LLVM 20.0.0git
EarlyIfConversion.cpp
Go to the documentation of this file.
1//===-- EarlyIfConversion.cpp - If-conversion on SSA form machine code ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Early if-conversion is for out-of-order CPUs that don't have a lot of
10// predicable instructions. The goal is to eliminate conditional branches that
11// may mispredict.
12//
13// Instructions from both sides of the branch are executed specutatively, and a
14// cmov instruction selects the result.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/BitVector.h"
21#include "llvm/ADT/SparseSet.h"
22#include "llvm/ADT/Statistic.h"
38#include "llvm/Support/Debug.h"
40
41using namespace llvm;
42
43#define DEBUG_TYPE "early-ifcvt"
44
45// Absolute maximum number of instructions allowed per speculated block.
46// This bypasses all other heuristics, so it should be set fairly high.
48BlockInstrLimit("early-ifcvt-limit", cl::init(30), cl::Hidden,
49 cl::desc("Maximum number of instructions per speculated block."));
50
51// Stress testing mode - disable heuristics.
52static cl::opt<bool> Stress("stress-early-ifcvt", cl::Hidden,
53 cl::desc("Turn all knobs to 11"));
54
55STATISTIC(NumDiamondsSeen, "Number of diamonds");
56STATISTIC(NumDiamondsConv, "Number of diamonds converted");
57STATISTIC(NumTrianglesSeen, "Number of triangles");
58STATISTIC(NumTrianglesConv, "Number of triangles converted");
59
60//===----------------------------------------------------------------------===//
61// SSAIfConv
62//===----------------------------------------------------------------------===//
63//
64// The SSAIfConv class performs if-conversion on SSA form machine code after
65// determining if it is possible. The class contains no heuristics; external
66// code should be used to determine when if-conversion is a good idea.
67//
68// SSAIfConv can convert both triangles and diamonds:
69//
70// Triangle: Head Diamond: Head
71// | \ / \_
72// | \ / |
73// | [TF]BB FBB TBB
74// | / \ /
75// | / \ /
76// Tail Tail
77//
78// Instructions in the conditional blocks TBB and/or FBB are spliced into the
79// Head block, and phis in the Tail block are converted to select instructions.
80//
81namespace {
82class SSAIfConv {
83 const TargetInstrInfo *TII;
86
87public:
88 /// The block containing the conditional branch.
90
91 /// The block containing phis after the if-then-else.
93
94 /// The 'true' conditional block as determined by analyzeBranch.
96
97 /// The 'false' conditional block as determined by analyzeBranch.
99
100 /// isTriangle - When there is no 'else' block, either TBB or FBB will be
101 /// equal to Tail.
102 bool isTriangle() const { return TBB == Tail || FBB == Tail; }
103
104 /// Returns the Tail predecessor for the True side.
105 MachineBasicBlock *getTPred() const { return TBB == Tail ? Head : TBB; }
106
107 /// Returns the Tail predecessor for the False side.
108 MachineBasicBlock *getFPred() const { return FBB == Tail ? Head : FBB; }
109
110 /// Information about each phi in the Tail block.
111 struct PHIInfo {
113 unsigned TReg = 0, FReg = 0;
114 // Latencies from Cond+Branch, TReg, and FReg to DstReg.
115 int CondCycles = 0, TCycles = 0, FCycles = 0;
116
117 PHIInfo(MachineInstr *phi) : PHI(phi) {}
118 };
119
121
122 /// The branch condition determined by analyzeBranch.
124
125private:
126 /// Instructions in Head that define values used by the conditional blocks.
127 /// The hoisted instructions must be inserted after these instructions.
129
130 /// Register units clobbered by the conditional blocks.
131 BitVector ClobberedRegUnits;
132
133 // Scratch pad for findInsertionPoint.
135
136 /// Insertion point in Head for speculatively executed instructions form TBB
137 /// and FBB.
138 MachineBasicBlock::iterator InsertionPoint;
139
140 /// Return true if all non-terminator instructions in MBB can be safely
141 /// speculated.
142 bool canSpeculateInstrs(MachineBasicBlock *MBB);
143
144 /// Return true if all non-terminator instructions in MBB can be safely
145 /// predicated.
146 bool canPredicateInstrs(MachineBasicBlock *MBB);
147
148 /// Scan through instruction dependencies and update InsertAfter array.
149 /// Return false if any dependency is incompatible with if conversion.
150 bool InstrDependenciesAllowIfConv(MachineInstr *I);
151
152 /// Predicate all instructions of the basic block with current condition
153 /// except for terminators. Reverse the condition if ReversePredicate is set.
154 void PredicateBlock(MachineBasicBlock *MBB, bool ReversePredicate);
155
156 /// Find a valid insertion point in Head.
157 bool findInsertionPoint();
158
159 /// Replace PHI instructions in Tail with selects.
160 void replacePHIInstrs();
161
162 /// Insert selects and rewrite PHI operands to use them.
163 void rewritePHIOperands();
164
165public:
166 /// runOnMachineFunction - Initialize per-function data structures.
167 void runOnMachineFunction(MachineFunction &MF) {
170 MRI = &MF.getRegInfo();
172 LiveRegUnits.setUniverse(TRI->getNumRegUnits());
173 ClobberedRegUnits.clear();
174 ClobberedRegUnits.resize(TRI->getNumRegUnits());
175 }
176
177 /// canConvertIf - If the sub-CFG headed by MBB can be if-converted,
178 /// initialize the internal state, and return true.
179 /// If predicate is set try to predicate the block otherwise try to
180 /// speculatively execute it.
181 bool canConvertIf(MachineBasicBlock *MBB, bool Predicate = false);
182
183 /// convertIf - If-convert the last block passed to canConvertIf(), assuming
184 /// it is possible. Add any blocks that are to be erased to RemoveBlocks.
185 void convertIf(SmallVectorImpl<MachineBasicBlock *> &RemoveBlocks,
186 bool Predicate = false);
187};
188} // end anonymous namespace
189
190
191/// canSpeculateInstrs - Returns true if all the instructions in MBB can safely
192/// be speculated. The terminators are not considered.
193///
194/// If instructions use any values that are defined in the head basic block,
195/// the defining instructions are added to InsertAfter.
196///
197/// Any clobbered regunits are added to ClobberedRegUnits.
198///
199bool SSAIfConv::canSpeculateInstrs(MachineBasicBlock *MBB) {
200 // Reject any live-in physregs. It's probably CPSR/EFLAGS, and very hard to
201 // get right.
202 if (!MBB->livein_empty()) {
203 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n");
204 return false;
205 }
206
207 unsigned InstrCount = 0;
208
209 // Check all instructions, except the terminators. It is assumed that
210 // terminators never have side effects or define any used register values.
211 for (MachineInstr &MI :
213 if (MI.isDebugInstr())
214 continue;
215
216 if (++InstrCount > BlockInstrLimit && !Stress) {
217 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than "
218 << BlockInstrLimit << " instructions.\n");
219 return false;
220 }
221
222 // There shouldn't normally be any phis in a single-predecessor block.
223 if (MI.isPHI()) {
224 LLVM_DEBUG(dbgs() << "Can't hoist: " << MI);
225 return false;
226 }
227
228 // Don't speculate loads. Note that it may be possible and desirable to
229 // speculate GOT or constant pool loads that are guaranteed not to trap,
230 // but we don't support that for now.
231 if (MI.mayLoad()) {
232 LLVM_DEBUG(dbgs() << "Won't speculate load: " << MI);
233 return false;
234 }
235
236 // We never speculate stores, so an AA pointer isn't necessary.
237 bool DontMoveAcrossStore = true;
238 if (!MI.isSafeToMove(DontMoveAcrossStore)) {
239 LLVM_DEBUG(dbgs() << "Can't speculate: " << MI);
240 return false;
241 }
242
243 // Check for any dependencies on Head instructions.
244 if (!InstrDependenciesAllowIfConv(&MI))
245 return false;
246 }
247 return true;
248}
249
250/// Check that there is no dependencies preventing if conversion.
251///
252/// If instruction uses any values that are defined in the head basic block,
253/// the defining instructions are added to InsertAfter.
254bool SSAIfConv::InstrDependenciesAllowIfConv(MachineInstr *I) {
255 for (const MachineOperand &MO : I->operands()) {
256 if (MO.isRegMask()) {
257 LLVM_DEBUG(dbgs() << "Won't speculate regmask: " << *I);
258 return false;
259 }
260 if (!MO.isReg())
261 continue;
262 Register Reg = MO.getReg();
263
264 // Remember clobbered regunits.
265 if (MO.isDef() && Reg.isPhysical())
266 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg()))
267 ClobberedRegUnits.set(Unit);
268
269 if (!MO.readsReg() || !Reg.isVirtual())
270 continue;
271 MachineInstr *DefMI = MRI->getVRegDef(Reg);
272 if (!DefMI || DefMI->getParent() != Head)
273 continue;
274 if (InsertAfter.insert(DefMI).second)
275 LLVM_DEBUG(dbgs() << printMBBReference(*I->getParent()) << " depends on "
276 << *DefMI);
277 if (DefMI->isTerminator()) {
278 LLVM_DEBUG(dbgs() << "Can't insert instructions below terminator.\n");
279 return false;
280 }
281 }
282 return true;
283}
284
285/// canPredicateInstrs - Returns true if all the instructions in MBB can safely
286/// be predicates. The terminators are not considered.
287///
288/// If instructions use any values that are defined in the head basic block,
289/// the defining instructions are added to InsertAfter.
290///
291/// Any clobbered regunits are added to ClobberedRegUnits.
292///
293bool SSAIfConv::canPredicateInstrs(MachineBasicBlock *MBB) {
294 // Reject any live-in physregs. It's probably CPSR/EFLAGS, and very hard to
295 // get right.
296 if (!MBB->livein_empty()) {
297 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has live-ins.\n");
298 return false;
299 }
300
301 unsigned InstrCount = 0;
302
303 // Check all instructions, except the terminators. It is assumed that
304 // terminators never have side effects or define any used register values.
306 E = MBB->getFirstTerminator();
307 I != E; ++I) {
308 if (I->isDebugInstr())
309 continue;
310
311 if (++InstrCount > BlockInstrLimit && !Stress) {
312 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << " has more than "
313 << BlockInstrLimit << " instructions.\n");
314 return false;
315 }
316
317 // There shouldn't normally be any phis in a single-predecessor block.
318 if (I->isPHI()) {
319 LLVM_DEBUG(dbgs() << "Can't predicate: " << *I);
320 return false;
321 }
322
323 // Check that instruction is predicable
324 if (!TII->isPredicable(*I)) {
325 LLVM_DEBUG(dbgs() << "Isn't predicable: " << *I);
326 return false;
327 }
328
329 // Check that instruction is not already predicated.
330 if (TII->isPredicated(*I) && !TII->canPredicatePredicatedInstr(*I)) {
331 LLVM_DEBUG(dbgs() << "Is already predicated: " << *I);
332 return false;
333 }
334
335 // Check for any dependencies on Head instructions.
336 if (!InstrDependenciesAllowIfConv(&(*I)))
337 return false;
338 }
339 return true;
340}
341
342// Apply predicate to all instructions in the machine block.
343void SSAIfConv::PredicateBlock(MachineBasicBlock *MBB, bool ReversePredicate) {
344 auto Condition = Cond;
345 if (ReversePredicate) {
346 bool CanRevCond = !TII->reverseBranchCondition(Condition);
347 assert(CanRevCond && "Reversed predicate is not supported");
348 (void)CanRevCond;
349 }
350 // Terminators don't need to be predicated as they will be removed.
352 E = MBB->getFirstTerminator();
353 I != E; ++I) {
354 if (I->isDebugInstr())
355 continue;
356 TII->PredicateInstruction(*I, Condition);
357 }
358}
359
360/// Find an insertion point in Head for the speculated instructions. The
361/// insertion point must be:
362///
363/// 1. Before any terminators.
364/// 2. After any instructions in InsertAfter.
365/// 3. Not have any clobbered regunits live.
366///
367/// This function sets InsertionPoint and returns true when successful, it
368/// returns false if no valid insertion point could be found.
369///
370bool SSAIfConv::findInsertionPoint() {
371 // Keep track of live regunits before the current position.
372 // Only track RegUnits that are also in ClobberedRegUnits.
378 while (I != B) {
379 --I;
380 // Some of the conditional code depends in I.
381 if (InsertAfter.count(&*I)) {
382 LLVM_DEBUG(dbgs() << "Can't insert code after " << *I);
383 return false;
384 }
385
386 // Update live regunits.
387 for (const MachineOperand &MO : I->operands()) {
388 // We're ignoring regmask operands. That is conservatively correct.
389 if (!MO.isReg())
390 continue;
391 Register Reg = MO.getReg();
392 if (!Reg.isPhysical())
393 continue;
394 // I clobbers Reg, so it isn't live before I.
395 if (MO.isDef())
396 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg()))
397 LiveRegUnits.erase(Unit);
398 // Unless I reads Reg.
399 if (MO.readsReg())
400 Reads.push_back(Reg.asMCReg());
401 }
402 // Anything read by I is live before I.
403 while (!Reads.empty())
404 for (MCRegUnit Unit : TRI->regunits(Reads.pop_back_val()))
405 if (ClobberedRegUnits.test(Unit))
406 LiveRegUnits.insert(Unit);
407
408 // We can't insert before a terminator.
409 if (I != FirstTerm && I->isTerminator())
410 continue;
411
412 // Some of the clobbered registers are live before I, not a valid insertion
413 // point.
414 if (!LiveRegUnits.empty()) {
415 LLVM_DEBUG({
416 dbgs() << "Would clobber";
417 for (unsigned LRU : LiveRegUnits)
418 dbgs() << ' ' << printRegUnit(LRU, TRI);
419 dbgs() << " live before " << *I;
420 });
421 continue;
422 }
423
424 // This is a valid insertion point.
425 InsertionPoint = I;
426 LLVM_DEBUG(dbgs() << "Can insert before " << *I);
427 return true;
428 }
429 LLVM_DEBUG(dbgs() << "No legal insertion point found.\n");
430 return false;
431}
432
433
434
435/// canConvertIf - analyze the sub-cfg rooted in MBB, and return true if it is
436/// a potential candidate for if-conversion. Fill out the internal state.
437///
438bool SSAIfConv::canConvertIf(MachineBasicBlock *MBB, bool Predicate) {
439 Head = MBB;
440 TBB = FBB = Tail = nullptr;
441
442 if (Head->succ_size() != 2)
443 return false;
444 MachineBasicBlock *Succ0 = Head->succ_begin()[0];
445 MachineBasicBlock *Succ1 = Head->succ_begin()[1];
446
447 // Canonicalize so Succ0 has MBB as its single predecessor.
448 if (Succ0->pred_size() != 1)
449 std::swap(Succ0, Succ1);
450
451 if (Succ0->pred_size() != 1 || Succ0->succ_size() != 1)
452 return false;
453
454 Tail = Succ0->succ_begin()[0];
455
456 // This is not a triangle.
457 if (Tail != Succ1) {
458 // Check for a diamond. We won't deal with any critical edges.
459 if (Succ1->pred_size() != 1 || Succ1->succ_size() != 1 ||
460 Succ1->succ_begin()[0] != Tail)
461 return false;
462 LLVM_DEBUG(dbgs() << "\nDiamond: " << printMBBReference(*Head) << " -> "
463 << printMBBReference(*Succ0) << "/"
464 << printMBBReference(*Succ1) << " -> "
465 << printMBBReference(*Tail) << '\n');
466
467 // Live-in physregs are tricky to get right when speculating code.
468 if (!Tail->livein_empty()) {
469 LLVM_DEBUG(dbgs() << "Tail has live-ins.\n");
470 return false;
471 }
472 } else {
473 LLVM_DEBUG(dbgs() << "\nTriangle: " << printMBBReference(*Head) << " -> "
474 << printMBBReference(*Succ0) << " -> "
475 << printMBBReference(*Tail) << '\n');
476 }
477
478 // This is a triangle or a diamond.
479 // Skip if we cannot predicate and there are no phis skip as there must be
480 // side effects that can only be handled with predication.
481 if (!Predicate && (Tail->empty() || !Tail->front().isPHI())) {
482 LLVM_DEBUG(dbgs() << "No phis in tail.\n");
483 return false;
484 }
485
486 // The branch we're looking to eliminate must be analyzable.
487 Cond.clear();
488 if (TII->analyzeBranch(*Head, TBB, FBB, Cond)) {
489 LLVM_DEBUG(dbgs() << "Branch not analyzable.\n");
490 return false;
491 }
492
493 // This is weird, probably some sort of degenerate CFG.
494 if (!TBB) {
495 LLVM_DEBUG(dbgs() << "analyzeBranch didn't find conditional branch.\n");
496 return false;
497 }
498
499 // Make sure the analyzed branch is conditional; one of the successors
500 // could be a landing pad. (Empty landing pads can be generated on Windows.)
501 if (Cond.empty()) {
502 LLVM_DEBUG(dbgs() << "analyzeBranch found an unconditional branch.\n");
503 return false;
504 }
505
506 // analyzeBranch doesn't set FBB on a fall-through branch.
507 // Make sure it is always set.
508 FBB = TBB == Succ0 ? Succ1 : Succ0;
509
510 // Any phis in the tail block must be convertible to selects.
511 PHIs.clear();
512 MachineBasicBlock *TPred = getTPred();
513 MachineBasicBlock *FPred = getFPred();
514 for (MachineBasicBlock::iterator I = Tail->begin(), E = Tail->end();
515 I != E && I->isPHI(); ++I) {
516 PHIs.push_back(&*I);
517 PHIInfo &PI = PHIs.back();
518 // Find PHI operands corresponding to TPred and FPred.
519 for (unsigned i = 1; i != PI.PHI->getNumOperands(); i += 2) {
520 if (PI.PHI->getOperand(i+1).getMBB() == TPred)
521 PI.TReg = PI.PHI->getOperand(i).getReg();
522 if (PI.PHI->getOperand(i+1).getMBB() == FPred)
523 PI.FReg = PI.PHI->getOperand(i).getReg();
524 }
525 assert(Register::isVirtualRegister(PI.TReg) && "Bad PHI");
526 assert(Register::isVirtualRegister(PI.FReg) && "Bad PHI");
527
528 // Get target information.
529 if (!TII->canInsertSelect(*Head, Cond, PI.PHI->getOperand(0).getReg(),
530 PI.TReg, PI.FReg, PI.CondCycles, PI.TCycles,
531 PI.FCycles)) {
532 LLVM_DEBUG(dbgs() << "Can't convert: " << *PI.PHI);
533 return false;
534 }
535 }
536
537 // Check that the conditional instructions can be speculated.
538 InsertAfter.clear();
539 ClobberedRegUnits.reset();
540 if (Predicate) {
541 if (TBB != Tail && !canPredicateInstrs(TBB))
542 return false;
543 if (FBB != Tail && !canPredicateInstrs(FBB))
544 return false;
545 } else {
546 if (TBB != Tail && !canSpeculateInstrs(TBB))
547 return false;
548 if (FBB != Tail && !canSpeculateInstrs(FBB))
549 return false;
550 }
551
552 // Try to find a valid insertion point for the speculated instructions in the
553 // head basic block.
554 if (!findInsertionPoint())
555 return false;
556
557 if (isTriangle())
558 ++NumTrianglesSeen;
559 else
560 ++NumDiamondsSeen;
561 return true;
562}
563
564/// \return true iff the two registers are known to have the same value.
566 const TargetInstrInfo *TII, Register TReg,
567 Register FReg) {
568 if (TReg == FReg)
569 return true;
570
571 if (!TReg.isVirtual() || !FReg.isVirtual())
572 return false;
573
574 const MachineInstr *TDef = MRI.getUniqueVRegDef(TReg);
575 const MachineInstr *FDef = MRI.getUniqueVRegDef(FReg);
576 if (!TDef || !FDef)
577 return false;
578
579 // If there are side-effects, all bets are off.
580 if (TDef->hasUnmodeledSideEffects())
581 return false;
582
583 // If the instruction could modify memory, or there may be some intervening
584 // store between the two, we can't consider them to be equal.
585 if (TDef->mayLoadOrStore() && !TDef->isDereferenceableInvariantLoad())
586 return false;
587
588 // We also can't guarantee that they are the same if, for example, the
589 // instructions are both a copy from a physical reg, because some other
590 // instruction may have modified the value in that reg between the two
591 // defining insts.
592 if (any_of(TDef->uses(), [](const MachineOperand &MO) {
593 return MO.isReg() && MO.getReg().isPhysical();
594 }))
595 return false;
596
597 // Check whether the two defining instructions produce the same value(s).
598 if (!TII->produceSameValue(*TDef, *FDef, &MRI))
599 return false;
600
601 // Further, check that the two defs come from corresponding operands.
602 int TIdx = TDef->findRegisterDefOperandIdx(TReg, /*TRI=*/nullptr);
603 int FIdx = FDef->findRegisterDefOperandIdx(FReg, /*TRI=*/nullptr);
604 if (TIdx == -1 || FIdx == -1)
605 return false;
606
607 return TIdx == FIdx;
608}
609
610/// replacePHIInstrs - Completely replace PHI instructions with selects.
611/// This is possible when the only Tail predecessors are the if-converted
612/// blocks.
613void SSAIfConv::replacePHIInstrs() {
614 assert(Tail->pred_size() == 2 && "Cannot replace PHIs");
616 assert(FirstTerm != Head->end() && "No terminators");
617 DebugLoc HeadDL = FirstTerm->getDebugLoc();
618
619 // Convert all PHIs to select instructions inserted before FirstTerm.
620 for (PHIInfo &PI : PHIs) {
621 LLVM_DEBUG(dbgs() << "If-converting " << *PI.PHI);
622 Register DstReg = PI.PHI->getOperand(0).getReg();
623 if (hasSameValue(*MRI, TII, PI.TReg, PI.FReg)) {
624 // We do not need the select instruction if both incoming values are
625 // equal, but we do need a COPY.
626 BuildMI(*Head, FirstTerm, HeadDL, TII->get(TargetOpcode::COPY), DstReg)
627 .addReg(PI.TReg);
628 } else {
629 TII->insertSelect(*Head, FirstTerm, HeadDL, DstReg, Cond, PI.TReg,
630 PI.FReg);
631 }
632 LLVM_DEBUG(dbgs() << " --> " << *std::prev(FirstTerm));
633 PI.PHI->eraseFromParent();
634 PI.PHI = nullptr;
635 }
636}
637
638/// rewritePHIOperands - When there are additional Tail predecessors, insert
639/// select instructions in Head and rewrite PHI operands to use the selects.
640/// Keep the PHI instructions in Tail to handle the other predecessors.
641void SSAIfConv::rewritePHIOperands() {
643 assert(FirstTerm != Head->end() && "No terminators");
644 DebugLoc HeadDL = FirstTerm->getDebugLoc();
645
646 // Convert all PHIs to select instructions inserted before FirstTerm.
647 for (PHIInfo &PI : PHIs) {
648 unsigned DstReg = 0;
649
650 LLVM_DEBUG(dbgs() << "If-converting " << *PI.PHI);
651 if (hasSameValue(*MRI, TII, PI.TReg, PI.FReg)) {
652 // We do not need the select instruction if both incoming values are
653 // equal.
654 DstReg = PI.TReg;
655 } else {
656 Register PHIDst = PI.PHI->getOperand(0).getReg();
657 DstReg = MRI->createVirtualRegister(MRI->getRegClass(PHIDst));
658 TII->insertSelect(*Head, FirstTerm, HeadDL,
659 DstReg, Cond, PI.TReg, PI.FReg);
660 LLVM_DEBUG(dbgs() << " --> " << *std::prev(FirstTerm));
661 }
662
663 // Rewrite PHI operands TPred -> (DstReg, Head), remove FPred.
664 for (unsigned i = PI.PHI->getNumOperands(); i != 1; i -= 2) {
665 MachineBasicBlock *MBB = PI.PHI->getOperand(i-1).getMBB();
666 if (MBB == getTPred()) {
667 PI.PHI->getOperand(i-1).setMBB(Head);
668 PI.PHI->getOperand(i-2).setReg(DstReg);
669 } else if (MBB == getFPred()) {
670 PI.PHI->removeOperand(i-1);
671 PI.PHI->removeOperand(i-2);
672 }
673 }
674 LLVM_DEBUG(dbgs() << " --> " << *PI.PHI);
675 }
676}
677
678/// convertIf - Execute the if conversion after canConvertIf has determined the
679/// feasibility.
680///
681/// Any basic blocks that need to be erased will be added to RemoveBlocks.
682///
683void SSAIfConv::convertIf(SmallVectorImpl<MachineBasicBlock *> &RemoveBlocks,
684 bool Predicate) {
685 assert(Head && Tail && TBB && FBB && "Call canConvertIf first.");
686
687 // Update statistics.
688 if (isTriangle())
689 ++NumTrianglesConv;
690 else
691 ++NumDiamondsConv;
692
693 // Move all instructions into Head, except for the terminators.
694 if (TBB != Tail) {
695 if (Predicate)
696 PredicateBlock(TBB, /*ReversePredicate=*/false);
697 Head->splice(InsertionPoint, TBB, TBB->begin(), TBB->getFirstTerminator());
698 }
699 if (FBB != Tail) {
700 if (Predicate)
701 PredicateBlock(FBB, /*ReversePredicate=*/true);
702 Head->splice(InsertionPoint, FBB, FBB->begin(), FBB->getFirstTerminator());
703 }
704 // Are there extra Tail predecessors?
705 bool ExtraPreds = Tail->pred_size() != 2;
706 if (ExtraPreds)
707 rewritePHIOperands();
708 else
709 replacePHIInstrs();
710
711 // Fix up the CFG, temporarily leave Head without any successors.
712 Head->removeSuccessor(TBB);
713 Head->removeSuccessor(FBB, true);
714 if (TBB != Tail)
715 TBB->removeSuccessor(Tail, true);
716 if (FBB != Tail)
717 FBB->removeSuccessor(Tail, true);
718
719 // Fix up Head's terminators.
720 // It should become a single branch or a fallthrough.
721 DebugLoc HeadDL = Head->getFirstTerminator()->getDebugLoc();
722 TII->removeBranch(*Head);
723
724 // Mark the now empty conditional blocks for removal and move them to the end.
725 // It is likely that Head can fall
726 // through to Tail, and we can join the two blocks.
727 if (TBB != Tail) {
728 RemoveBlocks.push_back(TBB);
729 if (TBB != &TBB->getParent()->back())
730 TBB->moveAfter(&TBB->getParent()->back());
731 }
732 if (FBB != Tail) {
733 RemoveBlocks.push_back(FBB);
734 if (FBB != &FBB->getParent()->back())
735 FBB->moveAfter(&FBB->getParent()->back());
736 }
737
738 assert(Head->succ_empty() && "Additional head successors?");
739 if (!ExtraPreds && Head->isLayoutSuccessor(Tail)) {
740 // Splice Tail onto the end of Head.
741 LLVM_DEBUG(dbgs() << "Joining tail " << printMBBReference(*Tail)
742 << " into head " << printMBBReference(*Head) << '\n');
743 Head->splice(Head->end(), Tail,
744 Tail->begin(), Tail->end());
746 RemoveBlocks.push_back(Tail);
747 if (Tail != &Tail->getParent()->back())
748 Tail->moveAfter(&Tail->getParent()->back());
749 } else {
750 // We need a branch to Tail, let code placement work it out later.
751 LLVM_DEBUG(dbgs() << "Converting to unconditional branch.\n");
753 TII->insertBranch(*Head, Tail, nullptr, EmptyCond, HeadDL);
754 Head->addSuccessor(Tail);
755 }
756 LLVM_DEBUG(dbgs() << *Head);
757}
758
759//===----------------------------------------------------------------------===//
760// EarlyIfConverter Pass
761//===----------------------------------------------------------------------===//
762
763namespace {
764class EarlyIfConverter : public MachineFunctionPass {
765 const TargetInstrInfo *TII = nullptr;
766 const TargetRegisterInfo *TRI = nullptr;
767 MCSchedModel SchedModel;
768 MachineRegisterInfo *MRI = nullptr;
769 MachineDominatorTree *DomTree = nullptr;
770 MachineLoopInfo *Loops = nullptr;
771 MachineTraceMetrics *Traces = nullptr;
772 MachineTraceMetrics::Ensemble *MinInstr = nullptr;
773 SSAIfConv IfConv;
774
775public:
776 static char ID;
777 EarlyIfConverter() : MachineFunctionPass(ID) {}
778 void getAnalysisUsage(AnalysisUsage &AU) const override;
779 bool runOnMachineFunction(MachineFunction &MF) override;
780 StringRef getPassName() const override { return "Early If-Conversion"; }
781
782private:
783 bool tryConvertIf(MachineBasicBlock*);
784 void invalidateTraces();
785 bool shouldConvertIf();
786};
787} // end anonymous namespace
788
789char EarlyIfConverter::ID = 0;
790char &llvm::EarlyIfConverterID = EarlyIfConverter::ID;
791
793 "Early If Converter", false, false)
798 "Early If Converter", false, false)
799
800void EarlyIfConverter::getAnalysisUsage(AnalysisUsage &AU) const {
802 AU.addRequired<MachineDominatorTreeWrapperPass>();
803 AU.addPreserved<MachineDominatorTreeWrapperPass>();
804 AU.addRequired<MachineLoopInfoWrapperPass>();
805 AU.addPreserved<MachineLoopInfoWrapperPass>();
806 AU.addRequired<MachineTraceMetrics>();
807 AU.addPreserved<MachineTraceMetrics>();
809}
810
811namespace {
812/// Update the dominator tree after if-conversion erased some blocks.
813void updateDomTree(MachineDominatorTree *DomTree, const SSAIfConv &IfConv,
815 // convertIf can remove TBB, FBB, and Tail can be merged into Head.
816 // TBB and FBB should not dominate any blocks.
817 // Tail children should be transferred to Head.
818 MachineDomTreeNode *HeadNode = DomTree->getNode(IfConv.Head);
819 for (auto *B : Removed) {
820 MachineDomTreeNode *Node = DomTree->getNode(B);
821 assert(Node != HeadNode && "Cannot erase the head node");
822 while (Node->getNumChildren()) {
823 assert(Node->getBlock() == IfConv.Tail && "Unexpected children");
824 DomTree->changeImmediateDominator(Node->back(), HeadNode);
825 }
826 DomTree->eraseNode(B);
827 }
828}
829
830/// Update LoopInfo after if-conversion.
831void updateLoops(MachineLoopInfo *Loops,
833 // If-conversion doesn't change loop structure, and it doesn't mess with back
834 // edges, so updating LoopInfo is simply removing the dead blocks.
835 for (auto *B : Removed)
836 Loops->removeBlock(B);
837}
838} // namespace
839
840/// Invalidate MachineTraceMetrics before if-conversion.
841void EarlyIfConverter::invalidateTraces() {
842 Traces->verifyAnalysis();
843 Traces->invalidate(IfConv.Head);
844 Traces->invalidate(IfConv.Tail);
845 Traces->invalidate(IfConv.TBB);
846 Traces->invalidate(IfConv.FBB);
847 Traces->verifyAnalysis();
848}
849
850// Adjust cycles with downward saturation.
851static unsigned adjCycles(unsigned Cyc, int Delta) {
852 if (Delta < 0 && Cyc + Delta > Cyc)
853 return 0;
854 return Cyc + Delta;
855}
856
857namespace {
858/// Helper class to simplify emission of cycle counts into optimization remarks.
859struct Cycles {
860 const char *Key;
861 unsigned Value;
862};
863template <typename Remark> Remark &operator<<(Remark &R, Cycles C) {
864 return R << ore::NV(C.Key, C.Value) << (C.Value == 1 ? " cycle" : " cycles");
865}
866} // anonymous namespace
867
868/// Apply cost model and heuristics to the if-conversion in IfConv.
869/// Return true if the conversion is a good idea.
870///
871bool EarlyIfConverter::shouldConvertIf() {
872 // Stress testing mode disables all cost considerations.
873 if (Stress)
874 return true;
875
876 // Do not try to if-convert if the condition has a high chance of being
877 // predictable.
878 MachineLoop *CurrentLoop = Loops->getLoopFor(IfConv.Head);
879 // If the condition is in a loop, consider it predictable if the condition
880 // itself or all its operands are loop-invariant. E.g. this considers a load
881 // from a loop-invariant address predictable; we were unable to prove that it
882 // doesn't alias any of the memory-writes in the loop, but it is likely to
883 // read to same value multiple times.
884 if (CurrentLoop && any_of(IfConv.Cond, [&](MachineOperand &MO) {
885 if (!MO.isReg() || !MO.isUse())
886 return false;
887 Register Reg = MO.getReg();
888 if (Register::isPhysicalRegister(Reg))
889 return false;
890
891 MachineInstr *Def = MRI->getVRegDef(Reg);
892 return CurrentLoop->isLoopInvariant(*Def) ||
893 all_of(Def->operands(), [&](MachineOperand &Op) {
894 if (Op.isImm())
895 return true;
896 if (!MO.isReg() || !MO.isUse())
897 return false;
898 Register Reg = MO.getReg();
899 if (Register::isPhysicalRegister(Reg))
900 return false;
901
902 MachineInstr *Def = MRI->getVRegDef(Reg);
903 return CurrentLoop->isLoopInvariant(*Def);
904 });
905 }))
906 return false;
907
908 if (!MinInstr)
909 MinInstr = Traces->getEnsemble(MachineTraceStrategy::TS_MinInstrCount);
910
911 MachineTraceMetrics::Trace TBBTrace = MinInstr->getTrace(IfConv.getTPred());
912 MachineTraceMetrics::Trace FBBTrace = MinInstr->getTrace(IfConv.getFPred());
913 LLVM_DEBUG(dbgs() << "TBB: " << TBBTrace << "FBB: " << FBBTrace);
914 unsigned MinCrit = std::min(TBBTrace.getCriticalPath(),
915 FBBTrace.getCriticalPath());
916
917 // Set a somewhat arbitrary limit on the critical path extension we accept.
918 unsigned CritLimit = SchedModel.MispredictPenalty/2;
919
920 MachineBasicBlock &MBB = *IfConv.Head;
922
923 // If-conversion only makes sense when there is unexploited ILP. Compute the
924 // maximum-ILP resource length of the trace after if-conversion. Compare it
925 // to the shortest critical path.
927 if (IfConv.TBB != IfConv.Tail)
928 ExtraBlocks.push_back(IfConv.TBB);
929 unsigned ResLength = FBBTrace.getResourceLength(ExtraBlocks);
930 LLVM_DEBUG(dbgs() << "Resource length " << ResLength
931 << ", minimal critical path " << MinCrit << '\n');
932 if (ResLength > MinCrit + CritLimit) {
933 LLVM_DEBUG(dbgs() << "Not enough available ILP.\n");
934 MORE.emit([&]() {
937 R << "did not if-convert branch: the resulting critical path ("
938 << Cycles{"ResLength", ResLength}
939 << ") would extend the shorter leg's critical path ("
940 << Cycles{"MinCrit", MinCrit} << ") by more than the threshold of "
941 << Cycles{"CritLimit", CritLimit}
942 << ", which cannot be hidden by available ILP.";
943 return R;
944 });
945 return false;
946 }
947
948 // Assume that the depth of the first head terminator will also be the depth
949 // of the select instruction inserted, as determined by the flag dependency.
950 // TBB / FBB data dependencies may delay the select even more.
951 MachineTraceMetrics::Trace HeadTrace = MinInstr->getTrace(IfConv.Head);
952 unsigned BranchDepth =
953 HeadTrace.getInstrCycles(*IfConv.Head->getFirstTerminator()).Depth;
954 LLVM_DEBUG(dbgs() << "Branch depth: " << BranchDepth << '\n');
955
956 // Look at all the tail phis, and compute the critical path extension caused
957 // by inserting select instructions.
958 MachineTraceMetrics::Trace TailTrace = MinInstr->getTrace(IfConv.Tail);
959 struct CriticalPathInfo {
960 unsigned Extra; // Count of extra cycles that the component adds.
961 unsigned Depth; // Absolute depth of the component in cycles.
962 };
963 CriticalPathInfo Cond{};
964 CriticalPathInfo TBlock{};
965 CriticalPathInfo FBlock{};
966 bool ShouldConvert = true;
967 for (SSAIfConv::PHIInfo &PI : IfConv.PHIs) {
968 unsigned Slack = TailTrace.getInstrSlack(*PI.PHI);
969 unsigned MaxDepth = Slack + TailTrace.getInstrCycles(*PI.PHI).Depth;
970 LLVM_DEBUG(dbgs() << "Slack " << Slack << ":\t" << *PI.PHI);
971
972 // The condition is pulled into the critical path.
973 unsigned CondDepth = adjCycles(BranchDepth, PI.CondCycles);
974 if (CondDepth > MaxDepth) {
975 unsigned Extra = CondDepth - MaxDepth;
976 LLVM_DEBUG(dbgs() << "Condition adds " << Extra << " cycles.\n");
977 if (Extra > Cond.Extra)
978 Cond = {Extra, CondDepth};
979 if (Extra > CritLimit) {
980 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
981 ShouldConvert = false;
982 }
983 }
984
985 // The TBB value is pulled into the critical path.
986 unsigned TDepth = adjCycles(TBBTrace.getPHIDepth(*PI.PHI), PI.TCycles);
987 if (TDepth > MaxDepth) {
988 unsigned Extra = TDepth - MaxDepth;
989 LLVM_DEBUG(dbgs() << "TBB data adds " << Extra << " cycles.\n");
990 if (Extra > TBlock.Extra)
991 TBlock = {Extra, TDepth};
992 if (Extra > CritLimit) {
993 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
994 ShouldConvert = false;
995 }
996 }
997
998 // The FBB value is pulled into the critical path.
999 unsigned FDepth = adjCycles(FBBTrace.getPHIDepth(*PI.PHI), PI.FCycles);
1000 if (FDepth > MaxDepth) {
1001 unsigned Extra = FDepth - MaxDepth;
1002 LLVM_DEBUG(dbgs() << "FBB data adds " << Extra << " cycles.\n");
1003 if (Extra > FBlock.Extra)
1004 FBlock = {Extra, FDepth};
1005 if (Extra > CritLimit) {
1006 LLVM_DEBUG(dbgs() << "Exceeds limit of " << CritLimit << '\n');
1007 ShouldConvert = false;
1008 }
1009 }
1010 }
1011
1012 // Organize by "short" and "long" legs, since the diagnostics get confusing
1013 // when referring to the "true" and "false" sides of the branch, given that
1014 // those don't always correlate with what the user wrote in source-terms.
1015 const CriticalPathInfo Short = TBlock.Extra > FBlock.Extra ? FBlock : TBlock;
1016 const CriticalPathInfo Long = TBlock.Extra > FBlock.Extra ? TBlock : FBlock;
1017
1018 if (ShouldConvert) {
1019 MORE.emit([&]() {
1020 MachineOptimizationRemark R(DEBUG_TYPE, "IfConversion",
1021 MBB.back().getDebugLoc(), &MBB);
1022 R << "performing if-conversion on branch: the condition adds "
1023 << Cycles{"CondCycles", Cond.Extra} << " to the critical path";
1024 if (Short.Extra > 0)
1025 R << ", and the short leg adds another "
1026 << Cycles{"ShortCycles", Short.Extra};
1027 if (Long.Extra > 0)
1028 R << ", and the long leg adds another "
1029 << Cycles{"LongCycles", Long.Extra};
1030 R << ", each staying under the threshold of "
1031 << Cycles{"CritLimit", CritLimit} << ".";
1032 return R;
1033 });
1034 } else {
1035 MORE.emit([&]() {
1037 MBB.back().getDebugLoc(), &MBB);
1038 R << "did not if-convert branch: the condition would add "
1039 << Cycles{"CondCycles", Cond.Extra} << " to the critical path";
1040 if (Cond.Extra > CritLimit)
1041 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit};
1042 if (Short.Extra > 0) {
1043 R << ", and the short leg would add another "
1044 << Cycles{"ShortCycles", Short.Extra};
1045 if (Short.Extra > CritLimit)
1046 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit};
1047 }
1048 if (Long.Extra > 0) {
1049 R << ", and the long leg would add another "
1050 << Cycles{"LongCycles", Long.Extra};
1051 if (Long.Extra > CritLimit)
1052 R << " exceeding the limit of " << Cycles{"CritLimit", CritLimit};
1053 }
1054 R << ".";
1055 return R;
1056 });
1057 }
1058
1059 return ShouldConvert;
1060}
1061
1062/// Attempt repeated if-conversion on MBB, return true if successful.
1063///
1064bool EarlyIfConverter::tryConvertIf(MachineBasicBlock *MBB) {
1065 bool Changed = false;
1066 while (IfConv.canConvertIf(MBB) && shouldConvertIf()) {
1067 // If-convert MBB and update analyses.
1068 invalidateTraces();
1070 IfConv.convertIf(RemoveBlocks);
1071 Changed = true;
1072 updateDomTree(DomTree, IfConv, RemoveBlocks);
1073 for (MachineBasicBlock *MBB : RemoveBlocks)
1075 updateLoops(Loops, RemoveBlocks);
1076 }
1077 return Changed;
1078}
1079
1080bool EarlyIfConverter::runOnMachineFunction(MachineFunction &MF) {
1081 LLVM_DEBUG(dbgs() << "********** EARLY IF-CONVERSION **********\n"
1082 << "********** Function: " << MF.getName() << '\n');
1083 if (skipFunction(MF.getFunction()))
1084 return false;
1085
1086 // Only run if conversion if the target wants it.
1087 const TargetSubtargetInfo &STI = MF.getSubtarget();
1088 if (!STI.enableEarlyIfConversion())
1089 return false;
1090
1091 TII = STI.getInstrInfo();
1092 TRI = STI.getRegisterInfo();
1093 SchedModel = STI.getSchedModel();
1094 MRI = &MF.getRegInfo();
1095 DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
1096 Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
1097 Traces = &getAnalysis<MachineTraceMetrics>();
1098 MinInstr = nullptr;
1099
1100 bool Changed = false;
1101 IfConv.runOnMachineFunction(MF);
1102
1103 // Visit blocks in dominator tree post-order. The post-order enables nested
1104 // if-conversion in a single pass. The tryConvertIf() function may erase
1105 // blocks, but only blocks dominated by the head block. This makes it safe to
1106 // update the dominator tree while the post-order iterator is still active.
1107 for (auto *DomNode : post_order(DomTree))
1108 if (tryConvertIf(DomNode->getBlock()))
1109 Changed = true;
1110
1111 return Changed;
1112}
1113
1114//===----------------------------------------------------------------------===//
1115// EarlyIfPredicator Pass
1116//===----------------------------------------------------------------------===//
1117
1118namespace {
1119class EarlyIfPredicator : public MachineFunctionPass {
1120 const TargetInstrInfo *TII = nullptr;
1121 const TargetRegisterInfo *TRI = nullptr;
1122 TargetSchedModel SchedModel;
1123 MachineRegisterInfo *MRI = nullptr;
1124 MachineDominatorTree *DomTree = nullptr;
1125 MachineBranchProbabilityInfo *MBPI = nullptr;
1126 MachineLoopInfo *Loops = nullptr;
1127 SSAIfConv IfConv;
1128
1129public:
1130 static char ID;
1131 EarlyIfPredicator() : MachineFunctionPass(ID) {}
1132 void getAnalysisUsage(AnalysisUsage &AU) const override;
1133 bool runOnMachineFunction(MachineFunction &MF) override;
1134 StringRef getPassName() const override { return "Early If-predicator"; }
1135
1136protected:
1137 bool tryConvertIf(MachineBasicBlock *);
1138 bool shouldConvertIf();
1139};
1140} // end anonymous namespace
1141
1142#undef DEBUG_TYPE
1143#define DEBUG_TYPE "early-if-predicator"
1144
1145char EarlyIfPredicator::ID = 0;
1146char &llvm::EarlyIfPredicatorID = EarlyIfPredicator::ID;
1147
1148INITIALIZE_PASS_BEGIN(EarlyIfPredicator, DEBUG_TYPE, "Early If Predicator",
1149 false, false)
1152INITIALIZE_PASS_END(EarlyIfPredicator, DEBUG_TYPE, "Early If Predicator", false,
1153 false)
1154
1155void EarlyIfPredicator::getAnalysisUsage(AnalysisUsage &AU) const {
1157 AU.addRequired<MachineDominatorTreeWrapperPass>();
1158 AU.addPreserved<MachineDominatorTreeWrapperPass>();
1159 AU.addRequired<MachineLoopInfoWrapperPass>();
1160 AU.addPreserved<MachineLoopInfoWrapperPass>();
1162}
1163
1164/// Apply the target heuristic to decide if the transformation is profitable.
1165bool EarlyIfPredicator::shouldConvertIf() {
1166 auto TrueProbability = MBPI->getEdgeProbability(IfConv.Head, IfConv.TBB);
1167 if (IfConv.isTriangle()) {
1168 MachineBasicBlock &IfBlock =
1169 (IfConv.TBB == IfConv.Tail) ? *IfConv.FBB : *IfConv.TBB;
1170
1171 unsigned ExtraPredCost = 0;
1172 unsigned Cycles = 0;
1173 for (MachineInstr &I : IfBlock) {
1174 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1175 if (NumCycles > 1)
1176 Cycles += NumCycles - 1;
1177 ExtraPredCost += TII->getPredicationCost(I);
1178 }
1179
1180 return TII->isProfitableToIfCvt(IfBlock, Cycles, ExtraPredCost,
1181 TrueProbability);
1182 }
1183 unsigned TExtra = 0;
1184 unsigned FExtra = 0;
1185 unsigned TCycle = 0;
1186 unsigned FCycle = 0;
1187 for (MachineInstr &I : *IfConv.TBB) {
1188 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1189 if (NumCycles > 1)
1190 TCycle += NumCycles - 1;
1191 TExtra += TII->getPredicationCost(I);
1192 }
1193 for (MachineInstr &I : *IfConv.FBB) {
1194 unsigned NumCycles = SchedModel.computeInstrLatency(&I, false);
1195 if (NumCycles > 1)
1196 FCycle += NumCycles - 1;
1197 FExtra += TII->getPredicationCost(I);
1198 }
1199 return TII->isProfitableToIfCvt(*IfConv.TBB, TCycle, TExtra, *IfConv.FBB,
1200 FCycle, FExtra, TrueProbability);
1201}
1202
1203/// Attempt repeated if-conversion on MBB, return true if successful.
1204///
1205bool EarlyIfPredicator::tryConvertIf(MachineBasicBlock *MBB) {
1206 bool Changed = false;
1207 while (IfConv.canConvertIf(MBB, /*Predicate*/ true) && shouldConvertIf()) {
1208 // If-convert MBB and update analyses.
1210 IfConv.convertIf(RemoveBlocks, /*Predicate*/ true);
1211 Changed = true;
1212 updateDomTree(DomTree, IfConv, RemoveBlocks);
1213 for (MachineBasicBlock *MBB : RemoveBlocks)
1215 updateLoops(Loops, RemoveBlocks);
1216 }
1217 return Changed;
1218}
1219
1220bool EarlyIfPredicator::runOnMachineFunction(MachineFunction &MF) {
1221 LLVM_DEBUG(dbgs() << "********** EARLY IF-PREDICATOR **********\n"
1222 << "********** Function: " << MF.getName() << '\n');
1223 if (skipFunction(MF.getFunction()))
1224 return false;
1225
1226 const TargetSubtargetInfo &STI = MF.getSubtarget();
1227 TII = STI.getInstrInfo();
1228 TRI = STI.getRegisterInfo();
1229 MRI = &MF.getRegInfo();
1230 SchedModel.init(&STI);
1231 DomTree = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
1232 Loops = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
1233 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI();
1234
1235 bool Changed = false;
1236 IfConv.runOnMachineFunction(MF);
1237
1238 // Visit blocks in dominator tree post-order. The post-order enables nested
1239 // if-conversion in a single pass. The tryConvertIf() function may erase
1240 // blocks, but only blocks dominated by the head block. This makes it safe to
1241 // update the dominator tree while the post-order iterator is still active.
1242 for (auto *DomNode : post_order(DomTree))
1243 if (tryConvertIf(DomNode->getBlock()))
1244 Changed = true;
1245
1246 return Changed;
1247}
unsigned const MachineRegisterInfo * MRI
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
MachineInstrBuilder MachineInstrBuilder & DefMI
Rewrite undef for PHI
MachineBasicBlock & MBB
This file implements the BitVector class.
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static unsigned InstrCount
#define LLVM_DEBUG(X)
Definition: Debug.h:101
Early If Converter
Early If Predicator
static bool hasSameValue(const MachineRegisterInfo &MRI, const TargetInstrInfo *TII, Register TReg, Register FReg)
static unsigned adjCycles(unsigned Cyc, int Delta)
static cl::opt< bool > Stress("stress-early-ifcvt", cl::Hidden, cl::desc("Turn all knobs to 11"))
static cl::opt< unsigned > BlockInstrLimit("early-ifcvt-limit", cl::init(30), cl::Hidden, cl::desc("Maximum number of instructions per speculated block."))
#define DEBUG_TYPE
const HexagonInstrInfo * TII
Hexagon Hardware Loops
IRTranslator LLVM IR MI
static const unsigned MaxDepth
#define I(x, y, z)
Definition: MD5.cpp:58
===- MachineOptimizationRemarkEmitter.h - Opt Diagnostics -*- C++ -*-—===//
unsigned const TargetRegisterInfo * TRI
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file defines the SparseSet class derived from the version described in Briggs,...
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
Represent the analysis usage information of a pass.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
bool test(unsigned Idx) const
Definition: BitVector.h:461
BitVector & reset()
Definition: BitVector.h:392
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition: BitVector.h:341
void clear()
clear - Removes all bits from the bitvector.
Definition: BitVector.h:335
BitVector & set()
Definition: BitVector.h:351
A debug info location.
Definition: DebugLoc.h:33
Base class for the actual dominator tree node.
unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved=nullptr) const override
Remove the branching code at the end of the specific MBB.
bool isPredicated(const MachineInstr &MI) const override
Returns true if the instruction is already predicated.
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const override
Analyze the branching code at the end of MBB, returning true if it cannot be understood (e....
bool reverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const override
Reverses the branch condition of the specified condition list, returning false on success and true if...
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const override
Insert branch code into the end of the specified MachineBasicBlock.
bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, BranchProbability Probability) const override
Return true if it's profitable to predicate instructions with accumulated instruction latency of "Num...
bool PredicateInstruction(MachineInstr &MI, ArrayRef< MachineOperand > Cond) const override
Convert the instruction into a predicated instruction.
bool isPredicable(const MachineInstr &MI) const override
Return true if the specified instruction can be predicated.
A set of register units used to track register liveness.
Definition: LiveRegUnits.h:30
bool empty() const
Returns true if the set is empty.
Definition: LiveRegUnits.h:83
void clear()
Clears the set.
Definition: LiveRegUnits.h:80
const MCSchedModel & getSchedModel() const
Get the machine model for this subtarget's CPU.
unsigned pred_size() const
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
unsigned succ_size() const
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
void removeSuccessor(MachineBasicBlock *Succ, bool NormalizeSuccProbs=false)
Remove successor from the successors list of this MachineBasicBlock.
DebugLoc findDebugLoc(instr_iterator MBBI)
Find the next valid DebugLoc starting at MBBI, skipping any debug instructions.
bool isLayoutSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB will be emitted immediately after this block, such that if this bloc...
void eraseFromParent()
This method unlinks 'this' from the containing function and deletes it.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
void moveAfter(MachineBasicBlock *NewBefore)
Analysis pass which computes a MachineDominatorTree.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineDomTreeNode * getNode(MachineBasicBlock *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
void eraseNode(MachineBasicBlock *BB)
eraseNode - Removes a node from the dominator tree.
void changeImmediateDominator(MachineBasicBlock *N, MachineBasicBlock *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineBasicBlock & back() const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
Representation of each machine instruction.
Definition: MachineInstr.h:69
bool isTerminator(QueryType Type=AnyInBundle) const
Returns true if this instruction part of the terminator for a basic block.
Definition: MachineInstr.h:974
bool mayLoadOrStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read or modify memory.
const MachineBasicBlock * getParent() const
Definition: MachineInstr.h:346
bool isDereferenceableInvariantLoad() const
Return true if this load instruction never traps and points to a memory location whose value doesn't ...
iterator_range< mop_iterator > uses()
Returns a range that includes all operands that are register uses.
Definition: MachineInstr.h:733
bool hasUnmodeledSideEffects() const
Return true if this instruction has side effects that are not modeled by mayLoad / mayStore,...
const DebugLoc & getDebugLoc() const
Returns the debug location id of this MachineInstr.
Definition: MachineInstr.h:498
int findRegisterDefOperandIdx(Register Reg, const TargetRegisterInfo *TRI, bool isDead=false, bool Overlap=false) const
Returns the operand index that is a def of the specified register or -1 if it is not found.
MachineOperand class - Representation of each machine instruction operand.
Diagnostic information for missed-optimization remarks.
Diagnostic information for applied optimization remarks.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
A trace ensemble is a collection of traces selected using the same strategy, for example 'minimum res...
A trace represents a plausible sequence of executed basic blocks that passes through the current basi...
InstrCycles getInstrCycles(const MachineInstr &MI) const
Return the depth and height of MI.
unsigned getInstrSlack(const MachineInstr &MI) const
Return the slack of MI.
unsigned getResourceLength(ArrayRef< const MachineBasicBlock * > Extrablocks=std::nullopt, ArrayRef< const MCSchedClassDesc * > ExtraInstrs=std::nullopt, ArrayRef< const MCSchedClassDesc * > RemoveInstrs=std::nullopt) const
Return the resource length of the trace.
unsigned getCriticalPath() const
Return the length of the (data dependency) critical path through the trace.
unsigned getPHIDepth(const MachineInstr &PHI) const
Return the Depth of a PHI instruction in a trace center block successor.
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:91
static constexpr bool isVirtualRegister(unsigned Reg)
Return true if the specified register number is in the virtual register namespace.
Definition: Register.h:71
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:436
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:368
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:503
bool empty() const
Definition: SmallVector.h:95
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:587
void push_back(const T &Elt)
Definition: SmallVector.h:427
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1210
SparseSet - Fast set implementation for objects that can be identified by small unsigned keys.
Definition: SparseSet.h:124
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
TargetInstrInfo - Interface to description of machine instruction set.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
Provide an instruction scheduling machine model to CodeGen passes.
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
virtual const TargetInstrInfo * getInstrInfo() const
virtual bool enableEarlyIfConversion() const
Enable the use of the early if conversion pass.
LLVM Value Representation.
Definition: Value.h:74
Key
PAL metadata keys.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Reg
All possible values of the reg field in the ModR/M byte.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
constexpr double phi
Definition: MathExtras.h:61
DiagnosticInfoOptimizationBase::Argument NV
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI)
Create Printable object to print register units on a raw_ostream.
iterator_range< po_iterator< T > > post_order(const T &G)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
char & EarlyIfPredicatorID
EarlyIfPredicator - This pass performs if-conversion on SSA form by predicating if/else block and ins...
char & EarlyIfConverterID
EarlyIfConverter - This pass performs if-conversion on SSA form by inserting cmov instructions.
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:293
Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define MORE()
Definition: regcomp.c:252
Machine model for scheduling, bundling, and heuristics.
Definition: MCSchedule.h:253
unsigned Depth
Earliest issue cycle as determined by data dependencies and instruction latencies from the beginning ...