LLVM 20.0.0git
XCOFFObjectWriter.cpp
Go to the documentation of this file.
1//===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements XCOFF object file writer information.
10//
11//===----------------------------------------------------------------------===//
12
15#include "llvm/MC/MCAssembler.h"
16#include "llvm/MC/MCFixup.h"
21#include "llvm/MC/MCValue.h"
28
29#include <deque>
30#include <map>
31
32using namespace llvm;
33
34// An XCOFF object file has a limited set of predefined sections. The most
35// important ones for us (right now) are:
36// .text --> contains program code and read-only data.
37// .data --> contains initialized data, function descriptors, and the TOC.
38// .bss --> contains uninitialized data.
39// Each of these sections is composed of 'Control Sections'. A Control Section
40// is more commonly referred to as a csect. A csect is an indivisible unit of
41// code or data, and acts as a container for symbols. A csect is mapped
42// into a section based on its storage-mapping class, with the exception of
43// XMC_RW which gets mapped to either .data or .bss based on whether it's
44// explicitly initialized or not.
45//
46// We don't represent the sections in the MC layer as there is nothing
47// interesting about them at at that level: they carry information that is
48// only relevant to the ObjectWriter, so we materialize them in this class.
49namespace {
50
51constexpr unsigned DefaultSectionAlign = 4;
52constexpr int16_t MaxSectionIndex = INT16_MAX;
53
54// Packs the csect's alignment and type into a byte.
55uint8_t getEncodedType(const MCSectionXCOFF *);
56
57struct XCOFFRelocation {
58 uint32_t SymbolTableIndex;
59 uint32_t FixupOffsetInCsect;
60 uint8_t SignAndSize;
62};
63
64// Wrapper around an MCSymbolXCOFF.
65struct Symbol {
66 const MCSymbolXCOFF *const MCSym;
67 uint32_t SymbolTableIndex;
68
69 XCOFF::VisibilityType getVisibilityType() const {
70 return MCSym->getVisibilityType();
71 }
72
73 XCOFF::StorageClass getStorageClass() const {
74 return MCSym->getStorageClass();
75 }
76 StringRef getSymbolTableName() const { return MCSym->getSymbolTableName(); }
77 Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {}
78};
79
80// Wrapper for an MCSectionXCOFF.
81// It can be a Csect or debug section or DWARF section and so on.
82struct XCOFFSection {
83 const MCSectionXCOFF *const MCSec;
84 uint32_t SymbolTableIndex;
87
90 StringRef getSymbolTableName() const { return MCSec->getSymbolTableName(); }
91 XCOFF::VisibilityType getVisibilityType() const {
92 return MCSec->getVisibilityType();
93 }
94 XCOFFSection(const MCSectionXCOFF *MCSec)
95 : MCSec(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {}
96};
97
98// Type to be used for a container representing a set of csects with
99// (approximately) the same storage mapping class. For example all the csects
100// with a storage mapping class of `xmc_pr` will get placed into the same
101// container.
102using CsectGroup = std::deque<XCOFFSection>;
103using CsectGroups = std::deque<CsectGroup *>;
104
105// The basic section entry defination. This Section represents a section entry
106// in XCOFF section header table.
107struct SectionEntry {
108 char Name[XCOFF::NameSize];
109 // The physical/virtual address of the section. For an object file these
110 // values are equivalent, except for in the overflow section header, where
111 // the physical address specifies the number of relocation entries and the
112 // virtual address specifies the number of line number entries.
113 // TODO: Divide Address into PhysicalAddress and VirtualAddress when line
114 // number entries are supported.
117 uint64_t FileOffsetToData;
118 uint64_t FileOffsetToRelocations;
119 uint32_t RelocationCount;
120 int32_t Flags;
121
122 int16_t Index;
123
124 virtual uint64_t advanceFileOffset(const uint64_t MaxRawDataSize,
125 const uint64_t RawPointer) {
126 FileOffsetToData = RawPointer;
127 uint64_t NewPointer = RawPointer + Size;
128 if (NewPointer > MaxRawDataSize)
129 report_fatal_error("Section raw data overflowed this object file.");
130 return NewPointer;
131 }
132
133 // XCOFF has special section numbers for symbols:
134 // -2 Specifies N_DEBUG, a special symbolic debugging symbol.
135 // -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not
136 // relocatable.
137 // 0 Specifies N_UNDEF, an undefined external symbol.
138 // Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that
139 // hasn't been initialized.
140 static constexpr int16_t UninitializedIndex =
142
143 SectionEntry(StringRef N, int32_t Flags)
144 : Name(), Address(0), Size(0), FileOffsetToData(0),
145 FileOffsetToRelocations(0), RelocationCount(0), Flags(Flags),
146 Index(UninitializedIndex) {
147 assert(N.size() <= XCOFF::NameSize && "section name too long");
148 memcpy(Name, N.data(), N.size());
149 }
150
151 virtual void reset() {
152 Address = 0;
153 Size = 0;
154 FileOffsetToData = 0;
155 FileOffsetToRelocations = 0;
156 RelocationCount = 0;
157 Index = UninitializedIndex;
158 }
159
160 virtual ~SectionEntry() = default;
161};
162
163// Represents the data related to a section excluding the csects that make up
164// the raw data of the section. The csects are stored separately as not all
165// sections contain csects, and some sections contain csects which are better
166// stored separately, e.g. the .data section containing read-write, descriptor,
167// TOCBase and TOC-entry csects.
168struct CsectSectionEntry : public SectionEntry {
169 // Virtual sections do not need storage allocated in the object file.
170 const bool IsVirtual;
171
172 // This is a section containing csect groups.
173 CsectGroups Groups;
174
175 CsectSectionEntry(StringRef N, XCOFF::SectionTypeFlags Flags, bool IsVirtual,
176 CsectGroups Groups)
177 : SectionEntry(N, Flags), IsVirtual(IsVirtual), Groups(Groups) {
178 assert(N.size() <= XCOFF::NameSize && "section name too long");
179 memcpy(Name, N.data(), N.size());
180 }
181
182 void reset() override {
183 SectionEntry::reset();
184 // Clear any csects we have stored.
185 for (auto *Group : Groups)
186 Group->clear();
187 }
188
189 virtual ~CsectSectionEntry() = default;
190};
191
192struct DwarfSectionEntry : public SectionEntry {
193 // For DWARF section entry.
194 std::unique_ptr<XCOFFSection> DwarfSect;
195
196 // For DWARF section, we must use real size in the section header. MemorySize
197 // is for the size the DWARF section occupies including paddings.
198 uint32_t MemorySize;
199
200 // TODO: Remove this override. Loadable sections (e.g., .text, .data) may need
201 // to be aligned. Other sections generally don't need any alignment, but if
202 // they're aligned, the RawPointer should be adjusted before writing the
203 // section. Then a dwarf-specific function wouldn't be needed.
204 uint64_t advanceFileOffset(const uint64_t MaxRawDataSize,
205 const uint64_t RawPointer) override {
206 FileOffsetToData = RawPointer;
207 uint64_t NewPointer = RawPointer + MemorySize;
208 assert(NewPointer <= MaxRawDataSize &&
209 "Section raw data overflowed this object file.");
210 return NewPointer;
211 }
212
213 DwarfSectionEntry(StringRef N, int32_t Flags,
214 std::unique_ptr<XCOFFSection> Sect)
215 : SectionEntry(N, Flags | XCOFF::STYP_DWARF), DwarfSect(std::move(Sect)),
216 MemorySize(0) {
217 assert(DwarfSect->MCSec->isDwarfSect() &&
218 "This should be a DWARF section!");
219 assert(N.size() <= XCOFF::NameSize && "section name too long");
220 memcpy(Name, N.data(), N.size());
221 }
222
223 DwarfSectionEntry(DwarfSectionEntry &&s) = default;
224
225 virtual ~DwarfSectionEntry() = default;
226};
227
228struct ExceptionTableEntry {
229 const MCSymbol *Trap;
230 uint64_t TrapAddress = ~0ul;
231 unsigned Lang;
232 unsigned Reason;
233
234 ExceptionTableEntry(const MCSymbol *Trap, unsigned Lang, unsigned Reason)
235 : Trap(Trap), Lang(Lang), Reason(Reason) {}
236};
237
238struct ExceptionInfo {
240 unsigned FunctionSize;
241 std::vector<ExceptionTableEntry> Entries;
242};
243
244struct ExceptionSectionEntry : public SectionEntry {
245 std::map<const StringRef, ExceptionInfo> ExceptionTable;
246 bool isDebugEnabled = false;
247
248 ExceptionSectionEntry(StringRef N, int32_t Flags)
249 : SectionEntry(N, Flags | XCOFF::STYP_EXCEPT) {
250 assert(N.size() <= XCOFF::NameSize && "Section too long.");
251 memcpy(Name, N.data(), N.size());
252 }
253
254 virtual ~ExceptionSectionEntry() = default;
255};
256
257struct CInfoSymInfo {
258 // Name of the C_INFO symbol associated with the section
259 std::string Name;
260 std::string Metadata;
261 // Offset into the start of the metadata in the section
263
264 CInfoSymInfo(std::string Name, std::string Metadata)
265 : Name(Name), Metadata(Metadata) {}
266 // Metadata needs to be padded out to an even word size.
267 uint32_t paddingSize() const {
268 return alignTo(Metadata.size(), sizeof(uint32_t)) - Metadata.size();
269 };
270
271 // Total size of the entry, including the 4 byte length
272 uint32_t size() const {
273 return Metadata.size() + paddingSize() + sizeof(uint32_t);
274 };
275};
276
277struct CInfoSymSectionEntry : public SectionEntry {
278 std::unique_ptr<CInfoSymInfo> Entry;
279
280 CInfoSymSectionEntry(StringRef N, int32_t Flags) : SectionEntry(N, Flags) {}
281 virtual ~CInfoSymSectionEntry() = default;
282 void addEntry(std::unique_ptr<CInfoSymInfo> NewEntry) {
283 Entry = std::move(NewEntry);
284 Entry->Offset = sizeof(uint32_t);
285 Size += Entry->size();
286 }
287 void reset() override {
288 SectionEntry::reset();
289 Entry.reset();
290 }
291};
292
293class XCOFFWriter final : public XCOFFObjectWriter {
294 uint32_t SymbolTableEntryCount = 0;
295 uint64_t SymbolTableOffset = 0;
296 uint16_t SectionCount = 0;
297 uint32_t PaddingsBeforeDwarf = 0;
298 bool HasVisibility = false;
299
301 std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter;
302 StringTableBuilder Strings;
303
304 const uint64_t MaxRawDataSize =
305 TargetObjectWriter->is64Bit() ? UINT64_MAX : UINT32_MAX;
306
307 // Maps the MCSection representation to its corresponding XCOFFSection
308 // wrapper. Needed for finding the XCOFFSection to insert an MCSymbol into
309 // from its containing MCSectionXCOFF.
311
312 // Maps the MCSymbol representation to its corrresponding symbol table index.
313 // Needed for relocation.
315
316 // CsectGroups. These store the csects which make up different parts of
317 // the sections. Should have one for each set of csects that get mapped into
318 // the same section and get handled in a 'similar' way.
319 CsectGroup UndefinedCsects;
320 CsectGroup ProgramCodeCsects;
321 CsectGroup ReadOnlyCsects;
322 CsectGroup DataCsects;
323 CsectGroup FuncDSCsects;
324 CsectGroup TOCCsects;
325 CsectGroup BSSCsects;
326 CsectGroup TDataCsects;
327 CsectGroup TBSSCsects;
328
329 // The Predefined sections.
330 CsectSectionEntry Text;
331 CsectSectionEntry Data;
332 CsectSectionEntry BSS;
333 CsectSectionEntry TData;
334 CsectSectionEntry TBSS;
335
336 // All the XCOFF sections, in the order they will appear in the section header
337 // table.
338 std::array<CsectSectionEntry *const, 5> Sections{
339 {&Text, &Data, &BSS, &TData, &TBSS}};
340
341 std::vector<DwarfSectionEntry> DwarfSections;
342 std::vector<SectionEntry> OverflowSections;
343
344 ExceptionSectionEntry ExceptionSection;
345 CInfoSymSectionEntry CInfoSymSection;
346
347 CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec);
348
349 void reset() override;
350
351 void executePostLayoutBinding(MCAssembler &) override;
352
353 void recordRelocation(MCAssembler &, const MCFragment *, const MCFixup &,
354 MCValue, uint64_t &) override;
355
356 uint64_t writeObject(MCAssembler &) override;
357
358 bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
359 bool nameShouldBeInStringTable(const StringRef &);
360 void writeSymbolName(const StringRef &);
361 bool auxFileSymNameShouldBeInStringTable(const StringRef &);
362 void writeAuxFileSymName(const StringRef &);
363
364 void writeSymbolEntryForCsectMemberLabel(const Symbol &SymbolRef,
365 const XCOFFSection &CSectionRef,
366 int16_t SectionIndex,
367 uint64_t SymbolOffset);
368 void writeSymbolEntryForControlSection(const XCOFFSection &CSectionRef,
369 int16_t SectionIndex,
371 void writeSymbolEntryForDwarfSection(const XCOFFSection &DwarfSectionRef,
372 int16_t SectionIndex);
373 void writeFileHeader();
374 void writeAuxFileHeader();
375 void writeSectionHeader(const SectionEntry *Sec);
376 void writeSectionHeaderTable();
377 void writeSections(const MCAssembler &Asm);
378 void writeSectionForControlSectionEntry(const MCAssembler &Asm,
379 const CsectSectionEntry &CsectEntry,
380 uint64_t &CurrentAddressLocation);
381 void writeSectionForDwarfSectionEntry(const MCAssembler &Asm,
382 const DwarfSectionEntry &DwarfEntry,
383 uint64_t &CurrentAddressLocation);
384 void
385 writeSectionForExceptionSectionEntry(const MCAssembler &Asm,
386 ExceptionSectionEntry &ExceptionEntry,
387 uint64_t &CurrentAddressLocation);
388 void writeSectionForCInfoSymSectionEntry(const MCAssembler &Asm,
389 CInfoSymSectionEntry &CInfoSymEntry,
390 uint64_t &CurrentAddressLocation);
391 void writeSymbolTable(MCAssembler &Asm);
392 void writeSymbolAuxFileEntry(StringRef &Name, uint8_t ftype);
393 void writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion,
394 uint64_t NumberOfRelocEnt = 0);
395 void writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
396 uint8_t SymbolAlignmentAndType,
398 void writeSymbolAuxFunctionEntry(uint32_t EntryOffset, uint32_t FunctionSize,
399 uint64_t LineNumberPointer,
400 uint32_t EndIndex);
401 void writeSymbolAuxExceptionEntry(uint64_t EntryOffset, uint32_t FunctionSize,
402 uint32_t EndIndex);
403 void writeSymbolEntry(StringRef SymbolName, uint64_t Value,
404 int16_t SectionNumber, uint16_t SymbolType,
405 uint8_t StorageClass, uint8_t NumberOfAuxEntries = 1);
406 void writeRelocations();
407 void writeRelocation(XCOFFRelocation Reloc, const XCOFFSection &Section);
408
409 // Called after all the csects and symbols have been processed by
410 // `executePostLayoutBinding`, this function handles building up the majority
411 // of the structures in the object file representation. Namely:
412 // *) Calculates physical/virtual addresses, raw-pointer offsets, and section
413 // sizes.
414 // *) Assigns symbol table indices.
415 // *) Builds up the section header table by adding any non-empty sections to
416 // `Sections`.
417 void assignAddressesAndIndices(MCAssembler &Asm);
418 // Called after relocations are recorded.
419 void finalizeSectionInfo();
420 void finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount);
421 void calcOffsetToRelocations(SectionEntry *Sec, uint64_t &RawPointer);
422
423 bool hasExceptionSection() {
424 return !ExceptionSection.ExceptionTable.empty();
425 }
426 unsigned getExceptionSectionSize();
427 unsigned getExceptionOffset(const MCSymbol *Symbol);
428
429 size_t auxiliaryHeaderSize() const {
430 // 64-bit object files have no auxiliary header.
431 return HasVisibility && !is64Bit() ? XCOFF::AuxFileHeaderSizeShort : 0;
432 }
433
434public:
435 XCOFFWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
437
438 void writeWord(uint64_t Word) {
439 is64Bit() ? W.write<uint64_t>(Word) : W.write<uint32_t>(Word);
440 }
441
442 void addExceptionEntry(const MCSymbol *Symbol, const MCSymbol *Trap,
443 unsigned LanguageCode, unsigned ReasonCode,
444 unsigned FunctionSize, bool hasDebug) override;
446};
447
448XCOFFWriter::XCOFFWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
450 : W(OS, llvm::endianness::big), TargetObjectWriter(std::move(MOTW)),
451 Strings(StringTableBuilder::XCOFF),
452 Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false,
453 CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}),
454 Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false,
455 CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}),
456 BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true,
457 CsectGroups{&BSSCsects}),
458 TData(".tdata", XCOFF::STYP_TDATA, /* IsVirtual */ false,
459 CsectGroups{&TDataCsects}),
460 TBSS(".tbss", XCOFF::STYP_TBSS, /* IsVirtual */ true,
461 CsectGroups{&TBSSCsects}),
462 ExceptionSection(".except", XCOFF::STYP_EXCEPT),
463 CInfoSymSection(".info", XCOFF::STYP_INFO) {}
464
465void XCOFFWriter::reset() {
466 // Clear the mappings we created.
467 SymbolIndexMap.clear();
468 SectionMap.clear();
469
470 UndefinedCsects.clear();
471 // Reset any sections we have written to, and empty the section header table.
472 for (auto *Sec : Sections)
473 Sec->reset();
474 for (auto &DwarfSec : DwarfSections)
475 DwarfSec.reset();
476 for (auto &OverflowSec : OverflowSections)
477 OverflowSec.reset();
478 ExceptionSection.reset();
479 CInfoSymSection.reset();
480
481 // Reset states in XCOFFWriter.
482 SymbolTableEntryCount = 0;
483 SymbolTableOffset = 0;
484 SectionCount = 0;
485 PaddingsBeforeDwarf = 0;
486 Strings.clear();
487
489}
490
491CsectGroup &XCOFFWriter::getCsectGroup(const MCSectionXCOFF *MCSec) {
492 switch (MCSec->getMappingClass()) {
493 case XCOFF::XMC_PR:
494 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
495 "Only an initialized csect can contain program code.");
496 return ProgramCodeCsects;
497 case XCOFF::XMC_RO:
498 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
499 "Only an initialized csect can contain read only data.");
500 return ReadOnlyCsects;
501 case XCOFF::XMC_RW:
502 if (XCOFF::XTY_CM == MCSec->getCSectType())
503 return BSSCsects;
504
505 if (XCOFF::XTY_SD == MCSec->getCSectType())
506 return DataCsects;
507
508 report_fatal_error("Unhandled mapping of read-write csect to section.");
509 case XCOFF::XMC_DS:
510 return FuncDSCsects;
511 case XCOFF::XMC_BS:
512 assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
513 "Mapping invalid csect. CSECT with bss storage class must be "
514 "common type.");
515 return BSSCsects;
516 case XCOFF::XMC_TL:
517 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
518 "Mapping invalid csect. CSECT with tdata storage class must be "
519 "an initialized csect.");
520 return TDataCsects;
521 case XCOFF::XMC_UL:
522 assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
523 "Mapping invalid csect. CSECT with tbss storage class must be "
524 "an uninitialized csect.");
525 return TBSSCsects;
526 case XCOFF::XMC_TC0:
527 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
528 "Only an initialized csect can contain TOC-base.");
529 assert(TOCCsects.empty() &&
530 "We should have only one TOC-base, and it should be the first csect "
531 "in this CsectGroup.");
532 return TOCCsects;
533 case XCOFF::XMC_TC:
534 case XCOFF::XMC_TE:
535 assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
536 "A TOC symbol must be an initialized csect.");
537 assert(!TOCCsects.empty() &&
538 "We should at least have a TOC-base in this CsectGroup.");
539 return TOCCsects;
540 case XCOFF::XMC_TD:
541 assert((XCOFF::XTY_SD == MCSec->getCSectType() ||
542 XCOFF::XTY_CM == MCSec->getCSectType()) &&
543 "Symbol type incompatible with toc-data.");
544 assert(!TOCCsects.empty() &&
545 "We should at least have a TOC-base in this CsectGroup.");
546 return TOCCsects;
547 default:
548 report_fatal_error("Unhandled mapping of csect to section.");
549 }
550}
551
552static MCSectionXCOFF *getContainingCsect(const MCSymbolXCOFF *XSym) {
553 if (XSym->isDefined())
554 return cast<MCSectionXCOFF>(XSym->getFragment()->getParent());
555 return XSym->getRepresentedCsect();
556}
557
558void XCOFFWriter::executePostLayoutBinding(MCAssembler &Asm) {
559 for (const auto &S : Asm) {
560 const auto *MCSec = cast<const MCSectionXCOFF>(&S);
561 assert(!SectionMap.contains(MCSec) && "Cannot add a section twice.");
562
563 // If the name does not fit in the storage provided in the symbol table
564 // entry, add it to the string table.
565 if (nameShouldBeInStringTable(MCSec->getSymbolTableName()))
566 Strings.add(MCSec->getSymbolTableName());
567 if (MCSec->isCsect()) {
568 // A new control section. Its CsectSectionEntry should already be staticly
569 // generated as Text/Data/BSS/TDATA/TBSS. Add this section to the group of
570 // the CsectSectionEntry.
571 assert(XCOFF::XTY_ER != MCSec->getCSectType() &&
572 "An undefined csect should not get registered.");
573 CsectGroup &Group = getCsectGroup(MCSec);
574 Group.emplace_back(MCSec);
575 SectionMap[MCSec] = &Group.back();
576 } else if (MCSec->isDwarfSect()) {
577 // A new DwarfSectionEntry.
578 std::unique_ptr<XCOFFSection> DwarfSec =
579 std::make_unique<XCOFFSection>(MCSec);
580 SectionMap[MCSec] = DwarfSec.get();
581
582 DwarfSectionEntry SecEntry(MCSec->getName(),
583 *MCSec->getDwarfSubtypeFlags(),
584 std::move(DwarfSec));
585 DwarfSections.push_back(std::move(SecEntry));
586 } else
587 llvm_unreachable("unsupport section type!");
588 }
589
590 for (const MCSymbol &S : Asm.symbols()) {
591 // Nothing to do for temporary symbols.
592 if (S.isTemporary())
593 continue;
594
595 const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S);
596 const MCSectionXCOFF *ContainingCsect = getContainingCsect(XSym);
597
598 if (ContainingCsect->isDwarfSect())
599 continue;
600
602 HasVisibility = true;
603
604 if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) {
605 // Handle undefined symbol.
606 UndefinedCsects.emplace_back(ContainingCsect);
607 SectionMap[ContainingCsect] = &UndefinedCsects.back();
608 if (nameShouldBeInStringTable(ContainingCsect->getSymbolTableName()))
609 Strings.add(ContainingCsect->getSymbolTableName());
610 continue;
611 }
612
613 // If the symbol is the csect itself, we don't need to put the symbol
614 // into csect's Syms.
615 if (XSym == ContainingCsect->getQualNameSymbol())
616 continue;
617
618 // Only put a label into the symbol table when it is an external label.
619 if (!XSym->isExternal())
620 continue;
621
622 assert(SectionMap.contains(ContainingCsect) &&
623 "Expected containing csect to exist in map");
624 XCOFFSection *Csect = SectionMap[ContainingCsect];
625 // Lookup the containing csect and add the symbol to it.
626 assert(Csect->MCSec->isCsect() && "only csect is supported now!");
627 Csect->Syms.emplace_back(XSym);
628
629 // If the name does not fit in the storage provided in the symbol table
630 // entry, add it to the string table.
631 if (nameShouldBeInStringTable(XSym->getSymbolTableName()))
632 Strings.add(XSym->getSymbolTableName());
633 }
634
635 std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymSection.Entry;
636 if (CISI && nameShouldBeInStringTable(CISI->Name))
637 Strings.add(CISI->Name);
638
639 // Emit ".file" as the source file name when there is no file name.
640 if (FileNames.empty())
641 FileNames.emplace_back(".file", 0);
642 for (const std::pair<std::string, size_t> &F : FileNames) {
643 if (auxFileSymNameShouldBeInStringTable(F.first))
644 Strings.add(F.first);
645 }
646
647 // Always add ".file" to the symbol table. The actual file name will be in
648 // the AUX_FILE auxiliary entry.
649 if (nameShouldBeInStringTable(".file"))
650 Strings.add(".file");
651 StringRef Vers = CompilerVersion;
652 if (auxFileSymNameShouldBeInStringTable(Vers))
653 Strings.add(Vers);
654
655 Strings.finalize();
656 assignAddressesAndIndices(Asm);
657}
658
659void XCOFFWriter::recordRelocation(MCAssembler &Asm, const MCFragment *Fragment,
660 const MCFixup &Fixup, MCValue Target,
661 uint64_t &FixedValue) {
662 auto getIndex = [this](const MCSymbol *Sym,
663 const MCSectionXCOFF *ContainingCsect) {
664 // If we could not find the symbol directly in SymbolIndexMap, this symbol
665 // could either be a temporary symbol or an undefined symbol. In this case,
666 // we would need to have the relocation reference its csect instead.
667 auto It = SymbolIndexMap.find(Sym);
668 return It != SymbolIndexMap.end()
669 ? It->second
670 : SymbolIndexMap[ContainingCsect->getQualNameSymbol()];
671 };
672
673 auto getVirtualAddress =
674 [this, &Asm](const MCSymbol *Sym,
675 const MCSectionXCOFF *ContainingSect) -> uint64_t {
676 // A DWARF section.
677 if (ContainingSect->isDwarfSect())
678 return Asm.getSymbolOffset(*Sym);
679
680 // A csect.
681 if (!Sym->isDefined())
682 return SectionMap[ContainingSect]->Address;
683
684 // A label.
685 assert(Sym->isDefined() && "not a valid object that has address!");
686 return SectionMap[ContainingSect]->Address + Asm.getSymbolOffset(*Sym);
687 };
688
689 const MCSymbol *const SymA = &Target.getSymA()->getSymbol();
690
691 MCAsmBackend &Backend = Asm.getBackend();
692 bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
694
696 uint8_t SignAndSize;
697 std::tie(Type, SignAndSize) =
698 TargetObjectWriter->getRelocTypeAndSignSize(Target, Fixup, IsPCRel);
699
700 const MCSectionXCOFF *SymASec = getContainingCsect(cast<MCSymbolXCOFF>(SymA));
701 assert(SectionMap.contains(SymASec) &&
702 "Expected containing csect to exist in map.");
703
704 assert((Fixup.getOffset() <=
705 MaxRawDataSize - Asm.getFragmentOffset(*Fragment)) &&
706 "Fragment offset + fixup offset is overflowed.");
707 uint32_t FixupOffsetInCsect =
708 Asm.getFragmentOffset(*Fragment) + Fixup.getOffset();
709
710 const uint32_t Index = getIndex(SymA, SymASec);
711 if (Type == XCOFF::RelocationType::R_POS ||
712 Type == XCOFF::RelocationType::R_TLS ||
713 Type == XCOFF::RelocationType::R_TLS_LE ||
714 Type == XCOFF::RelocationType::R_TLS_IE ||
715 Type == XCOFF::RelocationType::R_TLS_LD)
716 // The FixedValue should be symbol's virtual address in this object file
717 // plus any constant value that we might get.
718 FixedValue = getVirtualAddress(SymA, SymASec) + Target.getConstant();
719 else if (Type == XCOFF::RelocationType::R_TLSM)
720 // The FixedValue should always be zero since the region handle is only
721 // known at load time.
722 FixedValue = 0;
723 else if (Type == XCOFF::RelocationType::R_TOC ||
724 Type == XCOFF::RelocationType::R_TOCL) {
725 // For non toc-data external symbols, R_TOC type relocation will relocate to
726 // data symbols that have XCOFF::XTY_SD type csect. For toc-data external
727 // symbols, R_TOC type relocation will relocate to data symbols that have
728 // XCOFF_ER type csect. For XCOFF_ER kind symbols, there will be no TOC
729 // entry for them, so the FixedValue should always be 0.
730 if (SymASec->getCSectType() == XCOFF::XTY_ER) {
731 FixedValue = 0;
732 } else {
733 // The FixedValue should be the TOC entry offset from the TOC-base plus
734 // any constant offset value.
735 int64_t TOCEntryOffset = SectionMap[SymASec]->Address -
736 TOCCsects.front().Address + Target.getConstant();
737 // For small code model, if the TOCEntryOffset overflows the 16-bit value,
738 // we truncate it back down to 16 bits. The linker will be able to insert
739 // fix-up code when needed.
740 // For non toc-data symbols, we already did the truncation in
741 // PPCAsmPrinter.cpp through setting Target.getConstant() in the
742 // expression above by calling getTOCEntryLoadingExprForXCOFF for the
743 // various TOC PseudoOps.
744 // For toc-data symbols, we were not able to calculate the offset from
745 // the TOC in PPCAsmPrinter.cpp since the TOC has not been finalized at
746 // that point, so we are adjusting it here though
747 // llvm::SignExtend64<16>(TOCEntryOffset);
748 // TODO: Since the time that the handling for offsets over 16-bits was
749 // added in PPCAsmPrinter.cpp using getTOCEntryLoadingExprForXCOFF, the
750 // system assembler and linker have been updated to be able to handle the
751 // overflowing offsets, so we no longer need to keep
752 // getTOCEntryLoadingExprForXCOFF.
753 if (Type == XCOFF::RelocationType::R_TOC && !isInt<16>(TOCEntryOffset))
754 TOCEntryOffset = llvm::SignExtend64<16>(TOCEntryOffset);
755
756 FixedValue = TOCEntryOffset;
757 }
758 } else if (Type == XCOFF::RelocationType::R_RBR) {
759 MCSectionXCOFF *ParentSec = cast<MCSectionXCOFF>(Fragment->getParent());
760 assert((SymASec->getMappingClass() == XCOFF::XMC_PR &&
761 ParentSec->getMappingClass() == XCOFF::XMC_PR) &&
762 "Only XMC_PR csect may have the R_RBR relocation.");
763
764 // The address of the branch instruction should be the sum of section
765 // address, fragment offset and Fixup offset.
766 uint64_t BRInstrAddress =
767 SectionMap[ParentSec]->Address + FixupOffsetInCsect;
768 // The FixedValue should be the difference between symbol's virtual address
769 // and BR instr address plus any constant value.
770 FixedValue = getVirtualAddress(SymA, SymASec) - BRInstrAddress +
771 Target.getConstant();
772 } else if (Type == XCOFF::RelocationType::R_REF) {
773 // The FixedValue and FixupOffsetInCsect should always be 0 since it
774 // specifies a nonrelocating reference.
775 FixedValue = 0;
776 FixupOffsetInCsect = 0;
777 }
778
779 XCOFFRelocation Reloc = {Index, FixupOffsetInCsect, SignAndSize, Type};
780 MCSectionXCOFF *RelocationSec = cast<MCSectionXCOFF>(Fragment->getParent());
781 assert(SectionMap.contains(RelocationSec) &&
782 "Expected containing csect to exist in map.");
783 SectionMap[RelocationSec]->Relocations.push_back(Reloc);
784
785 if (!Target.getSymB())
786 return;
787
788 const MCSymbol *const SymB = &Target.getSymB()->getSymbol();
789 if (SymA == SymB)
790 report_fatal_error("relocation for opposite term is not yet supported");
791
792 const MCSectionXCOFF *SymBSec = getContainingCsect(cast<MCSymbolXCOFF>(SymB));
793 assert(SectionMap.contains(SymBSec) &&
794 "Expected containing csect to exist in map.");
795 if (SymASec == SymBSec)
797 "relocation for paired relocatable term is not yet supported");
798
799 assert(Type == XCOFF::RelocationType::R_POS &&
800 "SymA must be R_POS here if it's not opposite term or paired "
801 "relocatable term.");
802 const uint32_t IndexB = getIndex(SymB, SymBSec);
803 // SymB must be R_NEG here, given the general form of Target(MCValue) is
804 // "SymbolA - SymbolB + imm64".
805 const uint8_t TypeB = XCOFF::RelocationType::R_NEG;
806 XCOFFRelocation RelocB = {IndexB, FixupOffsetInCsect, SignAndSize, TypeB};
807 SectionMap[RelocationSec]->Relocations.push_back(RelocB);
808 // We already folded "SymbolA + imm64" above when Type is R_POS for SymbolA,
809 // now we just need to fold "- SymbolB" here.
810 FixedValue -= getVirtualAddress(SymB, SymBSec);
811}
812
813void XCOFFWriter::writeSections(const MCAssembler &Asm) {
814 uint64_t CurrentAddressLocation = 0;
815 for (const auto *Section : Sections)
816 writeSectionForControlSectionEntry(Asm, *Section, CurrentAddressLocation);
817 for (const auto &DwarfSection : DwarfSections)
818 writeSectionForDwarfSectionEntry(Asm, DwarfSection, CurrentAddressLocation);
819 writeSectionForExceptionSectionEntry(Asm, ExceptionSection,
820 CurrentAddressLocation);
821 writeSectionForCInfoSymSectionEntry(Asm, CInfoSymSection,
822 CurrentAddressLocation);
823}
824
825uint64_t XCOFFWriter::writeObject(MCAssembler &Asm) {
826 // We always emit a timestamp of 0 for reproducibility, so ensure incremental
827 // linking is not enabled, in case, like with Windows COFF, such a timestamp
828 // is incompatible with incremental linking of XCOFF.
829
830 finalizeSectionInfo();
831 uint64_t StartOffset = W.OS.tell();
832
833 writeFileHeader();
834 writeAuxFileHeader();
835 writeSectionHeaderTable();
836 writeSections(Asm);
837 writeRelocations();
838 writeSymbolTable(Asm);
839 // Write the string table.
840 Strings.write(W.OS);
841
842 return W.OS.tell() - StartOffset;
843}
844
845bool XCOFFWriter::nameShouldBeInStringTable(const StringRef &SymbolName) {
846 return SymbolName.size() > XCOFF::NameSize || is64Bit();
847}
848
849void XCOFFWriter::writeSymbolName(const StringRef &SymbolName) {
850 // Magic, Offset or SymbolName.
851 if (nameShouldBeInStringTable(SymbolName)) {
852 W.write<int32_t>(0);
853 W.write<uint32_t>(Strings.getOffset(SymbolName));
854 } else {
855 char Name[XCOFF::NameSize + 1];
856 std::strncpy(Name, SymbolName.data(), XCOFF::NameSize);
858 W.write(NameRef);
859 }
860}
861
862void XCOFFWriter::writeSymbolEntry(StringRef SymbolName, uint64_t Value,
863 int16_t SectionNumber, uint16_t SymbolType,
865 uint8_t NumberOfAuxEntries) {
866 if (is64Bit()) {
867 W.write<uint64_t>(Value);
868 W.write<uint32_t>(Strings.getOffset(SymbolName));
869 } else {
870 writeSymbolName(SymbolName);
871 W.write<uint32_t>(Value);
872 }
873 W.write<int16_t>(SectionNumber);
874 W.write<uint16_t>(SymbolType);
875 W.write<uint8_t>(StorageClass);
876 W.write<uint8_t>(NumberOfAuxEntries);
877}
878
879void XCOFFWriter::writeSymbolAuxCsectEntry(uint64_t SectionOrLength,
880 uint8_t SymbolAlignmentAndType,
882 W.write<uint32_t>(is64Bit() ? Lo_32(SectionOrLength) : SectionOrLength);
883 W.write<uint32_t>(0); // ParameterHashIndex
884 W.write<uint16_t>(0); // TypeChkSectNum
885 W.write<uint8_t>(SymbolAlignmentAndType);
887 if (is64Bit()) {
888 W.write<uint32_t>(Hi_32(SectionOrLength));
889 W.OS.write_zeros(1); // Reserved
890 W.write<uint8_t>(XCOFF::AUX_CSECT);
891 } else {
892 W.write<uint32_t>(0); // StabInfoIndex
893 W.write<uint16_t>(0); // StabSectNum
894 }
895}
896
897bool XCOFFWriter::auxFileSymNameShouldBeInStringTable(
898 const StringRef &SymbolName) {
900}
901
902void XCOFFWriter::writeAuxFileSymName(const StringRef &SymbolName) {
903 // Magic, Offset or SymbolName.
904 if (auxFileSymNameShouldBeInStringTable(SymbolName)) {
905 W.write<int32_t>(0);
906 W.write<uint32_t>(Strings.getOffset(SymbolName));
907 W.OS.write_zeros(XCOFF::FileNamePadSize);
908 } else {
910 std::strncpy(Name, SymbolName.data(), XCOFF::AuxFileEntNameSize);
912 W.write(NameRef);
913 }
914}
915
916void XCOFFWriter::writeSymbolAuxFileEntry(StringRef &Name, uint8_t ftype) {
917 writeAuxFileSymName(Name);
918 W.write<uint8_t>(ftype);
919 W.OS.write_zeros(2);
920 if (is64Bit())
921 W.write<uint8_t>(XCOFF::AUX_FILE);
922 else
923 W.OS.write_zeros(1);
924}
925
926void XCOFFWriter::writeSymbolAuxDwarfEntry(uint64_t LengthOfSectionPortion,
927 uint64_t NumberOfRelocEnt) {
928 writeWord(LengthOfSectionPortion);
929 if (!is64Bit())
930 W.OS.write_zeros(4); // Reserved
931 writeWord(NumberOfRelocEnt);
932 if (is64Bit()) {
933 W.OS.write_zeros(1); // Reserved
934 W.write<uint8_t>(XCOFF::AUX_SECT);
935 } else {
936 W.OS.write_zeros(6); // Reserved
937 }
938}
939
940void XCOFFWriter::writeSymbolEntryForCsectMemberLabel(
941 const Symbol &SymbolRef, const XCOFFSection &CSectionRef,
942 int16_t SectionIndex, uint64_t SymbolOffset) {
943 assert(SymbolOffset <= MaxRawDataSize - CSectionRef.Address &&
944 "Symbol address overflowed.");
945
946 auto Entry = ExceptionSection.ExceptionTable.find(SymbolRef.MCSym->getName());
947 if (Entry != ExceptionSection.ExceptionTable.end()) {
948 writeSymbolEntry(SymbolRef.getSymbolTableName(),
949 CSectionRef.Address + SymbolOffset, SectionIndex,
950 // In the old version of the 32-bit XCOFF interpretation,
951 // symbols may require bit 10 (0x0020) to be set if the
952 // symbol is a function, otherwise the bit should be 0.
953 is64Bit() ? SymbolRef.getVisibilityType()
954 : SymbolRef.getVisibilityType() | 0x0020,
955 SymbolRef.getStorageClass(),
956 (is64Bit() && ExceptionSection.isDebugEnabled) ? 3 : 2);
957 if (is64Bit() && ExceptionSection.isDebugEnabled) {
958 // On 64 bit with debugging enabled, we have a csect, exception, and
959 // function auxilliary entries, so we must increment symbol index by 4.
960 writeSymbolAuxExceptionEntry(
961 ExceptionSection.FileOffsetToData +
962 getExceptionOffset(Entry->second.FunctionSymbol),
963 Entry->second.FunctionSize,
964 SymbolIndexMap[Entry->second.FunctionSymbol] + 4);
965 }
966 // For exception section entries, csect and function auxilliary entries
967 // must exist. On 64-bit there is also an exception auxilliary entry.
968 writeSymbolAuxFunctionEntry(
969 ExceptionSection.FileOffsetToData +
970 getExceptionOffset(Entry->second.FunctionSymbol),
971 Entry->second.FunctionSize, 0,
972 (is64Bit() && ExceptionSection.isDebugEnabled)
973 ? SymbolIndexMap[Entry->second.FunctionSymbol] + 4
974 : SymbolIndexMap[Entry->second.FunctionSymbol] + 3);
975 } else {
976 writeSymbolEntry(SymbolRef.getSymbolTableName(),
977 CSectionRef.Address + SymbolOffset, SectionIndex,
978 SymbolRef.getVisibilityType(),
979 SymbolRef.getStorageClass());
980 }
981 writeSymbolAuxCsectEntry(CSectionRef.SymbolTableIndex, XCOFF::XTY_LD,
982 CSectionRef.MCSec->getMappingClass());
983}
984
985void XCOFFWriter::writeSymbolEntryForDwarfSection(
986 const XCOFFSection &DwarfSectionRef, int16_t SectionIndex) {
987 assert(DwarfSectionRef.MCSec->isDwarfSect() && "Not a DWARF section!");
988
989 writeSymbolEntry(DwarfSectionRef.getSymbolTableName(), /*Value=*/0,
990 SectionIndex, /*SymbolType=*/0, XCOFF::C_DWARF);
991
992 writeSymbolAuxDwarfEntry(DwarfSectionRef.Size);
993}
994
995void XCOFFWriter::writeSymbolEntryForControlSection(
996 const XCOFFSection &CSectionRef, int16_t SectionIndex,
998 writeSymbolEntry(CSectionRef.getSymbolTableName(), CSectionRef.Address,
999 SectionIndex, CSectionRef.getVisibilityType(), StorageClass);
1000
1001 writeSymbolAuxCsectEntry(CSectionRef.Size, getEncodedType(CSectionRef.MCSec),
1002 CSectionRef.MCSec->getMappingClass());
1003}
1004
1005void XCOFFWriter::writeSymbolAuxFunctionEntry(uint32_t EntryOffset,
1006 uint32_t FunctionSize,
1007 uint64_t LineNumberPointer,
1008 uint32_t EndIndex) {
1009 if (is64Bit())
1010 writeWord(LineNumberPointer);
1011 else
1012 W.write<uint32_t>(EntryOffset);
1013 W.write<uint32_t>(FunctionSize);
1014 if (!is64Bit())
1015 writeWord(LineNumberPointer);
1016 W.write<uint32_t>(EndIndex);
1017 if (is64Bit()) {
1018 W.OS.write_zeros(1);
1019 W.write<uint8_t>(XCOFF::AUX_FCN);
1020 } else {
1021 W.OS.write_zeros(2);
1022 }
1023}
1024
1025void XCOFFWriter::writeSymbolAuxExceptionEntry(uint64_t EntryOffset,
1026 uint32_t FunctionSize,
1027 uint32_t EndIndex) {
1028 assert(is64Bit() && "Exception auxilliary entries are 64-bit only.");
1029 W.write<uint64_t>(EntryOffset);
1030 W.write<uint32_t>(FunctionSize);
1031 W.write<uint32_t>(EndIndex);
1032 W.OS.write_zeros(1); // Pad (unused)
1033 W.write<uint8_t>(XCOFF::AUX_EXCEPT);
1034}
1035
1036void XCOFFWriter::writeFileHeader() {
1038 W.write<uint16_t>(SectionCount);
1039 W.write<int32_t>(0); // TimeStamp
1040 writeWord(SymbolTableOffset);
1041 if (is64Bit()) {
1042 W.write<uint16_t>(auxiliaryHeaderSize());
1043 W.write<uint16_t>(0); // Flags
1044 W.write<int32_t>(SymbolTableEntryCount);
1045 } else {
1046 W.write<int32_t>(SymbolTableEntryCount);
1047 W.write<uint16_t>(auxiliaryHeaderSize());
1048 W.write<uint16_t>(0); // Flags
1049 }
1050}
1051
1052void XCOFFWriter::writeAuxFileHeader() {
1053 if (!auxiliaryHeaderSize())
1054 return;
1055 W.write<uint16_t>(0); // Magic
1056 W.write<uint16_t>(
1057 XCOFF::NEW_XCOFF_INTERPRET); // Version. The new interpretation of the
1058 // n_type field in the symbol table entry is
1059 // used in XCOFF32.
1060 W.write<uint32_t>(Sections[0]->Size); // TextSize
1061 W.write<uint32_t>(Sections[1]->Size); // InitDataSize
1062 W.write<uint32_t>(Sections[2]->Size); // BssDataSize
1063 W.write<uint32_t>(0); // EntryPointAddr
1064 W.write<uint32_t>(Sections[0]->Address); // TextStartAddr
1065 W.write<uint32_t>(Sections[1]->Address); // DataStartAddr
1066}
1067
1068void XCOFFWriter::writeSectionHeader(const SectionEntry *Sec) {
1069 bool IsDwarf = (Sec->Flags & XCOFF::STYP_DWARF) != 0;
1070 bool IsOvrflo = (Sec->Flags & XCOFF::STYP_OVRFLO) != 0;
1071 // Nothing to write for this Section.
1072 if (Sec->Index == SectionEntry::UninitializedIndex)
1073 return;
1074
1075 // Write Name.
1076 ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize);
1077 W.write(NameRef);
1078
1079 // Write the Physical Address and Virtual Address.
1080 // We use 0 for DWARF sections' Physical and Virtual Addresses.
1081 writeWord(IsDwarf ? 0 : Sec->Address);
1082 // Since line number is not supported, we set it to 0 for overflow sections.
1083 writeWord((IsDwarf || IsOvrflo) ? 0 : Sec->Address);
1084
1085 writeWord(Sec->Size);
1086 writeWord(Sec->FileOffsetToData);
1087 writeWord(Sec->FileOffsetToRelocations);
1088 writeWord(0); // FileOffsetToLineNumberInfo. Not supported yet.
1089
1090 if (is64Bit()) {
1091 W.write<uint32_t>(Sec->RelocationCount);
1092 W.write<uint32_t>(0); // NumberOfLineNumbers. Not supported yet.
1093 W.write<int32_t>(Sec->Flags);
1094 W.OS.write_zeros(4);
1095 } else {
1096 // For the overflow section header, s_nreloc provides a reference to the
1097 // primary section header and s_nlnno must have the same value.
1098 // For common section headers, if either of s_nreloc or s_nlnno are set to
1099 // 65535, the other one must also be set to 65535.
1100 W.write<uint16_t>(Sec->RelocationCount);
1101 W.write<uint16_t>((IsOvrflo || Sec->RelocationCount == XCOFF::RelocOverflow)
1102 ? Sec->RelocationCount
1103 : 0); // NumberOfLineNumbers. Not supported yet.
1104 W.write<int32_t>(Sec->Flags);
1105 }
1106}
1107
1108void XCOFFWriter::writeSectionHeaderTable() {
1109 for (const auto *CsectSec : Sections)
1110 writeSectionHeader(CsectSec);
1111 for (const auto &DwarfSec : DwarfSections)
1112 writeSectionHeader(&DwarfSec);
1113 for (const auto &OverflowSec : OverflowSections)
1114 writeSectionHeader(&OverflowSec);
1115 if (hasExceptionSection())
1116 writeSectionHeader(&ExceptionSection);
1117 if (CInfoSymSection.Entry)
1118 writeSectionHeader(&CInfoSymSection);
1119}
1120
1121void XCOFFWriter::writeRelocation(XCOFFRelocation Reloc,
1122 const XCOFFSection &Section) {
1123 if (Section.MCSec->isCsect())
1124 writeWord(Section.Address + Reloc.FixupOffsetInCsect);
1125 else {
1126 // DWARF sections' address is set to 0.
1127 assert(Section.MCSec->isDwarfSect() && "unsupport section type!");
1128 writeWord(Reloc.FixupOffsetInCsect);
1129 }
1130 W.write<uint32_t>(Reloc.SymbolTableIndex);
1131 W.write<uint8_t>(Reloc.SignAndSize);
1132 W.write<uint8_t>(Reloc.Type);
1133}
1134
1135void XCOFFWriter::writeRelocations() {
1136 for (const auto *Section : Sections) {
1137 if (Section->Index == SectionEntry::UninitializedIndex)
1138 // Nothing to write for this Section.
1139 continue;
1140
1141 for (const auto *Group : Section->Groups) {
1142 if (Group->empty())
1143 continue;
1144
1145 for (const auto &Csect : *Group) {
1146 for (const auto Reloc : Csect.Relocations)
1147 writeRelocation(Reloc, Csect);
1148 }
1149 }
1150 }
1151
1152 for (const auto &DwarfSection : DwarfSections)
1153 for (const auto &Reloc : DwarfSection.DwarfSect->Relocations)
1154 writeRelocation(Reloc, *DwarfSection.DwarfSect);
1155}
1156
1157void XCOFFWriter::writeSymbolTable(MCAssembler &Asm) {
1158 // Write C_FILE symbols.
1159 StringRef Vers = CompilerVersion;
1160
1161 for (const std::pair<std::string, size_t> &F : FileNames) {
1162 // The n_name of a C_FILE symbol is the source file's name when no auxiliary
1163 // entries are present.
1164 StringRef FileName = F.first;
1165
1166 // For C_FILE symbols, the Source Language ID overlays the high-order byte
1167 // of the SymbolType field, and the CPU Version ID is defined as the
1168 // low-order byte.
1169 // AIX's system assembler determines the source language ID based on the
1170 // source file's name suffix, and the behavior here is consistent with it.
1171 uint8_t LangID;
1172 if (FileName.ends_with(".c"))
1173 LangID = XCOFF::TB_C;
1174 else if (FileName.ends_with_insensitive(".f") ||
1175 FileName.ends_with_insensitive(".f77") ||
1176 FileName.ends_with_insensitive(".f90") ||
1177 FileName.ends_with_insensitive(".f95") ||
1178 FileName.ends_with_insensitive(".f03") ||
1179 FileName.ends_with_insensitive(".f08"))
1180 LangID = XCOFF::TB_Fortran;
1181 else
1182 LangID = XCOFF::TB_CPLUSPLUS;
1183
1185
1186 int NumberOfFileAuxEntries = 1;
1187 if (!Vers.empty())
1188 ++NumberOfFileAuxEntries;
1189 writeSymbolEntry(".file", /*Value=*/0, XCOFF::ReservedSectionNum::N_DEBUG,
1190 /*SymbolType=*/(LangID << 8) | CpuID, XCOFF::C_FILE,
1191 NumberOfFileAuxEntries);
1192 writeSymbolAuxFileEntry(FileName, XCOFF::XFT_FN);
1193 if (!Vers.empty())
1194 writeSymbolAuxFileEntry(Vers, XCOFF::XFT_CV);
1195 }
1196
1197 if (CInfoSymSection.Entry)
1198 writeSymbolEntry(CInfoSymSection.Entry->Name, CInfoSymSection.Entry->Offset,
1199 CInfoSymSection.Index,
1200 /*SymbolType=*/0, XCOFF::C_INFO,
1201 /*NumberOfAuxEntries=*/0);
1202
1203 for (const auto &Csect : UndefinedCsects) {
1204 writeSymbolEntryForControlSection(Csect, XCOFF::ReservedSectionNum::N_UNDEF,
1205 Csect.MCSec->getStorageClass());
1206 }
1207
1208 for (const auto *Section : Sections) {
1209 if (Section->Index == SectionEntry::UninitializedIndex)
1210 // Nothing to write for this Section.
1211 continue;
1212
1213 for (const auto *Group : Section->Groups) {
1214 if (Group->empty())
1215 continue;
1216
1217 const int16_t SectionIndex = Section->Index;
1218 for (const auto &Csect : *Group) {
1219 // Write out the control section first and then each symbol in it.
1220 writeSymbolEntryForControlSection(Csect, SectionIndex,
1221 Csect.MCSec->getStorageClass());
1222
1223 for (const auto &Sym : Csect.Syms)
1224 writeSymbolEntryForCsectMemberLabel(
1225 Sym, Csect, SectionIndex, Asm.getSymbolOffset(*(Sym.MCSym)));
1226 }
1227 }
1228 }
1229
1230 for (const auto &DwarfSection : DwarfSections)
1231 writeSymbolEntryForDwarfSection(*DwarfSection.DwarfSect,
1232 DwarfSection.Index);
1233}
1234
1235void XCOFFWriter::finalizeRelocationInfo(SectionEntry *Sec, uint64_t RelCount) {
1236 // Handles relocation field overflows in an XCOFF32 file. An XCOFF64 file
1237 // may not contain an overflow section header.
1238 if (!is64Bit() && (RelCount >= static_cast<uint32_t>(XCOFF::RelocOverflow))) {
1239 // Generate an overflow section header.
1240 SectionEntry SecEntry(".ovrflo", XCOFF::STYP_OVRFLO);
1241
1242 // This field specifies the file section number of the section header that
1243 // overflowed.
1244 SecEntry.RelocationCount = Sec->Index;
1245
1246 // This field specifies the number of relocation entries actually
1247 // required.
1248 SecEntry.Address = RelCount;
1249 SecEntry.Index = ++SectionCount;
1250 OverflowSections.push_back(std::move(SecEntry));
1251
1252 // The field in the primary section header is always 65535
1253 // (XCOFF::RelocOverflow).
1254 Sec->RelocationCount = XCOFF::RelocOverflow;
1255 } else {
1256 Sec->RelocationCount = RelCount;
1257 }
1258}
1259
1260void XCOFFWriter::calcOffsetToRelocations(SectionEntry *Sec,
1261 uint64_t &RawPointer) {
1262 if (!Sec->RelocationCount)
1263 return;
1264
1265 Sec->FileOffsetToRelocations = RawPointer;
1266 uint64_t RelocationSizeInSec = 0;
1267 if (!is64Bit() &&
1268 Sec->RelocationCount == static_cast<uint32_t>(XCOFF::RelocOverflow)) {
1269 // Find its corresponding overflow section.
1270 for (auto &OverflowSec : OverflowSections) {
1271 if (OverflowSec.RelocationCount == static_cast<uint32_t>(Sec->Index)) {
1272 RelocationSizeInSec =
1273 OverflowSec.Address * XCOFF::RelocationSerializationSize32;
1274
1275 // This field must have the same values as in the corresponding
1276 // primary section header.
1277 OverflowSec.FileOffsetToRelocations = Sec->FileOffsetToRelocations;
1278 }
1279 }
1280 assert(RelocationSizeInSec && "Overflow section header doesn't exist.");
1281 } else {
1282 RelocationSizeInSec = Sec->RelocationCount *
1285 }
1286
1287 RawPointer += RelocationSizeInSec;
1288 if (RawPointer > MaxRawDataSize)
1289 report_fatal_error("Relocation data overflowed this object file.");
1290}
1291
1292void XCOFFWriter::finalizeSectionInfo() {
1293 for (auto *Section : Sections) {
1294 if (Section->Index == SectionEntry::UninitializedIndex)
1295 // Nothing to record for this Section.
1296 continue;
1297
1298 uint64_t RelCount = 0;
1299 for (const auto *Group : Section->Groups) {
1300 if (Group->empty())
1301 continue;
1302
1303 for (auto &Csect : *Group)
1304 RelCount += Csect.Relocations.size();
1305 }
1306 finalizeRelocationInfo(Section, RelCount);
1307 }
1308
1309 for (auto &DwarfSection : DwarfSections)
1310 finalizeRelocationInfo(&DwarfSection,
1311 DwarfSection.DwarfSect->Relocations.size());
1312
1313 // Calculate the RawPointer value for all headers.
1314 uint64_t RawPointer =
1316 SectionCount * XCOFF::SectionHeaderSize64)
1318 SectionCount * XCOFF::SectionHeaderSize32)) +
1319 auxiliaryHeaderSize();
1320
1321 // Calculate the file offset to the section data.
1322 for (auto *Sec : Sections) {
1323 if (Sec->Index == SectionEntry::UninitializedIndex || Sec->IsVirtual)
1324 continue;
1325
1326 RawPointer = Sec->advanceFileOffset(MaxRawDataSize, RawPointer);
1327 }
1328
1329 if (!DwarfSections.empty()) {
1330 RawPointer += PaddingsBeforeDwarf;
1331 for (auto &DwarfSection : DwarfSections) {
1332 RawPointer = DwarfSection.advanceFileOffset(MaxRawDataSize, RawPointer);
1333 }
1334 }
1335
1336 if (hasExceptionSection())
1337 RawPointer = ExceptionSection.advanceFileOffset(MaxRawDataSize, RawPointer);
1338
1339 if (CInfoSymSection.Entry)
1340 RawPointer = CInfoSymSection.advanceFileOffset(MaxRawDataSize, RawPointer);
1341
1342 for (auto *Sec : Sections) {
1343 if (Sec->Index != SectionEntry::UninitializedIndex)
1344 calcOffsetToRelocations(Sec, RawPointer);
1345 }
1346
1347 for (auto &DwarfSec : DwarfSections)
1348 calcOffsetToRelocations(&DwarfSec, RawPointer);
1349
1350 // TODO Error check that the number of symbol table entries fits in 32-bits
1351 // signed ...
1352 if (SymbolTableEntryCount)
1353 SymbolTableOffset = RawPointer;
1354}
1355
1356void XCOFFWriter::addExceptionEntry(const MCSymbol *Symbol,
1357 const MCSymbol *Trap, unsigned LanguageCode,
1358 unsigned ReasonCode, unsigned FunctionSize,
1359 bool hasDebug) {
1360 // If a module had debug info, debugging is enabled and XCOFF emits the
1361 // exception auxilliary entry.
1362 if (hasDebug)
1363 ExceptionSection.isDebugEnabled = true;
1364 auto Entry = ExceptionSection.ExceptionTable.find(Symbol->getName());
1365 if (Entry != ExceptionSection.ExceptionTable.end()) {
1366 Entry->second.Entries.push_back(
1367 ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
1368 return;
1369 }
1370 ExceptionInfo NewEntry;
1371 NewEntry.FunctionSymbol = Symbol;
1372 NewEntry.FunctionSize = FunctionSize;
1373 NewEntry.Entries.push_back(
1374 ExceptionTableEntry(Trap, LanguageCode, ReasonCode));
1375 ExceptionSection.ExceptionTable.insert(
1376 std::pair<const StringRef, ExceptionInfo>(Symbol->getName(), NewEntry));
1377}
1378
1379unsigned XCOFFWriter::getExceptionSectionSize() {
1380 unsigned EntryNum = 0;
1381
1382 for (const auto &TableEntry : ExceptionSection.ExceptionTable)
1383 // The size() gets +1 to account for the initial entry containing the
1384 // symbol table index.
1385 EntryNum += TableEntry.second.Entries.size() + 1;
1386
1387 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
1389}
1390
1391unsigned XCOFFWriter::getExceptionOffset(const MCSymbol *Symbol) {
1392 unsigned EntryNum = 0;
1393 for (const auto &TableEntry : ExceptionSection.ExceptionTable) {
1394 if (Symbol == TableEntry.second.FunctionSymbol)
1395 break;
1396 EntryNum += TableEntry.second.Entries.size() + 1;
1397 }
1398 return EntryNum * (is64Bit() ? XCOFF::ExceptionSectionEntrySize64
1400}
1401
1402void XCOFFWriter::addCInfoSymEntry(StringRef Name, StringRef Metadata) {
1403 assert(!CInfoSymSection.Entry && "Multiple entries are not supported");
1404 CInfoSymSection.addEntry(
1405 std::make_unique<CInfoSymInfo>(Name.str(), Metadata.str()));
1406}
1407
1408void XCOFFWriter::assignAddressesAndIndices(MCAssembler &Asm) {
1409 // The symbol table starts with all the C_FILE symbols. Each C_FILE symbol
1410 // requires 1 or 2 auxiliary entries.
1411 uint32_t SymbolTableIndex =
1412 (2 + (CompilerVersion.empty() ? 0 : 1)) * FileNames.size();
1413
1414 if (CInfoSymSection.Entry)
1415 SymbolTableIndex++;
1416
1417 // Calculate indices for undefined symbols.
1418 for (auto &Csect : UndefinedCsects) {
1419 Csect.Size = 0;
1420 Csect.Address = 0;
1421 Csect.SymbolTableIndex = SymbolTableIndex;
1422 SymbolIndexMap[Csect.MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
1423 // 1 main and 1 auxiliary symbol table entry for each contained symbol.
1424 SymbolTableIndex += 2;
1425 }
1426
1427 // The address corrresponds to the address of sections and symbols in the
1428 // object file. We place the shared address 0 immediately after the
1429 // section header table.
1430 uint64_t Address = 0;
1431 // Section indices are 1-based in XCOFF.
1432 int32_t SectionIndex = 1;
1433 bool HasTDataSection = false;
1434
1435 for (auto *Section : Sections) {
1436 const bool IsEmpty =
1437 llvm::all_of(Section->Groups,
1438 [](const CsectGroup *Group) { return Group->empty(); });
1439 if (IsEmpty)
1440 continue;
1441
1442 if (SectionIndex > MaxSectionIndex)
1443 report_fatal_error("Section index overflow!");
1444 Section->Index = SectionIndex++;
1445 SectionCount++;
1446
1447 bool SectionAddressSet = false;
1448 // Reset the starting address to 0 for TData section.
1449 if (Section->Flags == XCOFF::STYP_TDATA) {
1450 Address = 0;
1451 HasTDataSection = true;
1452 }
1453 // Reset the starting address to 0 for TBSS section if the object file does
1454 // not contain TData Section.
1455 if ((Section->Flags == XCOFF::STYP_TBSS) && !HasTDataSection)
1456 Address = 0;
1457
1458 for (auto *Group : Section->Groups) {
1459 if (Group->empty())
1460 continue;
1461
1462 for (auto &Csect : *Group) {
1463 const MCSectionXCOFF *MCSec = Csect.MCSec;
1464 Csect.Address = alignTo(Address, MCSec->getAlign());
1465 Csect.Size = Asm.getSectionAddressSize(*MCSec);
1466 Address = Csect.Address + Csect.Size;
1467 Csect.SymbolTableIndex = SymbolTableIndex;
1468 SymbolIndexMap[MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
1469 // 1 main and 1 auxiliary symbol table entry for the csect.
1470 SymbolTableIndex += 2;
1471
1472 for (auto &Sym : Csect.Syms) {
1473 bool hasExceptEntry = false;
1474 auto Entry =
1475 ExceptionSection.ExceptionTable.find(Sym.MCSym->getName());
1476 if (Entry != ExceptionSection.ExceptionTable.end()) {
1477 hasExceptEntry = true;
1478 for (auto &TrapEntry : Entry->second.Entries) {
1479 TrapEntry.TrapAddress = Asm.getSymbolOffset(*(Sym.MCSym)) +
1480 TrapEntry.Trap->getOffset();
1481 }
1482 }
1483 Sym.SymbolTableIndex = SymbolTableIndex;
1484 SymbolIndexMap[Sym.MCSym] = Sym.SymbolTableIndex;
1485 // 1 main and 1 auxiliary symbol table entry for each contained
1486 // symbol. For symbols with exception section entries, a function
1487 // auxilliary entry is needed, and on 64-bit XCOFF with debugging
1488 // enabled, an additional exception auxilliary entry is needed.
1489 SymbolTableIndex += 2;
1490 if (hasExceptionSection() && hasExceptEntry) {
1491 if (is64Bit() && ExceptionSection.isDebugEnabled)
1492 SymbolTableIndex += 2;
1493 else
1494 SymbolTableIndex += 1;
1495 }
1496 }
1497 }
1498
1499 if (!SectionAddressSet) {
1500 Section->Address = Group->front().Address;
1501 SectionAddressSet = true;
1502 }
1503 }
1504
1505 // Make sure the address of the next section aligned to
1506 // DefaultSectionAlign.
1507 Address = alignTo(Address, DefaultSectionAlign);
1508 Section->Size = Address - Section->Address;
1509 }
1510
1511 // Start to generate DWARF sections. Sections other than DWARF section use
1512 // DefaultSectionAlign as the default alignment, while DWARF sections have
1513 // their own alignments. If these two alignments are not the same, we need
1514 // some paddings here and record the paddings bytes for FileOffsetToData
1515 // calculation.
1516 if (!DwarfSections.empty())
1517 PaddingsBeforeDwarf =
1518 alignTo(Address,
1519 (*DwarfSections.begin()).DwarfSect->MCSec->getAlign()) -
1520 Address;
1521
1522 DwarfSectionEntry *LastDwarfSection = nullptr;
1523 for (auto &DwarfSection : DwarfSections) {
1524 assert((SectionIndex <= MaxSectionIndex) && "Section index overflow!");
1525
1526 XCOFFSection &DwarfSect = *DwarfSection.DwarfSect;
1527 const MCSectionXCOFF *MCSec = DwarfSect.MCSec;
1528
1529 // Section index.
1530 DwarfSection.Index = SectionIndex++;
1531 SectionCount++;
1532
1533 // Symbol index.
1534 DwarfSect.SymbolTableIndex = SymbolTableIndex;
1535 SymbolIndexMap[MCSec->getQualNameSymbol()] = DwarfSect.SymbolTableIndex;
1536 // 1 main and 1 auxiliary symbol table entry for the csect.
1537 SymbolTableIndex += 2;
1538
1539 // Section address. Make it align to section alignment.
1540 // We use address 0 for DWARF sections' Physical and Virtual Addresses.
1541 // This address is used to tell where is the section in the final object.
1542 // See writeSectionForDwarfSectionEntry().
1543 DwarfSection.Address = DwarfSect.Address =
1544 alignTo(Address, MCSec->getAlign());
1545
1546 // Section size.
1547 // For DWARF section, we must use the real size which may be not aligned.
1548 DwarfSection.Size = DwarfSect.Size = Asm.getSectionAddressSize(*MCSec);
1549
1550 Address = DwarfSection.Address + DwarfSection.Size;
1551
1552 if (LastDwarfSection)
1553 LastDwarfSection->MemorySize =
1554 DwarfSection.Address - LastDwarfSection->Address;
1555 LastDwarfSection = &DwarfSection;
1556 }
1557 if (LastDwarfSection) {
1558 // Make the final DWARF section address align to the default section
1559 // alignment for follow contents.
1560 Address = alignTo(LastDwarfSection->Address + LastDwarfSection->Size,
1561 DefaultSectionAlign);
1562 LastDwarfSection->MemorySize = Address - LastDwarfSection->Address;
1563 }
1564 if (hasExceptionSection()) {
1565 ExceptionSection.Index = SectionIndex++;
1566 SectionCount++;
1567 ExceptionSection.Address = 0;
1568 ExceptionSection.Size = getExceptionSectionSize();
1569 Address += ExceptionSection.Size;
1570 Address = alignTo(Address, DefaultSectionAlign);
1571 }
1572
1573 if (CInfoSymSection.Entry) {
1574 CInfoSymSection.Index = SectionIndex++;
1575 SectionCount++;
1576 CInfoSymSection.Address = 0;
1577 Address += CInfoSymSection.Size;
1578 Address = alignTo(Address, DefaultSectionAlign);
1579 }
1580
1581 SymbolTableEntryCount = SymbolTableIndex;
1582}
1583
1584void XCOFFWriter::writeSectionForControlSectionEntry(
1585 const MCAssembler &Asm, const CsectSectionEntry &CsectEntry,
1586 uint64_t &CurrentAddressLocation) {
1587 // Nothing to write for this Section.
1588 if (CsectEntry.Index == SectionEntry::UninitializedIndex)
1589 return;
1590
1591 // There could be a gap (without corresponding zero padding) between
1592 // sections.
1593 // There could be a gap (without corresponding zero padding) between
1594 // sections.
1595 assert(((CurrentAddressLocation <= CsectEntry.Address) ||
1596 (CsectEntry.Flags == XCOFF::STYP_TDATA) ||
1597 (CsectEntry.Flags == XCOFF::STYP_TBSS)) &&
1598 "CurrentAddressLocation should be less than or equal to section "
1599 "address if the section is not TData or TBSS.");
1600
1601 CurrentAddressLocation = CsectEntry.Address;
1602
1603 // For virtual sections, nothing to write. But need to increase
1604 // CurrentAddressLocation for later sections like DWARF section has a correct
1605 // writing location.
1606 if (CsectEntry.IsVirtual) {
1607 CurrentAddressLocation += CsectEntry.Size;
1608 return;
1609 }
1610
1611 for (const auto &Group : CsectEntry.Groups) {
1612 for (const auto &Csect : *Group) {
1613 if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation)
1614 W.OS.write_zeros(PaddingSize);
1615 if (Csect.Size)
1616 Asm.writeSectionData(W.OS, Csect.MCSec);
1617 CurrentAddressLocation = Csect.Address + Csect.Size;
1618 }
1619 }
1620
1621 // The size of the tail padding in a section is the end virtual address of
1622 // the current section minus the end virtual address of the last csect
1623 // in that section.
1624 if (uint64_t PaddingSize =
1625 CsectEntry.Address + CsectEntry.Size - CurrentAddressLocation) {
1626 W.OS.write_zeros(PaddingSize);
1627 CurrentAddressLocation += PaddingSize;
1628 }
1629}
1630
1631void XCOFFWriter::writeSectionForDwarfSectionEntry(
1632 const MCAssembler &Asm, const DwarfSectionEntry &DwarfEntry,
1633 uint64_t &CurrentAddressLocation) {
1634 // There could be a gap (without corresponding zero padding) between
1635 // sections. For example DWARF section alignment is bigger than
1636 // DefaultSectionAlign.
1637 assert(CurrentAddressLocation <= DwarfEntry.Address &&
1638 "CurrentAddressLocation should be less than or equal to section "
1639 "address.");
1640
1641 if (uint64_t PaddingSize = DwarfEntry.Address - CurrentAddressLocation)
1642 W.OS.write_zeros(PaddingSize);
1643
1644 if (DwarfEntry.Size)
1645 Asm.writeSectionData(W.OS, DwarfEntry.DwarfSect->MCSec);
1646
1647 CurrentAddressLocation = DwarfEntry.Address + DwarfEntry.Size;
1648
1649 // DWARF section size is not aligned to DefaultSectionAlign.
1650 // Make sure CurrentAddressLocation is aligned to DefaultSectionAlign.
1651 uint32_t Mod = CurrentAddressLocation % DefaultSectionAlign;
1652 uint32_t TailPaddingSize = Mod ? DefaultSectionAlign - Mod : 0;
1653 if (TailPaddingSize)
1654 W.OS.write_zeros(TailPaddingSize);
1655
1656 CurrentAddressLocation += TailPaddingSize;
1657}
1658
1659void XCOFFWriter::writeSectionForExceptionSectionEntry(
1660 const MCAssembler &Asm, ExceptionSectionEntry &ExceptionEntry,
1661 uint64_t &CurrentAddressLocation) {
1662 for (const auto &TableEntry : ExceptionEntry.ExceptionTable) {
1663 // For every symbol that has exception entries, you must start the entries
1664 // with an initial symbol table index entry
1665 W.write<uint32_t>(SymbolIndexMap[TableEntry.second.FunctionSymbol]);
1666 if (is64Bit()) {
1667 // 4-byte padding on 64-bit.
1668 W.OS.write_zeros(4);
1669 }
1670 W.OS.write_zeros(2);
1671 for (auto &TrapEntry : TableEntry.second.Entries) {
1672 writeWord(TrapEntry.TrapAddress);
1673 W.write<uint8_t>(TrapEntry.Lang);
1674 W.write<uint8_t>(TrapEntry.Reason);
1675 }
1676 }
1677
1678 CurrentAddressLocation += getExceptionSectionSize();
1679}
1680
1681void XCOFFWriter::writeSectionForCInfoSymSectionEntry(
1682 const MCAssembler &Asm, CInfoSymSectionEntry &CInfoSymEntry,
1683 uint64_t &CurrentAddressLocation) {
1684 if (!CInfoSymSection.Entry)
1685 return;
1686
1687 constexpr int WordSize = sizeof(uint32_t);
1688 std::unique_ptr<CInfoSymInfo> &CISI = CInfoSymEntry.Entry;
1689 const std::string &Metadata = CISI->Metadata;
1690
1691 // Emit the 4-byte length of the metadata.
1692 W.write<uint32_t>(Metadata.size());
1693
1694 if (Metadata.size() == 0)
1695 return;
1696
1697 // Write out the payload one word at a time.
1698 size_t Index = 0;
1699 while (Index + WordSize <= Metadata.size()) {
1700 uint32_t NextWord =
1702 W.write<uint32_t>(NextWord);
1703 Index += WordSize;
1704 }
1705
1706 // If there is padding, we have at least one byte of payload left to emit.
1707 if (CISI->paddingSize()) {
1708 std::array<uint8_t, WordSize> LastWord = {0};
1709 ::memcpy(LastWord.data(), Metadata.data() + Index, Metadata.size() - Index);
1710 W.write<uint32_t>(llvm::support::endian::read32be(LastWord.data()));
1711 }
1712
1713 CurrentAddressLocation += CISI->size();
1714}
1715
1716// Takes the log base 2 of the alignment and shifts the result into the 5 most
1717// significant bits of a byte, then or's in the csect type into the least
1718// significant 3 bits.
1719uint8_t getEncodedType(const MCSectionXCOFF *Sec) {
1720 unsigned Log2Align = Log2(Sec->getAlign());
1721 // Result is a number in the range [0, 31] which fits in the 5 least
1722 // significant bits. Shift this value into the 5 most significant bits, and
1723 // bitwise-or in the csect type.
1724 uint8_t EncodedAlign = Log2Align << 3;
1725 return EncodedAlign | Sec->getCSectType();
1726}
1727
1728} // end anonymous namespace
1729
1730std::unique_ptr<MCObjectWriter>
1731llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
1733 return std::make_unique<XCOFFWriter>(std::move(MOTW), OS);
1734}
static void writeSymbolTable(raw_ostream &Out, object::Archive::Kind Kind, bool Deterministic, ArrayRef< MemberData > Members, StringRef StringTable, uint64_t MembersOffset, unsigned NumSyms, uint64_t PrevMemberOffset=0, uint64_t NextMemberOffset=0, bool Is64Bit=false)
basic Basic Alias true
std::string Name
uint64_t Size
Symbol * Sym
Definition: ELF_riscv.cpp:479
#define F(x, y, z)
Definition: MD5.cpp:55
static unsigned getCPUType(const MachOObjectFile &O)
PowerPC TLS Dynamic Call Fixup
if(auto Err=PB.parsePassPipeline(MPM, Passes)) return wrap(std MPM run * Mod
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
static bool is64Bit(const char *name)
static const X86InstrFMA3Group Groups[]
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:156
iterator end()
Definition: DenseMap.h:84
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:147
Generic interface to target specific assembler backends.
Definition: MCAsmBackend.h:42
virtual const MCFixupKindInfo & getFixupKindInfo(MCFixupKind Kind) const
Get information on a fixup kind.
Encode information on a single operation to perform on a byte sequence (e.g., an encoded instruction)...
Definition: MCFixup.h:71
MCSection * getParent() const
Definition: MCFragment.h:99
virtual void executePostLayoutBinding(MCAssembler &Asm)
Perform any late binding of symbols (for example, to assign symbol indices for use when generating re...
virtual void reset()
lifetime management
virtual uint64_t writeObject(MCAssembler &Asm)=0
Write the object file and returns the number of bytes written.
virtual void recordRelocation(MCAssembler &Asm, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, uint64_t &FixedValue)=0
Record a relocation entry.
StringRef getSymbolTableName() const
XCOFF::VisibilityType getVisibilityType() const
std::optional< XCOFF::DwarfSectionSubtypeFlags > getDwarfSubtypeFlags() const
XCOFF::StorageMappingClass getMappingClass() const
MCSymbolXCOFF * getQualNameSymbol() const
bool isDwarfSect() const
XCOFF::SymbolType getCSectType() const
Align getAlign() const
Definition: MCSection.h:146
StringRef getName() const
Definition: MCSection.h:130
XCOFF::VisibilityType getVisibilityType() const
Definition: MCSymbolXCOFF.h:59
StringRef getSymbolTableName() const
Definition: MCSymbolXCOFF.h:68
XCOFF::StorageClass getStorageClass() const
Definition: MCSymbolXCOFF.h:46
MCSectionXCOFF * getRepresentedCsect() const
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
bool isDefined() const
isDefined - Check if this symbol is defined (i.e., it has an address).
Definition: MCSymbol.h:250
bool isExternal() const
Definition: MCSymbol.h:407
MCFragment * getFragment(bool SetUsed=true) const
Definition: MCSymbol.h:397
This represents an "assembler immediate".
Definition: MCValue.h:36
Root of the metadata hierarchy.
Definition: Metadata.h:62
Metadata(unsigned ID, StorageType Storage)
Definition: Metadata.h:86
SectionEntry - represents a section emitted into memory by the dynamic linker.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:147
bool ends_with(StringRef Suffix) const
Check if this string ends with the given Suffix.
Definition: StringRef.h:277
bool ends_with_insensitive(StringRef Suffix) const
Check if this string ends with the given Suffix, ignoring case.
Definition: StringRef.cpp:51
Utility for building string tables with deduplicated suffixes.
Target - Wrapper for Target specific information.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM Value Representation.
Definition: Value.h:74
virtual void addExceptionEntry(const MCSymbol *Symbol, const MCSymbol *Trap, unsigned LanguageCode, unsigned ReasonCode, unsigned FunctionSize, bool hasDebug)=0
virtual void addCInfoSymEntry(StringRef Name, StringRef Metadata)=0
An abstract base class for streams implementations that also support a pwrite operation.
Definition: raw_ostream.h:434
#define UINT64_MAX
Definition: DataTypes.h:77
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char SymbolName[]
Key for Kernel::Metadata::mSymbolName.
@ Entry
Definition: COFF.h:844
C::iterator addEntry(C &Container, StringRef InstallName)
constexpr size_t RelocationSerializationSize32
Definition: XCOFF.h:39
XCOFF::CFileCpuId getCpuID(StringRef CPU)
Definition: XCOFF.cpp:112
constexpr size_t ExceptionSectionEntrySize64
Definition: XCOFF.h:42
constexpr size_t RelocationSerializationSize64
Definition: XCOFF.h:40
constexpr size_t ExceptionSectionEntrySize32
Definition: XCOFF.h:41
constexpr size_t FileHeaderSize64
Definition: XCOFF.h:32
constexpr size_t SectionHeaderSize64
Definition: XCOFF.h:37
constexpr size_t AuxFileEntNameSize
Definition: XCOFF.h:30
@ AUX_SECT
Identifies a SECT auxiliary entry.
Definition: XCOFF.h:371
@ AUX_FILE
Identifies a file auxiliary entry.
Definition: XCOFF.h:369
@ AUX_EXCEPT
Identifies an exception auxiliary entry.
Definition: XCOFF.h:366
@ AUX_FCN
Identifies a function auxiliary entry.
Definition: XCOFF.h:367
@ AUX_CSECT
Identifies a csect auxiliary entry.
Definition: XCOFF.h:370
@ TB_Fortran
Fortran language.
Definition: XCOFF.h:332
@ TB_C
C language.
Definition: XCOFF.h:331
@ TB_CPLUSPLUS
C++ language.
Definition: XCOFF.h:333
VisibilityType
Values for visibility as they would appear when encoded in the high 4 bits of the 16-bit unsigned n_t...
Definition: XCOFF.h:251
@ SYM_V_UNSPECIFIED
Definition: XCOFF.h:252
constexpr size_t NameSize
Definition: XCOFF.h:29
constexpr uint16_t RelocOverflow
Definition: XCOFF.h:43
constexpr size_t AuxFileHeaderSizeShort
Definition: XCOFF.h:35
@ N_DEBUG
Definition: XCOFF.h:46
@ XFT_FN
Specifies the source-file name.
Definition: XCOFF.h:324
@ XFT_CV
Specifies the compiler version number.
Definition: XCOFF.h:326
constexpr size_t FileHeaderSize32
Definition: XCOFF.h:31
StorageClass
Definition: XCOFF.h:170
@ C_INFO
Definition: XCOFF.h:207
@ C_FILE
Definition: XCOFF.h:172
@ C_DWARF
Definition: XCOFF.h:186
StorageMappingClass
Storage Mapping Class definitions.
Definition: XCOFF.h:103
@ XMC_TE
Symbol mapped at the end of TOC.
Definition: XCOFF.h:128
@ XMC_TC0
TOC Anchor for TOC Addressability.
Definition: XCOFF.h:118
@ XMC_DS
Descriptor csect.
Definition: XCOFF.h:121
@ XMC_RW
Read Write Data.
Definition: XCOFF.h:117
@ XMC_TL
Initialized thread-local variable.
Definition: XCOFF.h:126
@ XMC_RO
Read Only Constant.
Definition: XCOFF.h:106
@ XMC_TD
Scalar data item in the TOC.
Definition: XCOFF.h:120
@ XMC_UL
Uninitialized thread-local variable.
Definition: XCOFF.h:127
@ XMC_PR
Program Code.
Definition: XCOFF.h:105
@ XMC_BS
BSS class (uninitialized static internal)
Definition: XCOFF.h:123
@ XMC_TC
General TOC item.
Definition: XCOFF.h:119
constexpr size_t SectionHeaderSize32
Definition: XCOFF.h:36
@ NEW_XCOFF_INTERPRET
Definition: XCOFF.h:75
constexpr size_t FileNamePadSize
Definition: XCOFF.h:28
@ XTY_CM
Common csect definition. For uninitialized storage.
Definition: XCOFF.h:245
@ XTY_SD
Csect definition for initialized storage.
Definition: XCOFF.h:242
@ XTY_LD
Label definition.
Definition: XCOFF.h:243
@ XTY_ER
External reference.
Definition: XCOFF.h:241
@ XCOFF32
Definition: XCOFF.h:48
@ XCOFF64
Definition: XCOFF.h:48
SectionTypeFlags
Definition: XCOFF.h:134
@ STYP_DWARF
Definition: XCOFF.h:136
@ STYP_DATA
Definition: XCOFF.h:138
@ STYP_INFO
Definition: XCOFF.h:141
@ STYP_TDATA
Definition: XCOFF.h:142
@ STYP_TEXT
Definition: XCOFF.h:137
@ STYP_EXCEPT
Definition: XCOFF.h:140
@ STYP_OVRFLO
Definition: XCOFF.h:147
@ STYP_BSS
Definition: XCOFF.h:139
@ STYP_TBSS
Definition: XCOFF.h:143
support::ulittle32_t Word
Definition: IRSymtab.h:52
uint32_t read32be(const void *P)
Definition: Endian.h:434
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
constexpr uint32_t Hi_32(uint64_t Value)
Return the high 32 bits of a 64 bit value.
Definition: MathExtras.h:154
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
Definition: MathExtras.h:159
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1873
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition: Alignment.h:208
endianness
Definition: bit.h:70
std::unique_ptr< MCObjectWriter > createXCOFFObjectWriter(std::unique_ptr< MCXCOFFObjectTargetWriter > MOTW, raw_pwrite_stream &OS)
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
#define N
@ FKF_IsPCRel
Is this fixup kind PCrelative? This is used by the assembler backend to evaluate fixup values in a ta...
unsigned Flags
Flags describing additional information on this fixup kind.
Adapter to write values to a stream in a particular byte order.
Definition: EndianStream.h:67