35#include "llvm/IR/IntrinsicsWebAssembly.h"
42#define DEBUG_TYPE "wasm-lower"
47 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
61 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
67 if (Subtarget->hasSIMD128()) {
75 if (Subtarget->hasFP16()) {
78 if (Subtarget->hasReferenceTypes()) {
81 if (Subtarget->hasExceptionHandling()) {
90 for (
auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
94 if (Subtarget->hasSIMD128()) {
95 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
101 if (Subtarget->hasFP16()) {
105 if (Subtarget->hasReferenceTypes()) {
108 for (
auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
129 for (
auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64, MVT::v8f16}) {
130 if (!Subtarget->hasFP16() &&
T == MVT::v8f16) {
143 if (
MVT(
T).isVector())
157 if (
T != MVT::v8f16) {
170 for (
auto T : {MVT::i32, MVT::i64})
172 if (Subtarget->hasSIMD128())
173 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
177 if (Subtarget->hasWideArithmetic()) {
185 if (Subtarget->hasNontrappingFPToInt())
187 for (
auto T : {MVT::i32, MVT::i64})
190 if (Subtarget->hasRelaxedSIMD()) {
193 {MVT::v4f32, MVT::v2f64},
Legal);
196 if (Subtarget->hasSIMD128()) {
230 for (
auto T : {MVT::v16i8, MVT::v8i16})
234 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
238 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
242 if (Subtarget->hasFP16())
246 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
250 if (Subtarget->hasFP16())
254 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
262 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
267 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
275 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
282 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
287 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
297 for (
auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
303 for (
auto T : {MVT::v4f32, MVT::v2f64})
313 for (
auto T : {MVT::v2i64, MVT::v2f64})
319 if (Subtarget->hasFP16()) {
331 if (Subtarget->hasFP16()) {
335 if (Subtarget->hasRelaxedSIMD()) {
350 if (!Subtarget->hasSignExt()) {
352 auto Action = Subtarget->hasSIMD128() ?
Custom :
Expand;
353 for (
auto T : {MVT::i8, MVT::i16, MVT::i32})
369 for (
auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
386 if (Subtarget->hasSIMD128()) {
387 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
390 if (
MVT(
T) != MemT) {
429 return MVT::externref;
438 return MVT::externref;
445WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(
462bool WebAssemblyTargetLowering::shouldScalarizeBinop(
SDValue VecOp)
const {
482FastISel *WebAssemblyTargetLowering::createFastISel(
488MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(
const DataLayout & ,
499 "32-bit shift counts ought to be enough for anyone");
504 "Unable to represent scalar shift amount type");
514 bool IsUnsigned,
bool Int64,
515 bool Float64,
unsigned LoweredOpcode) {
521 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
522 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
523 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
524 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
525 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
526 unsigned Eqz = WebAssembly::EQZ_I32;
527 unsigned And = WebAssembly::AND_I32;
528 int64_t Limit = Int64 ?
INT64_MIN : INT32_MIN;
529 int64_t Substitute = IsUnsigned ? 0 : Limit;
530 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
541 F->insert(It, FalseMBB);
542 F->insert(It, TrueMBB);
543 F->insert(It, DoneMBB);
546 DoneMBB->
splice(DoneMBB->
begin(), BB, std::next(
MI.getIterator()), BB->
end());
554 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
555 Tmp0 =
MRI.createVirtualRegister(
MRI.getRegClass(InReg));
556 Tmp1 =
MRI.createVirtualRegister(
MRI.getRegClass(InReg));
557 CmpReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
558 EqzReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
559 FalseReg =
MRI.createVirtualRegister(
MRI.getRegClass(OutReg));
560 TrueReg =
MRI.createVirtualRegister(
MRI.getRegClass(OutReg));
562 MI.eraseFromParent();
576 Tmp1 =
MRI.createVirtualRegister(
MRI.getRegClass(InReg));
578 MRI.createVirtualRegister(&WebAssembly::I32RegClass);
579 Register AndReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
619 if (Def->getOpcode() == WebAssembly::CONST_I32 ||
620 Def->getOpcode() == WebAssembly::CONST_I64) {
621 if (Def->getOperand(1).getImm() == 0) {
623 MI.eraseFromParent();
627 unsigned MemoryCopy =
628 Int64 ? WebAssembly::MEMORY_COPY_A64 : WebAssembly::MEMORY_COPY_A32;
635 MI.eraseFromParent();
646 unsigned Eqz = Int64 ? WebAssembly::EQZ_I64 : WebAssembly::EQZ_I32;
647 unsigned MemoryCopy =
648 Int64 ? WebAssembly::MEMORY_COPY_A64 : WebAssembly::MEMORY_COPY_A32;
659 F->insert(It, TrueMBB);
660 F->insert(It, DoneMBB);
663 DoneMBB->
splice(DoneMBB->
begin(), BB, std::next(
MI.getIterator()), BB->
end());
673 EqzReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
676 MI.eraseFromParent();
710 if (Def->getOpcode() == WebAssembly::CONST_I32 ||
711 Def->getOpcode() == WebAssembly::CONST_I64) {
712 if (Def->getOperand(1).getImm() == 0) {
714 MI.eraseFromParent();
718 unsigned MemoryFill =
719 Int64 ? WebAssembly::MEMORY_FILL_A64 : WebAssembly::MEMORY_FILL_A32;
725 MI.eraseFromParent();
736 unsigned Eqz = Int64 ? WebAssembly::EQZ_I64 : WebAssembly::EQZ_I32;
737 unsigned MemoryFill =
738 Int64 ? WebAssembly::MEMORY_FILL_A64 : WebAssembly::MEMORY_FILL_A32;
749 F->insert(It, TrueMBB);
750 F->insert(It, DoneMBB);
753 DoneMBB->
splice(DoneMBB->
begin(), BB, std::next(
MI.getIterator()), BB->
end());
763 EqzReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
766 MI.eraseFromParent();
788 CallResults.
getOpcode() == WebAssembly::RET_CALL_RESULTS);
792 bool IsRetCall = CallResults.
getOpcode() == WebAssembly::RET_CALL_RESULTS;
794 bool IsFuncrefCall =
false;
800 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
805 if (IsIndirect && IsRetCall) {
806 CallOp = WebAssembly::RET_CALL_INDIRECT;
807 }
else if (IsIndirect) {
808 CallOp = WebAssembly::CALL_INDIRECT;
809 }
else if (IsRetCall) {
810 CallOp = WebAssembly::RET_CALL;
812 CallOp = WebAssembly::CALL;
841 for (
auto Def : CallResults.
defs())
865 for (
auto Use : CallParams.
uses())
881 if (IsIndirect && IsFuncrefCall) {
893 BuildMI(MF,
DL,
TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
897 BuildMI(MF,
DL,
TII.get(WebAssembly::TABLE_SET_FUNCREF))
909 const TargetInstrInfo &
TII = *Subtarget->getInstrInfo();
912 switch (
MI.getOpcode()) {
915 case WebAssembly::FP_TO_SINT_I32_F32:
917 WebAssembly::I32_TRUNC_S_F32);
918 case WebAssembly::FP_TO_UINT_I32_F32:
920 WebAssembly::I32_TRUNC_U_F32);
921 case WebAssembly::FP_TO_SINT_I64_F32:
923 WebAssembly::I64_TRUNC_S_F32);
924 case WebAssembly::FP_TO_UINT_I64_F32:
926 WebAssembly::I64_TRUNC_U_F32);
927 case WebAssembly::FP_TO_SINT_I32_F64:
929 WebAssembly::I32_TRUNC_S_F64);
930 case WebAssembly::FP_TO_UINT_I32_F64:
932 WebAssembly::I32_TRUNC_U_F64);
933 case WebAssembly::FP_TO_SINT_I64_F64:
935 WebAssembly::I64_TRUNC_S_F64);
936 case WebAssembly::FP_TO_UINT_I64_F64:
938 WebAssembly::I64_TRUNC_U_F64);
939 case WebAssembly::MEMCPY_A32:
941 case WebAssembly::MEMCPY_A64:
943 case WebAssembly::MEMSET_A32:
945 case WebAssembly::MEMSET_A64:
947 case WebAssembly::CALL_RESULTS:
948 case WebAssembly::RET_CALL_RESULTS:
953std::pair<unsigned, const TargetRegisterClass *>
954WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
958 if (Constraint.
size() == 1) {
959 switch (Constraint[0]) {
961 assert(VT != MVT::iPTR &&
"Pointer MVT not expected here");
962 if (Subtarget->hasSIMD128() && VT.
isVector()) {
964 return std::make_pair(0U, &WebAssembly::V128RegClass);
968 return std::make_pair(0U, &WebAssembly::I32RegClass);
970 return std::make_pair(0U, &WebAssembly::I64RegClass);
975 return std::make_pair(0U, &WebAssembly::F32RegClass);
977 return std::make_pair(0U, &WebAssembly::F64RegClass);
991bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(
Type *Ty)
const {
996bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(
Type *Ty)
const {
1001bool WebAssemblyTargetLowering::isLegalAddressingMode(
const DataLayout &
DL,
1003 Type *Ty,
unsigned AS,
1008 if (AM.BaseOffs < 0)
1019bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
1033bool WebAssemblyTargetLowering::isIntDivCheap(
EVT VT,
1034 AttributeList Attr)
const {
1040bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(
SDValue ExtVal)
const {
1043 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
1044 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
1045 (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
1048bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
1051 const GlobalValue *GV = GA->
getGlobal();
1055EVT WebAssemblyTargetLowering::getSetCCResultType(
const DataLayout &
DL,
1068bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &
Info,
1072 switch (Intrinsic) {
1073 case Intrinsic::wasm_memory_atomic_notify:
1075 Info.memVT = MVT::i32;
1076 Info.ptrVal =
I.getArgOperand(0);
1087 case Intrinsic::wasm_memory_atomic_wait32:
1089 Info.memVT = MVT::i32;
1090 Info.ptrVal =
I.getArgOperand(0);
1095 case Intrinsic::wasm_memory_atomic_wait64:
1097 Info.memVT = MVT::i64;
1098 Info.ptrVal =
I.getArgOperand(0);
1103 case Intrinsic::wasm_loadf16_f32:
1105 Info.memVT = MVT::f16;
1106 Info.ptrVal =
I.getArgOperand(0);
1111 case Intrinsic::wasm_storef16_f32:
1113 Info.memVT = MVT::f16;
1114 Info.ptrVal =
I.getArgOperand(1);
1124void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
1127 switch (
Op.getOpcode()) {
1131 unsigned IntNo =
Op.getConstantOperandVal(0);
1135 case Intrinsic::wasm_bitmask: {
1137 EVT VT =
Op.getOperand(1).getSimpleValueType();
1140 Known.
Zero |= ZeroMask;
1146 case WebAssemblyISD::EXTEND_LOW_U:
1147 case WebAssemblyISD::EXTEND_HIGH_U: {
1152 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
1156 }
else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
1160 }
else if (VT == MVT::v2i32 || VT == MVT::v4i32) {
1170 case WebAssemblyISD::I64_ADD128:
1171 if (
Op.getResNo() == 1) {
1182WebAssemblyTargetLowering::getPreferredVectorAction(
MVT VT)
const {
1188 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
1189 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
1196bool WebAssemblyTargetLowering::isFMAFasterThanFMulAndFAdd(
1198 if (!Subtarget->hasFP16() || !VT.
isVector())
1208bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts(
1209 SDValue Op,
const TargetLoweringOpt &TLO)
const {
1262WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
1264 SelectionDAG &DAG = CLI.DAG;
1274 "WebAssembly doesn't support language-specific or target-specific "
1275 "calling conventions yet");
1276 if (CLI.IsPatchPoint)
1277 fail(
DL, DAG,
"WebAssembly doesn't support patch point yet");
1279 if (CLI.IsTailCall) {
1280 auto NoTail = [&](
const char *Msg) {
1281 if (CLI.CB && CLI.CB->isMustTailCall())
1283 CLI.IsTailCall =
false;
1286 if (!Subtarget->hasTailCall())
1287 NoTail(
"WebAssembly 'tail-call' feature not enabled");
1291 NoTail(
"WebAssembly does not support varargs tail calls");
1296 Type *RetTy =
F.getReturnType();
1301 bool TypesMatch = CallerRetTys.
size() == CalleeRetTys.
size() &&
1302 std::equal(CallerRetTys.
begin(), CallerRetTys.
end(),
1303 CalleeRetTys.
begin());
1305 NoTail(
"WebAssembly tail call requires caller and callee return types to "
1310 for (
auto &Arg : CLI.CB->args()) {
1311 Value *Val = Arg.get();
1316 Src =
GEP->getPointerOperand();
1323 "WebAssembly does not support tail calling with stack arguments");
1330 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1331 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1332 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1338 Outs[0].Flags.isSRet()) {
1343 bool HasSwiftSelfArg =
false;
1344 bool HasSwiftErrorArg =
false;
1345 unsigned NumFixedArgs = 0;
1346 for (
unsigned I = 0;
I < Outs.
size(); ++
I) {
1347 const ISD::OutputArg &Out = Outs[
I];
1352 fail(
DL, DAG,
"WebAssembly hasn't implemented nest arguments");
1354 fail(
DL, DAG,
"WebAssembly hasn't implemented inalloca arguments");
1356 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs arguments");
1358 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs last arguments");
1367 Chain = DAG.
getMemcpy(Chain,
DL, FINode, OutVal, SizeNode,
1370 nullptr, std::nullopt, MachinePointerInfo(),
1371 MachinePointerInfo());
1378 bool IsVarArg = CLI.IsVarArg;
1387 if (!HasSwiftSelfArg) {
1389 ISD::ArgFlagsTy
Flags;
1390 Flags.setSwiftSelf();
1391 ISD::OutputArg Arg(Flags, PtrVT, EVT(PtrVT), PtrTy, 0, 0);
1392 CLI.Outs.push_back(Arg);
1394 CLI.OutVals.push_back(ArgVal);
1396 if (!HasSwiftErrorArg) {
1398 ISD::ArgFlagsTy
Flags;
1399 Flags.setSwiftError();
1400 ISD::OutputArg Arg(Flags, PtrVT, EVT(PtrVT), PtrTy, 0, 0);
1401 CLI.Outs.push_back(Arg);
1403 CLI.OutVals.push_back(ArgVal);
1409 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.
getContext());
1414 for (
unsigned I = NumFixedArgs;
I < Outs.
size(); ++
I) {
1415 const ISD::OutputArg &Out = Outs[
I];
1418 assert(VT != MVT::iPTR &&
"Legalized args should be concrete");
1423 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1430 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1433 if (IsVarArg && NumBytes) {
1436 MaybeAlign StackAlign = Layout.getStackAlignment();
1437 assert(StackAlign &&
"data layout string is missing stack alignment");
1443 assert(ArgLocs[ValNo].getValNo() == ValNo &&
1444 "ArgLocs should remain in order and only hold varargs args");
1445 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1453 if (!Chains.
empty())
1455 }
else if (IsVarArg) {
1473 Ops.push_back(Chain);
1474 Ops.push_back(Callee);
1479 IsVarArg ? OutVals.
begin() + NumFixedArgs : OutVals.
end());
1482 Ops.push_back(FINode);
1485 for (
const auto &In : Ins) {
1486 assert(!
In.Flags.isByVal() &&
"byval is not valid for return values");
1487 assert(!
In.Flags.isNest() &&
"nest is not valid for return values");
1488 if (
In.Flags.isInAlloca())
1489 fail(
DL, DAG,
"WebAssembly hasn't implemented inalloca return values");
1490 if (
In.Flags.isInConsecutiveRegs())
1491 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs return values");
1492 if (
In.Flags.isInConsecutiveRegsLast())
1494 "WebAssembly hasn't implemented cons regs last return values");
1503 CLI.CB->getCalledOperand()->getType())) {
1518 WebAssemblyISD::TABLE_SET,
DL, DAG.
getVTList(MVT::Other), TableSetOps,
1523 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.
getDataLayout()),
1529 if (CLI.IsTailCall) {
1531 SDVTList NodeTys = DAG.
getVTList(MVT::Other, MVT::Glue);
1536 SDVTList InTyList = DAG.
getVTList(InTys);
1539 for (
size_t I = 0;
I < Ins.size(); ++
I)
1546bool WebAssemblyTargetLowering::CanLowerReturn(
1549 const Type *RetTy)
const {
1554SDValue WebAssemblyTargetLowering::LowerReturn(
1560 "MVP WebAssembly can only return up to one value");
1562 fail(
DL, DAG,
"WebAssembly doesn't support non-C calling conventions");
1565 RetOps.append(OutVals.
begin(), OutVals.
end());
1566 Chain = DAG.
getNode(WebAssemblyISD::RETURN,
DL, MVT::Other, RetOps);
1569 for (
const ISD::OutputArg &Out : Outs) {
1574 fail(
DL, DAG,
"WebAssembly hasn't implemented inalloca results");
1576 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs results");
1578 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs last results");
1584SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1589 fail(
DL, DAG,
"WebAssembly doesn't support non-C calling conventions");
1592 auto *MFI = MF.
getInfo<WebAssemblyFunctionInfo>();
1598 bool HasSwiftErrorArg =
false;
1599 bool HasSwiftSelfArg =
false;
1600 for (
const ISD::InputArg &In : Ins) {
1601 HasSwiftSelfArg |=
In.Flags.isSwiftSelf();
1602 HasSwiftErrorArg |=
In.Flags.isSwiftError();
1603 if (
In.Flags.isInAlloca())
1604 fail(
DL, DAG,
"WebAssembly hasn't implemented inalloca arguments");
1605 if (
In.Flags.isNest())
1606 fail(
DL, DAG,
"WebAssembly hasn't implemented nest arguments");
1607 if (
In.Flags.isInConsecutiveRegs())
1608 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs arguments");
1609 if (
In.Flags.isInConsecutiveRegsLast())
1610 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs last arguments");
1619 MFI->addParam(
In.VT);
1628 if (!HasSwiftSelfArg) {
1629 MFI->addParam(PtrVT);
1631 if (!HasSwiftErrorArg) {
1632 MFI->addParam(PtrVT);
1641 MFI->setVarargBufferVreg(VarargVreg);
1643 Chain,
DL, VarargVreg,
1644 DAG.
getNode(WebAssemblyISD::ARGUMENT,
DL, PtrVT,
1646 MFI->addParam(PtrVT);
1658 assert(MFI->getParams().size() == Params.
size() &&
1659 std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1665void WebAssemblyTargetLowering::ReplaceNodeResults(
1667 switch (
N->getOpcode()) {
1681 Results.push_back(Replace128Op(
N, DAG));
1685 "ReplaceNodeResults not implemented for this op for WebAssembly!");
1696 switch (
Op.getOpcode()) {
1701 return LowerFrameIndex(
Op, DAG);
1703 return LowerGlobalAddress(
Op, DAG);
1705 return LowerGlobalTLSAddress(
Op, DAG);
1707 return LowerExternalSymbol(
Op, DAG);
1709 return LowerJumpTable(
Op, DAG);
1711 return LowerBR_JT(
Op, DAG);
1713 return LowerVASTART(
Op, DAG);
1716 fail(
DL, DAG,
"WebAssembly hasn't implemented computed gotos");
1719 return LowerRETURNADDR(
Op, DAG);
1721 return LowerFRAMEADDR(
Op, DAG);
1723 return LowerCopyToReg(
Op, DAG);
1726 return LowerAccessVectorElement(
Op, DAG);
1730 return LowerIntrinsic(
Op, DAG);
1732 return LowerSIGN_EXTEND_INREG(
Op, DAG);
1736 return LowerEXTEND_VECTOR_INREG(
Op, DAG);
1738 return LowerBUILD_VECTOR(
Op, DAG);
1740 return LowerVECTOR_SHUFFLE(
Op, DAG);
1742 return LowerSETCC(
Op, DAG);
1746 return LowerShift(
Op, DAG);
1749 return LowerFP_TO_INT_SAT(
Op, DAG);
1751 return LowerLoad(
Op, DAG);
1753 return LowerStore(
Op, DAG);
1762 return LowerMUL_LOHI(
Op, DAG);
1764 return LowerUADDO(
Op, DAG);
1779 return std::nullopt;
1798 SDVTList Tys = DAG.
getVTList(MVT::Other);
1810 SDVTList Tys = DAG.
getVTList(MVT::Other);
1812 return DAG.
getNode(WebAssemblyISD::LOCAL_SET,
DL, Tys,
Ops);
1817 "Encountered an unlowerable store to the wasm_var address space",
1833 "unexpected offset when loading from webassembly global",
false);
1844 "unexpected offset when loading from webassembly local",
false);
1848 return DAG.
getNode(WebAssemblyISD::LOCAL_GET,
DL, {LocalVT, MVT::Other},
1854 "Encountered an unlowerable load from the wasm_var address space",
1862 assert(Subtarget->hasWideArithmetic());
1863 assert(
Op.getValueType() == MVT::i64);
1866 switch (
Op.getOpcode()) {
1868 Opcode = WebAssemblyISD::I64_MUL_WIDE_U;
1871 Opcode = WebAssemblyISD::I64_MUL_WIDE_S;
1892 assert(Subtarget->hasWideArithmetic());
1893 assert(
Op.getValueType() == MVT::i64);
1900 DAG.
getNode(WebAssemblyISD::I64_ADD128,
DL,
1910 assert(Subtarget->hasWideArithmetic());
1911 assert(
N->getValueType(0) == MVT::i128);
1914 switch (
N->getOpcode()) {
1916 Opcode = WebAssemblyISD::I64_ADD128;
1919 Opcode = WebAssemblyISD::I64_SUB128;
1934 LHS_0, LHS_1, RHS_0, RHS_1);
1951 EVT VT = Src.getValueType();
1953 : WebAssembly::COPY_I64,
1956 return Op.getNode()->getNumValues() == 1
1975 if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1977 "Non-Emscripten WebAssembly hasn't implemented "
1978 "__builtin_return_address");
1982 unsigned Depth =
Op.getConstantOperandVal(0);
1984 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS,
Op.getValueType(),
1985 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions,
DL)
1994 if (
Op.getConstantOperandVal(0) > 0)
1998 EVT VT =
Op.getValueType();
2005WebAssemblyTargetLowering::LowerGlobalTLSAddress(
SDValue Op,
2011 if (!MF.
getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
2015 const GlobalValue *GV = GA->
getGlobal();
2020 auto model = Subtarget->getTargetTriple().isOSEmscripten()
2035 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
2036 : WebAssembly::GLOBAL_GET_I32;
2047 DAG.
getNode(WebAssemblyISD::WrapperREL,
DL, PtrVT, TLSOffset);
2054 EVT VT =
Op.getValueType();
2055 return DAG.
getNode(WebAssemblyISD::Wrapper,
DL, VT,
2065 EVT VT =
Op.getValueType();
2067 "Unexpected target flags on generic GlobalAddressSDNode");
2069 fail(
DL, DAG,
"Invalid address space for WebAssembly target");
2072 const GlobalValue *GV = GA->
getGlobal();
2080 const char *BaseName;
2089 DAG.
getNode(WebAssemblyISD::Wrapper,
DL, PtrVT,
2093 WebAssemblyISD::WrapperREL,
DL, VT,
2102 return DAG.
getNode(WebAssemblyISD::Wrapper,
DL, VT,
2108WebAssemblyTargetLowering::LowerExternalSymbol(
SDValue Op,
2112 EVT VT =
Op.getValueType();
2113 assert(ES->getTargetFlags() == 0 &&
2114 "Unexpected target flags on generic ExternalSymbolSDNode");
2115 return DAG.
getNode(WebAssemblyISD::Wrapper,
DL, VT,
2138 Ops.push_back(Chain);
2139 Ops.push_back(Index);
2145 for (
auto *
MBB : MBBs)
2152 return DAG.
getNode(WebAssemblyISD::BR_TABLE,
DL, MVT::Other,
Ops);
2164 MFI->getVarargBufferVreg(), PtrVT);
2165 return DAG.
getStore(
Op.getOperand(0),
DL, ArgN,
Op.getOperand(1),
2166 MachinePointerInfo(SV));
2173 switch (
Op.getOpcode()) {
2176 IntNo =
Op.getConstantOperandVal(1);
2179 IntNo =
Op.getConstantOperandVal(0);
2190 case Intrinsic::wasm_lsda: {
2199 DAG.
getNode(WebAssemblyISD::Wrapper,
DL, PtrVT,
2202 DAG.
getNode(WebAssemblyISD::WrapperREL,
DL, PtrVT, Node);
2206 return DAG.
getNode(WebAssemblyISD::Wrapper,
DL, PtrVT, Node);
2209 case Intrinsic::wasm_shuffle: {
2215 while (
OpIdx < 18) {
2224 return DAG.
getNode(WebAssemblyISD::SHUFFLE,
DL,
Op.getValueType(),
Ops);
2227 case Intrinsic::thread_pointer: {
2229 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
2230 : WebAssembly::GLOBAL_GET_I32;
2241WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(
SDValue Op,
2251 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
2255 const SDValue &Extract =
Op.getOperand(0);
2259 MVT ExtractedLaneT =
2263 if (ExtractedVecT == VecT)
2270 unsigned IndexVal =
Index->getAsZExtVal();
2288 assert((UserOpc == WebAssemblyISD::EXTEND_LOW_U ||
2289 UserOpc == WebAssemblyISD::EXTEND_LOW_S) &&
2290 "expected extend_low");
2295 size_t FirstIdx = Mask.size() / 2;
2296 for (
size_t i = 0; i < Mask.size() / 2; ++i) {
2297 if (Mask[i] !=
static_cast<int>(FirstIdx + i)) {
2303 unsigned Opc = UserOpc == WebAssemblyISD::EXTEND_LOW_S
2304 ? WebAssemblyISD::EXTEND_HIGH_S
2305 : WebAssemblyISD::EXTEND_HIGH_U;
2306 return DAG.
getNode(
Opc,
DL, VT, Shuffle->getOperand(0));
2310WebAssemblyTargetLowering::LowerEXTEND_VECTOR_INREG(
SDValue Op,
2313 EVT VT =
Op.getValueType();
2315 EVT SrcVT = Src.getValueType();
2322 "Unexpected extension factor.");
2325 if (Scale != 2 && Scale != 4 && Scale != 8)
2329 switch (
Op.getOpcode()) {
2334 Ext = WebAssemblyISD::EXTEND_LOW_U;
2337 Ext = WebAssemblyISD::EXTEND_LOW_S;
2348 while (Scale != 1) {
2362 if (
Op.getValueType() != MVT::v2f64)
2366 unsigned &Index) ->
bool {
2367 switch (
Op.getOpcode()) {
2369 Opcode = WebAssemblyISD::CONVERT_LOW_S;
2372 Opcode = WebAssemblyISD::CONVERT_LOW_U;
2375 Opcode = WebAssemblyISD::PROMOTE_LOW;
2381 auto ExtractVector =
Op.getOperand(0);
2388 SrcVec = ExtractVector.getOperand(0);
2389 Index = ExtractVector.getConstantOperandVal(1);
2393 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
2395 if (!GetConvertedLane(
Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
2396 !GetConvertedLane(
Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
2399 if (LHSOpcode != RHSOpcode)
2403 switch (LHSOpcode) {
2404 case WebAssemblyISD::CONVERT_LOW_S:
2405 case WebAssemblyISD::CONVERT_LOW_U:
2406 ExpectedSrcVT = MVT::v4i32;
2408 case WebAssemblyISD::PROMOTE_LOW:
2409 ExpectedSrcVT = MVT::v4f32;
2415 auto Src = LHSSrcVec;
2416 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
2419 ExpectedSrcVT,
DL, LHSSrcVec, RHSSrcVec,
2420 {
static_cast<int>(LHSIndex),
static_cast<int>(RHSIndex) + 4, -1, -1});
2422 return DAG.
getNode(LHSOpcode,
DL, MVT::v2f64, Src);
2427 MVT VT =
Op.getSimpleValueType();
2428 if (VT == MVT::v8f16) {
2443 const EVT VecT =
Op.getValueType();
2444 const EVT LaneT =
Op.getOperand(0).getValueType();
2446 bool CanSwizzle = VecT == MVT::v16i8;
2467 auto GetSwizzleSrcs = [](
size_t I,
const SDValue &Lane) {
2471 const SDValue &SwizzleSrc = Lane->getOperand(0);
2472 const SDValue &IndexExt = Lane->getOperand(1);
2482 Index->getConstantOperandVal(1) !=
I)
2484 return std::make_pair(SwizzleSrc, SwizzleIndices);
2491 auto GetShuffleSrc = [&](
const SDValue &Lane) {
2496 if (Lane->getOperand(0).getValueType().getVectorNumElements() >
2499 return Lane->getOperand(0);
2502 using ValueEntry = std::pair<SDValue, size_t>;
2505 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>,
size_t>;
2508 using ShuffleEntry = std::pair<SDValue, size_t>;
2511 auto AddCount = [](
auto &Counts,
const auto &Val) {
2514 if (CountIt == Counts.end()) {
2515 Counts.emplace_back(Val, 1);
2521 auto GetMostCommon = [](
auto &Counts) {
2523 assert(CommonIt != Counts.end() &&
"Unexpected all-undef build_vector");
2527 size_t NumConstantLanes = 0;
2530 for (
size_t I = 0;
I < Lanes; ++
I) {
2535 AddCount(SplatValueCounts, Lane);
2539 if (
auto ShuffleSrc = GetShuffleSrc(Lane))
2540 AddCount(ShuffleCounts, ShuffleSrc);
2542 auto SwizzleSrcs = GetSwizzleSrcs(
I, Lane);
2543 if (SwizzleSrcs.first)
2544 AddCount(SwizzleCounts, SwizzleSrcs);
2549 size_t NumSplatLanes;
2550 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
2554 size_t NumSwizzleLanes = 0;
2555 if (SwizzleCounts.
size())
2556 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
2557 NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
2561 SDValue ShuffleSrc1, ShuffleSrc2;
2562 size_t NumShuffleLanes = 0;
2563 if (ShuffleCounts.
size()) {
2564 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
2566 [&](
const auto &Pair) {
return Pair.first == ShuffleSrc1; });
2568 if (ShuffleCounts.
size()) {
2569 size_t AdditionalShuffleLanes;
2570 std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
2571 GetMostCommon(ShuffleCounts);
2572 NumShuffleLanes += AdditionalShuffleLanes;
2577 std::function<bool(
size_t,
const SDValue &)> IsLaneConstructed;
2580 if (NumSwizzleLanes >= NumShuffleLanes &&
2581 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
2584 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
2585 IsLaneConstructed = [&, Swizzled](
size_t I,
const SDValue &Lane) {
2586 return Swizzled == GetSwizzleSrcs(
I, Lane);
2588 }
else if (NumShuffleLanes >= NumConstantLanes &&
2589 NumShuffleLanes >= NumSplatLanes) {
2599 assert(LaneSize > DestLaneSize);
2600 Scale1 = LaneSize / DestLaneSize;
2606 assert(LaneSize > DestLaneSize);
2607 Scale2 = LaneSize / DestLaneSize;
2612 assert(DestLaneCount <= 16);
2613 for (
size_t I = 0;
I < DestLaneCount; ++
I) {
2615 SDValue Src = GetShuffleSrc(Lane);
2616 if (Src == ShuffleSrc1) {
2618 }
else if (Src && Src == ShuffleSrc2) {
2624 ArrayRef<int> MaskRef(Mask, DestLaneCount);
2626 IsLaneConstructed = [&](size_t,
const SDValue &Lane) {
2627 auto Src = GetShuffleSrc(Lane);
2628 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
2630 }
else if (NumConstantLanes >= NumSplatLanes) {
2632 for (
const SDValue &Lane :
Op->op_values()) {
2638 uint64_t LaneBits = 128 / Lanes;
2641 Const->getAPIntValue().trunc(LaneBits).getZExtValue(),
2642 SDLoc(Lane), LaneT));
2658 if (NumSplatLanes == 1 &&
Op->getOperand(0) == SplatValue &&
2659 (DestLaneSize == 32 || DestLaneSize == 64)) {
2666 IsLaneConstructed = [&SplatValue](
size_t _,
const SDValue &Lane) {
2667 return Lane == SplatValue;
2672 assert(IsLaneConstructed);
2675 for (
size_t I = 0;
I < Lanes; ++
I) {
2677 if (!Lane.
isUndef() && !IsLaneConstructed(
I, Lane))
2686WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(
SDValue Op,
2690 MVT VecType =
Op.getOperand(0).getSimpleValueType();
2701 for (
int M : Mask) {
2702 for (
size_t J = 0; J < LaneBytes; ++J) {
2706 uint64_t ByteIndex =
M == -1 ? J : (uint64_t)M * LaneBytes + J;
2711 return DAG.
getNode(WebAssemblyISD::SHUFFLE,
DL,
Op.getValueType(),
Ops);
2719 assert(
Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2724 auto MakeLane = [&](
unsigned I) {
2730 {MakeLane(0), MakeLane(1)});
2734WebAssemblyTargetLowering::LowerAccessVectorElement(
SDValue Op,
2751 EVT LaneT =
Op.getSimpleValueType().getVectorElementType();
2753 if (LaneT.
bitsGE(MVT::i32))
2757 size_t NumLanes =
Op.getSimpleValueType().getVectorNumElements();
2759 unsigned ShiftOpcode =
Op.getOpcode();
2765 for (
size_t i = 0; i < NumLanes; ++i) {
2768 SDValue ShiftedValue = ShiftedElements[i];
2773 DAG.
getNode(ShiftOpcode,
DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2783 assert(
Op.getSimpleValueType().isVector());
2785 uint64_t LaneBits =
Op.getValueType().getScalarSizeInBits();
2786 auto ShiftVal =
Op.getOperand(1);
2789 auto SkipImpliedMask = [](
SDValue MaskOp, uint64_t MaskBits) {
2800 MaskVal == MaskBits)
2807 if (ConstantRHS && ConstantRHS->getAPIntValue() == MaskBits)
2815 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2821 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2826 switch (
Op.getOpcode()) {
2828 Opcode = WebAssemblyISD::VEC_SHL;
2831 Opcode = WebAssemblyISD::VEC_SHR_S;
2834 Opcode = WebAssemblyISD::VEC_SHR_U;
2840 return DAG.
getNode(Opcode,
DL,
Op.getValueType(),
Op.getOperand(0), ShiftVal);
2845 EVT ResT =
Op.getValueType();
2848 if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2849 (SatVT == MVT::i32 || SatVT == MVT::i64))
2852 if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2855 if (ResT == MVT::v8i16 && SatVT == MVT::i16)
2866 auto &DAG = DCI.
DAG;
2873 SDValue Bitcast =
N->getOperand(0);
2876 if (!
N->getOperand(1).isUndef())
2878 SDValue CastOp = Bitcast.getOperand(0);
2880 EVT DstType = Bitcast.getValueType();
2881 if (!SrcType.is128BitVector() ||
2882 SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2885 SrcType,
SDLoc(
N), CastOp, DAG.
getUNDEF(SrcType), Shuffle->getMask());
2895 auto &DAG = DCI.
DAG;
2899 EVT InVT =
N->getOperand(0)->getValueType(0);
2900 EVT ResVT =
N->getValueType(0);
2902 if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8))
2904 else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8))
2918 auto &DAG = DCI.
DAG;
2922 EVT VT =
N->getValueType(0);
2936 auto &DAG = DCI.
DAG;
2942 auto Extract =
N->getOperand(0);
2947 if (IndexNode ==
nullptr)
2949 auto Index = IndexNode->getZExtValue();
2953 EVT ResVT =
N->getValueType(0);
2954 if (ResVT == MVT::v8i16) {
2956 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2958 }
else if (ResVT == MVT::v4i32) {
2960 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2962 }
else if (ResVT == MVT::v2i64) {
2964 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2971 bool IsLow = Index == 0;
2973 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2974 : WebAssemblyISD::EXTEND_HIGH_S)
2975 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2976 : WebAssemblyISD::EXTEND_HIGH_U);
2983 auto &DAG = DCI.
DAG;
2985 auto GetWasmConversionOp = [](
unsigned Op) {
2988 return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2990 return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2992 return WebAssemblyISD::DEMOTE_ZERO;
2997 auto IsZeroSplat = [](
SDValue SplatVal) {
2999 APInt SplatValue, SplatUndef;
3000 unsigned SplatBitSize;
3005 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
3023 EVT ExpectedConversionType;
3026 switch (ConversionOp) {
3030 ExpectedConversionType = MVT::v2i32;
3034 ExpectedConversionType = MVT::v2f32;
3040 if (
N->getValueType(0) != ResVT)
3043 if (
Conversion.getValueType() != ExpectedConversionType)
3047 if (Source.getValueType() != MVT::v2f64)
3050 if (!IsZeroSplat(
N->getOperand(1)) ||
3051 N->getOperand(1).getValueType() != ExpectedConversionType)
3054 unsigned Op = GetWasmConversionOp(ConversionOp);
3070 auto ConversionOp =
N->getOpcode();
3071 switch (ConversionOp) {
3083 if (
N->getValueType(0) != ResVT)
3086 auto Concat =
N->getOperand(0);
3087 if (
Concat.getValueType() != MVT::v4f64)
3090 auto Source =
Concat.getOperand(0);
3091 if (Source.getValueType() != MVT::v2f64)
3094 if (!IsZeroSplat(
Concat.getOperand(1)) ||
3095 Concat.getOperand(1).getValueType() != MVT::v2f64)
3098 unsigned Op = GetWasmConversionOp(ConversionOp);
3104 const SDLoc &
DL,
unsigned VectorWidth) {
3112 unsigned ElemsPerChunk = VectorWidth / ElVT.
getSizeInBits();
3117 IdxVal &= ~(ElemsPerChunk - 1);
3122 Vec->
ops().slice(IdxVal, ElemsPerChunk));
3134 EVT SrcVT = In.getValueType();
3152 EVT InVT = MVT::i16, OutVT = MVT::i8;
3157 unsigned SubSizeInBits = SrcSizeInBits / 2;
3159 OutVT =
EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
3185 auto &DAG = DCI.
DAG;
3188 EVT InVT = In.getValueType();
3192 EVT OutVT =
N->getValueType(0);
3199 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
3200 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.
is128BitVector()))
3213 auto &DAG = DCI.
DAG;
3216 EVT VT =
N->getValueType(0);
3217 EVT SrcVT = Src.getValueType();
3228 if (NumElts == 2 || NumElts == 4 || NumElts == 8 || NumElts == 16) {
3231 {DAG.getConstant(Intrinsic::wasm_bitmask, DL, MVT::i32),
3232 DAG.getSExtOrTrunc(N->getOperand(0), DL,
3233 SrcVT.changeVectorElementType(
3234 *DAG.getContext(), Width))}),
3239 if (NumElts == 32 || NumElts == 64) {
3265 MVT ReturnType = VectorsToShuffle.
size() == 2 ? MVT::i32 : MVT::i64;
3268 for (
SDValue V : VectorsToShuffle) {
3269 ReturningInteger = DAG.
getNode(
3278 return ReturningInteger;
3293 if (
N->getNumOperands() < 2 ||
3297 EVT LT =
LHS.getValueType();
3298 if (LT.getScalarSizeInBits() > 128 / LT.getVectorNumElements())
3301 auto CombineSetCC = [&
N, &DAG](Intrinsic::WASMIntrinsics InPre,
3303 Intrinsic::WASMIntrinsics InPost) {
3304 if (
N->getConstantOperandVal(0) != InPre)
3315 {DAG.getConstant(InPost, DL, MVT::i32), LHS}),
3318 Ret = DAG.
getNOT(
DL, Ret, MVT::i1);
3323 Intrinsic::wasm_alltrue))
3326 Intrinsic::wasm_anytrue))
3329 Intrinsic::wasm_anytrue))
3332 Intrinsic::wasm_alltrue))
3338template <
int MatchRHS,
ISD::CondCode MatchCond,
bool RequiresNegate,
3353 {DAG.getConstant(Intrin, DL, MVT::i32),
3354 DAG.getSExtOrTrunc(LHS->getOperand(0), DL, VecVT)}),
3357 Ret = DAG.
getNOT(
DL, Ret, MVT::i1);
3370 EVT VT =
N->getValueType(0);
3371 EVT OpVT =
X.getValueType();
3375 Attribute::NoImplicitFloat))
3381 !Subtarget->
hasSIMD128() || !isIntEqualitySetCC(CC))
3385 auto IsVectorBitCastCheap = [](
SDValue X) {
3390 if (!IsVectorBitCastCheap(
X) || !IsVectorBitCastCheap(
Y))
3400 : Intrinsic::wasm_anytrue,
3414 EVT VT =
N->getValueType(0);
3425 EVT FromVT =
LHS->getOperand(0).getValueType();
3430 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3436 auto &DAG = DCI.
DAG;
3467 EVT VT =
N->getValueType(0);
3468 if (VT != MVT::v8i32 && VT != MVT::v16i32)
3474 if (
LHS.getOpcode() !=
RHS.getOpcode())
3481 if (
LHS->getOperand(0).getValueType() !=
RHS->getOperand(0).getValueType())
3484 EVT FromVT =
LHS->getOperand(0).getValueType();
3486 if (EltTy != MVT::i8)
3514 unsigned ExtendLowOpc =
3515 IsSigned ? WebAssemblyISD::EXTEND_LOW_S : WebAssemblyISD::EXTEND_LOW_U;
3516 unsigned ExtendHighOpc =
3517 IsSigned ? WebAssemblyISD::EXTEND_HIGH_S : WebAssemblyISD::EXTEND_HIGH_U;
3519 auto GetExtendLow = [&DAG, &
DL, &ExtendLowOpc](
EVT VT,
SDValue Op) {
3526 if (NumElts == 16) {
3527 SDValue LowLHS = GetExtendLow(MVT::v8i16, ExtendInLHS);
3528 SDValue LowRHS = GetExtendLow(MVT::v8i16, ExtendInRHS);
3534 GetExtendLow(MVT::v4i32, MulLow),
3536 GetExtendLow(MVT::v4i32, MulHigh),
3545 SDValue Lo = GetExtendLow(MVT::v4i32, MulLow);
3555 EVT VT =
N->getValueType(0);
3564 if (VT != MVT::v8i8 && VT != MVT::v16i8)
3571 EVT MulVT = MVT::v8i16;
3573 if (VT == MVT::v8i8) {
3579 DAG.
getNode(WebAssemblyISD::EXTEND_LOW_U,
DL, MulVT, PromotedLHS);
3581 DAG.
getNode(WebAssemblyISD::EXTEND_LOW_U,
DL, MulVT, PromotedRHS);
3586 MVT::v16i8,
DL, MulLow, DAG.
getUNDEF(MVT::v16i8),
3587 {0, 2, 4, 6, 8, 10, 12, 14, -1, -1, -1, -1, -1, -1, -1, -1});
3590 assert(VT == MVT::v16i8 &&
"Expected v16i8");
3594 DAG.
getNode(WebAssemblyISD::EXTEND_HIGH_U,
DL, MulVT,
LHS);
3596 DAG.
getNode(WebAssemblyISD::EXTEND_HIGH_U,
DL, MulVT,
RHS);
3605 VT,
DL, MulLow, MulHigh,
3606 {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30});
3614 EVT InVT = In.getValueType();
3619 if (NumElems < RequiredNumElems) {
3626 EVT OutVT =
N->getValueType(0);
3631 if (OutElTy != MVT::i8 && OutElTy != MVT::i16)
3638 EVT FPVT =
N->getOperand(0)->getValueType(0);
3656 EVT NarrowedVT = OutElTy == MVT::i8 ? MVT::v16i8 : MVT::v8i16;
3669WebAssemblyTargetLowering::PerformDAGCombine(
SDNode *
N,
3670 DAGCombinerInfo &DCI)
const {
3671 switch (
N->getOpcode()) {
unsigned const MachineRegisterInfo * MRI
static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget)
static SDValue performTruncateCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI)
static SDValue performSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis false
Function Alias Analysis Results
static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg, SDValue Val={})
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Analysis containing CSE Info
const HexagonInstrInfo * TII
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Register const TargetRegisterInfo * TRI
Promote Memory to Register
MachineInstr unsigned OpIdx
static SDValue performVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget, const RISCVTargetLowering &TLI)
static SDValue combineVectorSizedSetCCEquality(EVT VT, SDValue X, SDValue Y, ISD::CondCode CC, const SDLoc &DL, SelectionDAG &DAG, const RISCVSubtarget &Subtarget)
Try to map an integer comparison with size > XLEN to vector instructions before type legalization spl...
const SmallVectorImpl< MachineOperand > & Cond
Contains matchers for matching SelectionDAG nodes and values.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static MachineBasicBlock * LowerFPToInt(MachineInstr &MI, DebugLoc DL, MachineBasicBlock *BB, const TargetInstrInfo &TII, bool IsUnsigned, bool Int64, bool Float64, unsigned LoweredOpcode)
static bool callingConvSupported(CallingConv::ID CallConv)
static SDValue TryWideExtMulCombine(SDNode *N, SelectionDAG &DAG)
static MachineBasicBlock * LowerMemcpy(MachineInstr &MI, DebugLoc DL, MachineBasicBlock *BB, const TargetInstrInfo &TII, bool Int64)
static std::optional< unsigned > IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG)
static SDValue performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue performVectorNonNegToFPCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG)
static SDValue performAnyAllCombine(SDNode *N, SelectionDAG &DAG)
static MachineBasicBlock * LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, const WebAssemblySubtarget *Subtarget, const TargetInstrInfo &TII)
static SDValue TryMatchTrue(SDNode *N, EVT VecVT, SelectionDAG &DAG)
static SDValue GetExtendHigh(SDValue Op, unsigned UserOpc, EVT VT, SelectionDAG &DAG)
SDValue performConvertFPCombine(SDNode *N, SelectionDAG &DAG)
static SDValue performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static bool IsWebAssemblyGlobal(SDValue Op)
static MachineBasicBlock * LowerMemset(MachineInstr &MI, DebugLoc DL, MachineBasicBlock *BB, const TargetInstrInfo &TII, bool Int64)
SDValue DoubleVectorWidth(SDValue In, unsigned RequiredNumElems, SelectionDAG &DAG)
static SDValue performVectorExtendToFPCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get split up into scalar instr...
static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG)
static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, const SDLoc &DL, unsigned VectorWidth)
static SDValue performBitcastCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL, SelectionDAG &DAG)
This file defines the interfaces that WebAssembly uses to lower LLVM code into a selection DAG.
This file provides WebAssembly-specific target descriptions.
This file declares WebAssembly-specific per-machine-function information.
This file declares the WebAssembly-specific subclass of TargetSubtarget.
This file declares the WebAssembly-specific subclass of TargetMachine.
This file contains the declaration of the WebAssembly-specific type parsing utility functions.
This file contains the declaration of the WebAssembly-specific utility functions.
static constexpr int Concat[]
Class for arbitrary precision integers.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
an instruction that atomically reads a memory location, combines it with another value,...
BinOp getOperation() const
LLVM Basic Block Representation.
static CCValAssign getMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP, bool IsCustom=false)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
Diagnostic information for unsupported feature in backend.
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
FunctionType * getFunctionType() const
Returns the FunctionType for me.
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
int64_t getOffset() const
LLVM_ABI unsigned getAddressSpace() const
unsigned getTargetFlags() const
const GlobalValue * getGlobal() const
ThreadLocalMode getThreadLocalMode() const
Type * getValueType() const
unsigned getTargetFlags() const
This is an important class for using LLVM in a threaded context.
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
Tracks which library functions to use for a particular subtarget.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
Describe properties that are true of each instruction in the target description file.
bool is128BitVector() const
Return true if this is a 128-bit vector type.
@ INVALID_SIMPLE_VALUE_TYPE
static auto integer_fixedlen_vector_valuetypes()
MVT changeVectorElementType(MVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
static auto integer_valuetypes()
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static auto fixedlen_vector_valuetypes()
bool isFixedLengthVector() const
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
LLVM_ABI instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
iterator insertAfter(iterator I, MachineInstr *MI)
Insert MI into the instruction list after I.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
void setFrameAddressIsTaken(bool T)
unsigned getFunctionNumber() const
getFunctionNumber - Return a unique ID for the current function.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
const char * createExternalSymbolName(StringRef Name)
Allocate a string and populate it with the given external symbol name.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineJumpTableInfo * getJumpTableInfo() const
getJumpTableInfo - Return the jump table info object for the current function.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addFPImm(const ConstantFP *Val) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
Representation of each machine instruction.
mop_range defs()
Returns all explicit operands that are register definitions.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
LLVM_ABI void addOperand(MachineFunction &MF, const MachineOperand &Op)
Add the specified operand to the instruction.
mop_range uses()
Returns all operands which may be register uses.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
LLVM_ABI void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
const MachineOperand & getOperand(unsigned i) const
const std::vector< MachineJumpTableEntry > & getJumpTables() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
void setIsKill(bool Val=true)
Register getReg() const
getReg - Returns the register number.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
void addLiveIn(MCRegister Reg, Register vreg=Register())
addLiveIn - Add the specified register as a live-in.
unsigned getAddressSpace() const
Return the address space for the associated pointer.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const SDValue & getChain() const
EVT getMemoryVT() const
Return the type of the in-memory value.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Wrapper class representing virtual and physical registers.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
const DataLayout & getDataLayout() const
SDValue getTargetFrameIndex(int FI, EVT VT)
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
const TargetMachine & getTarget() const
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
MachineFunction & getMachineFunction() const
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVMContext * getContext() const
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
const SDValue & getValue() const
StringRef - Represent a constant reference to a string, i.e.
constexpr size_t size() const
size - Get the string size.
TargetInstrInfo - Interface to description of machine instruction set.
Provides information about what library functions are available for the current target.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setPartialReduceMLAAction(unsigned Opc, MVT AccVT, MVT InputVT, LegalizeAction Action)
Indicate how a PARTIAL_REDUCE_U/SMLA node with Acc type AccVT and Input type InputVT should be treate...
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrOneBooleanContent
@ ZeroOrNegativeOneBooleanContent
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
bool isPositionIndependent() const
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
TargetLowering(const TargetLowering &)=delete
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
Primary interface to the complete machine description for the target machine.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
The instances of the Type class are immutable: once they are created, they are never changed.
bool isFunctionTy() const
True if this is an instance of FunctionType.
static LLVM_ABI Type * getDoubleTy(LLVMContext &C)
static LLVM_ABI Type * getFloatTy(LLVMContext &C)
A Use represents the edge between a Value definition and its users.
LLVM_ABI const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
static std::optional< unsigned > getLocalForStackObject(MachineFunction &MF, int FrameIndex)
bool hasCallIndirectOverlong() const
bool hasReferenceTypes() const
WebAssemblyTargetLowering(const TargetMachine &TM, const WebAssemblySubtarget &STI)
MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const override
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const override
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Swift
Calling convention for Swift.
@ PreserveMost
Used for runtime calls that preserves most registers.
@ CXX_FAST_TLS
Used for access functions.
@ WASM_EmscriptenInvoke
For emscripten __invoke_* functions.
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ PARTIAL_REDUCE_SMLA
PARTIAL_REDUCE_[U|S]MLA(Accumulator, Input1, Input2) The partial reduction nodes sign or zero extend ...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ BSWAP
Byte Swap and Counting operators.
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ FP16_TO_FP
FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-preci...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ BR_CC
BR_CC - Conditional branch.
@ BRIND
BRIND - Indirect branch.
@ BR_JT
BR_JT - Jumptable branch.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ CLEAR_CACHE
llvm.clear_cache intrinsic Operands: Input Chain, Start Addres, End Address Outputs: Output Chain
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
OperandFlags
These are flags set on operands, but should be considered private, all access should go through the M...
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
CondCode_match m_SpecificCondCode(ISD::CondCode CC)
Match a conditional code SDNode with a specific ISD::CondCode.
CondCode_match m_CondCode()
Match any conditional code SDNode.
TernaryOpc_match< T0_P, T1_P, T2_P, true, false > m_c_SetCC(const T0_P &LHS, const T1_P &RHS, const T2_P &CC)
MCSymbolWasm * getOrCreateFunctionTableSymbol(MCContext &Ctx, const WebAssemblySubtarget *Subtarget)
Returns the __indirect_function_table, for use in call_indirect and in function bitcasts.
@ WASM_ADDRESS_SPACE_EXTERNREF
@ WASM_ADDRESS_SPACE_FUNCREF
bool isWebAssemblyFuncrefType(const Type *Ty)
Return true if this is a WebAssembly Funcref Type.
bool isWebAssemblyTableType(const Type *Ty)
Return true if the table represents a WebAssembly table type.
MCSymbolWasm * getOrCreateFuncrefCallTableSymbol(MCContext &Ctx, const WebAssemblySubtarget *Subtarget)
Returns the __funcref_call_table, for use in funcref calls when lowered to table.set + call_indirect.
bool isValidAddressSpace(unsigned AS)
FastISel * createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo, const LibcallLoweringInfo *libcallLowering)
bool canLowerReturn(size_t ResultSize, const WebAssemblySubtarget *Subtarget)
Returns true if the function's return value(s) can be lowered directly, i.e., not indirectly via a po...
bool isWasmVarAddressSpace(unsigned AS)
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
FunctionAddr VTableAddr Value
void computeSignatureVTs(const FunctionType *Ty, const Function *TargetFunc, const Function &ContextFunc, const TargetMachine &TM, SmallVectorImpl< MVT > &Params, SmallVectorImpl< MVT > &Results)
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
DWARFExpression::Operation Op
auto max_element(R &&Range)
Provide wrappers to std::max_element which take ranges instead of having to pass begin/end explicitly...
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
void computeLegalValueVTs(const WebAssemblyTargetLowering &TLI, LLVMContext &Ctx, const DataLayout &DL, Type *Ty, SmallVectorImpl< MVT > &ValueVTs)
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isByteSized() const
Return true if the bit size is a multiple of 8.
uint64_t getScalarSizeInBits() const
EVT changeVectorElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
bool is128BitVector() const
Return true if this is a 128-bit vector type.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
EVT widenIntegerVectorElementType(LLVMContext &Context) const
Return a VT for an integer vector type with the size of the elements doubled.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool is256BitVector() const
Return true if this is a 256-bit vector type.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInConsecutiveRegs() const
Align getNonZeroOrigAlign() const
bool isSwiftError() const
unsigned getByValSize() const
bool isInConsecutiveRegsLast() const
Align getNonZeroByValAlign() const
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
These are IR-level optimization flags that may be propagated to SDNodes.
bool isBeforeLegalize() const
This structure is used to pass arguments to makeLibCall function.