86II::MO_NO_FLAG;
83
84 if (is64Bit()) {
85 // 64-bit ELF PIC local references may use GOTOFF relocations.
86 if (isTargetELF()) {
87 assert(CM != CodeModel::Tiny &&
88 "Tiny codesize model not supported on X86");
89 // In the large code model, all text is far from any global data, so we
90 // use GOTOFF.
91 if (CM == CodeModel::Large)
92 return X86II::MO_GOTOFF;
93 // Large GlobalValues use GOTOFF, otherwise use RIP-rel access.
94 if (GV)
96 // GV == nullptr is for all other non-GlobalValue global data like the
97 // constant pool, jump tables, labels, etc. The small and medium code
98 // models treat these as accessible with a RIP-rel access.
99 return X86II::MO_NO_FLAG;
100 }
101
102 // Otherwise, this is either a RIP-relative reference or a 64-bit movabsq,
103 // both of which use MO_NO_FLAG.
104 return X86II::MO_NO_FLAG;
105 }
106
107 // The COFF dynamic linker just patches the executable sections.
108 if (isTargetCOFF())
109 return X86II::MO_NO_FLAG;
110
111 if (isTargetDarwin()) {
112 // 32 bit macho has no relocation for a-b if a is undefined, even if
113 // b is in the section that is being relocated.
114 // This means we have to use o load even for GVs that are known to be
115 // local to the dso.
116 if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
118
120 }
121
122 return X86II::MO_GOTOFF;
123}
124
126 const Module &M) const {
127 // The static large model never uses stubs.
129 return X86II::MO_NO_FLAG;
130
131 // Absolute symbols can be referenced directly.
132 if (GV) {
133 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
134 // See if we can use the 8-bit immediate form. Note that some instructions
135 // will sign extend the immediate operand, so to be conservative we only
136 // accept the range [0,128).
137 if (CR->getUnsignedMax().ult(128))
138 return X86II::MO_ABS8;
139 else
140 return X86II::MO_NO_FLAG;
141 }
142 }
143
144 if (TM.shouldAssumeDSOLocal(GV))
145 return classifyLocalReference(GV);
146
147 if (isTargetCOFF()) {
148 // ExternalSymbolSDNode like _tls_index.
149 if (!GV)
150 return X86II::MO_NO_FLAG;
151 if (GV->hasDLLImportStorageClass())
152 return X86II::MO_DLLIMPORT;
153 return X86II::MO_COFFSTUB;
154 }
155 // Some JIT users use *-win32-elf triples; these shouldn't use GOT tables.
156 if (isOSWindows())
157 return X86II::MO_NO_FLAG;
158
159 if (is64Bit()) {
160 // ELF supports a large, truly PIC code model with non-PC relative GOT
161 // references. Other object file formats do not. Use the no-flag, 64-bit
162 // reference for them.
163 if (TM.getCodeModel() == CodeModel::Large)
165 // Tagged globals have non-zero upper bits, which makes direct references
166 // require a 64-bit immediate. So we can't let the linker relax the
167 // relocation to a 32-bit RIP-relative direct reference.
168 if (AllowTaggedGlobals && GV && !isa<Function>(GV))
170 return X86II::MO_GOTPCREL;
171 }
172
173 if (isTargetDarwin()) {
177 }
178
179 // 32-bit ELF references GlobalAddress directly in static relocation model.
180 // We cannot use MO_GOT because EBX may not be set up.
182 return X86II::MO_NO_FLAG;
183 return X86II::MO_GOT;
184}
185
186unsigned char
189}
190
191unsigned char
193 const Module &M) const {
194 if (TM.shouldAssumeDSOLocal(GV))
195 return X86II::MO_NO_FLAG;
196
197 // Functions on COFF can be non-DSO local for three reasons:
198 // - They are intrinsic functions (!GV)
199 // - They are marked dllimport
200 // - They are extern_weak, and a stub is needed
201 if (isTargetCOFF()) {
202 if (!GV)
203 return X86II::MO_NO_FLAG;
204 if (GV->hasDLLImportStorageClass())
205 return X86II::MO_DLLIMPORT;
206 return X86II::MO_COFFSTUB;
207 }
208
209 const Function *F = dyn_cast_or_null<Function>(GV);
210
211 if (isTargetELF()) {
212 if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
213 // According to psABI, PLT stub clobbers XMM8-XMM15.
214 // In Regcall calling convention those registers are used for passing
215 // parameters. Thus we need to prevent lazy binding in Regcall.
216 return X86II::MO_GOTPCREL;
217 // If PLT must be avoided then the call should be via GOTPCREL.
218 if (((F && F->hasFnAttribute(Attribute::NonLazyBind)) ||
219 (!F && M.getRtLibUseGOT())) &&
220 is64Bit())
221 return X86II::MO_GOTPCREL;
222 // Reference ExternalSymbol directly in static relocation model.
223 if (!is64Bit() && !GV && TM.getRelocationModel() == Reloc::Static)
224 return X86II::MO_NO_FLAG;
225 return X86II::MO_PLT;
226 }
227
228 if (is64Bit()) {
229 if (F && F->hasFnAttribute(Attribute::NonLazyBind))
230 // If the function is marked as non-lazy, generate an indirect call
231 // which loads from the GOT directly. This avoids runtime overhead
232 // at the cost of eager binding (and one extra byte of encoding).
233 return X86II::MO_GOTPCREL;
234 return X86II::MO_NO_FLAG;
235 }
236
237 return X86II::MO_NO_FLAG;
238}
239
240/// Return true if the subtarget allows calls to immediate address.
242 // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
243 // but WinCOFFObjectWriter::RecordRelocation cannot emit them. Once it does,
244 // the following check for Win32 should be removed.
245 if (Is64Bit || isTargetWin32())
246 return false;
247 return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
248}
249
250void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef TuneCPU,
251 StringRef FS) {
252 if (CPU.empty())
253 CPU = "generic";
254
255 if (TuneCPU.empty())
256 TuneCPU = "i586"; // FIXME: "generic" is more modern than llc tests expect.
257
258 std::string FullFS = X86_MC::ParseX86Triple(TargetTriple);
259 assert(!FullFS.empty() && "Failed to parse X86 triple");
260
261 if (!FS.empty())
262 FullFS = (Twine(FullFS) + "," + FS).str();
263
264 // Attach EVEX512 feature when we have AVX512 features with a default CPU.
265 // "pentium4" is default CPU for 32-bit targets.
266 // "x86-64" is default CPU for 64-bit targets.
267 if (CPU == "generic" || CPU == "pentium4" || CPU == "x86-64") {
268 size_t posNoEVEX512 = FS.rfind("-evex512");
269 // Make sure we won't be cheated by "-avx512fp16".
270 size_t posNoAVX512F =
271 FS.ends_with("-avx512f") ? FS.size() - 8 : FS.rfind("-avx512f,");
272 size_t posEVEX512 = FS.rfind("+evex512");
273 // Any AVX512XXX will enable AVX512F.
274 size_t posAVX512F = FS.rfind("+avx512");
275
276 if (posAVX512F != StringRef::npos &&
277 (posNoAVX512F == StringRef::npos || posNoAVX512F < posAVX512F))
278 if (posEVEX512 == StringRef::npos && posNoEVEX512 == StringRef::npos)
279 FullFS += ",+evex512";
280 }
281
282 // Disable 64-bit only features in non-64-bit mode.
283 SmallVector<StringRef, 9> FeaturesIn64BitOnly = {
284 "egpr", "push2pop2", "ppx", "ndd", "ccmp", "nf", "cf", "zu", "uintr"};
285 if (FullFS.find("-64bit-mode") != std::string::npos)
286 for (StringRef F : FeaturesIn64BitOnly)
287 FullFS += ",-" + F.str();
288
289 // Parse features string and set the CPU.
290 ParseSubtargetFeatures(CPU, TuneCPU, FullFS);
291
292 // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
293 // 16-bytes and under that are reasonably fast. These features were
294 // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
295 // micro-architectures respectively.
296 if (hasSSE42() || hasSSE4A())
297 IsUnalignedMem16Slow = false;
298
299 LLVM_DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
300 << ", MMX " << HasMMX << ", 64bit " << HasX86_64 << "\n");
301 if (Is64Bit && !HasX86_64)
302 report_fatal_error("64-bit code requested on a subtarget that doesn't "
303 "support it!");
304
305 // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD, NaCl, and for all
306 // 64-bit targets. On Solaris (32-bit), stack alignment is 4 bytes
307 // following the i386 psABI, while on Illumos it is always 16 bytes.
308 if (StackAlignOverride)
309 stackAlignment = *StackAlignOverride;
310 else if (isTargetDarwin() || isTargetLinux() || isTargetKFreeBSD() ||
311 isTargetNaCl() || Is64Bit)
312 stackAlignment = Align(16);
313
314 // Consume the vector width attribute or apply any target specific limit.
315 if (PreferVectorWidthOverride)
316 PreferVectorWidth = PreferVectorWidthOverride;
317 else if (Prefer128Bit)
318 PreferVectorWidth = 128;
319 else if (Prefer256Bit)
320 PreferVectorWidth = 256;
321}
322
323X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
324 StringRef TuneCPU,
325 StringRef FS) {
326 initSubtargetFeatures(CPU, TuneCPU, FS);
327 return *this;
328}
329
331 StringRef FS, const X86TargetMachine &TM,
332 MaybeAlign StackAlignOverride,
333 unsigned PreferVectorWidthOverride,
334 unsigned RequiredVectorWidth)
335 : X86GenSubtargetInfo(TT, CPU, TuneCPU, FS),
336 PICStyle(PICStyles::Style::None), TM(TM), TargetTriple(TT),
337 StackAlignOverride(StackAlignOverride),
338 PreferVectorWidthOverride(PreferVectorWidthOverride),
339 RequiredVectorWidth(RequiredVectorWidth),
340 InstrInfo(initializeSubtargetDependencies(CPU, TuneCPU, FS)),
341 TLInfo(TM, *this), FrameLowering(*this, getStackAlignment()) {
342 // Determine the PICStyle based on the target selected.
343 if (!isPositionIndependent() || TM.getCodeModel() == CodeModel::Large)
344 // With the large code model, None forces all memory accesses to be indirect
345 // rather than RIP-relative.
347 else if (is64Bit())
349 else if (isTargetCOFF())
351 else if (isTargetDarwin())
353 else if (isTargetELF())
355
356 CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
357 Legalizer.reset(new X86LegalizerInfo(*this, TM));
358
359 auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
360 RegBankInfo.reset(RBI);
361 InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
362}
363
365 return CallLoweringInfo.get();
366}
367
369 return InstSelector.get();
370}
371
373 return Legalizer.get();
374}
375
377 return RegBankInfo.get();
378}
379
381 return canUseCMOV() && X86EarlyIfConv;
382}
383
385 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
386 Mutations.push_back(createX86MacroFusionDAGMutation());
387}
388
390 return TM.isPositionIndependent();
391}
This file contains the simple types necessary to represent the attributes associated with functions a...
This file describes how to lower LLVM calls to machine code calls.
#define LLVM_DEBUG(X)
Definition: Debug.h:101
#define F(x, y, z)
Definition: MD5.cpp:55
Module.h This file contains the declarations for the Module class.
const char LLVMTargetMachineRef TM
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file describes how to lower LLVM calls to machine code calls.
static bool is64Bit(const char *name)
This file declares the targeting of the Machinelegalizer class for X86.
This file declares the targeting of the RegisterBankInfo class for X86.
static cl::opt< bool > X86EarlyIfConv("x86-early-ifcvt", cl::Hidden, cl::desc("Enable early if-conversion on X86"))
bool hasDLLImportStorageClass() const
Definition: GlobalValue.h:278
bool isDeclarationForLinker() const
Definition: GlobalValue.h:618
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:656
std::optional< ConstantRange > getAbsoluteSymbolRange() const
If this is an absolute symbol reference, returns the range of the symbol, otherwise returns std::null...
Definition: Globals.cpp:407
bool hasCommonLinkage() const
Definition: GlobalValue.h:532
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Holds all the information related to register banks.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1210
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:134
static constexpr size_t npos
Definition: StringRef.h:52
bool isPositionIndependent() const
Reloc::Model getRelocationModel() const
Returns the code generation relocation model.
bool shouldAssumeDSOLocal(const GlobalValue *GV) const
CodeModel::Model getCodeModel() const
Returns the code model.
bool isLargeGlobalValue(const GlobalValue *GV) const
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
This class provides the information for the target register banks.
bool enableEarlyIfConversion() const override
bool isOSWindows() const
Definition: X86Subtarget.h:322
bool isTargetKFreeBSD() const
Definition: X86Subtarget.h:291
bool hasSSE42() const
Definition: X86Subtarget.h:198
InstructionSelector * getInstructionSelector() const override
const X86TargetLowering * getTargetLowering() const override
Definition: X86Subtarget.h:118
bool canUseCMOV() const
Definition: X86Subtarget.h:192
bool isLegalToCallImmediateAddr() const
Return true if the subtarget allows calls to immediate address.
bool isTargetDarwin() const
Definition: X86Subtarget.h:280
const RegisterBankInfo * getRegBankInfo() const override
bool isTargetCOFF() const
Definition: X86Subtarget.h:287
bool isTargetNaCl() const
Definition: X86Subtarget.h:294
bool isTargetELF() const
Definition: X86Subtarget.h:286
unsigned char classifyGlobalReference(const GlobalValue *GV, const Module &M) const
const LegalizerInfo * getLegalizerInfo() const override
bool isPositionIndependent() const
unsigned char classifyLocalReference(const GlobalValue *GV) const
Classify a global variable reference for the current subtarget according to how we should reference i...
unsigned char classifyBlockAddressReference() const
Classify a blockaddress reference for the current subtarget according to how we should reference it i...
const X86RegisterInfo * getRegisterInfo() const override
Definition: X86Subtarget.h:132
void setPICStyle(PICStyles::Style Style)
Definition: X86Subtarget.h:183
X86Subtarget(const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS, const X86TargetMachine &TM, MaybeAlign StackAlignOverride, unsigned PreferVectorWidthOverride, unsigned RequiredVectorWidth)
This constructor initializes the data members to match that of the specified triple.
const CallLowering * getCallLowering() const override
Methods used by Global ISel.
void ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS)
ParseSubtargetFeatures - Parses features string setting specified subtarget options.
void getPostRAMutations(std::vector< std::unique_ptr< ScheduleDAGMutation > > &Mutations) const override
bool isTargetWin32() const
Definition: X86Subtarget.h:326
unsigned char classifyGlobalFunctionReference(const GlobalValue *GV, const Module &M) const
Classify a global function reference for the current subtarget.
bool isTargetLinux() const
Definition: X86Subtarget.h:290
@ X86_RegCall
Register calling convention used for parameters transfer optimization.
Definition: CallingConv.h:203
@ MO_GOTPCREL_NORELAX
MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL relocations are guaranteed to...
Definition: X86BaseInfo.h:391
@ MO_GOTOFF
MO_GOTOFF - On a symbol operand this indicates that the immediate is the offset to the location of th...
Definition: X86BaseInfo.h:381
@ MO_DARWIN_NONLAZY_PIC_BASE
MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates that the reference is actually...
Definition: X86BaseInfo.h:468
@ MO_COFFSTUB
MO_COFFSTUB - On a symbol operand "FOO", this indicates that the reference is actually to the "....
Definition: X86BaseInfo.h:488
@ MO_DARWIN_NONLAZY
MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the reference is actually to the "...
Definition: X86BaseInfo.h:464
@ MO_GOT
MO_GOT - On a symbol operand this indicates that the immediate is the offset to the GOT entry for the...
Definition: X86BaseInfo.h:376
@ MO_ABS8
MO_ABS8 - On a symbol operand this indicates that the symbol is known to be an absolute symbol in ran...
Definition: X86BaseInfo.h:484
@ MO_PLT
MO_PLT - On a symbol operand this indicates that the immediate is offset to the PLT entry of symbol n...
Definition: X86BaseInfo.h:396
@ MO_NO_FLAG
MO_NO_FLAG - No flag for the operand.
Definition: X86BaseInfo.h:363
@ MO_DLLIMPORT
MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the reference is actually to the "__imp...
Definition: X86BaseInfo.h:460
@ MO_PIC_BASE_OFFSET
MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the immediate should get the value of th...
Definition: X86BaseInfo.h:371
@ MO_GOTPCREL
MO_GOTPCREL - On a symbol operand this indicates that the immediate is offset to the GOT entry for th...
Definition: X86BaseInfo.h:387
std::string ParseX86Triple(const Triple &TT)
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
std::unique_ptr< ScheduleDAGMutation > createX86MacroFusionDAGMutation()
Note that you have to add: DAG.addMutation(createX86MacroFusionDAGMutation()); to X86PassConfig::crea...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
InstructionSelector * createX86InstructionSelector(const X86TargetMachine &TM, const X86Subtarget &, const X86RegisterBankInfo &)
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117