LLVM 19.0.0git
SystemZTargetMachine.cpp
Go to the documentation of this file.
1//===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
11#include "SystemZ.h"
17#include "llvm/ADT/StringRef.h"
19#include "llvm/CodeGen/Passes.h"
22#include "llvm/IR/DataLayout.h"
27#include <memory>
28#include <optional>
29#include <string>
30
31using namespace llvm;
32
33// NOLINTNEXTLINE(readability-identifier-naming)
35 // Register the target.
46}
47
48static std::string computeDataLayout(const Triple &TT) {
49 std::string Ret;
50
51 // Big endian.
52 Ret += "E";
53
54 // Data mangling.
56
57 // Make sure that global data has at least 16 bits of alignment by
58 // default, so that we can refer to it using LARL. We don't have any
59 // special requirements for stack variables though.
60 Ret += "-i1:8:16-i8:8:16";
61
62 // 64-bit integers are naturally aligned.
63 Ret += "-i64:64";
64
65 // 128-bit floats are aligned only to 64 bits.
66 Ret += "-f128:64";
67
68 // The DataLayout string always holds a vector alignment of 64 bits, see
69 // comment in clang/lib/Basic/Targets/SystemZ.h.
70 Ret += "-v128:64";
71
72 // We prefer 16 bits of aligned for all globals; see above.
73 Ret += "-a:8:16";
74
75 // Integer registers are 32 or 64 bits.
76 Ret += "-n32:64";
77
78 return Ret;
79}
80
81static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
82 if (TT.isOSzOS())
83 return std::make_unique<TargetLoweringObjectFileGOFF>();
84
85 // Note: Some times run with -triple s390x-unknown.
86 // In this case, default to ELF unless z/OS specifically provided.
87 return std::make_unique<SystemZELFTargetObjectFile>();
88}
89
90static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) {
91 // Static code is suitable for use in a dynamic executable; there is no
92 // separate DynamicNoPIC model.
93 if (!RM || *RM == Reloc::DynamicNoPIC)
94 return Reloc::Static;
95 return *RM;
96}
97
98// For SystemZ we define the models as follows:
99//
100// Small: BRASL can call any function and will use a stub if necessary.
101// Locally-binding symbols will always be in range of LARL.
102//
103// Medium: BRASL can call any function and will use a stub if necessary.
104// GOT slots and locally-defined text will always be in range
105// of LARL, but other symbols might not be.
106//
107// Large: Equivalent to Medium for now.
108//
109// Kernel: Equivalent to Medium for now.
110//
111// This means that any PIC module smaller than 4GB meets the
112// requirements of Small, so Small seems like the best default there.
113//
114// All symbols bind locally in a non-PIC module, so the choice is less
115// obvious. There are two cases:
116//
117// - When creating an executable, PLTs and copy relocations allow
118// us to treat external symbols as part of the executable.
119// Any executable smaller than 4GB meets the requirements of Small,
120// so that seems like the best default.
121//
122// - When creating JIT code, stubs will be in range of BRASL if the
123// image is less than 4GB in size. GOT entries will likewise be
124// in range of LARL. However, the JIT environment has no equivalent
125// of copy relocs, so locally-binding data symbols might not be in
126// the range of LARL. We need the Medium model in that case.
127static CodeModel::Model
128getEffectiveSystemZCodeModel(std::optional<CodeModel::Model> CM,
129 Reloc::Model RM, bool JIT) {
130 if (CM) {
131 if (*CM == CodeModel::Tiny)
132 report_fatal_error("Target does not support the tiny CodeModel", false);
133 if (*CM == CodeModel::Kernel)
134 report_fatal_error("Target does not support the kernel CodeModel", false);
135 return *CM;
136 }
137 if (JIT)
139 return CodeModel::Small;
140}
141
143 StringRef CPU, StringRef FS,
144 const TargetOptions &Options,
145 std::optional<Reloc::Model> RM,
146 std::optional<CodeModel::Model> CM,
147 CodeGenOptLevel OL, bool JIT)
149 T, computeDataLayout(TT), TT, CPU, FS, Options,
152 OL),
153 TLOF(createTLOF(getTargetTriple())) {
154 initAsmInfo();
155}
156
158
159const SystemZSubtarget *
161 Attribute CPUAttr = F.getFnAttribute("target-cpu");
162 Attribute TuneAttr = F.getFnAttribute("tune-cpu");
163 Attribute FSAttr = F.getFnAttribute("target-features");
164
165 std::string CPU =
166 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
167 std::string TuneCPU =
168 TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
169 std::string FS =
170 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
171
172 // FIXME: This is related to the code below to reset the target options,
173 // we need to know whether the soft float and backchain flags are set on the
174 // function, so we can enable them as subtarget features.
175 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
176 if (SoftFloat)
177 FS += FS.empty() ? "+soft-float" : ",+soft-float";
178 bool BackChain = F.hasFnAttribute("backchain");
179 if (BackChain)
180 FS += FS.empty() ? "+backchain" : ",+backchain";
181
182 auto &I = SubtargetMap[CPU + TuneCPU + FS];
183 if (!I) {
184 // This needs to be done before we create a new subtarget since any
185 // creation will depend on the TM and the code generation flags on the
186 // function that reside in TargetOptions.
188 I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, TuneCPU, FS,
189 *this);
190 }
191
192 return I.get();
193}
194
195namespace {
196
197/// SystemZ Code Generator Pass Configuration Options.
198class SystemZPassConfig : public TargetPassConfig {
199public:
200 SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
201 : TargetPassConfig(TM, PM) {}
202
203 SystemZTargetMachine &getSystemZTargetMachine() const {
204 return getTM<SystemZTargetMachine>();
205 }
206
208 createPostMachineScheduler(MachineSchedContext *C) const override {
209 return new ScheduleDAGMI(C,
210 std::make_unique<SystemZPostRASchedStrategy>(C),
211 /*RemoveKillFlags=*/true);
212 }
213
214 void addIRPasses() override;
215 bool addInstSelector() override;
216 bool addILPOpts() override;
217 void addPreRegAlloc() override;
218 void addPostRewrite() override;
219 void addPostRegAlloc() override;
220 void addPreSched2() override;
221 void addPreEmitPass() override;
222};
223
224} // end anonymous namespace
225
226void SystemZPassConfig::addIRPasses() {
227 if (getOptLevel() != CodeGenOptLevel::None) {
228 addPass(createSystemZTDCPass());
230 }
231
233
235}
236
237bool SystemZPassConfig::addInstSelector() {
238 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
239
240 if (getOptLevel() != CodeGenOptLevel::None)
241 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
242
243 return false;
244}
245
246bool SystemZPassConfig::addILPOpts() {
247 addPass(&EarlyIfConverterID);
248 return true;
249}
250
251void SystemZPassConfig::addPreRegAlloc() {
252 addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
253}
254
255void SystemZPassConfig::addPostRewrite() {
256 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
257}
258
259void SystemZPassConfig::addPostRegAlloc() {
260 // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
261 // is not called).
262 if (getOptLevel() == CodeGenOptLevel::None)
263 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
264}
265
266void SystemZPassConfig::addPreSched2() {
267 if (getOptLevel() != CodeGenOptLevel::None)
268 addPass(&IfConverterID);
269}
270
271void SystemZPassConfig::addPreEmitPass() {
272 // Do instruction shortening before compare elimination because some
273 // vector instructions will be shortened into opcodes that compare
274 // elimination recognizes.
275 if (getOptLevel() != CodeGenOptLevel::None)
276 addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
277
278 // We eliminate comparisons here rather than earlier because some
279 // transformations can change the set of available CC values and we
280 // generally want those transformations to have priority. This is
281 // especially true in the commonest case where the result of the comparison
282 // is used by a single in-range branch instruction, since we will then
283 // be able to fuse the compare and the branch instead.
284 //
285 // For example, two-address NILF can sometimes be converted into
286 // three-address RISBLG. NILF produces a CC value that indicates whether
287 // the low word is zero, but RISBLG does not modify CC at all. On the
288 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
289 // The CC value produced by NILL isn't useful for our purposes, but the
290 // value produced by RISBG can be used for any comparison with zero
291 // (not just equality). So there are some transformations that lose
292 // CC values (while still being worthwhile) and others that happen to make
293 // the CC result more useful than it was originally.
294 //
295 // Another reason is that we only want to use BRANCH ON COUNT in cases
296 // where we know that the count register is not going to be spilled.
297 //
298 // Doing it so late makes it more likely that a register will be reused
299 // between the comparison and the branch, but it isn't clear whether
300 // preventing that would be a win or not.
301 if (getOptLevel() != CodeGenOptLevel::None)
302 addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
303 addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
304
305 // Do final scheduling after all other optimizations, to get an
306 // optimal input for the decoder (branch relaxation must happen
307 // after block placement).
308 if (getOptLevel() != CodeGenOptLevel::None)
309 addPass(&PostMachineSchedulerID);
310}
311
313 return new SystemZPassConfig(*this, PM);
314}
315
318 return TargetTransformInfo(SystemZTTIImpl(this, F));
319}
320
322 BumpPtrAllocator &Allocator, const Function &F,
323 const TargetSubtargetInfo *STI) const {
324 return SystemZMachineFunctionInfo::create<SystemZMachineFunctionInfo>(
325 Allocator, F, STI);
326}
#define LLVM_EXTERNAL_VISIBILITY
Definition: Compiler.h:135
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static LVOptions Options
Definition: LVOptions.cpp:25
static std::string computeDataLayout()
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
const char LLVMTargetMachineRef TM
Basic Register Allocator
static CodeModel::Model getEffectiveSystemZCodeModel(std::optional< CodeModel::Model > CM, Reloc::Model RM, bool JIT)
LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget()
static Reloc::Model getEffectiveRelocModel(std::optional< Reloc::Model > RM)
Target-Independent Code Generator Pass Configuration Options pass.
This pass exposes codegen information to IR-level passes.
static std::unique_ptr< TargetLoweringObjectFile > createTLOF()
StringRef getValueAsString() const
Return the attribute's value as a string.
Definition: Attributes.cpp:349
bool isValid() const
Return true if the attribute is any kind of attribute.
Definition: Attributes.h:193
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:66
static const char * getManglingComponent(const Triple &T)
Definition: DataLayout.cpp:169
This class describes a target machine that is implemented with the LLVM target-independent code gener...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
A ScheduleDAG for scheduling lists of MachineInstr.
ScheduleDAGMI is an implementation of ScheduleDAGInstrs that simply schedules machine instructions ac...
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
std::string str() const
str - Get the contents as an std::string.
Definition: StringRef.h:222
const SystemZSubtarget * getSubtargetImpl() const =delete
SystemZTargetMachine(const Target &T, const Triple &TT, StringRef CPU, StringRef FS, const TargetOptions &Options, std::optional< Reloc::Model > RM, std::optional< CodeModel::Model > CM, CodeGenOptLevel OL, bool JIT)
TargetTransformInfo getTargetTransformInfo(const Function &F) const override
Get a TargetTransformInfo implementation for the target.
MachineFunctionInfo * createMachineFunctionInfo(BumpPtrAllocator &Allocator, const Function &F, const TargetSubtargetInfo *STI) const override
Create the target's instance of MachineFunctionInfo.
TargetPassConfig * createPassConfig(PassManagerBase &PM) override
Create a pass configuration object to be used by addPassToEmitX methods for generating a pipeline of ...
Triple TargetTriple
Triple string, CPU name, and target feature strings the TargetMachine instance is created with.
Definition: TargetMachine.h:95
std::string TargetFS
Definition: TargetMachine.h:97
std::string TargetCPU
Definition: TargetMachine.h:96
std::unique_ptr< const MCSubtargetInfo > STI
void resetTargetOptions(const Function &F) const
Reset the target options based on the function's attributes.
Target-Independent Code Generator Pass Configuration Options.
virtual void addIRPasses()
Add common target configurable passes that perform LLVM IR to IR transforms following machine indepen...
TargetSubtargetInfo - Generic base class for all target subtargets.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Target - Wrapper for Target specific information.
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
PassManagerBase - An abstract interface to allow code to add passes to a pass manager without having ...
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ DynamicNoPIC
Definition: CodeGen.h:25
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
Target & getTheSystemZTarget()
void initializeSystemZElimComparePass(PassRegistry &)
FunctionPass * createSystemZLongBranchPass(SystemZTargetMachine &TM)
FunctionPass * createSystemZISelDag(SystemZTargetMachine &TM, CodeGenOptLevel OptLevel)
FunctionPass * createSystemZCopyPhysRegsPass(SystemZTargetMachine &TM)
FunctionPass * createSystemZElimComparePass(SystemZTargetMachine &TM)
void initializeSystemZDAGToDAGISelPass(PassRegistry &)
char & PostMachineSchedulerID
PostMachineScheduler - This pass schedules machine instructions postRA.
void initializeSystemZLongBranchPass(PassRegistry &)
void initializeSystemZShortenInstPass(PassRegistry &)
FunctionPass * createSystemZTDCPass()
FunctionPass * createLoopDataPrefetchPass()
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:156
FunctionPass * createSystemZShortenInstPass(SystemZTargetMachine &TM)
void initializeSystemZPostRewritePass(PassRegistry &)
CodeGenOptLevel
Code generation optimization level.
Definition: CodeGen.h:54
void initializeSystemZTDCPassPass(PassRegistry &)
FunctionPass * createSystemZLDCleanupPass(SystemZTargetMachine &TM)
char & EarlyIfConverterID
EarlyIfConverter - This pass performs if-conversion on SSA form by inserting cmov instructions.
FunctionPass * createSystemZPostRewritePass(SystemZTargetMachine &TM)
char & IfConverterID
IfConverter - This pass performs machine code if conversion.
FunctionPass * createAtomicExpandLegacyPass()
AtomicExpandPass - At IR level this pass replace atomic instructions with __atomic_* library calls,...
void initializeSystemZLDCleanupPass(PassRegistry &)
MachineFunctionInfo - This class can be derived from and used by targets to hold private target-speci...
MachineSchedContext provides enough context from the MachineScheduler pass for the target to instanti...
RegisterTargetMachine - Helper template for registering a target machine implementation,...