37using namespace PatternMatch;
39#define DEBUG_TYPE "instcombine"
56 FAddendCoef() =
default;
61 void operator=(
const FAddendCoef &
A);
66 assert(!insaneIntVal(
C) &&
"Insane coefficient");
67 IsFp =
false; IntVal =
C;
74 bool isZero()
const {
return isInt() ? !IntVal : getFpVal().isZero(); }
77 bool isOne()
const {
return isInt() && IntVal == 1; }
78 bool isTwo()
const {
return isInt() && IntVal == 2; }
79 bool isMinusOne()
const {
return isInt() && IntVal == -1; }
80 bool isMinusTwo()
const {
return isInt() && IntVal == -2; }
83 bool insaneIntVal(
int V) {
return V > 4 || V < -4; }
85 APFloat *getFpValPtr() {
return reinterpret_cast<APFloat *
>(&FpValBuf); }
87 const APFloat *getFpValPtr()
const {
88 return reinterpret_cast<const APFloat *
>(&FpValBuf);
91 const APFloat &getFpVal()
const {
92 assert(IsFp && BufHasFpVal &&
"Incorret state");
93 return *getFpValPtr();
97 assert(IsFp && BufHasFpVal &&
"Incorret state");
98 return *getFpValPtr();
101 bool isInt()
const {
return !IsFp; }
115 bool BufHasFpVal =
false;
134 assert((Val ==
T.Val) &&
"Symbolic-values disagree");
138 Value *getSymVal()
const {
return Val; }
139 const FAddendCoef &getCoef()
const {
return Coeff; }
141 bool isConstant()
const {
return Val ==
nullptr; }
142 bool isZero()
const {
return Coeff.isZero(); }
144 void set(
short Coefficient,
Value *V) {
145 Coeff.set(Coefficient);
149 Coeff.set(Coefficient);
153 Coeff.set(Coefficient->getValueAPF());
157 void negate() { Coeff.negate(); }
161 static unsigned drillValueDownOneStep(
Value* V, FAddend &A0, FAddend &A1);
165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1)
const;
168 void Scale(
const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
171 Value *Val =
nullptr;
187 Value *simplifyFAdd(AddendVect& V,
unsigned InstrQuota);
190 Value *createAddendVal(
const FAddend &
A,
bool& NeedNeg);
193 unsigned calcInstrNumber(
const AddendVect& Vect);
199 Value *createNaryFAdd(
const AddendVect& Opnds,
unsigned InstrQuota);
200 void createInstPostProc(
Instruction *NewInst,
bool NoNumber =
false);
204 unsigned CreateInstrNum;
205 void initCreateInstNum() { CreateInstrNum = 0; }
206 void incCreateInstNum() { CreateInstrNum++; }
208 void initCreateInstNum() {}
209 void incCreateInstNum() {}
224FAddendCoef::~FAddendCoef() {
226 getFpValPtr()->~APFloat();
229void FAddendCoef::set(
const APFloat&
C) {
239 IsFp = BufHasFpVal =
true;
242void FAddendCoef::convertToFpType(
const fltSemantics &Sem) {
253 IsFp = BufHasFpVal =
true;
266void FAddendCoef::operator=(
const FAddendCoef &That) {
270 set(That.getFpVal());
273void FAddendCoef::operator+=(
const FAddendCoef &That) {
275 if (
isInt() == That.isInt()) {
279 getFpVal().add(That.getFpVal(), RndMode);
285 convertToFpType(
T.getSemantics());
286 getFpVal().add(
T, RndMode);
291 T.add(createAPFloatFromInt(
T.getSemantics(), That.IntVal), RndMode);
294void FAddendCoef::operator*=(
const FAddendCoef &That) {
298 if (That.isMinusOne()) {
303 if (
isInt() && That.isInt()) {
304 int Res =
IntVal * (int)That.IntVal;
305 assert(!insaneIntVal(Res) &&
"Insane int value");
311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
314 convertToFpType(Semantic);
318 F0.
multiply(createAPFloatFromInt(Semantic, That.IntVal),
319 APFloat::rmNearestTiesToEven);
321 F0.
multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
324void FAddendCoef::negate() {
328 getFpVal().changeSign();
331Value *FAddendCoef::getValue(
Type *Ty)
const {
333 ConstantFP::get(Ty,
float(IntVal)) :
347unsigned FAddend::drillValueDownOneStep
348 (
Value *Val, FAddend &Addend0, FAddend &Addend1) {
350 if (!Val || !(
I = dyn_cast<Instruction>(Val)))
353 unsigned Opcode =
I->getOpcode();
355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
357 Value *Opnd0 =
I->getOperand(0);
358 Value *Opnd1 =
I->getOperand(1);
359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->
isZero())
362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->
isZero())
367 Addend0.set(1, Opnd0);
369 Addend0.set(C0,
nullptr);
373 FAddend &Addend = Opnd0 ? Addend1 : Addend0;
375 Addend.set(1, Opnd1);
377 Addend.set(C1,
nullptr);
378 if (Opcode == Instruction::FSub)
383 return Opnd0 && Opnd1 ? 2 : 1;
390 if (
I->getOpcode() == Instruction::FMul) {
391 Value *V0 =
I->getOperand(0);
392 Value *V1 =
I->getOperand(1);
410unsigned FAddend::drillAddendDownOneStep
411 (FAddend &Addend0, FAddend &Addend1)
const {
415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
416 if (!BreakNum || Coeff.isOne())
419 Addend0.Scale(Coeff);
422 Addend1.Scale(Coeff);
428 assert(
I->hasAllowReassoc() &&
I->hasNoSignedZeros() &&
429 "Expected 'reassoc'+'nsz' instruction");
432 if (
I->getType()->isVectorTy())
435 assert((
I->getOpcode() == Instruction::FAdd ||
436 I->getOpcode() == Instruction::FSub) &&
"Expect add/sub");
441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
443 unsigned OpndNum = FAddend::drillValueDownOneStep(
I, Opnd0, Opnd1);
446 unsigned Opnd0_ExpNum = 0;
447 unsigned Opnd1_ExpNum = 0;
449 if (!Opnd0.isConstant())
450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
453 if (OpndNum == 2 && !Opnd1.isConstant())
454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
457 if (Opnd0_ExpNum && Opnd1_ExpNum) {
459 AllOpnds.push_back(&Opnd0_0);
460 AllOpnds.push_back(&Opnd1_0);
461 if (Opnd0_ExpNum == 2)
462 AllOpnds.push_back(&Opnd0_1);
463 if (Opnd1_ExpNum == 2)
464 AllOpnds.push_back(&Opnd1_1);
467 unsigned InstQuota = 0;
469 Value *V0 =
I->getOperand(0);
470 Value *V1 =
I->getOperand(1);
471 InstQuota = ((!isa<Constant>(V0) && V0->
hasOneUse()) &&
472 (!isa<Constant>(V1) && V1->
hasOneUse())) ? 2 : 1;
474 if (
Value *R = simplifyFAdd(AllOpnds, InstQuota))
483 const FAddendCoef &
CE = Opnd0.getCoef();
484 return CE.isOne() ? Opnd0.getSymVal() :
nullptr;
490 AllOpnds.push_back(&Opnd0);
491 AllOpnds.push_back(&Opnd1_0);
492 if (Opnd1_ExpNum == 2)
493 AllOpnds.push_back(&Opnd1_1);
495 if (
Value *R = simplifyFAdd(AllOpnds, 1))
502 AllOpnds.push_back(&Opnd1);
503 AllOpnds.push_back(&Opnd0_0);
504 if (Opnd0_ExpNum == 2)
505 AllOpnds.push_back(&Opnd0_1);
507 if (
Value *R = simplifyFAdd(AllOpnds, 1))
514Value *FAddCombine::simplifyFAdd(AddendVect& Addends,
unsigned InstrQuota) {
515 unsigned AddendNum = Addends.size();
516 assert(AddendNum <= 4 &&
"Too many addends");
519 unsigned NextTmpIdx = 0;
520 FAddend TmpResult[3];
528 for (
unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
530 const FAddend *ThisAddend = Addends[SymIdx];
536 Value *Val = ThisAddend->getSymVal();
545 unsigned StartIdx = SimpVect.size();
546 SimpVect.push_back(ThisAddend);
553 for (
unsigned SameSymIdx = SymIdx + 1;
554 SameSymIdx < AddendNum; SameSymIdx++) {
555 const FAddend *
T = Addends[SameSymIdx];
556 if (
T &&
T->getSymVal() == Val) {
559 Addends[SameSymIdx] =
nullptr;
560 SimpVect.push_back(
T);
565 if (StartIdx + 1 != SimpVect.size()) {
566 FAddend &
R = TmpResult[NextTmpIdx ++];
567 R = *SimpVect[StartIdx];
568 for (
unsigned Idx = StartIdx + 1;
Idx < SimpVect.size();
Idx++)
572 SimpVect.resize(StartIdx);
574 SimpVect.push_back(&R);
579 assert((NextTmpIdx <= std::size(TmpResult) + 1) &&
"out-of-bound access");
582 if (!SimpVect.empty())
583 Result = createNaryFAdd(SimpVect, InstrQuota);
592Value *FAddCombine::createNaryFAdd
593 (
const AddendVect &Opnds,
unsigned InstrQuota) {
594 assert(!Opnds.empty() &&
"Expect at least one addend");
598 unsigned InstrNeeded = calcInstrNumber(Opnds);
599 if (InstrNeeded > InstrQuota)
612 Value *LastVal =
nullptr;
613 bool LastValNeedNeg =
false;
616 for (
const FAddend *Opnd : Opnds) {
618 Value *
V = createAddendVal(*Opnd, NeedNeg);
621 LastValNeedNeg = NeedNeg;
625 if (LastValNeedNeg == NeedNeg) {
626 LastVal = createFAdd(LastVal, V);
631 LastVal = createFSub(V, LastVal);
633 LastVal = createFSub(LastVal, V);
635 LastValNeedNeg =
false;
638 if (LastValNeedNeg) {
639 LastVal = createFNeg(LastVal);
643 assert(CreateInstrNum == InstrNeeded &&
644 "Inconsistent in instruction numbers");
651 Value *
V = Builder.CreateFSub(Opnd0, Opnd1);
653 createInstPostProc(
I);
658 Value *NewV = Builder.CreateFNeg(V);
660 createInstPostProc(
I,
true);
665 Value *
V = Builder.CreateFAdd(Opnd0, Opnd1);
667 createInstPostProc(
I);
672 Value *
V = Builder.CreateFMul(Opnd0, Opnd1);
674 createInstPostProc(
I);
678void FAddCombine::createInstPostProc(
Instruction *NewInstr,
bool NoNumber) {
691unsigned FAddCombine::calcInstrNumber(
const AddendVect &Opnds) {
692 unsigned OpndNum = Opnds.size();
693 unsigned InstrNeeded = OpndNum - 1;
696 for (
const FAddend *Opnd : Opnds) {
697 if (Opnd->isConstant())
702 if (isa<UndefValue>(Opnd->getSymVal()))
705 const FAddendCoef &
CE = Opnd->getCoef();
709 if (!
CE.isMinusOne() && !
CE.isOne())
723Value *FAddCombine::createAddendVal(
const FAddend &Opnd,
bool &NeedNeg) {
724 const FAddendCoef &Coeff = Opnd.getCoef();
726 if (Opnd.isConstant()) {
728 return Coeff.getValue(
Instr->getType());
731 Value *OpndVal = Opnd.getSymVal();
733 if (Coeff.isMinusOne() || Coeff.isOne()) {
734 NeedNeg = Coeff.isMinusOne();
738 if (Coeff.isTwo() || Coeff.isMinusTwo()) {
739 NeedNeg = Coeff.isMinusTwo();
740 return createFAdd(OpndVal, OpndVal);
744 return createFMul(OpndVal, Coeff.getValue(
Instr->getType()));
761 Value *
X =
nullptr, *
Y =
nullptr, *Z =
nullptr;
762 const APInt *C1 =
nullptr, *C2 =
nullptr;
789 LHS =
I.getOperand(0);
790 RHS =
I.getOperand(1);
811 Value *Op0 =
Add.getOperand(0), *Op1 =
Add.getOperand(1);
820 const APInt *C1, *C2;
831 Builder.
CreateNUWAdd(
X, ConstantInt::get(
X->getType(), NewC)), Ty);
843 return BinaryOperator::CreateAdd(WideX, NewC);
851 return BinaryOperator::CreateAdd(WideX, NewC);
857 Value *Op0 =
Add.getOperand(0), *Op1 =
Add.getOperand(1);
882 X->getType()->getScalarSizeInBits() == 1)
886 X->getType()->getScalarSizeInBits() == 1)
892 auto *COne = ConstantInt::get(Op1C->
getType(), 1);
893 bool WillNotSOV = willNotOverflowSignedSub(Op1C, COne,
Add);
917 willNotOverflowSignedAdd(Op01C, Op1C,
Add));
925 return BinaryOperator::CreateXor(Op0, ConstantInt::get(
Add.getType(), *C2));
927 if (
C->isSignMask()) {
930 if (
Add.hasNoSignedWrap() ||
Add.hasNoUnsignedWrap())
931 return BinaryOperator::CreateOr(Op0, Op1);
935 return BinaryOperator::CreateXor(Op0, Op1);
947 return BinaryOperator::CreateAdd(
X, ConstantInt::get(Ty, *C2 ^ *
C));
953 if ((*C2 | LHSKnown.
Zero).isAllOnes())
954 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *
C),
X);
970 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
972 return BinaryOperator::CreateAShr(NewShl, ShAmtC);
984 X->getType()->getScalarSizeInBits() == 1)
993 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
1001 Intrinsic::usub_sat,
X, ConstantInt::get(
Add.getType(), -*
C)));
1024template <
bool FP,
typename Mul2Rhs>
1027 constexpr unsigned MulOp =
FP ? Instruction::FMul : Instruction::Mul;
1028 constexpr unsigned AddOp =
FP ? Instruction::FAdd : Instruction::Add;
1029 constexpr unsigned Mul2Op =
FP ? Instruction::FMul : Instruction::Shl;
1062 return BinaryOperator::CreateMul(AB, AB);
1070 assert(
I.hasAllowReassoc() &&
I.hasNoSignedZeros() &&
"Assumption mismatch");
1146 (void)C0.
smul_ov(C1, overflow);
1148 (
void)C0.
umul_ov(C1, overflow);
1169 if (
MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1170 IsSigned == Rem2IsSigned) {
1174 if (
MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) &&
X == DivOpV &&
1176 Value *NewDivisor = ConstantInt::get(
X->getType(), C0 * C1);
1187 Div =
LHS, C1 =
APInt(
I.getType()->getScalarSizeInBits(), 1);
1189 Rem =
RHS, C2 =
APInt(
I.getType()->getScalarSizeInBits(), 1);
1197 MatchDiv(Div, DivOpV, DivOpC, IsSigned) &&
X == DivOpV && C0 == DivOpC) {
1198 APInt NewC = C1 - C2 * C0;
1228 if (
auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1230 BOp->setHasNoSignedWrap();
1231 BOp->setHasNoUnsignedWrap(
I.hasNoUnsignedWrap());
1238 assert(
I.getOpcode() == Instruction::Add &&
"Expecting add instruction");
1239 Type *Ty =
I.getType();
1240 auto getUAddSat = [&]() {
1270 return BinaryOperator::CreateSub(
A, NewShl);
1291 const APInt *MaskC, *MaskCCmp;
1304 ? (*MaskC == (
SMin | (*DivC - 1)))
1305 : (*DivC == 2 && *MaskC ==
SMin + 1);
1310 return BinaryOperator::CreateAShr(
1315 bool NSW,
bool NUW) {
1325 R->setHasNoSignedWrap(NSWOut);
1326 R->setHasNoUnsignedWrap(NUWOut);
1335 assert((
I.getOpcode() == Instruction::Add ||
1336 I.getOpcode() == Instruction::Or ||
1337 I.getOpcode() == Instruction::Sub) &&
1338 "Expecting add/or/sub instruction");
1351 if (
I.getOpcode() == Instruction::Sub &&
I.getOperand(1) !=
Select)
1354 Type *XTy =
X->getType();
1355 bool HadTrunc =
I.getType() != XTy;
1367 if (!
match(LowBitsToSkip,
1374 auto SkipExtInMagic = [&
I](
Value *&V) {
1375 if (
I.getOpcode() == Instruction::Sub)
1387 Value *SignExtendingValue, *Zero;
1407 SkipExtInMagic(SignExtendingValue);
1408 Constant *SignExtendingValueBaseConstant;
1409 if (!
match(SignExtendingValue,
1414 if (
I.getOpcode() == Instruction::Sub
1415 ? !
match(SignExtendingValueBaseConstant,
m_One())
1419 auto *NewAShr = BinaryOperator::CreateAShr(
X, LowBitsToSkip,
1420 Extract->
getName() +
".sext");
1421 NewAShr->copyIRFlags(Extract);
1435 assert((
I.getOpcode() == Instruction::Add ||
1436 I.getOpcode() == Instruction::Sub) &&
1437 "Expected add/sub");
1438 auto *Op0 = dyn_cast<BinaryOperator>(
I.getOperand(0));
1439 auto *Op1 = dyn_cast<BinaryOperator>(
I.getOperand(1));
1440 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
1449 bool HasNSW =
I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
1450 Op1->hasNoSignedWrap();
1451 bool HasNUW =
I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
1452 Op1->hasNoUnsignedWrap();
1456 if (
auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
1457 NewI->setHasNoSignedWrap(HasNSW);
1458 NewI->setHasNoUnsignedWrap(HasNUW);
1460 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
1461 NewShl->setHasNoSignedWrap(HasNSW);
1462 NewShl->setHasNoUnsignedWrap(HasNUW);
1469 unsigned BitWidth =
I.getType()->getScalarSizeInBits();
1502 return BinaryOperator::CreateMul(
X,
Y);
1509 I.hasNoSignedWrap(),
I.hasNoUnsignedWrap(),
1546 I.hasNoUnsignedWrap()))
1549 I.hasNoUnsignedWrap()))
1551 Type *Ty =
I.getType();
1553 return BinaryOperator::CreateXor(
LHS,
RHS);
1557 auto *Shl = BinaryOperator::CreateShl(
LHS, ConstantInt::get(Ty, 1));
1558 Shl->setHasNoSignedWrap(
I.hasNoSignedWrap());
1559 Shl->setHasNoUnsignedWrap(
I.hasNoUnsignedWrap());
1570 auto *Sub = BinaryOperator::CreateSub(
RHS,
A);
1571 auto *OB0 = cast<OverflowingBinaryOperator>(
LHS);
1572 Sub->setHasNoSignedWrap(
I.hasNoSignedWrap() && OB0->hasNoSignedWrap());
1579 auto *Sub = BinaryOperator::CreateSub(
LHS,
B);
1580 auto *OBO = cast<OverflowingBinaryOperator>(
RHS);
1581 Sub->setHasNoSignedWrap(
I.hasNoSignedWrap() && OBO->hasNoSignedWrap());
1594 return BinaryOperator::CreateSub(
A,
B);
1619 return BinaryOperator::CreateAdd(Sub, C1);
1627 const APInt *C1, *C2;
1630 APInt minusC1 = -(*C1);
1631 if (minusC1 == (one << *C2)) {
1633 return BinaryOperator::CreateSRem(
RHS, NewRHS);
1641 return BinaryOperator::CreateAnd(
A, NewMask);
1653 A->getType()->isIntOrIntVectorTy(1))
1661 A->getType()->isIntOrIntVectorTy()) {
1679 return BinaryOperator::CreateDisjointOr(
LHS,
RHS);
1688 return BinaryOperator::CreateOr(
A,
B);
1708 I.hasNoUnsignedWrap(),
I.hasNoSignedWrap());
1709 return BinaryOperator::CreateAnd(
Add,
A);
1720 return BinaryOperator::CreateAnd(Dec, Not);
1731 Type *Ty =
I.getType();
1732 Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1);
1738 const APInt *NegPow2C;
1743 return BinaryOperator::CreateSub(
B, Shl);
1754 return BinaryOperator::CreateOr(
LHS, Zext);
1783 bool ConsumesLHS, ConsumesRHS;
1788 assert(NotLHS !=
nullptr && NotRHS !=
nullptr &&
1789 "isFreeToInvert desynced with getFreelyInverted");
1791 return BinaryOperator::CreateSub(
1802 bool Changed =
false;
1803 if (!
I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHSCache, RHSCache,
I)) {
1805 I.setHasNoSignedWrap(
true);
1807 if (!
I.hasNoUnsignedWrap() &&
1808 willNotOverflowUnsignedAdd(LHSCache, RHSCache,
I)) {
1810 I.setHasNoUnsignedWrap(
true);
1837 {Builder.CreateOr(A, B)}));
1854 *XorC ==
A->getType()->getScalarSizeInBits() - 1) {
1859 ConstantInt::get(
A->getType(),
A->getType()->getScalarSizeInBits()),
1860 Ctlz,
"",
true,
true);
1877 Value *Start, *Step;
1882 return Changed ? &
I :
nullptr;
1904 assert((
I.getOpcode() == Instruction::FAdd ||
1905 I.getOpcode() == Instruction::FSub) &&
"Expecting fadd/fsub");
1906 assert(
I.hasAllowReassoc() &&
I.hasNoSignedZeros() &&
1907 "FP factorization requires FMF");
1912 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
1913 if (!Op0->
hasOneUse() || !Op1->hasOneUse())
1933 bool IsFAdd =
I.getOpcode() == Instruction::FAdd;
1949 I.getFastMathFlags(),
1998 if (
I.hasAllowReassoc() &&
I.hasNoSignedZeros()) {
2012 {X->getType()}, {Y, X}, &
I));
2019 Constant *NewStartC = ConstantFP::get(
I.getType(), *
C + *StartC);
2022 {X->getType()}, {NewStartC, X}, &
I));
2030 Instruction::FAdd, MulC, ConstantFP::get(
I.getType(), 1.0),
DL))
2052 if (!Result->hasNoNaNs())
2053 Result->setHasNoInfs(
false);
2064 Type *Ty,
bool IsNUW) {
2067 bool Swapped =
false;
2069 if (!isa<GEPOperator>(
LHS) && isa<GEPOperator>(
RHS)) {
2075 if (
auto *LHSGEP = dyn_cast<GEPOperator>(
LHS)) {
2077 if (LHSGEP->getOperand(0)->stripPointerCasts() ==
2080 }
else if (
auto *RHSGEP = dyn_cast<GEPOperator>(
RHS)) {
2082 if (LHSGEP->getOperand(0)->stripPointerCasts() ==
2083 RHSGEP->getOperand(0)->stripPointerCasts()) {
2097 bool RewriteGEPs = GEP2 !=
nullptr;
2101 Value *Result = EmitGEPOffset(GEP1, RewriteGEPs);
2105 if (
auto *
I = dyn_cast<Instruction>(Result))
2106 if (IsNUW && !GEP2 && !Swapped && GEP1NW.
isInBounds() &&
2107 I->getOpcode() == Instruction::Mul)
2108 I->setHasNoUnsignedWrap();
2131 Value *Op0 =
I.getOperand(0);
2132 Value *Op1 =
I.getOperand(1);
2133 Type *Ty =
I.getType();
2134 auto *
MinMax = dyn_cast<MinMaxIntrinsic>(Op1);
2155 return BinaryOperator::CreateAdd(
X, USub);
2159 return BinaryOperator::CreateAdd(
X, USub);
2177 I.hasNoSignedWrap(),
I.hasNoUnsignedWrap(),
2187 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
2191 if (
Value *V = dyn_castNegVal(Op1)) {
2194 if (
const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
2195 assert(BO->getOpcode() == Instruction::Sub &&
2196 "Expected a subtraction operator!");
2197 if (BO->hasNoSignedWrap() &&
I.hasNoSignedWrap())
2200 if (cast<Constant>(Op1)->isNotMinSignedValue() &&
I.hasNoSignedWrap())
2220 bool WillNotSOV = willNotOverflowSignedSub(
C, C2,
I);
2223 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2227 OBO1->hasNoUnsignedWrap());
2232 auto TryToNarrowDeduceFlags = [
this, &
I, &Op0, &Op1]() ->
Instruction * {
2236 bool Changed =
false;
2237 if (!
I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1,
I)) {
2239 I.setHasNoSignedWrap(
true);
2241 if (!
I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1,
I)) {
2243 I.setHasNoUnsignedWrap(
true);
2246 return Changed ? &
I :
nullptr;
2253 if (!IsNegation ||
none_of(
I.users(), [&
I, Op1](
const User *U) {
2254 const Instruction *UI = dyn_cast<Instruction>(U);
2257 return match(UI, m_c_Select(m_Specific(Op1), m_Specific(&I)));
2260 I.hasNoSignedWrap(),
2262 return BinaryOperator::CreateAdd(NegOp1, Op0);
2265 return TryToNarrowDeduceFlags();
2271 if (
I.getType()->isIntOrIntVectorTy(1))
2272 return BinaryOperator::CreateXor(Op0, Op1);
2289 return BinaryOperator::CreateAnd(
2301 return BinaryOperator::CreateSub(XZ, YW);
2324 return BinaryOperator::CreateSub(
X,
Y);
2332 return BinaryOperator::CreateAdd(OpsSub, ConstsSub);
2342 R = BinaryOperator::CreateSub(
X, Z);
2344 R = BinaryOperator::CreateSub(
X,
Y);
2346 R = BinaryOperator::CreateSub(W, Z);
2348 R = BinaryOperator::CreateSub(W,
Y);
2350 bool NSW =
I.hasNoSignedWrap() &&
2354 bool NUW =
I.hasNoUnsignedWrap() &&
2356 R->setHasNoSignedWrap(NSW);
2357 R->setHasNoUnsignedWrap(NUW);
2367 bool ConsumesOp0, ConsumesOp1;
2370 (ConsumesOp0 || ConsumesOp1)) {
2373 assert(NotOp0 !=
nullptr && NotOp1 !=
nullptr &&
2374 "isFreeToInvert desynced with getFreelyInverted");
2375 return BinaryOperator::CreateSub(NotOp1, NotOp0);
2379 auto m_AddRdx = [](
Value *&Vec) {
2380 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(
m_Value(Vec)));
2383 if (
match(Op0, m_AddRdx(V0)) &&
match(Op1, m_AddRdx(V1)) &&
2393 if (
Constant *
C = dyn_cast<Constant>(Op0)) {
2407 if (
SelectInst *SI = dyn_cast<SelectInst>(Op1))
2412 if (
PHINode *PN = dyn_cast<PHINode>(Op1))
2431 if ((*Op0C | RHSKnown.
Zero).isAllOnes())
2432 return BinaryOperator::CreateXor(Op1, Op0);
2439 const APInt *C2, *C3;
2444 APInt C2AndC3 = *C2 & *C3;
2445 APInt C2AndC3Minus1 = C2AndC3 - 1;
2446 APInt C2AddC3 = *C2 + *C3;
2447 if ((*C3 - C2AndC3Minus1).isPowerOf2() &&
2450 return BinaryOperator::CreateAdd(
2451 And, ConstantInt::get(
I.getType(), *Op0C - C2AndC3));
2472 return BinaryOperator::CreateXor(
A,
B);
2480 return BinaryOperator::CreateAnd(
A,
B);
2488 return BinaryOperator::CreateOr(
A,
B);
2505 return BinaryOperator::CreateAnd(
A,
B);
2521 return BinaryOperator::CreateAnd(
2551 (
C->getType()->getScalarSizeInBits() == 1);
2553 if (m_SubXorCmp(Op0, Op1))
2555 if (m_SubXorCmp(Op1, Op0))
2576 auto SinkSubIntoSelect =
2583 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
2588 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
2589 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
2593 OtherHandOfSubIsTrueVal ? NewSub : Zero);
2616 (Op1->hasOneUse() || isa<Constant>(
Y)))
2617 return BinaryOperator::CreateAnd(
2631 return BinaryOperator::CreateSub(Not,
X);
2637 return BinaryOperator::CreateSub(
X, Not);
2642 Value *LHSOp, *RHSOp;
2646 I.hasNoUnsignedWrap()))
2658 if (
auto *
GEP = dyn_cast<GEPOperator>(LHSOp)) {
2659 if (
GEP->getPointerOperand() == RHSOp) {
2660 if (
GEP->hasNoUnsignedWrap() ||
GEP->hasNoUnsignedSignedWrap()) {
2662 Value *Res =
GEP->hasNoUnsignedWrap()
2665 GEP->hasNoUnsignedSignedWrap())
2680 Type *Ty =
I.getType();
2683 Op1->hasNUses(2) && *ShAmt ==
BitWidth - 1 &&
2690 Value *NegA =
I.hasNoUnsignedWrap()
2700 const APInt *AddC, *AndC;
2705 if ((HighMask & *AndC).
isZero())
2706 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
2748 {Builder.CreateNot(X)}));
2754 auto *OBO0 = cast<OverflowingBinaryOperator>(Op0);
2755 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2756 bool PropagateNSW =
I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() &&
2757 OBO1->hasNoSignedWrap() &&
BitWidth > 2;
2758 bool PropagateNUW =
I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() &&
2759 OBO1->hasNoUnsignedWrap() &&
BitWidth > 1;
2769 if (
I.hasNoUnsignedWrap() ||
I.hasNoSignedWrap()) {
2781 return TryToNarrowDeduceFlags();
2846 if (
II->getIntrinsicID() == Intrinsic::ldexp) {
2852 II->getCalledFunction(),
2853 {Builder.CreateFNeg(II->getArgOperand(0)), II->getArgOperand(1)});
2854 New->copyMetadata(*
II);
2875 if (
I.hasNoSignedZeros() &&
2883 if (
Instruction *R = hoistFNegAboveFMulFDiv(OneUse,
I))
2892 auto propagateSelectFMF = [&](
SelectInst *S,
bool CommonOperand) {
2894 if (
auto *OldSel = dyn_cast<SelectInst>(
Op)) {
2895 FastMathFlags FMF =
I.getFastMathFlags() | OldSel->getFastMathFlags();
2897 if (!OldSel->hasNoSignedZeros() && !CommonOperand &&
2907 propagateSelectFMF(NewSel,
P ==
Y);
2914 propagateSelectFMF(NewSel,
P ==
X);
2924 propagateSelectFMF(NewSel,
true);
2934 FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags();
2949 I.getFastMathFlags(),
2979 Value *Op0 =
I.getOperand(0), *Op1 =
I.getOperand(1);
2986 if (
I.hasNoSignedZeros() ||
2995 if (
I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
3001 if (isa<Constant>(Op0))
3002 if (
SelectInst *SI = dyn_cast<SelectInst>(Op1))
3019 Type *Ty =
I.getType();
3046 if (
I.hasAllowReassoc() &&
I.hasNoSignedZeros()) {
3059 Instruction::FSub,
C, ConstantFP::get(Ty, 1.0),
DL))
3065 Instruction::FSub, ConstantFP::get(Ty, 1.0),
C,
DL))
3080 auto m_FaddRdx = [](
Value *&Sum,
Value *&Vec) {
3081 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
m_Value(Sum),
3084 Value *A0, *A1, *V0, *V1;
3085 if (
match(Op0, m_FaddRdx(A0, V0)) &&
match(Op1, m_FaddRdx(A1, V1)) &&
static bool isConstant(const MachineInstr &MI)
AMDGPU Register Bank Select
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static Instruction * factorizeFAddFSub(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Factor a common operand out of fadd/fsub of fmul/fdiv.
static Instruction * foldAddToAshr(BinaryOperator &Add)
Try to reduce signed division by power-of-2 to an arithmetic shift right.
static bool MatchMul(Value *E, Value *&Op, APInt &C)
static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned)
static Instruction * foldFNegIntoConstant(Instruction &I, const DataLayout &DL)
This eliminates floating-point negation in either 'fneg(X)' or 'fsub(-0.0, X)' form by combining into...
static Instruction * combineAddSubWithShlAddSub(InstCombiner::BuilderTy &Builder, const BinaryOperator &I)
static Instruction * factorizeLerp(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Eliminate an op from a linear interpolation (lerp) pattern.
static Instruction * foldSubOfMinMax(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Instruction * foldBoxMultiply(BinaryOperator &I)
Reduce a sequence of masked half-width multiplies to a single multiply.
static Value * checkForNegativeOperand(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned)
static Instruction * foldNoWrapAdd(BinaryOperator &Add, InstCombiner::BuilderTy &Builder)
Wrapping flags may allow combining constants separated by an extend.
static bool matchesSquareSum(BinaryOperator &I, Mul2Rhs M2Rhs, Value *&A, Value *&B)
static Instruction * factorizeMathWithShlOps(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
This is a specialization of a more general transform from foldUsingDistributiveLaws.
static Instruction * canonicalizeLowbitMask(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Fold (1 << NBits) - 1 Into: ~(-(1 << NBits)) Because a 'not' is better for bit-tracking analysis and ...
static Instruction * foldToUnsignedSaturatedAdd(BinaryOperator &I)
static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned)
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
const fltSemantics & getSemantics() const
opStatus multiply(const APFloat &RHS, roundingMode RM)
Class for arbitrary precision integers.
APInt umul_ov(const APInt &RHS, bool &Overflow) const
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
bool isMinSignedValue() const
Determine if this is the smallest signed value.
APInt trunc(unsigned width) const
Truncate to new width.
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
unsigned getBitWidth() const
Return the number of bits in the APInt.
bool isNegative() const
Determine sign of this APInt.
int32_t exactLogBase2() const
unsigned countr_zero() const
Count the number of trailing zero bits.
unsigned countl_zero() const
The APInt version of std::countl_zero.
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
unsigned logBase2() const
APInt smul_ov(const APInt &RHS, bool &Overflow) const
bool isMask(unsigned numBits) const
APInt sext(unsigned width) const
Sign extend to a new width.
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
static BinaryOperator * CreateFAddFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
static BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static BinaryOperator * CreateFMulFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateFDivFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
static BinaryOperator * CreateFSubFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
@ ICMP_UGT
unsigned greater than
@ ICMP_SGT
signed greater than
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
ConstantFP - Floating Point Values [float, double].
const APFloat & getValueAPF() const
bool isZero() const
Return true if the value is positive or negative zero.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
This is an important base class in LLVM.
static Constant * getAllOnesValue(Type *Ty)
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
bool isElementWiseEqual(Value *Y) const
Return true if this constant and a constant 'Y' are element-wise equal.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Convenience struct for specifying and reasoning about fast-math flags.
bool noSignedZeros() const
Represents flags for the getelementptr instruction/expression.
bool hasNoUnsignedWrap() const
GEPNoWrapFlags getNoWrapFlags() const
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
Value * CreateFAddFMF(Value *L, Value *R, Instruction *FMFSource, const Twine &Name="")
Copy fast-math-flags from an instruction rather than using the builder's default FMF.
Value * CreateSRem(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with 2 operands which is mangled on the first type.
Value * CreateFMulFMF(Value *L, Value *R, Instruction *FMFSource, const Twine &Name="")
Copy fast-math-flags from an instruction rather than using the builder's default FMF.
Value * CreateFSubFMF(Value *L, Value *R, Instruction *FMFSource, const Twine &Name="")
Copy fast-math-flags from an instruction rather than using the builder's default FMF.
Value * CreateFDivFMF(Value *L, Value *R, Instruction *FMFSource, const Twine &Name="")
Copy fast-math-flags from an instruction rather than using the builder's default FMF.
Value * CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name="")
Create a ZExt or Trunc from the integer value V to DestTy.
Value * CreateFPTrunc(Value *V, Type *DestTy, const Twine &Name="", MDNode *FPMathTag=nullptr)
ConstantInt * getTrue()
Get the constant value for i1 true.
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Value * CreateFNegFMF(Value *V, Instruction *FMFSource, const Twine &Name="")
Copy fast-math-flags from an instruction rather than using the builder's default FMF.
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Value * CreateSExt(Value *V, Type *DestTy, const Twine &Name="")
Value * CreateIsNotNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg > -1.
void setFastMathFlags(FastMathFlags NewFMF)
Set the fast-math flags to be used with generated fp-math operators.
Value * CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateNeg(Value *V, const Twine &Name="", bool HasNSW=false)
Value * CreateNot(Value *V, const Twine &Name="")
InstTy * Insert(InstTy *I, const Twine &Name="") const
Insert and return the specified instruction.
Value * CreateIsNeg(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg < 0.
Value * CreateSub(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Value * CreateAnd(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateAdd(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
ConstantInt * getFalse()
Get the constant value for i1 false.
Value * CreateIsNotNull(Value *Arg, const Twine &Name="")
Return a boolean value testing if Arg != 0.
CallInst * CreateCall(FunctionType *FTy, Value *Callee, ArrayRef< Value * > Args={}, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateOr(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
Value * CreateFPExt(Value *V, Type *DestTy, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateXor(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateFNeg(Value *V, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateURem(Value *LHS, Value *RHS, const Twine &Name="")
Value * CreateMul(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Value * CreateCopySign(Value *LHS, Value *RHS, Instruction *FMFSource=nullptr, const Twine &Name="")
Create call to the copysign intrinsic.
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * visitAdd(BinaryOperator &I)
Instruction * canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(BinaryOperator &I)
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Instruction * foldSquareSumInt(BinaryOperator &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
Instruction * foldSquareSumFP(BinaryOperator &I)
Instruction * visitSub(BinaryOperator &I)
Value * OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty, bool isNUW)
Optimize pointer differences into the same array into a size.
Instruction * visitFAdd(BinaryOperator &I)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Instruction * foldAddLikeCommutative(Value *LHS, Value *RHS, bool NSW, bool NUW)
Common transforms for add / disjoint or.
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
Value * SimplifyAddWithRemainder(BinaryOperator &I)
Tries to simplify add operations using the definition of remainder.
Instruction * foldAddWithConstant(BinaryOperator &Add)
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
Instruction * visitFNeg(UnaryOperator &I)
Instruction * visitFSub(BinaryOperator &I)
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
static Constant * SubOne(Constant *C)
Subtract one from a Constant.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
unsigned ComputeNumSignBits(const Value *Op, unsigned Depth=0, const Instruction *CxtI=nullptr) const
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, const Instruction *CxtI) const
bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth=0, const Instruction *CxtI=nullptr) const
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
static Constant * AddOne(Constant *C)
Add one to a Constant.
void pushUsersToWorkList(Instruction &I)
When an instruction is simplified, add all users of the instruction to the work lists because they mi...
void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
void copyFastMathFlags(FastMathFlags FMF)
Convenience function for transferring all fast-math flag values to this instruction,...
void setHasNoSignedZeros(bool B)
Set or clear the no-signed-zeros flag on this instruction, which must be an operator which supports t...
void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
void setHasNoInfs(bool B)
Set or clear the no-infs flag on this instruction, which must be an operator which supports this flag...
FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
A wrapper class for inspecting calls to intrinsic functions.
static Value * Negate(bool LHSIsZero, bool IsNSW, Value *Root, InstCombinerImpl &IC)
Attempt to negate Root.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, Instruction *MDFrom=nullptr)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The instances of the Type class are immutable: once they are created, they are never changed.
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
bool hasOneUse() const
Return true if there is exactly one use of this value.
bool hasNUsesOrMore(unsigned N) const
Return true if this value has N uses or more.
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
StringRef getName() const
Return a constant reference to the value's name.
This class represents zero extension of integer types.
@ C
The default llvm calling convention, compatible with C.
Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrToIntSameSize_match< OpTy > m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_or< CastInst_match< OpTy, SExtInst >, OpTy > m_SExtOrSelf(const OpTy &Op)
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
OneUse_match< T > m_OneUse(const T &SubPattern)
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
BinaryOp_match< cst_pred_ty< is_zero_int >, ValTy, Instruction::Sub > m_Neg(const ValTy &V)
Matches a 'Neg' as 'sub 0, V'.
match_combine_and< class_match< Constant >, match_unless< constantexpr_match > > m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
apint_match m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinaryOp_match< LHS, RHS, Instruction::FAdd, true > m_c_FAdd(const LHS &L, const RHS &R)
Matches FAdd with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FDiv > m_FDiv(const LHS &L, const RHS &R)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
apfloat_match m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
CastInst_match< OpTy, FPTruncInst > m_FPTrunc(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
BinaryOp_match< cst_pred_ty< is_all_ones >, ValTy, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
@ CE
Windows NT (Windows on ARM)
NodeAddr< InstrNode * > Instr
This is an optimization pass for GlobalISel generic memory operations.
bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator+=(DynamicAPInt &A, int64_t B)
bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
Value * simplifySubInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Sub, fold the result or return null.
bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator*=(DynamicAPInt &A, int64_t B)
Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
Value * simplifyFNegInst(Value *Op, FastMathFlags FMF, const SimplifyQuery &Q)
Given operand for an FNeg, fold the result or return null.
Value * simplifyFSubInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FSub, fold the result or return null.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
Value * simplifyFAddInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FAdd, fold the result or return null.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
@ Mul
Product of integers.
@ And
Bitwise or logical AND of integers.
@ SMin
Signed integer min implemented in terms of select(cmp()).
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
bool cannotBeNegativeZero(const Value *V, unsigned Depth, const SimplifyQuery &SQ)
Return true if we can prove that the specified FP value is never equal to -0.0.
Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
A suitably aligned and sized character array member which can hold elements of any type.
SimplifyQuery getWithInstruction(const Instruction *I) const
SimplifyQuery getWithoutDomCondCache() const