LLVM 22.0.0git
InstCombineAddSub.cpp
Go to the documentation of this file.
1//===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visit functions for add, fadd, sub, and fsub.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APFloat.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/STLExtras.h"
20#include "llvm/IR/Constant.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/InstrTypes.h"
23#include "llvm/IR/Instruction.h"
25#include "llvm/IR/Operator.h"
27#include "llvm/IR/Type.h"
28#include "llvm/IR/Value.h"
33#include <cassert>
34#include <utility>
35
36using namespace llvm;
37using namespace PatternMatch;
38
39#define DEBUG_TYPE "instcombine"
40
41namespace {
42
43 /// Class representing coefficient of floating-point addend.
44 /// This class needs to be highly efficient, which is especially true for
45 /// the constructor. As of I write this comment, the cost of the default
46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47 /// perform write-merging).
48 ///
49 class FAddendCoef {
50 public:
51 // The constructor has to initialize a APFloat, which is unnecessary for
52 // most addends which have coefficient either 1 or -1. So, the constructor
53 // is expensive. In order to avoid the cost of the constructor, we should
54 // reuse some instances whenever possible. The pre-created instances
55 // FAddCombine::Add[0-5] embodies this idea.
56 FAddendCoef() = default;
57 ~FAddendCoef();
58
59 // If possible, don't define operator+/operator- etc because these
60 // operators inevitably call FAddendCoef's constructor which is not cheap.
61 void operator=(const FAddendCoef &A);
62 void operator+=(const FAddendCoef &A);
63 void operator*=(const FAddendCoef &S);
64
65 void set(short C) {
66 assert(!insaneIntVal(C) && "Insane coefficient");
67 IsFp = false; IntVal = C;
68 }
69
70 void set(const APFloat& C);
71
72 void negate();
73
74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
75 Value *getValue(Type *) const;
76
77 bool isOne() const { return isInt() && IntVal == 1; }
78 bool isTwo() const { return isInt() && IntVal == 2; }
79 bool isMinusOne() const { return isInt() && IntVal == -1; }
80 bool isMinusTwo() const { return isInt() && IntVal == -2; }
81
82 private:
83 bool insaneIntVal(int V) { return V > 4 || V < -4; }
84
85 APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
86
87 const APFloat *getFpValPtr() const {
88 return reinterpret_cast<const APFloat *>(&FpValBuf);
89 }
90
91 const APFloat &getFpVal() const {
92 assert(IsFp && BufHasFpVal && "Incorret state");
93 return *getFpValPtr();
94 }
95
96 APFloat &getFpVal() {
97 assert(IsFp && BufHasFpVal && "Incorret state");
98 return *getFpValPtr();
99 }
100
101 bool isInt() const { return !IsFp; }
102
103 // If the coefficient is represented by an integer, promote it to a
104 // floating point.
105 void convertToFpType(const fltSemantics &Sem);
106
107 // Construct an APFloat from a signed integer.
108 // TODO: We should get rid of this function when APFloat can be constructed
109 // from an *SIGNED* integer.
110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111
112 bool IsFp = false;
113
114 // True iff FpValBuf contains an instance of APFloat.
115 bool BufHasFpVal = false;
116
117 // The integer coefficient of an individual addend is either 1 or -1,
118 // and we try to simplify at most 4 addends from neighboring at most
119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120 // is overkill of this end.
121 short IntVal = 0;
122
124 };
125
126 /// FAddend is used to represent floating-point addend. An addend is
127 /// represented as <C, V>, where the V is a symbolic value, and C is a
128 /// constant coefficient. A constant addend is represented as <C, 0>.
129 class FAddend {
130 public:
131 FAddend() = default;
132
133 void operator+=(const FAddend &T) {
134 assert((Val == T.Val) && "Symbolic-values disagree");
135 Coeff += T.Coeff;
136 }
137
138 Value *getSymVal() const { return Val; }
139 const FAddendCoef &getCoef() const { return Coeff; }
140
141 bool isConstant() const { return Val == nullptr; }
142 bool isZero() const { return Coeff.isZero(); }
143
144 void set(short Coefficient, Value *V) {
145 Coeff.set(Coefficient);
146 Val = V;
147 }
148 void set(const APFloat &Coefficient, Value *V) {
149 Coeff.set(Coefficient);
150 Val = V;
151 }
152 void set(const ConstantFP *Coefficient, Value *V) {
153 Coeff.set(Coefficient->getValueAPF());
154 Val = V;
155 }
156
157 void negate() { Coeff.negate(); }
158
159 /// Drill down the U-D chain one step to find the definition of V, and
160 /// try to break the definition into one or two addends.
161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162
163 /// Similar to FAddend::drillDownOneStep() except that the value being
164 /// splitted is the addend itself.
165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166
167 private:
168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169
170 // This addend has the value of "Coeff * Val".
171 Value *Val = nullptr;
172 FAddendCoef Coeff;
173 };
174
175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176 /// with its neighboring at most two instructions.
177 ///
178 class FAddCombine {
179 public:
180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181
183
184 private:
185 using AddendVect = SmallVector<const FAddend *, 4>;
186
187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188
189 /// Convert given addend to a Value
190 Value *createAddendVal(const FAddend &A, bool& NeedNeg);
191
192 /// Return the number of instructions needed to emit the N-ary addition.
193 unsigned calcInstrNumber(const AddendVect& Vect);
194
195 Value *createFSub(Value *Opnd0, Value *Opnd1);
196 Value *createFAdd(Value *Opnd0, Value *Opnd1);
197 Value *createFMul(Value *Opnd0, Value *Opnd1);
198 Value *createFNeg(Value *V);
199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
201
202 // Debugging stuff are clustered here.
203 #ifndef NDEBUG
204 unsigned CreateInstrNum;
205 void initCreateInstNum() { CreateInstrNum = 0; }
206 void incCreateInstNum() { CreateInstrNum++; }
207 #else
208 void initCreateInstNum() {}
209 void incCreateInstNum() {}
210 #endif
211
213 Instruction *Instr = nullptr;
214 };
215
216} // end anonymous namespace
217
218//===----------------------------------------------------------------------===//
219//
220// Implementation of
221// {FAddendCoef, FAddend, FAddition, FAddCombine}.
222//
223//===----------------------------------------------------------------------===//
224FAddendCoef::~FAddendCoef() {
225 if (BufHasFpVal)
226 getFpValPtr()->~APFloat();
227}
228
229void FAddendCoef::set(const APFloat& C) {
230 APFloat *P = getFpValPtr();
231
232 if (isInt()) {
233 // As the buffer is meanless byte stream, we cannot call
234 // APFloat::operator=().
235 new(P) APFloat(C);
236 } else
237 *P = C;
238
239 IsFp = BufHasFpVal = true;
240}
241
242void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
243 if (!isInt())
244 return;
245
246 APFloat *P = getFpValPtr();
247 if (IntVal > 0)
248 new(P) APFloat(Sem, IntVal);
249 else {
250 new(P) APFloat(Sem, 0 - IntVal);
251 P->changeSign();
252 }
253 IsFp = BufHasFpVal = true;
254}
255
256APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
257 if (Val >= 0)
258 return APFloat(Sem, Val);
259
260 APFloat T(Sem, 0 - Val);
261 T.changeSign();
262
263 return T;
264}
265
266void FAddendCoef::operator=(const FAddendCoef &That) {
267 if (That.isInt())
268 set(That.IntVal);
269 else
270 set(That.getFpVal());
271}
272
273void FAddendCoef::operator+=(const FAddendCoef &That) {
274 RoundingMode RndMode = RoundingMode::NearestTiesToEven;
275 if (isInt() == That.isInt()) {
276 if (isInt())
277 IntVal += That.IntVal;
278 else
279 getFpVal().add(That.getFpVal(), RndMode);
280 return;
281 }
282
283 if (isInt()) {
284 const APFloat &T = That.getFpVal();
285 convertToFpType(T.getSemantics());
286 getFpVal().add(T, RndMode);
287 return;
288 }
289
290 APFloat &T = getFpVal();
291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
292}
293
294void FAddendCoef::operator*=(const FAddendCoef &That) {
295 if (That.isOne())
296 return;
297
298 if (That.isMinusOne()) {
299 negate();
300 return;
301 }
302
303 if (isInt() && That.isInt()) {
304 int Res = IntVal * (int)That.IntVal;
305 assert(!insaneIntVal(Res) && "Insane int value");
306 IntVal = Res;
307 return;
308 }
309
310 const fltSemantics &Semantic =
311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
312
313 if (isInt())
314 convertToFpType(Semantic);
315 APFloat &F0 = getFpVal();
316
317 if (That.isInt())
318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
319 APFloat::rmNearestTiesToEven);
320 else
321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
322}
323
324void FAddendCoef::negate() {
325 if (isInt())
326 IntVal = 0 - IntVal;
327 else
328 getFpVal().changeSign();
329}
330
331Value *FAddendCoef::getValue(Type *Ty) const {
332 return isInt() ?
333 ConstantFP::get(Ty, float(IntVal)) :
334 ConstantFP::get(Ty->getContext(), getFpVal());
335}
336
337// The definition of <Val> Addends
338// =========================================
339// A + B <1, A>, <1,B>
340// A - B <1, A>, <1,B>
341// 0 - B <-1, B>
342// C * A, <C, A>
343// A + C <1, A> <C, NULL>
344// 0 +/- 0 <0, NULL> (corner case)
345//
346// Legend: A and B are not constant, C is constant
347unsigned FAddend::drillValueDownOneStep
348 (Value *Val, FAddend &Addend0, FAddend &Addend1) {
349 Instruction *I = nullptr;
350 if (!Val || !(I = dyn_cast<Instruction>(Val)))
351 return 0;
352
353 unsigned Opcode = I->getOpcode();
354
355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
356 ConstantFP *C0, *C1;
357 Value *Opnd0 = I->getOperand(0);
358 Value *Opnd1 = I->getOperand(1);
359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
360 Opnd0 = nullptr;
361
362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
363 Opnd1 = nullptr;
364
365 if (Opnd0) {
366 if (!C0)
367 Addend0.set(1, Opnd0);
368 else
369 Addend0.set(C0, nullptr);
370 }
371
372 if (Opnd1) {
373 FAddend &Addend = Opnd0 ? Addend1 : Addend0;
374 if (!C1)
375 Addend.set(1, Opnd1);
376 else
377 Addend.set(C1, nullptr);
378 if (Opcode == Instruction::FSub)
379 Addend.negate();
380 }
381
382 if (Opnd0 || Opnd1)
383 return Opnd0 && Opnd1 ? 2 : 1;
384
385 // Both operands are zero. Weird!
386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
387 return 1;
388 }
389
390 if (I->getOpcode() == Instruction::FMul) {
391 Value *V0 = I->getOperand(0);
392 Value *V1 = I->getOperand(1);
393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
394 Addend0.set(C, V1);
395 return 1;
396 }
397
398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
399 Addend0.set(C, V0);
400 return 1;
401 }
402 }
403
404 return 0;
405}
406
407// Try to break *this* addend into two addends. e.g. Suppose this addend is
408// <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
409// i.e. <2.3, X> and <2.3, Y>.
410unsigned FAddend::drillAddendDownOneStep
411 (FAddend &Addend0, FAddend &Addend1) const {
412 if (isConstant())
413 return 0;
414
415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
416 if (!BreakNum || Coeff.isOne())
417 return BreakNum;
418
419 Addend0.Scale(Coeff);
420
421 if (BreakNum == 2)
422 Addend1.Scale(Coeff);
423
424 return BreakNum;
425}
426
427Value *FAddCombine::simplify(Instruction *I) {
428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
429 "Expected 'reassoc'+'nsz' instruction");
430
431 // Currently we are not able to handle vector type.
432 if (I->getType()->isVectorTy())
433 return nullptr;
434
435 assert((I->getOpcode() == Instruction::FAdd ||
436 I->getOpcode() == Instruction::FSub) && "Expect add/sub");
437
438 // Save the instruction before calling other member-functions.
439 Instr = I;
440
441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
442
443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
444
445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
446 unsigned Opnd0_ExpNum = 0;
447 unsigned Opnd1_ExpNum = 0;
448
449 if (!Opnd0.isConstant())
450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
451
452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
453 if (OpndNum == 2 && !Opnd1.isConstant())
454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
455
456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
457 if (Opnd0_ExpNum && Opnd1_ExpNum) {
458 AddendVect AllOpnds;
459 AllOpnds.push_back(&Opnd0_0);
460 AllOpnds.push_back(&Opnd1_0);
461 if (Opnd0_ExpNum == 2)
462 AllOpnds.push_back(&Opnd0_1);
463 if (Opnd1_ExpNum == 2)
464 AllOpnds.push_back(&Opnd1_1);
465
466 // Compute instruction quota. We should save at least one instruction.
467 unsigned InstQuota = 0;
468
469 Value *V0 = I->getOperand(0);
470 Value *V1 = I->getOperand(1);
471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
473
474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
475 return R;
476 }
477
478 if (OpndNum != 2) {
479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
480 // splitted into two addends, say "V = X - Y", the instruction would have
481 // been optimized into "I = Y - X" in the previous steps.
482 //
483 const FAddendCoef &CE = Opnd0.getCoef();
484 return CE.isOne() ? Opnd0.getSymVal() : nullptr;
485 }
486
487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
488 if (Opnd1_ExpNum) {
489 AddendVect AllOpnds;
490 AllOpnds.push_back(&Opnd0);
491 AllOpnds.push_back(&Opnd1_0);
492 if (Opnd1_ExpNum == 2)
493 AllOpnds.push_back(&Opnd1_1);
494
495 if (Value *R = simplifyFAdd(AllOpnds, 1))
496 return R;
497 }
498
499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
500 if (Opnd0_ExpNum) {
501 AddendVect AllOpnds;
502 AllOpnds.push_back(&Opnd1);
503 AllOpnds.push_back(&Opnd0_0);
504 if (Opnd0_ExpNum == 2)
505 AllOpnds.push_back(&Opnd0_1);
506
507 if (Value *R = simplifyFAdd(AllOpnds, 1))
508 return R;
509 }
510
511 return nullptr;
512}
513
514Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
515 unsigned AddendNum = Addends.size();
516 assert(AddendNum <= 4 && "Too many addends");
517
518 // For saving intermediate results;
519 unsigned NextTmpIdx = 0;
520 FAddend TmpResult[3];
521
522 // Simplified addends are placed <SimpVect>.
523 AddendVect SimpVect;
524
525 // The outer loop works on one symbolic-value at a time. Suppose the input
526 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
527 // The symbolic-values will be processed in this order: x, y, z.
528 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
529
530 const FAddend *ThisAddend = Addends[SymIdx];
531 if (!ThisAddend) {
532 // This addend was processed before.
533 continue;
534 }
535
536 Value *Val = ThisAddend->getSymVal();
537
538 // If the resulting expr has constant-addend, this constant-addend is
539 // desirable to reside at the top of the resulting expression tree. Placing
540 // constant close to super-expr(s) will potentially reveal some
541 // optimization opportunities in super-expr(s). Here we do not implement
542 // this logic intentionally and rely on SimplifyAssociativeOrCommutative
543 // call later.
544
545 unsigned StartIdx = SimpVect.size();
546 SimpVect.push_back(ThisAddend);
547
548 // The inner loop collects addends sharing same symbolic-value, and these
549 // addends will be later on folded into a single addend. Following above
550 // example, if the symbolic value "y" is being processed, the inner loop
551 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
552 // be later on folded into "<b1+b2, y>".
553 for (unsigned SameSymIdx = SymIdx + 1;
554 SameSymIdx < AddendNum; SameSymIdx++) {
555 const FAddend *T = Addends[SameSymIdx];
556 if (T && T->getSymVal() == Val) {
557 // Set null such that next iteration of the outer loop will not process
558 // this addend again.
559 Addends[SameSymIdx] = nullptr;
560 SimpVect.push_back(T);
561 }
562 }
563
564 // If multiple addends share same symbolic value, fold them together.
565 if (StartIdx + 1 != SimpVect.size()) {
566 FAddend &R = TmpResult[NextTmpIdx ++];
567 R = *SimpVect[StartIdx];
568 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
569 R += *SimpVect[Idx];
570
571 // Pop all addends being folded and push the resulting folded addend.
572 SimpVect.resize(StartIdx);
573 if (!R.isZero()) {
574 SimpVect.push_back(&R);
575 }
576 }
577 }
578
579 assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access");
580
581 Value *Result;
582 if (!SimpVect.empty())
583 Result = createNaryFAdd(SimpVect, InstrQuota);
584 else {
585 // The addition is folded to 0.0.
586 Result = ConstantFP::get(Instr->getType(), 0.0);
587 }
588
589 return Result;
590}
591
592Value *FAddCombine::createNaryFAdd
593 (const AddendVect &Opnds, unsigned InstrQuota) {
594 assert(!Opnds.empty() && "Expect at least one addend");
595
596 // Step 1: Check if the # of instructions needed exceeds the quota.
597
598 unsigned InstrNeeded = calcInstrNumber(Opnds);
599 if (InstrNeeded > InstrQuota)
600 return nullptr;
601
602 initCreateInstNum();
603
604 // step 2: Emit the N-ary addition.
605 // Note that at most three instructions are involved in Fadd-InstCombine: the
606 // addition in question, and at most two neighboring instructions.
607 // The resulting optimized addition should have at least one less instruction
608 // than the original addition expression tree. This implies that the resulting
609 // N-ary addition has at most two instructions, and we don't need to worry
610 // about tree-height when constructing the N-ary addition.
611
612 Value *LastVal = nullptr;
613 bool LastValNeedNeg = false;
614
615 // Iterate the addends, creating fadd/fsub using adjacent two addends.
616 for (const FAddend *Opnd : Opnds) {
617 bool NeedNeg;
618 Value *V = createAddendVal(*Opnd, NeedNeg);
619 if (!LastVal) {
620 LastVal = V;
621 LastValNeedNeg = NeedNeg;
622 continue;
623 }
624
625 if (LastValNeedNeg == NeedNeg) {
626 LastVal = createFAdd(LastVal, V);
627 continue;
628 }
629
630 if (LastValNeedNeg)
631 LastVal = createFSub(V, LastVal);
632 else
633 LastVal = createFSub(LastVal, V);
634
635 LastValNeedNeg = false;
636 }
637
638 if (LastValNeedNeg) {
639 LastVal = createFNeg(LastVal);
640 }
641
642#ifndef NDEBUG
643 assert(CreateInstrNum == InstrNeeded &&
644 "Inconsistent in instruction numbers");
645#endif
646
647 return LastVal;
648}
649
650Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
651 Value *V = Builder.CreateFSub(Opnd0, Opnd1);
652 if (Instruction *I = dyn_cast<Instruction>(V))
653 createInstPostProc(I);
654 return V;
655}
656
657Value *FAddCombine::createFNeg(Value *V) {
658 Value *NewV = Builder.CreateFNeg(V);
659 if (Instruction *I = dyn_cast<Instruction>(NewV))
660 createInstPostProc(I, true); // fneg's don't receive instruction numbers.
661 return NewV;
662}
663
664Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
665 Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
666 if (Instruction *I = dyn_cast<Instruction>(V))
667 createInstPostProc(I);
668 return V;
669}
670
671Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
672 Value *V = Builder.CreateFMul(Opnd0, Opnd1);
673 if (Instruction *I = dyn_cast<Instruction>(V))
674 createInstPostProc(I);
675 return V;
676}
677
678void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
679 NewInstr->setDebugLoc(Instr->getDebugLoc());
680
681 // Keep track of the number of instruction created.
682 if (!NoNumber)
683 incCreateInstNum();
684
685 // Propagate fast-math flags
686 NewInstr->setFastMathFlags(Instr->getFastMathFlags());
687}
688
689// Return the number of instruction needed to emit the N-ary addition.
690// NOTE: Keep this function in sync with createAddendVal().
691unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
692 unsigned OpndNum = Opnds.size();
693 unsigned InstrNeeded = OpndNum - 1;
694
695 // Adjust the number of instructions needed to emit the N-ary add.
696 for (const FAddend *Opnd : Opnds) {
697 if (Opnd->isConstant())
698 continue;
699
700 // The constant check above is really for a few special constant
701 // coefficients.
702 if (isa<UndefValue>(Opnd->getSymVal()))
703 continue;
704
705 const FAddendCoef &CE = Opnd->getCoef();
706 // Let the addend be "c * x". If "c == +/-1", the value of the addend
707 // is immediately available; otherwise, it needs exactly one instruction
708 // to evaluate the value.
709 if (!CE.isMinusOne() && !CE.isOne())
710 InstrNeeded++;
711 }
712 return InstrNeeded;
713}
714
715// Input Addend Value NeedNeg(output)
716// ================================================================
717// Constant C C false
718// <+/-1, V> V coefficient is -1
719// <2/-2, V> "fadd V, V" coefficient is -2
720// <C, V> "fmul V, C" false
721//
722// NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
723Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
724 const FAddendCoef &Coeff = Opnd.getCoef();
725
726 if (Opnd.isConstant()) {
727 NeedNeg = false;
728 return Coeff.getValue(Instr->getType());
729 }
730
731 Value *OpndVal = Opnd.getSymVal();
732
733 if (Coeff.isMinusOne() || Coeff.isOne()) {
734 NeedNeg = Coeff.isMinusOne();
735 return OpndVal;
736 }
737
738 if (Coeff.isTwo() || Coeff.isMinusTwo()) {
739 NeedNeg = Coeff.isMinusTwo();
740 return createFAdd(OpndVal, OpndVal);
741 }
742
743 NeedNeg = false;
744 return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
745}
746
747// Checks if any operand is negative and we can convert add to sub.
748// This function checks for following negative patterns
749// ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
750// ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
751// XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
753 InstCombiner::BuilderTy &Builder) {
754 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
755
756 // This function creates 2 instructions to replace ADD, we need at least one
757 // of LHS or RHS to have one use to ensure benefit in transform.
758 if (!LHS->hasOneUse() && !RHS->hasOneUse())
759 return nullptr;
760
761 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
762 const APInt *C1 = nullptr, *C2 = nullptr;
763
764 // if ONE is on other side, swap
765 if (match(RHS, m_Add(m_Value(X), m_One())))
766 std::swap(LHS, RHS);
767
768 if (match(LHS, m_Add(m_Value(X), m_One()))) {
769 // if XOR on other side, swap
770 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
771 std::swap(X, RHS);
772
773 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
774 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
775 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
776 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
777 Value *NewAnd = Builder.CreateAnd(Z, *C1);
778 return Builder.CreateSub(RHS, NewAnd, "sub");
779 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
780 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
781 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
782 Value *NewOr = Builder.CreateOr(Z, ~(*C1));
783 return Builder.CreateSub(RHS, NewOr, "sub");
784 }
785 }
786 }
787
788 // Restore LHS and RHS
789 LHS = I.getOperand(0);
790 RHS = I.getOperand(1);
791
792 // if XOR is on other side, swap
793 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
794 std::swap(LHS, RHS);
795
796 // C2 is ODD
797 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
798 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
799 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
800 if (C1->countr_zero() == 0)
801 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
802 Value *NewOr = Builder.CreateOr(Z, ~(*C2));
803 return Builder.CreateSub(RHS, NewOr, "sub");
804 }
805 return nullptr;
806}
807
808/// Wrapping flags may allow combining constants separated by an extend.
810 InstCombiner::BuilderTy &Builder) {
811 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
812 Type *Ty = Add.getType();
813 Constant *Op1C;
814 if (!match(Op1, m_Constant(Op1C)))
815 return nullptr;
816
817 // Try this match first because it results in an add in the narrow type.
818 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
819 Value *X;
820 const APInt *C1, *C2;
821 if (match(Op1, m_APInt(C1)) &&
822 match(Op0, m_ZExt(m_NUWAddLike(m_Value(X), m_APInt(C2)))) &&
823 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
824 APInt NewC = *C2 + C1->trunc(C2->getBitWidth());
825 // If the smaller add will fold to zero, we don't need to check one use.
826 if (NewC.isZero())
827 return new ZExtInst(X, Ty);
828 // Otherwise only do this if the existing zero extend will be removed.
829 if (Op0->hasOneUse())
830 return new ZExtInst(
831 Builder.CreateNUWAdd(X, ConstantInt::get(X->getType(), NewC)), Ty);
832 }
833
834 // More general combining of constants in the wide type.
835 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
836 // or (zext nneg (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
837 Constant *NarrowC;
838 if (match(Op0, m_OneUse(m_SExtLike(
839 m_NSWAddLike(m_Value(X), m_Constant(NarrowC)))))) {
840 Value *WideC = Builder.CreateSExt(NarrowC, Ty);
841 Value *NewC = Builder.CreateAdd(WideC, Op1C);
842 Value *WideX = Builder.CreateSExt(X, Ty);
843 return BinaryOperator::CreateAdd(WideX, NewC);
844 }
845 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
846 if (match(Op0,
848 Value *WideC = Builder.CreateZExt(NarrowC, Ty);
849 Value *NewC = Builder.CreateAdd(WideC, Op1C);
850 Value *WideX = Builder.CreateZExt(X, Ty);
851 return BinaryOperator::CreateAdd(WideX, NewC);
852 }
853 return nullptr;
854}
855
857 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
858 Type *Ty = Add.getType();
859 Constant *Op1C;
860 if (!match(Op1, m_ImmConstant(Op1C)))
861 return nullptr;
862
864 return NV;
865
866 Value *X;
867 Constant *Op00C;
868
869 // add (sub C1, X), C2 --> sub (add C1, C2), X
870 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
871 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
872
873 Value *Y;
874
875 // add (sub X, Y), -1 --> add (not Y), X
876 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
877 match(Op1, m_AllOnes()))
878 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
879
880 // zext(bool) + C -> bool ? C + 1 : C
881 if (match(Op0, m_ZExt(m_Value(X))) &&
882 X->getType()->getScalarSizeInBits() == 1)
884 Op1);
885 // sext(bool) + C -> bool ? C - 1 : C
886 if (match(Op0, m_SExt(m_Value(X))) &&
887 X->getType()->getScalarSizeInBits() == 1)
889 Op1);
890
891 // ~X + C --> (C-1) - X
892 if (match(Op0, m_Not(m_Value(X)))) {
893 // ~X + C has NSW and (C-1) won't oveflow => (C-1)-X can have NSW
894 auto *COne = ConstantInt::get(Op1C->getType(), 1);
895 bool WillNotSOV = willNotOverflowSignedSub(Op1C, COne, Add);
896 BinaryOperator *Res =
897 BinaryOperator::CreateSub(ConstantExpr::getSub(Op1C, COne), X);
898 Res->setHasNoSignedWrap(Add.hasNoSignedWrap() && WillNotSOV);
899 return Res;
900 }
901
902 // (iN X s>> (N - 1)) + 1 --> zext (X > -1)
903 const APInt *C;
904 unsigned BitWidth = Ty->getScalarSizeInBits();
905 if (match(Op0, m_OneUse(m_AShr(m_Value(X),
907 match(Op1, m_One()))
908 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty);
909
910 if (!match(Op1, m_APInt(C)))
911 return nullptr;
912
913 // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
914 Constant *Op01C;
915 if (match(Op0, m_DisjointOr(m_Value(X), m_ImmConstant(Op01C)))) {
916 BinaryOperator *NewAdd =
917 BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C));
918 NewAdd->setHasNoSignedWrap(Add.hasNoSignedWrap() &&
919 willNotOverflowSignedAdd(Op01C, Op1C, Add));
920 NewAdd->setHasNoUnsignedWrap(Add.hasNoUnsignedWrap());
921 return NewAdd;
922 }
923
924 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
925 const APInt *C2;
926 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
927 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
928
929 if (C->isSignMask()) {
930 // If wrapping is not allowed, then the addition must set the sign bit:
931 // X + (signmask) --> X | signmask
932 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
933 return BinaryOperator::CreateOr(Op0, Op1);
934
935 // If wrapping is allowed, then the addition flips the sign bit of LHS:
936 // X + (signmask) --> X ^ signmask
937 return BinaryOperator::CreateXor(Op0, Op1);
938 }
939
940 // Is this add the last step in a convoluted sext?
941 // add(zext(xor i16 X, -32768), -32768) --> sext X
942 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
943 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
944 return CastInst::Create(Instruction::SExt, X, Ty);
945
946 if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
947 // (X ^ signmask) + C --> (X + (signmask ^ C))
948 if (C2->isSignMask())
949 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
950
951 // If X has no high-bits set above an xor mask:
952 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
953 if (C2->isMask()) {
954 KnownBits LHSKnown = computeKnownBits(X, &Add);
955 if ((*C2 | LHSKnown.Zero).isAllOnes())
956 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
957 }
958
959 // Look for a math+logic pattern that corresponds to sext-in-register of a
960 // value with cleared high bits. Convert that into a pair of shifts:
961 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
962 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
963 if (Op0->hasOneUse() && *C2 == -(*C)) {
964 unsigned BitWidth = Ty->getScalarSizeInBits();
965 unsigned ShAmt = 0;
966 if (C->isPowerOf2())
967 ShAmt = BitWidth - C->logBase2() - 1;
968 else if (C2->isPowerOf2())
969 ShAmt = BitWidth - C2->logBase2() - 1;
970 if (ShAmt &&
972 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
973 Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
974 return BinaryOperator::CreateAShr(NewShl, ShAmtC);
975 }
976 }
977 }
978
979 if (C->isOne() && Op0->hasOneUse()) {
980 // add (sext i1 X), 1 --> zext (not X)
981 // TODO: The smallest IR representation is (select X, 0, 1), and that would
982 // not require the one-use check. But we need to remove a transform in
983 // visitSelect and make sure that IR value tracking for select is equal or
984 // better than for these ops.
985 if (match(Op0, m_SExt(m_Value(X))) &&
986 X->getType()->getScalarSizeInBits() == 1)
987 return new ZExtInst(Builder.CreateNot(X), Ty);
988
989 // Shifts and add used to flip and mask off the low bit:
990 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
991 const APInt *C3;
992 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
993 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
994 Value *NotX = Builder.CreateNot(X);
995 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
996 }
997 }
998
999 // umax(X, C) + -C --> usub.sat(X, C)
1000 if (match(Op0, m_OneUse(m_UMax(m_Value(X), m_SpecificInt(-*C)))))
1001 return replaceInstUsesWith(
1002 Add, Builder.CreateBinaryIntrinsic(
1003 Intrinsic::usub_sat, X, ConstantInt::get(Add.getType(), -*C)));
1004
1005 // Fold (add (zext (add X, -1)), 1) -> (zext X) if X is non-zero.
1006 // TODO: There's a general form for any constant on the outer add.
1007 if (C->isOne()) {
1008 if (match(Op0, m_ZExt(m_Add(m_Value(X), m_AllOnes())))) {
1009 const SimplifyQuery Q = SQ.getWithInstruction(&Add);
1010 if (llvm::isKnownNonZero(X, Q))
1011 return new ZExtInst(X, Ty);
1012 }
1013 }
1014
1015 return nullptr;
1016}
1017
1018// match variations of a^2 + 2*a*b + b^2
1019//
1020// to reuse the code between the FP and Int versions, the instruction OpCodes
1021// and constant types have been turned into template parameters.
1022//
1023// Mul2Rhs: The constant to perform the multiplicative equivalent of X*2 with;
1024// should be `m_SpecificFP(2.0)` for FP and `m_SpecificInt(1)` for Int
1025// (we're matching `X<<1` instead of `X*2` for Int)
1026template <bool FP, typename Mul2Rhs>
1027static bool matchesSquareSum(BinaryOperator &I, Mul2Rhs M2Rhs, Value *&A,
1028 Value *&B) {
1029 constexpr unsigned MulOp = FP ? Instruction::FMul : Instruction::Mul;
1030 constexpr unsigned AddOp = FP ? Instruction::FAdd : Instruction::Add;
1031 constexpr unsigned Mul2Op = FP ? Instruction::FMul : Instruction::Shl;
1032
1033 // (a * a) + (((a * 2) + b) * b)
1034 if (match(&I, m_c_BinOp(
1035 AddOp, m_OneUse(m_BinOp(MulOp, m_Value(A), m_Deferred(A))),
1037 MulOp,
1038 m_c_BinOp(AddOp, m_BinOp(Mul2Op, m_Deferred(A), M2Rhs),
1039 m_Value(B)),
1040 m_Deferred(B))))))
1041 return true;
1042
1043 // ((a * b) * 2) or ((a * 2) * b)
1044 // +
1045 // (a * a + b * b) or (b * b + a * a)
1046 return match(
1047 &I, m_c_BinOp(
1048 AddOp,
1051 Mul2Op, m_BinOp(MulOp, m_Value(A), m_Value(B)), M2Rhs)),
1052 m_OneUse(m_c_BinOp(MulOp, m_BinOp(Mul2Op, m_Value(A), M2Rhs),
1053 m_Value(B)))),
1054 m_OneUse(
1055 m_c_BinOp(AddOp, m_BinOp(MulOp, m_Deferred(A), m_Deferred(A)),
1056 m_BinOp(MulOp, m_Deferred(B), m_Deferred(B))))));
1057}
1058
1059// Fold integer variations of a^2 + 2*a*b + b^2 -> (a + b)^2
1061 Value *A, *B;
1063 Value *AB = Builder.CreateAdd(A, B);
1064 return BinaryOperator::CreateMul(AB, AB);
1065 }
1066 return nullptr;
1067}
1068
1069// Fold floating point variations of a^2 + 2*a*b + b^2 -> (a + b)^2
1070// Requires `nsz` and `reassoc`.
1072 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && "Assumption mismatch");
1073 Value *A, *B;
1075 Value *AB = Builder.CreateFAddFMF(A, B, &I);
1076 return BinaryOperator::CreateFMulFMF(AB, AB, &I);
1077 }
1078 return nullptr;
1079}
1080
1081// Matches multiplication expression Op * C where C is a constant. Returns the
1082// constant value in C and the other operand in Op. Returns true if such a
1083// match is found.
1084static bool MatchMul(Value *E, Value *&Op, APInt &C) {
1085 const APInt *AI;
1086 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
1087 C = *AI;
1088 return true;
1089 }
1090 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
1091 C = APInt(AI->getBitWidth(), 1);
1092 C <<= *AI;
1093 return true;
1094 }
1095 return false;
1096}
1097
1098// Matches remainder expression Op % C where C is a constant. Returns the
1099// constant value in C and the other operand in Op. Returns the signedness of
1100// the remainder operation in IsSigned. Returns true if such a match is
1101// found.
1102static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
1103 const APInt *AI;
1104 IsSigned = false;
1105 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
1106 IsSigned = true;
1107 C = *AI;
1108 return true;
1109 }
1110 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
1111 C = *AI;
1112 return true;
1113 }
1114 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
1115 C = *AI + 1;
1116 return true;
1117 }
1118 return false;
1119}
1120
1121// Matches division expression Op / C with the given signedness as indicated
1122// by IsSigned, where C is a constant. Returns the constant value in C and the
1123// other operand in Op. Returns true if such a match is found.
1124static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
1125 const APInt *AI;
1126 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
1127 C = *AI;
1128 return true;
1129 }
1130 if (!IsSigned) {
1131 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1132 C = *AI;
1133 return true;
1134 }
1135 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1136 C = APInt(AI->getBitWidth(), 1);
1137 C <<= *AI;
1138 return true;
1139 }
1140 }
1141 return false;
1142}
1143
1144// Returns whether C0 * C1 with the given signedness overflows.
1145static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1146 bool overflow;
1147 if (IsSigned)
1148 (void)C0.smul_ov(C1, overflow);
1149 else
1150 (void)C0.umul_ov(C1, overflow);
1151 return overflow;
1152}
1153
1154// Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1155// does not overflow.
1156// Simplifies (X / C0) * C1 + (X % C0) * C2 to
1157// (X / C0) * (C1 - C2 * C0) + X * C2
1159 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1160 Value *X, *MulOpV;
1161 APInt C0, MulOpC;
1162 bool IsSigned;
1163 // Match I = X % C0 + MulOpV * C0
1164 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1165 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1166 C0 == MulOpC) {
1167 Value *RemOpV;
1168 APInt C1;
1169 bool Rem2IsSigned;
1170 // Match MulOpC = RemOpV % C1
1171 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1172 IsSigned == Rem2IsSigned) {
1173 Value *DivOpV;
1174 APInt DivOpC;
1175 // Match RemOpV = X / C0
1176 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1177 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1178 Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
1179 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1180 : Builder.CreateURem(X, NewDivisor, "urem");
1181 }
1182 }
1183 }
1184
1185 // Match I = (X / C0) * C1 + (X % C0) * C2
1186 Value *Div, *Rem;
1187 APInt C1, C2;
1188 if (!LHS->hasOneUse() || !MatchMul(LHS, Div, C1))
1189 Div = LHS, C1 = APInt(I.getType()->getScalarSizeInBits(), 1);
1190 if (!RHS->hasOneUse() || !MatchMul(RHS, Rem, C2))
1191 Rem = RHS, C2 = APInt(I.getType()->getScalarSizeInBits(), 1);
1192 if (match(Div, m_IRem(m_Value(), m_Value()))) {
1193 std::swap(Div, Rem);
1194 std::swap(C1, C2);
1195 }
1196 Value *DivOpV;
1197 APInt DivOpC;
1198 if (MatchRem(Rem, X, C0, IsSigned) &&
1199 MatchDiv(Div, DivOpV, DivOpC, IsSigned) && X == DivOpV && C0 == DivOpC &&
1200 // Avoid unprofitable replacement of and with mul.
1201 !(C1.isOne() && !IsSigned && DivOpC.isPowerOf2() && DivOpC != 2)) {
1202 APInt NewC = C1 - C2 * C0;
1203 if (!NewC.isZero() && !Rem->hasOneUse())
1204 return nullptr;
1205 if (!isGuaranteedNotToBeUndef(X, &AC, &I, &DT))
1206 return nullptr;
1207 Value *MulXC2 = Builder.CreateMul(X, ConstantInt::get(X->getType(), C2));
1208 if (NewC.isZero())
1209 return MulXC2;
1210 return Builder.CreateAdd(
1211 Builder.CreateMul(Div, ConstantInt::get(X->getType(), NewC)), MulXC2);
1212 }
1213
1214 return nullptr;
1215}
1216
1217/// Fold
1218/// (1 << NBits) - 1
1219/// Into:
1220/// ~(-(1 << NBits))
1221/// Because a 'not' is better for bit-tracking analysis and other transforms
1222/// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1224 InstCombiner::BuilderTy &Builder) {
1225 Value *NBits;
1226 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1227 return nullptr;
1228
1229 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1230 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1231 // Be wary of constant folding.
1232 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1233 // Always NSW. But NUW propagates from `add`.
1234 BOp->setHasNoSignedWrap();
1235 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1236 }
1237
1238 return BinaryOperator::CreateNot(NotMask, I.getName());
1239}
1240
1242 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1243 Type *Ty = I.getType();
1244 auto getUAddSat = [&]() {
1245 return Intrinsic::getOrInsertDeclaration(I.getModule(), Intrinsic::uadd_sat,
1246 Ty);
1247 };
1248
1249 // add (umin X, ~Y), Y --> uaddsat X, Y
1250 Value *X, *Y;
1252 m_Deferred(Y))))
1253 return CallInst::Create(getUAddSat(), { X, Y });
1254
1255 // add (umin X, ~C), C --> uaddsat X, C
1256 const APInt *C, *NotC;
1257 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1258 *C == ~*NotC)
1259 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1260
1261 return nullptr;
1262}
1263
1264// Transform:
1265// (add A, (shl (neg B), Y))
1266// -> (sub A, (shl B, Y))
1268 const BinaryOperator &I) {
1269 Value *A, *B, *Cnt;
1270 if (match(&I,
1272 m_Value(A)))) {
1273 Value *NewShl = Builder.CreateShl(B, Cnt);
1274 return BinaryOperator::CreateSub(A, NewShl);
1275 }
1276 return nullptr;
1277}
1278
1279/// Try to reduce signed division by power-of-2 to an arithmetic shift right.
1281 // Division must be by power-of-2, but not the minimum signed value.
1282 Value *X;
1283 const APInt *DivC;
1284 if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) ||
1285 DivC->isNegative())
1286 return nullptr;
1287
1288 // Rounding is done by adding -1 if the dividend (X) is negative and has any
1289 // low bits set. It recognizes two canonical patterns:
1290 // 1. For an 'ugt' cmp with the signed minimum value (SMIN), the
1291 // pattern is: sext (icmp ugt (X & (DivC - 1)), SMIN).
1292 // 2. For an 'eq' cmp, the pattern's: sext (icmp eq X & (SMIN + 1), SMIN + 1).
1293 // Note that, by the time we end up here, if possible, ugt has been
1294 // canonicalized into eq.
1295 const APInt *MaskC, *MaskCCmp;
1296 CmpPredicate Pred;
1297 if (!match(Add.getOperand(1),
1298 m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)),
1299 m_APInt(MaskCCmp)))))
1300 return nullptr;
1301
1302 if ((Pred != ICmpInst::ICMP_UGT || !MaskCCmp->isSignMask()) &&
1303 (Pred != ICmpInst::ICMP_EQ || *MaskCCmp != *MaskC))
1304 return nullptr;
1305
1306 APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits());
1307 bool IsMaskValid = Pred == ICmpInst::ICMP_UGT
1308 ? (*MaskC == (SMin | (*DivC - 1)))
1309 : (*DivC == 2 && *MaskC == SMin + 1);
1310 if (!IsMaskValid)
1311 return nullptr;
1312
1313 // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC)
1314 return BinaryOperator::CreateAShr(
1315 X, ConstantInt::get(Add.getType(), DivC->exactLogBase2()));
1316}
1317
1319 bool NSW, bool NUW) {
1320 Value *A, *B, *C;
1321 if (match(LHS, m_Sub(m_Value(A), m_Value(B))) &&
1322 match(RHS, m_Sub(m_Value(C), m_Specific(A)))) {
1323 Instruction *R = BinaryOperator::CreateSub(C, B);
1324 bool NSWOut = NSW && match(LHS, m_NSWSub(m_Value(), m_Value())) &&
1325 match(RHS, m_NSWSub(m_Value(), m_Value()));
1326
1327 bool NUWOut = match(LHS, m_NUWSub(m_Value(), m_Value())) &&
1328 match(RHS, m_NUWSub(m_Value(), m_Value()));
1329 R->setHasNoSignedWrap(NSWOut);
1330 R->setHasNoUnsignedWrap(NUWOut);
1331 return R;
1332 }
1333
1334 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1335 const APInt *C1, *C2;
1336 if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
1337 APInt One(C2->getBitWidth(), 1);
1338 APInt MinusC1 = -(*C1);
1339 if (MinusC1 == (One << *C2)) {
1340 Constant *NewRHS = ConstantInt::get(RHS->getType(), MinusC1);
1341 return BinaryOperator::CreateSRem(RHS, NewRHS);
1342 }
1343 }
1344
1345 return nullptr;
1346}
1347
1350 BinaryOperator &I) {
1351 assert((I.getOpcode() == Instruction::Add ||
1352 I.getOpcode() == Instruction::Or ||
1353 I.getOpcode() == Instruction::Sub) &&
1354 "Expecting add/or/sub instruction");
1355
1356 // We have a subtraction/addition between a (potentially truncated) *logical*
1357 // right-shift of X and a "select".
1358 Value *X, *Select;
1359 Instruction *LowBitsToSkip, *Extract;
1361 Extract, m_LShr(m_Value(X),
1362 m_Instruction(LowBitsToSkip)))),
1363 m_Value(Select))))
1364 return nullptr;
1365
1366 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1367 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
1368 return nullptr;
1369
1370 Type *XTy = X->getType();
1371 bool HadTrunc = I.getType() != XTy;
1372
1373 // If there was a truncation of extracted value, then we'll need to produce
1374 // one extra instruction, so we need to ensure one instruction will go away.
1375 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1376 return nullptr;
1377
1378 // Extraction should extract high NBits bits, with shift amount calculated as:
1379 // low bits to skip = shift bitwidth - high bits to extract
1380 // The shift amount itself may be extended, and we need to look past zero-ext
1381 // when matching NBits, that will matter for matching later.
1382 Value *NBits;
1383 if (!match(LowBitsToSkip,
1385 m_ZExtOrSelf(m_Value(NBits))))))
1386 return nullptr;
1387
1388 // Sign-extending value can be zero-extended if we `sub`tract it,
1389 // or sign-extended otherwise.
1390 auto SkipExtInMagic = [&I](Value *&V) {
1391 if (I.getOpcode() == Instruction::Sub)
1392 match(V, m_ZExtOrSelf(m_Value(V)));
1393 else
1394 match(V, m_SExtOrSelf(m_Value(V)));
1395 };
1396
1397 // Now, finally validate the sign-extending magic.
1398 // `select` itself may be appropriately extended, look past that.
1399 SkipExtInMagic(Select);
1400
1401 CmpPredicate Pred;
1402 const APInt *Thr;
1403 Value *SignExtendingValue, *Zero;
1404 bool ShouldSignext;
1405 // It must be a select between two values we will later establish to be a
1406 // sign-extending value and a zero constant. The condition guarding the
1407 // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1408 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
1409 m_Value(SignExtendingValue), m_Value(Zero))) ||
1410 !isSignBitCheck(Pred, *Thr, ShouldSignext))
1411 return nullptr;
1412
1413 // icmp-select pair is commutative.
1414 if (!ShouldSignext)
1415 std::swap(SignExtendingValue, Zero);
1416
1417 // If we should not perform sign-extension then we must add/or/subtract zero.
1418 if (!match(Zero, m_Zero()))
1419 return nullptr;
1420 // Otherwise, it should be some constant, left-shifted by the same NBits we
1421 // had in `lshr`. Said left-shift can also be appropriately extended.
1422 // Again, we must look past zero-ext when looking for NBits.
1423 SkipExtInMagic(SignExtendingValue);
1424 Constant *SignExtendingValueBaseConstant;
1425 if (!match(SignExtendingValue,
1426 m_Shl(m_Constant(SignExtendingValueBaseConstant),
1427 m_ZExtOrSelf(m_Specific(NBits)))))
1428 return nullptr;
1429 // If we `sub`, then the constant should be one, else it should be all-ones.
1430 if (I.getOpcode() == Instruction::Sub
1431 ? !match(SignExtendingValueBaseConstant, m_One())
1432 : !match(SignExtendingValueBaseConstant, m_AllOnes()))
1433 return nullptr;
1434
1435 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
1436 Extract->getName() + ".sext");
1437 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
1438 if (!HadTrunc)
1439 return NewAShr;
1440
1441 Builder.Insert(NewAShr);
1442 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
1443}
1444
1445/// This is a specialization of a more general transform from
1446/// foldUsingDistributiveLaws. If that code can be made to work optimally
1447/// for multi-use cases or propagating nsw/nuw, then we would not need this.
1449 InstCombiner::BuilderTy &Builder) {
1450 // TODO: Also handle mul by doubling the shift amount?
1451 assert((I.getOpcode() == Instruction::Add ||
1452 I.getOpcode() == Instruction::Sub) &&
1453 "Expected add/sub");
1454 auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
1455 auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
1456 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
1457 return nullptr;
1458
1459 Value *X, *Y, *ShAmt;
1460 if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
1461 !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
1462 return nullptr;
1463
1464 // No-wrap propagates only when all ops have no-wrap.
1465 bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
1466 Op1->hasNoSignedWrap();
1467 bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
1468 Op1->hasNoUnsignedWrap();
1469
1470 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
1471 Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
1472 if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
1473 NewI->setHasNoSignedWrap(HasNSW);
1474 NewI->setHasNoUnsignedWrap(HasNUW);
1475 }
1476 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
1477 NewShl->setHasNoSignedWrap(HasNSW);
1478 NewShl->setHasNoUnsignedWrap(HasNUW);
1479 return NewShl;
1480}
1481
1482/// Reduce a sequence of masked half-width multiplies to a single multiply.
1483/// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y
1485 unsigned BitWidth = I.getType()->getScalarSizeInBits();
1486 // Skip the odd bitwidth types.
1487 if ((BitWidth & 0x1))
1488 return nullptr;
1489
1490 unsigned HalfBits = BitWidth >> 1;
1491 APInt HalfMask = APInt::getMaxValue(HalfBits);
1492
1493 // ResLo = (CrossSum << HalfBits) + (YLo * XLo)
1494 Value *XLo, *YLo;
1495 Value *CrossSum;
1496 // Require one-use on the multiply to avoid increasing the number of
1497 // multiplications.
1498 if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)),
1499 m_OneUse(m_Mul(m_Value(YLo), m_Value(XLo))))))
1500 return nullptr;
1501
1502 // XLo = X & HalfMask
1503 // YLo = Y & HalfMask
1504 // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros
1505 // to enhance robustness
1506 Value *X, *Y;
1507 if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) ||
1508 !match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask))))
1509 return nullptr;
1510
1511 // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits))
1512 // X' can be either X or XLo in the pattern (and the same for Y')
1513 if (match(CrossSum,
1518 return BinaryOperator::CreateMul(X, Y);
1519
1520 return nullptr;
1521}
1522
1524 if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1),
1525 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1526 SQ.getWithInstruction(&I)))
1527 return replaceInstUsesWith(I, V);
1528
1530 return &I;
1531
1533 return X;
1534
1536 return Phi;
1537
1538 // (A*B)+(A*C) -> A*(B+C) etc
1540 return replaceInstUsesWith(I, V);
1541
1542 if (Instruction *R = foldBoxMultiply(I))
1543 return R;
1544
1546 return R;
1547
1549 return X;
1550
1552 return X;
1553
1555 return R;
1556
1558 return R;
1559
1560 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1561 if (Instruction *R = foldAddLikeCommutative(LHS, RHS, I.hasNoSignedWrap(),
1562 I.hasNoUnsignedWrap()))
1563 return R;
1564 if (Instruction *R = foldAddLikeCommutative(RHS, LHS, I.hasNoSignedWrap(),
1565 I.hasNoUnsignedWrap()))
1566 return R;
1567 Type *Ty = I.getType();
1568 if (Ty->isIntOrIntVectorTy(1))
1569 return BinaryOperator::CreateXor(LHS, RHS);
1570
1571 // X + X --> X << 1
1572 if (LHS == RHS) {
1573 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1574 Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1575 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1576 return Shl;
1577 }
1578
1579 Value *A, *B;
1580 if (match(LHS, m_Neg(m_Value(A)))) {
1581 // -A + -B --> -(A + B)
1582 if (match(RHS, m_Neg(m_Value(B))))
1583 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1584
1585 // -A + B --> B - A
1586 auto *Sub = BinaryOperator::CreateSub(RHS, A);
1587 auto *OB0 = cast<OverflowingBinaryOperator>(LHS);
1588 Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OB0->hasNoSignedWrap());
1589
1590 return Sub;
1591 }
1592
1593 // A + -B --> A - B
1594 if (match(RHS, m_Neg(m_Value(B)))) {
1595 auto *Sub = BinaryOperator::CreateSub(LHS, B);
1596 auto *OBO = cast<OverflowingBinaryOperator>(RHS);
1597 Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO->hasNoSignedWrap());
1598 return Sub;
1599 }
1600
1602 return replaceInstUsesWith(I, V);
1603
1604 // (A + 1) + ~B --> A - B
1605 // ~B + (A + 1) --> A - B
1606 // (~B + A) + 1 --> A - B
1607 // (A + ~B) + 1 --> A - B
1608 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1610 return BinaryOperator::CreateSub(A, B);
1611
1612 // (A + RHS) + RHS --> A + (RHS << 1)
1613 if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
1614 return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
1615
1616 // LHS + (A + LHS) --> A + (LHS << 1)
1617 if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
1618 return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
1619
1620 {
1621 // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2)
1622 Constant *C1, *C2;
1623 if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)),
1624 m_Sub(m_ImmConstant(C2), m_Value(B)))) &&
1625 (LHS->hasOneUse() || RHS->hasOneUse())) {
1626 Value *Sub = Builder.CreateSub(A, B);
1627 return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2));
1628 }
1629
1630 // Canonicalize a constant sub operand as an add operand for better folding:
1631 // (C1 - A) + B --> (B - A) + C1
1633 m_Value(B)))) {
1634 Value *Sub = Builder.CreateSub(B, A, "reass.sub");
1635 return BinaryOperator::CreateAdd(Sub, C1);
1636 }
1637 }
1638
1639 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1641
1642 const APInt *C1;
1643 // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit
1644 if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) &&
1645 C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countl_zero())) {
1646 Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1);
1647 return BinaryOperator::CreateAnd(A, NewMask);
1648 }
1649
1650 // ZExt (B - A) + ZExt(A) --> ZExt(B)
1651 if ((match(RHS, m_ZExt(m_Value(A))) &&
1652 match(LHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))) ||
1653 (match(LHS, m_ZExt(m_Value(A))) &&
1655 return new ZExtInst(B, LHS->getType());
1656
1657 // zext(A) + sext(A) --> 0 if A is i1
1659 A->getType()->isIntOrIntVectorTy(1))
1660 return replaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1661
1662 // sext(A < B) + zext(A > B) => ucmp/scmp(A, B)
1663 CmpPredicate LTPred, GTPred;
1664 if (match(&I,
1665 m_c_Add(m_SExt(m_c_ICmp(LTPred, m_Value(A), m_Value(B))),
1666 m_ZExt(m_c_ICmp(GTPred, m_Deferred(A), m_Deferred(B))))) &&
1667 A->getType()->isIntOrIntVectorTy()) {
1668 if (ICmpInst::isGT(LTPred)) {
1669 std::swap(LTPred, GTPred);
1670 std::swap(A, B);
1671 }
1672
1673 if (ICmpInst::isLT(LTPred) && ICmpInst::isGT(GTPred) &&
1674 ICmpInst::isSigned(LTPred) == ICmpInst::isSigned(GTPred))
1675 return replaceInstUsesWith(
1676 I, Builder.CreateIntrinsic(
1677 Ty,
1678 ICmpInst::isSigned(LTPred) ? Intrinsic::scmp : Intrinsic::ucmp,
1679 {A, B}));
1680 }
1681
1682 // A+B --> A|B iff A and B have no bits set in common.
1683 WithCache<const Value *> LHSCache(LHS), RHSCache(RHS);
1684 if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ.getWithInstruction(&I)))
1685 return BinaryOperator::CreateDisjointOr(LHS, RHS);
1686
1687 if (Instruction *Ext = narrowMathIfNoOverflow(I))
1688 return Ext;
1689
1690 // (add (xor A, B) (and A, B)) --> (or A, B)
1691 // (add (and A, B) (xor A, B)) --> (or A, B)
1692 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1694 return BinaryOperator::CreateOr(A, B);
1695
1696 // (add (or A, B) (and A, B)) --> (add A, B)
1697 // (add (and A, B) (or A, B)) --> (add A, B)
1698 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1700 // Replacing operands in-place to preserve nuw/nsw flags.
1701 replaceOperand(I, 0, A);
1702 replaceOperand(I, 1, B);
1703 return &I;
1704 }
1705
1706 // (add A (or A, -A)) --> (and (add A, -1) A)
1707 // (add A (or -A, A)) --> (and (add A, -1) A)
1708 // (add (or A, -A) A) --> (and (add A, -1) A)
1709 // (add (or -A, A) A) --> (and (add A, -1) A)
1711 m_Deferred(A)))))) {
1712 Value *Add =
1713 Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()), "",
1714 I.hasNoUnsignedWrap(), I.hasNoSignedWrap());
1715 return BinaryOperator::CreateAnd(Add, A);
1716 }
1717
1718 // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A)
1719 // Forms all commutable operations, and simplifies ctpop -> cttz folds.
1720 if (match(&I,
1722 m_AllOnes()))) {
1724 Value *Dec = Builder.CreateAdd(A, AllOnes);
1725 Value *Not = Builder.CreateXor(A, AllOnes);
1726 return BinaryOperator::CreateAnd(Dec, Not);
1727 }
1728
1729 // Disguised reassociation/factorization:
1730 // ~(A * C1) + A
1731 // ((A * -C1) - 1) + A
1732 // ((A * -C1) + A) - 1
1733 // (A * (1 - C1)) - 1
1734 if (match(&I,
1736 m_Deferred(A)))) {
1737 Type *Ty = I.getType();
1738 Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1);
1739 Value *NewMul = Builder.CreateMul(A, NewMulC);
1740 return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty));
1741 }
1742
1743 // (A * -2**C) + B --> B - (A << C)
1744 const APInt *NegPow2C;
1745 if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))),
1746 m_Value(B)))) {
1747 Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countr_zero());
1748 Value *Shl = Builder.CreateShl(A, ShiftAmtC);
1749 return BinaryOperator::CreateSub(B, Shl);
1750 }
1751
1752 // Canonicalize signum variant that ends in add:
1753 // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0))
1754 uint64_t BitWidth = Ty->getScalarSizeInBits();
1758 Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull");
1759 Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext");
1760 return BinaryOperator::CreateOr(LHS, Zext);
1761 }
1762
1763 {
1764 Value *Cond, *Ext;
1765 Constant *C;
1766 // (add X, (sext/zext (icmp eq X, C)))
1767 // -> (select (icmp eq X, C), (add C, (sext/zext 1)), X)
1768 auto CondMatcher =
1770 m_ImmConstant(C)));
1771
1772 if (match(&I,
1773 m_c_Add(m_Value(A), m_Value(Ext, m_ZExtOrSExt(CondMatcher)))) &&
1774 Ext->hasOneUse()) {
1777 return replaceInstUsesWith(I, Builder.CreateSelect(Cond, Add, A));
1778 }
1779 }
1780
1781 // (add (add A, 1), (sext (icmp ne A, 0))) => call umax(A, 1)
1782 if (match(LHS, m_Add(m_Value(A), m_One())) &&
1785 Value *OneConst = ConstantInt::get(A->getType(), 1);
1786 Value *UMax = Builder.CreateBinaryIntrinsic(Intrinsic::umax, A, OneConst);
1787 return replaceInstUsesWith(I, UMax);
1788 }
1789
1790 if (Instruction *Ashr = foldAddToAshr(I))
1791 return Ashr;
1792
1793 // Ceiling division by power-of-2:
1794 // (X >> log2(N)) + zext(X & (N-1) != 0) --> (X + (N-1)) >> log2(N)
1795 // This is valid when adding (N-1) to X doesn't overflow.
1796 {
1797 Value *X;
1798 const APInt *ShiftAmt, *Mask;
1799 CmpPredicate Pred;
1800
1801 // Match: (X >> C) + zext((X & Mask) != 0)
1802 // or: zext((X & Mask) != 0) + (X >> C)
1803 if (match(&I, m_c_Add(m_OneUse(m_LShr(m_Value(X), m_APInt(ShiftAmt))),
1806 m_And(m_Deferred(X), m_LowBitMask(Mask)),
1807 m_ZeroInt())))) &&
1808 Mask->popcount() == *ShiftAmt) {
1809
1810 // Check if X + Mask doesn't overflow
1811 Constant *MaskC = ConstantInt::get(X->getType(), *Mask);
1812 if (willNotOverflowUnsignedAdd(X, MaskC, I)) {
1813 // (X + Mask) >> ShiftAmt
1814 Value *Add = Builder.CreateNUWAdd(X, MaskC);
1815 return BinaryOperator::CreateLShr(
1816 Add, ConstantInt::get(X->getType(), *ShiftAmt));
1817 }
1818 }
1819 }
1820
1821 // (~X) + (~Y) --> -2 - (X + Y)
1822 {
1823 // To ensure we can save instructions we need to ensure that we consume both
1824 // LHS/RHS (i.e they have a `not`).
1825 bool ConsumesLHS, ConsumesRHS;
1826 if (isFreeToInvert(LHS, LHS->hasOneUse(), ConsumesLHS) && ConsumesLHS &&
1827 isFreeToInvert(RHS, RHS->hasOneUse(), ConsumesRHS) && ConsumesRHS) {
1828 Value *NotLHS = getFreelyInverted(LHS, LHS->hasOneUse(), &Builder);
1829 Value *NotRHS = getFreelyInverted(RHS, RHS->hasOneUse(), &Builder);
1830 assert(NotLHS != nullptr && NotRHS != nullptr &&
1831 "isFreeToInvert desynced with getFreelyInverted");
1832 Value *LHSPlusRHS = Builder.CreateAdd(NotLHS, NotRHS);
1833 return BinaryOperator::CreateSub(
1834 ConstantInt::getSigned(RHS->getType(), -2), LHSPlusRHS);
1835 }
1836 }
1837
1839 return R;
1840
1841 // TODO(jingyue): Consider willNotOverflowSignedAdd and
1842 // willNotOverflowUnsignedAdd to reduce the number of invocations of
1843 // computeKnownBits.
1844 bool Changed = false;
1845 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHSCache, RHSCache, I)) {
1846 Changed = true;
1847 I.setHasNoSignedWrap(true);
1848 }
1849 if (!I.hasNoUnsignedWrap() &&
1850 willNotOverflowUnsignedAdd(LHSCache, RHSCache, I)) {
1851 Changed = true;
1852 I.setHasNoUnsignedWrap(true);
1853 }
1854
1856 return V;
1857
1858 if (Instruction *V =
1860 return V;
1861
1863 return SatAdd;
1864
1865 // usub.sat(A, B) + B => umax(A, B)
1866 if (match(&I, m_c_BinOp(
1868 m_Deferred(B)))) {
1869 return replaceInstUsesWith(I,
1870 Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
1871 }
1872
1873 // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
1876 haveNoCommonBitsSet(A, B, SQ.getWithInstruction(&I)))
1877 return replaceInstUsesWith(
1878 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
1879 {Builder.CreateOr(A, B)}));
1880
1881 // Fold the log2_ceil idiom:
1882 // zext(ctpop(A) >u/!= 1) + (ctlz(A, true) ^ (BW - 1))
1883 // -->
1884 // BW - ctlz(A - 1, false)
1885 const APInt *XorC;
1886 CmpPredicate Pred;
1887 if (match(&I,
1888 m_c_Add(
1890 m_One())),
1894 m_APInt(XorC))))))) &&
1895 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_NE) &&
1896 *XorC == A->getType()->getScalarSizeInBits() - 1) {
1897 Value *Sub = Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()));
1898 Value *Ctlz = Builder.CreateIntrinsic(Intrinsic::ctlz, {A->getType()},
1899 {Sub, Builder.getFalse()});
1900 Value *Ret = Builder.CreateSub(
1901 ConstantInt::get(A->getType(), A->getType()->getScalarSizeInBits()),
1902 Ctlz, "", /*HasNUW=*/true, /*HasNSW=*/true);
1903 return replaceInstUsesWith(I, Builder.CreateZExtOrTrunc(Ret, I.getType()));
1904 }
1905
1906 if (Instruction *Res = foldSquareSumInt(I))
1907 return Res;
1908
1909 if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
1910 return Res;
1911
1913 return Res;
1914
1915 // Re-enqueue users of the induction variable of add recurrence if we infer
1916 // new nuw/nsw flags.
1917 if (Changed) {
1918 PHINode *PHI;
1919 Value *Start, *Step;
1920 if (matchSimpleRecurrence(&I, PHI, Start, Step))
1921 Worklist.pushUsersToWorkList(*PHI);
1922 }
1923
1924 return Changed ? &I : nullptr;
1925}
1926
1927/// Eliminate an op from a linear interpolation (lerp) pattern.
1929 InstCombiner::BuilderTy &Builder) {
1930 Value *X, *Y, *Z;
1933 m_Value(Z))))),
1935 return nullptr;
1936
1937 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1938 Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1939 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1940 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1941}
1942
1943/// Factor a common operand out of fadd/fsub of fmul/fdiv.
1945 InstCombiner::BuilderTy &Builder) {
1946 assert((I.getOpcode() == Instruction::FAdd ||
1947 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1948 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1949 "FP factorization requires FMF");
1950
1951 if (Instruction *Lerp = factorizeLerp(I, Builder))
1952 return Lerp;
1953
1954 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1955 if (!Op0->hasOneUse() || !Op1->hasOneUse())
1956 return nullptr;
1957
1958 Value *X, *Y, *Z;
1959 bool IsFMul;
1960 if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) &&
1961 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) ||
1962 (match(Op0, m_FMul(m_Value(Z), m_Value(X))) &&
1963 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))))
1964 IsFMul = true;
1965 else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) &&
1966 match(Op1, m_FDiv(m_Value(Y), m_Specific(Z))))
1967 IsFMul = false;
1968 else
1969 return nullptr;
1970
1971 // (X * Z) + (Y * Z) --> (X + Y) * Z
1972 // (X * Z) - (Y * Z) --> (X - Y) * Z
1973 // (X / Z) + (Y / Z) --> (X + Y) / Z
1974 // (X / Z) - (Y / Z) --> (X - Y) / Z
1975 bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1976 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1977 : Builder.CreateFSubFMF(X, Y, &I);
1978
1979 // Bail out if we just created a denormal constant.
1980 // TODO: This is copied from a previous implementation. Is it necessary?
1981 const APFloat *C;
1982 if (match(XY, m_APFloat(C)) && !C->isNormal())
1983 return nullptr;
1984
1985 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1987}
1988
1990 if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1),
1991 I.getFastMathFlags(),
1992 SQ.getWithInstruction(&I)))
1993 return replaceInstUsesWith(I, V);
1994
1996 return &I;
1997
1999 return X;
2000
2002 return Phi;
2003
2004 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
2005 return FoldedFAdd;
2006
2007 // B = fadd A, 0.0
2008 // Z = Op B
2009 // can be transformed into
2010 // Z = Op A
2011 // Where Op is such that we can ignore sign of 0 in fadd
2012 Value *A;
2013 if (match(&I, m_OneUse(m_FAdd(m_Value(A), m_AnyZeroFP()))) &&
2014 canIgnoreSignBitOfZero(*I.use_begin()))
2015 return replaceInstUsesWith(I, A);
2016
2017 // (-X) + Y --> Y - X
2018 Value *X, *Y;
2019 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
2021
2022 // Similar to above, but look through fmul/fdiv for the negated term.
2023 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
2024 Value *Z;
2026 m_Value(Z)))) {
2027 Value *XY = Builder.CreateFMulFMF(X, Y, &I);
2028 return BinaryOperator::CreateFSubFMF(Z, XY, &I);
2029 }
2030 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
2031 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
2033 m_Value(Z))) ||
2035 m_Value(Z)))) {
2036 Value *XY = Builder.CreateFDivFMF(X, Y, &I);
2037 return BinaryOperator::CreateFSubFMF(Z, XY, &I);
2038 }
2039
2040 // Check for (fadd double (sitofp x), y), see if we can merge this into an
2041 // integer add followed by a promotion.
2042 if (Instruction *R = foldFBinOpOfIntCasts(I))
2043 return R;
2044
2045 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
2046 // Handle specials cases for FAdd with selects feeding the operation
2047 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
2048 return replaceInstUsesWith(I, V);
2049
2050 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2052 return F;
2053
2055 return F;
2056
2057 // Try to fold fadd into start value of reduction intrinsic.
2059 m_AnyZeroFP(), m_Value(X))),
2060 m_Value(Y)))) {
2061 // fadd (rdx 0.0, X), Y --> rdx Y, X
2062 return replaceInstUsesWith(
2063 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2064 {X->getType()}, {Y, X}, &I));
2065 }
2066 const APFloat *StartC, *C;
2068 m_APFloat(StartC), m_Value(X)))) &&
2069 match(RHS, m_APFloat(C))) {
2070 // fadd (rdx StartC, X), C --> rdx (C + StartC), X
2071 Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC);
2072 return replaceInstUsesWith(
2073 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2074 {X->getType()}, {NewStartC, X}, &I));
2075 }
2076
2077 // (X * MulC) + X --> X * (MulC + 1.0)
2078 Constant *MulC;
2079 if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)),
2080 m_Deferred(X)))) {
2082 Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL))
2083 return BinaryOperator::CreateFMulFMF(X, NewMulC, &I);
2084 }
2085
2086 // (-X - Y) + (X + Z) --> Z - Y
2088 m_c_FAdd(m_Deferred(X), m_Value(Z)))))
2089 return BinaryOperator::CreateFSubFMF(Z, Y, &I);
2090
2091 if (Value *V = FAddCombine(Builder).simplify(&I))
2092 return replaceInstUsesWith(I, V);
2093 }
2094
2095 // minumum(X, Y) + maximum(X, Y) => X + Y.
2096 if (match(&I,
2099 m_Deferred(Y))))) {
2101 // We cannot preserve ninf if nnan flag is not set.
2102 // If X is NaN and Y is Inf then in original program we had NaN + NaN,
2103 // while in optimized version NaN + Inf and this is a poison with ninf flag.
2104 if (!Result->hasNoNaNs())
2105 Result->setHasNoInfs(false);
2106 return Result;
2107 }
2108
2109 return nullptr;
2110}
2111
2114
2115 if (LHS->getType() != RHS->getType())
2116 return Base;
2117
2118 // Collect all base pointers of LHS.
2120 Value *Ptr = LHS;
2121 while (true) {
2122 Ptrs.insert(Ptr);
2123 if (auto *GEP = dyn_cast<GEPOperator>(Ptr))
2124 Ptr = GEP->getPointerOperand();
2125 else
2126 break;
2127 }
2128
2129 // Find common base and collect RHS GEPs.
2130 bool First = true;
2131 while (true) {
2132 if (Ptrs.contains(RHS)) {
2133 Base.Ptr = RHS;
2134 break;
2135 }
2136
2137 if (auto *GEP = dyn_cast<GEPOperator>(RHS)) {
2138 Base.RHSGEPs.push_back(GEP);
2139 if (First) {
2140 First = false;
2141 Base.RHSNW = GEP->getNoWrapFlags();
2142 } else {
2143 Base.RHSNW = Base.RHSNW.intersectForOffsetAdd(GEP->getNoWrapFlags());
2144 }
2145 RHS = GEP->getPointerOperand();
2146 } else {
2147 // No common base.
2148 return Base;
2149 }
2150 }
2151
2152 // Collect LHS GEPs.
2153 First = true;
2154 while (true) {
2155 if (LHS == Base.Ptr)
2156 break;
2157
2158 auto *GEP = cast<GEPOperator>(LHS);
2159 Base.LHSGEPs.push_back(GEP);
2160 if (First) {
2161 First = false;
2162 Base.LHSNW = GEP->getNoWrapFlags();
2163 } else {
2164 Base.LHSNW = Base.LHSNW.intersectForOffsetAdd(GEP->getNoWrapFlags());
2165 }
2166 LHS = GEP->getPointerOperand();
2167 }
2168
2169 return Base;
2170}
2171
2173 unsigned NumGEPs = 0;
2174 auto ProcessGEPs = [&NumGEPs](ArrayRef<GEPOperator *> GEPs) {
2175 bool SeenMultiUse = false;
2176 for (GEPOperator *GEP : GEPs) {
2177 // Only count multi-use GEPs, excluding the first one. For the first one,
2178 // we will directly reuse the offset. For one-use GEPs, their offset will
2179 // be folded into a multi-use GEP.
2180 if (!GEP->hasOneUse()) {
2181 if (SeenMultiUse)
2182 ++NumGEPs;
2183 SeenMultiUse = true;
2184 }
2185 }
2186 };
2187 ProcessGEPs(LHSGEPs);
2188 ProcessGEPs(RHSGEPs);
2189 return NumGEPs > 2;
2190}
2191
2192/// Optimize pointer differences into the same array into a size. Consider:
2193/// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
2194/// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
2196 Type *Ty, bool IsNUW) {
2198 if (!Base.Ptr || Base.isExpensive())
2199 return nullptr;
2200
2201 // To avoid duplicating the offset arithmetic, rewrite the GEP to use the
2202 // computed offset.
2203 // TODO: We should probably do this even if there is only one GEP.
2204 bool RewriteGEPs = !Base.LHSGEPs.empty() && !Base.RHSGEPs.empty();
2205
2206 Type *IdxTy = DL.getIndexType(LHS->getType());
2207 Value *Result = EmitGEPOffsets(Base.LHSGEPs, Base.LHSNW, IdxTy, RewriteGEPs);
2208 Value *Offset2 = EmitGEPOffsets(Base.RHSGEPs, Base.RHSNW, IdxTy, RewriteGEPs);
2209
2210 // If this is a single inbounds GEP and the original sub was nuw,
2211 // then the final multiplication is also nuw.
2212 if (auto *I = dyn_cast<OverflowingBinaryOperator>(Result))
2213 if (IsNUW && match(Offset2, m_Zero()) && Base.LHSNW.isInBounds() &&
2214 (I->use_empty() || I->hasOneUse()) && I->hasNoSignedWrap() &&
2215 !I->hasNoUnsignedWrap() &&
2216 ((I->getOpcode() == Instruction::Mul &&
2217 match(I->getOperand(1), m_NonNegative())) ||
2218 I->getOpcode() == Instruction::Shl))
2219 cast<Instruction>(I)->setHasNoUnsignedWrap();
2220
2221 // If we have a 2nd GEP of the same base pointer, subtract the offsets.
2222 // If both GEPs are inbounds, then the subtract does not have signed overflow.
2223 // If both GEPs are nuw and the original sub is nuw, the new sub is also nuw.
2224 if (!match(Offset2, m_Zero())) {
2225 Result =
2226 Builder.CreateSub(Result, Offset2, "gepdiff",
2227 IsNUW && Base.LHSNW.hasNoUnsignedWrap() &&
2228 Base.RHSNW.hasNoUnsignedWrap(),
2229 Base.LHSNW.isInBounds() && Base.RHSNW.isInBounds());
2230 }
2231
2232 return Builder.CreateIntCast(Result, Ty, true);
2233}
2234
2236 InstCombiner::BuilderTy &Builder) {
2237 Value *Op0 = I.getOperand(0);
2238 Value *Op1 = I.getOperand(1);
2239 Type *Ty = I.getType();
2240 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1);
2241 if (!MinMax)
2242 return nullptr;
2243
2244 // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y)
2245 // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y)
2246 Value *X = MinMax->getLHS();
2247 Value *Y = MinMax->getRHS();
2248 if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) &&
2249 (Op0->hasOneUse() || Op1->hasOneUse())) {
2250 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
2251 Function *F = Intrinsic::getOrInsertDeclaration(I.getModule(), InvID, Ty);
2252 return CallInst::Create(F, {X, Y});
2253 }
2254
2255 // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z))
2256 // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y))
2257 Value *Z;
2258 if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) {
2259 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) {
2260 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z});
2261 return BinaryOperator::CreateAdd(X, USub);
2262 }
2263 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) {
2264 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y});
2265 return BinaryOperator::CreateAdd(X, USub);
2266 }
2267 }
2268
2269 // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z
2270 // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z
2271 if (MinMax->isSigned() && match(Y, m_ZeroInt()) &&
2272 match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) {
2273 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
2274 Function *F = Intrinsic::getOrInsertDeclaration(I.getModule(), InvID, Ty);
2275 return CallInst::Create(F, {Op0, Z});
2276 }
2277
2278 return nullptr;
2279}
2280
2282 if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1),
2283 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
2284 SQ.getWithInstruction(&I)))
2285 return replaceInstUsesWith(I, V);
2286
2288 return X;
2289
2291 return Phi;
2292
2293 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2294
2295 // If this is a 'B = x-(-A)', change to B = x+A.
2296 // We deal with this without involving Negator to preserve NSW flag.
2297 if (Value *V = dyn_castNegVal(Op1)) {
2298 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
2299
2300 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
2301 assert(BO->getOpcode() == Instruction::Sub &&
2302 "Expected a subtraction operator!");
2303 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
2304 Res->setHasNoSignedWrap(true);
2305 } else {
2306 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
2307 Res->setHasNoSignedWrap(true);
2308 }
2309
2310 return Res;
2311 }
2312
2313 // Try this before Negator to preserve NSW flag.
2315 return R;
2316
2317 Constant *C;
2318 if (match(Op0, m_ImmConstant(C))) {
2319 Value *X;
2320 Constant *C2;
2321
2322 // C-(X+C2) --> (C-C2)-X
2323 if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) {
2324 // C-C2 never overflow, and C-(X+C2), (X+C2) has NSW/NUW
2325 // => (C-C2)-X can have NSW/NUW
2326 bool WillNotSOV = willNotOverflowSignedSub(C, C2, I);
2327 BinaryOperator *Res =
2328 BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
2329 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2330 Res->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO1->hasNoSignedWrap() &&
2331 WillNotSOV);
2332 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap() &&
2333 OBO1->hasNoUnsignedWrap());
2334 return Res;
2335 }
2336 }
2337
2338 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
2339 if (Instruction *Ext = narrowMathIfNoOverflow(I))
2340 return Ext;
2341
2342 bool Changed = false;
2343 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
2344 Changed = true;
2345 I.setHasNoSignedWrap(true);
2346 }
2347 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
2348 Changed = true;
2349 I.setHasNoUnsignedWrap(true);
2350 }
2351
2352 return Changed ? &I : nullptr;
2353 };
2354
2355 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
2356 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
2357 // a pure negation used by a select that looks like abs/nabs.
2358 bool IsNegation = match(Op0, m_ZeroInt());
2359 if (!IsNegation || none_of(I.users(), match_fn(m_c_Select(m_Specific(Op1),
2360 m_Specific(&I))))) {
2361 if (Value *NegOp1 = Negator::Negate(IsNegation, /* IsNSW */ IsNegation &&
2362 I.hasNoSignedWrap(),
2363 Op1, *this))
2364 return BinaryOperator::CreateAdd(NegOp1, Op0);
2365 }
2366 if (IsNegation)
2367 return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
2368
2369 // (A*B)-(A*C) -> A*(B-C) etc
2371 return replaceInstUsesWith(I, V);
2372
2373 if (I.getType()->isIntOrIntVectorTy(1))
2374 return BinaryOperator::CreateXor(Op0, Op1);
2375
2376 // Replace (-1 - A) with (~A).
2377 if (match(Op0, m_AllOnes()))
2378 return BinaryOperator::CreateNot(Op1);
2379
2380 // (X + -1) - Y --> ~Y + X
2381 Value *X, *Y;
2382 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
2383 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
2384
2385 // if (C1 & C2) == C2 then (X & C1) - (X & C2) -> X & (C1 ^ C2)
2386 Constant *C1, *C2;
2387 if (match(Op0, m_And(m_Value(X), m_ImmConstant(C1))) &&
2388 match(Op1, m_And(m_Specific(X), m_ImmConstant(C2)))) {
2389 Value *AndC = ConstantFoldBinaryInstruction(Instruction::And, C1, C2);
2390 if (C2->isElementWiseEqual(AndC))
2391 return BinaryOperator::CreateAnd(
2392 X, ConstantFoldBinaryInstruction(Instruction::Xor, C1, C2));
2393 }
2394
2395 // Reassociate sub/add sequences to create more add instructions and
2396 // reduce dependency chains:
2397 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2398 Value *Z;
2400 m_Value(Z))))) {
2401 Value *XZ = Builder.CreateAdd(X, Z);
2402 Value *YW = Builder.CreateAdd(Y, Op1);
2403 return BinaryOperator::CreateSub(XZ, YW);
2404 }
2405
2406 // ((X - Y) - Op1) --> X - (Y + Op1)
2407 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) {
2409 bool HasNUW = I.hasNoUnsignedWrap() && LHSSub->hasNoUnsignedWrap();
2410 bool HasNSW = HasNUW && I.hasNoSignedWrap() && LHSSub->hasNoSignedWrap();
2411 Value *Add = Builder.CreateAdd(Y, Op1, "", /*HasNUW=*/HasNUW,
2412 /*HasNSW=*/HasNSW);
2413 BinaryOperator *Sub = BinaryOperator::CreateSub(X, Add);
2414 Sub->setHasNoUnsignedWrap(HasNUW);
2415 Sub->setHasNoSignedWrap(HasNSW);
2416 return Sub;
2417 }
2418
2419 {
2420 // (X + Z) - (Y + Z) --> (X - Y)
2421 // This is done in other passes, but we want to be able to consume this
2422 // pattern in InstCombine so we can generate it without creating infinite
2423 // loops.
2424 if (match(Op0, m_Add(m_Value(X), m_Value(Z))) &&
2425 match(Op1, m_c_Add(m_Value(Y), m_Specific(Z))))
2426 return BinaryOperator::CreateSub(X, Y);
2427
2428 // (X + C0) - (Y + C1) --> (X - Y) + (C0 - C1)
2429 Constant *CX, *CY;
2430 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_ImmConstant(CX)))) &&
2431 match(Op1, m_OneUse(m_Add(m_Value(Y), m_ImmConstant(CY))))) {
2432 Value *OpsSub = Builder.CreateSub(X, Y);
2433 Constant *ConstsSub = ConstantExpr::getSub(CX, CY);
2434 return BinaryOperator::CreateAdd(OpsSub, ConstsSub);
2435 }
2436 }
2437
2438 {
2439 Value *W, *Z;
2440 if (match(Op0, m_AddLike(m_Value(W), m_Value(X))) &&
2441 match(Op1, m_AddLike(m_Value(Y), m_Value(Z)))) {
2442 Instruction *R = nullptr;
2443 if (W == Y)
2444 R = BinaryOperator::CreateSub(X, Z);
2445 else if (W == Z)
2446 R = BinaryOperator::CreateSub(X, Y);
2447 else if (X == Y)
2448 R = BinaryOperator::CreateSub(W, Z);
2449 else if (X == Z)
2450 R = BinaryOperator::CreateSub(W, Y);
2451 if (R) {
2452 bool NSW = I.hasNoSignedWrap() &&
2453 match(Op0, m_NSWAddLike(m_Value(), m_Value())) &&
2454 match(Op1, m_NSWAddLike(m_Value(), m_Value()));
2455
2456 bool NUW = I.hasNoUnsignedWrap() &&
2457 match(Op1, m_NUWAddLike(m_Value(), m_Value()));
2458 R->setHasNoSignedWrap(NSW);
2459 R->setHasNoUnsignedWrap(NUW);
2460 return R;
2461 }
2462 }
2463 }
2464
2465 // (~X) - (~Y) --> Y - X
2466 {
2467 // Need to ensure we can consume at least one of the `not` instructions,
2468 // otherwise this can inf loop.
2469 bool ConsumesOp0, ConsumesOp1;
2470 if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) &&
2471 isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) &&
2472 (ConsumesOp0 || ConsumesOp1)) {
2473 Value *NotOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder);
2474 Value *NotOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder);
2475 assert(NotOp0 != nullptr && NotOp1 != nullptr &&
2476 "isFreeToInvert desynced with getFreelyInverted");
2477 return BinaryOperator::CreateSub(NotOp1, NotOp0);
2478 }
2479 }
2480
2481 auto m_AddRdx = [](Value *&Vec) {
2483 };
2484 Value *V0, *V1;
2485 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
2486 V0->getType() == V1->getType()) {
2487 // Difference of sums is sum of differences:
2488 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
2489 Value *Sub = Builder.CreateSub(V0, V1);
2490 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
2491 {Sub->getType()}, {Sub});
2492 return replaceInstUsesWith(I, Rdx);
2493 }
2494
2495 if (Constant *C = dyn_cast<Constant>(Op0)) {
2496 Value *X;
2497 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
2498 // C - (zext bool) --> bool ? C - 1 : C
2500 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
2501 // C - (sext bool) --> bool ? C + 1 : C
2503
2504 // C - ~X == X + (1+C)
2505 if (match(Op1, m_Not(m_Value(X))))
2506 return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
2507
2508 // Try to fold constant sub into select arguments.
2510 if (Instruction *R = FoldOpIntoSelect(I, SI))
2511 return R;
2512
2513 // Try to fold constant sub into PHI values.
2514 if (PHINode *PN = dyn_cast<PHINode>(Op1))
2515 if (Instruction *R = foldOpIntoPhi(I, PN))
2516 return R;
2517
2518 Constant *C2;
2519
2520 // C-(C2-X) --> X+(C-C2)
2521 if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
2522 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
2523 }
2524
2525 const APInt *Op0C;
2526 if (match(Op0, m_APInt(Op0C))) {
2527 if (Op0C->isMask()) {
2528 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
2529 // zero. We don't use information from dominating conditions so this
2530 // transform is easier to reverse if necessary.
2532 Op1, SQ.getWithInstruction(&I).getWithoutDomCondCache());
2533 if ((*Op0C | RHSKnown.Zero).isAllOnes())
2534 return BinaryOperator::CreateXor(Op1, Op0);
2535 }
2536
2537 // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when:
2538 // (C3 - ((C2 & C3) - 1)) is pow2
2539 // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1)
2540 // C2 is negative pow2 || sub nuw
2541 const APInt *C2, *C3;
2542 BinaryOperator *InnerSub;
2543 if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) &&
2544 match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) &&
2545 (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) {
2546 APInt C2AndC3 = *C2 & *C3;
2547 APInt C2AndC3Minus1 = C2AndC3 - 1;
2548 APInt C2AddC3 = *C2 + *C3;
2549 if ((*C3 - C2AndC3Minus1).isPowerOf2() &&
2550 C2AndC3Minus1.isSubsetOf(C2AddC3)) {
2551 Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2));
2552 return BinaryOperator::CreateAdd(
2553 And, ConstantInt::get(I.getType(), *Op0C - C2AndC3));
2554 }
2555 }
2556 }
2557
2558 {
2559 Value *Y;
2560 // X-(X+Y) == -Y X-(Y+X) == -Y
2561 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
2563
2564 // (X-Y)-X == -Y
2565 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
2567 }
2568
2569 // (sub (or A, B) (and A, B)) --> (xor A, B)
2570 {
2571 Value *A, *B;
2572 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2573 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2574 return BinaryOperator::CreateXor(A, B);
2575 }
2576
2577 // (sub (add A, B) (or A, B)) --> (and A, B)
2578 {
2579 Value *A, *B;
2580 if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2581 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2582 return BinaryOperator::CreateAnd(A, B);
2583 }
2584
2585 // (sub (add A, B) (and A, B)) --> (or A, B)
2586 {
2587 Value *A, *B;
2588 if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2590 return BinaryOperator::CreateOr(A, B);
2591 }
2592
2593 // (sub (and A, B) (or A, B)) --> neg (xor A, B)
2594 {
2595 Value *A, *B;
2596 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2597 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2598 (Op0->hasOneUse() || Op1->hasOneUse()))
2599 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
2600 }
2601
2602 // (sub (or A, B), (xor A, B)) --> (and A, B)
2603 {
2604 Value *A, *B;
2605 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2606 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2607 return BinaryOperator::CreateAnd(A, B);
2608 }
2609
2610 // (sub (xor A, B) (or A, B)) --> neg (and A, B)
2611 {
2612 Value *A, *B;
2613 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2614 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2615 (Op0->hasOneUse() || Op1->hasOneUse()))
2616 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
2617 }
2618
2619 {
2620 Value *Y;
2621 // ((X | Y) - X) --> (~X & Y)
2622 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
2623 return BinaryOperator::CreateAnd(
2624 Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
2625 }
2626
2627 {
2628 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
2629 Value *X;
2630 if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
2631 m_OneUse(m_Neg(m_Value(X))))))) {
2632 return BinaryOperator::CreateNeg(Builder.CreateAnd(
2633 Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
2634 }
2635 }
2636
2637 {
2638 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
2639 Constant *C;
2640 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
2642 Builder.CreateAnd(Op1, Builder.CreateNot(C)));
2643 }
2644 }
2645
2646 {
2647 // (sub (xor X, (sext C)), (sext C)) => (select C, (neg X), X)
2648 // (sub (sext C), (xor X, (sext C))) => (select C, X, (neg X))
2649 Value *C, *X;
2650 auto m_SubXorCmp = [&C, &X](Value *LHS, Value *RHS) {
2651 return match(LHS, m_OneUse(m_c_Xor(m_Value(X), m_Specific(RHS)))) &&
2652 match(RHS, m_SExt(m_Value(C))) &&
2653 (C->getType()->getScalarSizeInBits() == 1);
2654 };
2655 if (m_SubXorCmp(Op0, Op1))
2656 return SelectInst::Create(C, Builder.CreateNeg(X), X);
2657 if (m_SubXorCmp(Op1, Op0))
2658 return SelectInst::Create(C, X, Builder.CreateNeg(X));
2659 }
2660
2662 return R;
2663
2665 return R;
2666
2667 {
2668 // If we have a subtraction between some value and a select between
2669 // said value and something else, sink subtraction into select hands, i.e.:
2670 // sub (select %Cond, %TrueVal, %FalseVal), %Op1
2671 // ->
2672 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
2673 // or
2674 // sub %Op0, (select %Cond, %TrueVal, %FalseVal)
2675 // ->
2676 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
2677 // This will result in select between new subtraction and 0.
2678 auto SinkSubIntoSelect =
2679 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
2680 auto SubBuilder) -> Instruction * {
2681 Value *Cond, *TrueVal, *FalseVal;
2682 if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
2683 m_Value(FalseVal)))))
2684 return nullptr;
2685 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
2686 return nullptr;
2687 // While it is really tempting to just create two subtractions and let
2688 // InstCombine fold one of those to 0, it isn't possible to do so
2689 // because of worklist visitation order. So ugly it is.
2690 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
2691 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
2692 Constant *Zero = Constant::getNullValue(Ty);
2693 SelectInst *NewSel =
2694 SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
2695 OtherHandOfSubIsTrueVal ? NewSub : Zero);
2696 // Preserve prof metadata if any.
2698 return NewSel;
2699 };
2700 if (Instruction *NewSel = SinkSubIntoSelect(
2701 /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
2702 [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
2703 return Builder->CreateSub(OtherHandOfSelect,
2704 /*OtherHandOfSub=*/Op1);
2705 }))
2706 return NewSel;
2707 if (Instruction *NewSel = SinkSubIntoSelect(
2708 /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
2709 [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
2710 return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
2711 OtherHandOfSelect);
2712 }))
2713 return NewSel;
2714 }
2715
2716 // (X - (X & Y)) --> (X & ~Y)
2717 if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
2718 (Op1->hasOneUse() || isa<Constant>(Y)))
2719 return BinaryOperator::CreateAnd(
2720 Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
2721
2722 // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X
2723 // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X
2724 // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y)
2725 // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y)
2726 // As long as Y is freely invertible, this will be neutral or a win.
2727 // Note: We don't generate the inverse max/min, just create the 'not' of
2728 // it and let other folds do the rest.
2729 if (match(Op0, m_Not(m_Value(X))) &&
2730 match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) &&
2731 !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2732 Value *Not = Builder.CreateNot(Op1);
2733 return BinaryOperator::CreateSub(Not, X);
2734 }
2735 if (match(Op1, m_Not(m_Value(X))) &&
2736 match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) &&
2737 !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2738 Value *Not = Builder.CreateNot(Op0);
2739 return BinaryOperator::CreateSub(X, Not);
2740 }
2741
2742 // min(X+1, Y) - min(X, Y) --> zext X < Y
2743 // Replacing a sub and at least one min with an icmp
2744 // and a zext is a potential improvement.
2745 if (match(Op0, m_c_SMin(m_NSWAddLike(m_Value(X), m_One()), m_Value(Y))) &&
2746 match(Op1, m_c_SMin(m_Specific(X), m_Specific(Y))) &&
2747 I.getType()->getScalarSizeInBits() != 1 &&
2748 (Op0->hasOneUse() || Op1->hasOneUse())) {
2749 Value *Cond = Builder.CreateICmpSLT(X, Y);
2750 return new ZExtInst(Cond, I.getType());
2751 }
2752 if (match(Op0, m_c_UMin(m_NUWAddLike(m_Value(X), m_One()), m_Value(Y))) &&
2753 match(Op1, m_c_UMin(m_Specific(X), m_Specific(Y))) &&
2754 I.getType()->getScalarSizeInBits() != 1 &&
2755 (Op0->hasOneUse() || Op1->hasOneUse())) {
2756 Value *Cond = Builder.CreateICmpULT(X, Y);
2757 return new ZExtInst(Cond, I.getType());
2758 }
2759
2760 // Optimize pointer differences into the same array into a size. Consider:
2761 // &A[10] - &A[0]: we should compile this to "10".
2762 Value *LHSOp, *RHSOp;
2763 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
2764 match(Op1, m_PtrToInt(m_Value(RHSOp))))
2765 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2766 I.hasNoUnsignedWrap()))
2767 return replaceInstUsesWith(I, Res);
2768
2769 // trunc(p)-trunc(q) -> trunc(p-q)
2770 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
2771 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
2772 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2773 /* IsNUW */ false))
2774 return replaceInstUsesWith(I, Res);
2775
2776 if (match(Op0, m_ZExt(m_PtrToIntSameSize(DL, m_Value(LHSOp)))) &&
2777 match(Op1, m_ZExtOrSelf(m_PtrToInt(m_Value(RHSOp))))) {
2778 if (auto *GEP = dyn_cast<GEPOperator>(LHSOp)) {
2779 if (GEP->getPointerOperand() == RHSOp) {
2780 if (GEP->hasNoUnsignedWrap() || GEP->hasNoUnsignedSignedWrap()) {
2781 Value *Offset = EmitGEPOffset(GEP);
2782 Value *Res = GEP->hasNoUnsignedWrap()
2783 ? Builder.CreateZExt(
2784 Offset, I.getType(), "",
2785 /*IsNonNeg=*/GEP->hasNoUnsignedSignedWrap())
2786 : Builder.CreateSExt(Offset, I.getType());
2787 return replaceInstUsesWith(I, Res);
2788 }
2789 }
2790 }
2791 }
2792
2793 // Canonicalize a shifty way to code absolute value to the common pattern.
2794 // There are 2 potential commuted variants.
2795 // We're relying on the fact that we only do this transform when the shift has
2796 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
2797 // instructions).
2798 Value *A;
2799 const APInt *ShAmt;
2800 Type *Ty = I.getType();
2801 unsigned BitWidth = Ty->getScalarSizeInBits();
2802 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2803 Op1->hasNUses(2) && *ShAmt == BitWidth - 1 &&
2804 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
2805 // B = ashr i32 A, 31 ; smear the sign bit
2806 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1)
2807 // --> (A < 0) ? -A : A
2808 Value *IsNeg = Builder.CreateIsNeg(A);
2809 // Copy the nsw flags from the sub to the negate.
2810 Value *NegA = I.hasNoUnsignedWrap()
2811 ? Constant::getNullValue(A->getType())
2812 : Builder.CreateNeg(A, "", I.hasNoSignedWrap());
2813 return SelectInst::Create(IsNeg, NegA, A);
2814 }
2815
2816 // If we are subtracting a low-bit masked subset of some value from an add
2817 // of that same value with no low bits changed, that is clearing some low bits
2818 // of the sum:
2819 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
2820 const APInt *AddC, *AndC;
2821 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
2822 match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
2823 unsigned Cttz = AddC->countr_zero();
2824 APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
2825 if ((HighMask & *AndC).isZero())
2826 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
2827 }
2828
2829 if (Instruction *V =
2831 return V;
2832
2833 // X - usub.sat(X, Y) => umin(X, Y)
2835 m_Value(Y)))))
2836 return replaceInstUsesWith(
2837 I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
2838
2839 // umax(X, Op1) - Op1 --> usub.sat(X, Op1)
2840 // TODO: The one-use restriction is not strictly necessary, but it may
2841 // require improving other pattern matching and/or codegen.
2842 if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1)))))
2843 return replaceInstUsesWith(
2844 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1}));
2845
2846 // Op0 - umin(X, Op0) --> usub.sat(Op0, X)
2847 if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0)))))
2848 return replaceInstUsesWith(
2849 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X}));
2850
2851 // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0)
2852 if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) {
2853 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0});
2854 return BinaryOperator::CreateNeg(USub);
2855 }
2856
2857 // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X)
2858 if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) {
2859 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X});
2860 return BinaryOperator::CreateNeg(USub);
2861 }
2862
2863 // C - ctpop(X) => ctpop(~X) if C is bitwidth
2864 if (match(Op0, m_SpecificInt(BitWidth)) &&
2866 return replaceInstUsesWith(
2867 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
2868 {Builder.CreateNot(X)}));
2869
2870 // Reduce multiplies for difference-of-squares by factoring:
2871 // (X * X) - (Y * Y) --> (X + Y) * (X - Y)
2872 if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) &&
2873 match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) {
2874 auto *OBO0 = cast<OverflowingBinaryOperator>(Op0);
2875 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2876 bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() &&
2877 OBO1->hasNoSignedWrap() && BitWidth > 2;
2878 bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() &&
2879 OBO1->hasNoUnsignedWrap() && BitWidth > 1;
2880 Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW);
2881 Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW);
2882 Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW);
2883 return replaceInstUsesWith(I, Mul);
2884 }
2885
2886 // max(X,Y) nsw/nuw - min(X,Y) --> abs(X nsw - Y)
2887 if (match(Op0, m_OneUse(m_c_SMax(m_Value(X), m_Value(Y)))) &&
2889 if (I.hasNoUnsignedWrap() || I.hasNoSignedWrap()) {
2890 Value *Sub =
2891 Builder.CreateSub(X, Y, "sub", /*HasNUW=*/false, /*HasNSW=*/true);
2892 Value *Call =
2893 Builder.CreateBinaryIntrinsic(Intrinsic::abs, Sub, Builder.getTrue());
2894 return replaceInstUsesWith(I, Call);
2895 }
2896 }
2897
2899 return Res;
2900
2901 // (sub (sext (add nsw (X, Y)), sext (X))) --> (sext (Y))
2902 if (match(Op1, m_SExtLike(m_Value(X))) &&
2904 Value *SExtY = Builder.CreateSExt(Y, I.getType());
2905 return replaceInstUsesWith(I, SExtY);
2906 }
2907
2908 // (sub[ nsw] (sext (add nsw (X, Y)), sext (add nsw (X, Z)))) -->
2909 // --> (sub[ nsw] (sext (Y), sext (Z)))
2910 {
2911 Value *Z, *Add0, *Add1;
2912 if (match(Op0, m_SExtLike(m_Value(Add0))) &&
2913 match(Op1, m_SExtLike(m_Value(Add1))) &&
2914 ((match(Add0, m_NSWAdd(m_Value(X), m_Value(Y))) &&
2915 match(Add1, m_c_NSWAdd(m_Specific(X), m_Value(Z)))) ||
2916 (match(Add0, m_NSWAdd(m_Value(Y), m_Value(X))) &&
2917 match(Add1, m_c_NSWAdd(m_Specific(X), m_Value(Z)))))) {
2918 unsigned NumOfNewInstrs = 0;
2919 // Non-constant Y, Z require new SExt.
2920 NumOfNewInstrs += !isa<Constant>(Y) ? 1 : 0;
2921 NumOfNewInstrs += !isa<Constant>(Z) ? 1 : 0;
2922 // Check if we can trade some of the old instructions for the new ones.
2923 unsigned NumOfDeadInstrs = 0;
2924 if (Op0->hasOneUse()) {
2925 // If Op0 (sext) has multiple uses, then we keep it
2926 // and the add that it uses, otherwise, we can remove
2927 // the sext and probably the add (depending on the number of its uses).
2928 ++NumOfDeadInstrs;
2929 NumOfDeadInstrs += Add0->hasOneUse() ? 1 : 0;
2930 }
2931 if (Op1->hasOneUse()) {
2932 ++NumOfDeadInstrs;
2933 NumOfDeadInstrs += Add1->hasOneUse() ? 1 : 0;
2934 }
2935 if (NumOfDeadInstrs >= NumOfNewInstrs) {
2936 Value *SExtY = Builder.CreateSExt(Y, I.getType());
2937 Value *SExtZ = Builder.CreateSExt(Z, I.getType());
2938 Value *Sub = Builder.CreateSub(SExtY, SExtZ, "",
2939 /*HasNUW=*/false,
2940 /*HasNSW=*/I.hasNoSignedWrap());
2941 return replaceInstUsesWith(I, Sub);
2942 }
2943 }
2944 }
2945
2946 return TryToNarrowDeduceFlags();
2947}
2948
2949/// This eliminates floating-point negation in either 'fneg(X)' or
2950/// 'fsub(-0.0, X)' form by combining into a constant operand.
2952 // This is limited with one-use because fneg is assumed better for
2953 // reassociation and cheaper in codegen than fmul/fdiv.
2954 // TODO: Should the m_OneUse restriction be removed?
2955 Instruction *FNegOp;
2956 if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp)))))
2957 return nullptr;
2958
2959 Value *X;
2960 Constant *C;
2961
2962 // Fold negation into constant operand.
2963 // -(X * C) --> X * (-C)
2964 if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C))))
2965 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) {
2966 FastMathFlags FNegF = I.getFastMathFlags();
2967 FastMathFlags OpF = FNegOp->getFastMathFlags();
2968 FastMathFlags FMF = FastMathFlags::unionValue(FNegF, OpF) |
2970 FMF.setNoInfs(FNegF.noInfs() && OpF.noInfs());
2971 return BinaryOperator::CreateFMulFMF(X, NegC, FMF);
2972 }
2973 // -(X / C) --> X / (-C)
2974 if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C))))
2975 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2976 return BinaryOperator::CreateFDivFMF(X, NegC, &I);
2977 // -(C / X) --> (-C) / X
2978 if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X))))
2979 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) {
2981
2982 // Intersect 'nsz' and 'ninf' because those special value exceptions may
2983 // not apply to the fdiv. Everything else propagates from the fneg.
2984 // TODO: We could propagate nsz/ninf from fdiv alone?
2985 FastMathFlags FMF = I.getFastMathFlags();
2986 FastMathFlags OpFMF = FNegOp->getFastMathFlags();
2987 FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros());
2988 FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs());
2989 return FDiv;
2990 }
2991 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2992 // -(X + C) --> -X + -C --> -C - X
2993 if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C))))
2994 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2995 return BinaryOperator::CreateFSubFMF(NegC, X, &I);
2996
2997 return nullptr;
2998}
2999
3000Instruction *InstCombinerImpl::hoistFNegAboveFMulFDiv(Value *FNegOp,
3001 Instruction &FMFSource) {
3002 Value *X, *Y;
3003 if (match(FNegOp, m_FMul(m_Value(X), m_Value(Y)))) {
3004 // Push into RHS which is more likely to simplify (const or another fneg).
3005 // FIXME: It would be better to invert the transform.
3006 return cast<Instruction>(Builder.CreateFMulFMF(
3007 X, Builder.CreateFNegFMF(Y, &FMFSource), &FMFSource));
3008 }
3009
3010 if (match(FNegOp, m_FDiv(m_Value(X), m_Value(Y)))) {
3011 return cast<Instruction>(Builder.CreateFDivFMF(
3012 Builder.CreateFNegFMF(X, &FMFSource), Y, &FMFSource));
3013 }
3014
3015 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(FNegOp)) {
3016 // Make sure to preserve flags and metadata on the call.
3017 if (II->getIntrinsicID() == Intrinsic::ldexp) {
3018 FastMathFlags FMF = FMFSource.getFastMathFlags() | II->getFastMathFlags();
3019 CallInst *New =
3020 Builder.CreateCall(II->getCalledFunction(),
3021 {Builder.CreateFNegFMF(II->getArgOperand(0), FMF),
3022 II->getArgOperand(1)});
3023 New->setFastMathFlags(FMF);
3024 New->copyMetadata(*II);
3025 return New;
3026 }
3027 }
3028
3029 return nullptr;
3030}
3031
3033 Value *Op = I.getOperand(0);
3034
3035 if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(),
3036 getSimplifyQuery().getWithInstruction(&I)))
3037 return replaceInstUsesWith(I, V);
3038
3040 return X;
3041
3042 Value *X, *Y;
3043
3044 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
3045 if (I.hasNoSignedZeros() &&
3048
3049 Value *OneUse;
3050 if (!match(Op, m_OneUse(m_Value(OneUse))))
3051 return nullptr;
3052
3053 if (Instruction *R = hoistFNegAboveFMulFDiv(OneUse, I))
3054 return replaceInstUsesWith(I, R);
3055
3056 // Try to eliminate fneg if at least 1 arm of the select is negated.
3057 Value *Cond;
3058 if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) {
3059 // Unlike most transforms, this one is not safe to propagate nsz unless
3060 // it is present on the original select. We union the flags from the select
3061 // and fneg and then remove nsz if needed.
3062 auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) {
3063 S->copyFastMathFlags(&I);
3064 if (auto *OldSel = dyn_cast<SelectInst>(Op)) {
3065 FastMathFlags FMF = I.getFastMathFlags() | OldSel->getFastMathFlags();
3066 S->setFastMathFlags(FMF);
3067 if (!OldSel->hasNoSignedZeros() && !CommonOperand &&
3068 !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition()))
3069 S->setHasNoSignedZeros(false);
3070 }
3071 };
3072 // -(Cond ? -P : Y) --> Cond ? P : -Y
3073 Value *P;
3074 if (match(X, m_FNeg(m_Value(P)))) {
3075 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
3076 SelectInst *NewSel = SelectInst::Create(Cond, P, NegY);
3077 propagateSelectFMF(NewSel, P == Y);
3078 return NewSel;
3079 }
3080 // -(Cond ? X : -P) --> Cond ? -X : P
3081 if (match(Y, m_FNeg(m_Value(P)))) {
3082 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
3083 SelectInst *NewSel = SelectInst::Create(Cond, NegX, P);
3084 propagateSelectFMF(NewSel, P == X);
3085 return NewSel;
3086 }
3087
3088 // -(Cond ? X : C) --> Cond ? -X : -C
3089 // -(Cond ? C : Y) --> Cond ? -C : -Y
3090 if (match(X, m_ImmConstant()) || match(Y, m_ImmConstant())) {
3091 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
3092 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
3093 SelectInst *NewSel = SelectInst::Create(Cond, NegX, NegY);
3094 propagateSelectFMF(NewSel, /*CommonOperand=*/true);
3095 return NewSel;
3096 }
3097 }
3098
3099 // fneg (copysign x, y) -> copysign x, (fneg y)
3100 if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) {
3101 // The source copysign has an additional value input, so we can't propagate
3102 // flags the copysign doesn't also have.
3103 FastMathFlags FMF = I.getFastMathFlags();
3104 FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags();
3105 Value *NegY = Builder.CreateFNegFMF(Y, FMF);
3106 Value *NewCopySign = Builder.CreateCopySign(X, NegY, FMF);
3107 return replaceInstUsesWith(I, NewCopySign);
3108 }
3109
3110 // fneg (shuffle x, Mask) --> shuffle (fneg x), Mask
3111 ArrayRef<int> Mask;
3112 if (match(OneUse, m_Shuffle(m_Value(X), m_Poison(), m_Mask(Mask))))
3113 return new ShuffleVectorInst(Builder.CreateFNegFMF(X, &I), Mask);
3114
3115 // fneg (reverse x) --> reverse (fneg x)
3116 if (match(OneUse, m_VecReverse(m_Value(X)))) {
3117 Value *Reverse = Builder.CreateVectorReverse(Builder.CreateFNegFMF(X, &I));
3118 return replaceInstUsesWith(I, Reverse);
3119 }
3120
3121 return nullptr;
3122}
3123
3125 if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1),
3126 I.getFastMathFlags(),
3127 getSimplifyQuery().getWithInstruction(&I)))
3128 return replaceInstUsesWith(I, V);
3129
3131 return X;
3132
3134 return Phi;
3135
3136 // Subtraction from -0.0 is the canonical form of fneg.
3137 // fsub -0.0, X ==> fneg X
3138 // fsub nsz 0.0, X ==> fneg nsz X
3139 //
3140 // FIXME This matcher does not respect FTZ or DAZ yet:
3141 // fsub -0.0, Denorm ==> +-0
3142 // fneg Denorm ==> -Denorm
3143 Value *Op;
3144 if (match(&I, m_FNeg(m_Value(Op))))
3146
3148 return X;
3149
3150 if (Instruction *R = foldFBinOpOfIntCasts(I))
3151 return R;
3152
3153 Value *X, *Y;
3154 Constant *C;
3155
3156 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3157 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
3158 // Canonicalize to fadd to make analysis easier.
3159 // This can also help codegen because fadd is commutative.
3160 // Note that if this fsub was really an fneg, the fadd with -0.0 will get
3161 // killed later. We still limit that particular transform with 'hasOneUse'
3162 // because an fneg is assumed better/cheaper than a generic fsub.
3163 if (I.hasNoSignedZeros() ||
3164 cannotBeNegativeZero(Op0, getSimplifyQuery().getWithInstruction(&I))) {
3165 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
3166 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
3167 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
3168 }
3169 }
3170
3171 // (-X) - Op1 --> -(X + Op1)
3172 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
3173 match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
3174 Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
3176 }
3177
3178 if (isa<Constant>(Op0))
3180 if (Instruction *NV = FoldOpIntoSelect(I, SI))
3181 return NV;
3182
3183 // X - C --> X + (-C)
3184 // But don't transform constant expressions because there's an inverse fold
3185 // for X + (-Y) --> X - Y.
3186 if (match(Op1, m_ImmConstant(C)))
3187 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
3188 return BinaryOperator::CreateFAddFMF(Op0, NegC, &I);
3189
3190 // X - (-Y) --> X + Y
3191 if (match(Op1, m_FNeg(m_Value(Y))))
3192 return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
3193
3194 // Similar to above, but look through a cast of the negated value:
3195 // X - (fptrunc(-Y)) --> X + fptrunc(Y)
3196 Type *Ty = I.getType();
3197 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
3198 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
3199
3200 // X - (fpext(-Y)) --> X + fpext(Y)
3201 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
3202 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
3203
3204 // Similar to above, but look through fmul/fdiv of the negated value:
3205 // Op0 - (-X * Y) --> Op0 + (X * Y)
3206 // Op0 - (Y * -X) --> Op0 + (X * Y)
3207 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
3208 Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
3209 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
3210 }
3211 // Op0 - (-X / Y) --> Op0 + (X / Y)
3212 // Op0 - (X / -Y) --> Op0 + (X / Y)
3213 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
3214 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
3215 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
3216 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
3217 }
3218
3219 // Handle special cases for FSub with selects feeding the operation
3220 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
3221 return replaceInstUsesWith(I, V);
3222
3223 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
3224 // (Y - X) - Y --> -X
3225 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
3227
3228 // Y - (X + Y) --> -X
3229 // Y - (Y + X) --> -X
3230 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
3232
3233 // (X * C) - X --> X * (C - 1.0)
3234 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
3236 Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL))
3237 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
3238 }
3239 // X - (X * C) --> X * (1.0 - C)
3240 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
3242 Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL))
3243 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
3244 }
3245
3246 // Reassociate fsub/fadd sequences to create more fadd instructions and
3247 // reduce dependency chains:
3248 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
3249 Value *Z;
3251 m_Value(Z))))) {
3252 Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
3253 Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
3254 return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
3255 }
3256
3257 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
3259 m_Value(Vec)));
3260 };
3261 Value *A0, *A1, *V0, *V1;
3262 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
3263 V0->getType() == V1->getType()) {
3264 // Difference of sums is sum of differences:
3265 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
3266 Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
3267 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
3268 {Sub->getType()}, {A0, Sub}, &I);
3269 return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
3270 }
3271
3273 return F;
3274
3275 // TODO: This performs reassociative folds for FP ops. Some fraction of the
3276 // functionality has been subsumed by simple pattern matching here and in
3277 // InstSimplify. We should let a dedicated reassociation pass handle more
3278 // complex pattern matching and remove this from InstCombine.
3279 if (Value *V = FAddCombine(Builder).simplify(&I))
3280 return replaceInstUsesWith(I, V);
3281
3282 // (X - Y) - Op1 --> X - (Y + Op1)
3283 if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
3284 Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
3286 }
3287 }
3288
3289 return nullptr;
3290}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
static bool isConstant(const MachineInstr &MI)
AMDGPU Register Bank Select
Rewrite undef for PHI
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
hexagon bit simplify
Hexagon Common GEP
static Instruction * factorizeFAddFSub(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Factor a common operand out of fadd/fsub of fmul/fdiv.
static Instruction * foldAddToAshr(BinaryOperator &Add)
Try to reduce signed division by power-of-2 to an arithmetic shift right.
static bool MatchMul(Value *E, Value *&Op, APInt &C)
static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned)
static Instruction * foldFNegIntoConstant(Instruction &I, const DataLayout &DL)
This eliminates floating-point negation in either 'fneg(X)' or 'fsub(-0.0, X)' form by combining into...
static Instruction * combineAddSubWithShlAddSub(InstCombiner::BuilderTy &Builder, const BinaryOperator &I)
static Instruction * factorizeLerp(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Eliminate an op from a linear interpolation (lerp) pattern.
static Instruction * foldSubOfMinMax(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static Instruction * foldBoxMultiply(BinaryOperator &I)
Reduce a sequence of masked half-width multiplies to a single multiply.
static Value * checkForNegativeOperand(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned)
static Instruction * foldNoWrapAdd(BinaryOperator &Add, InstCombiner::BuilderTy &Builder)
Wrapping flags may allow combining constants separated by an extend.
static bool matchesSquareSum(BinaryOperator &I, Mul2Rhs M2Rhs, Value *&A, Value *&B)
static Instruction * factorizeMathWithShlOps(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
This is a specialization of a more general transform from foldUsingDistributiveLaws.
static Instruction * canonicalizeLowbitMask(BinaryOperator &I, InstCombiner::BuilderTy &Builder)
Fold (1 << NBits) - 1 Into: ~(-(1 << NBits)) Because a 'not' is better for bit-tracking analysis and ...
static Instruction * foldToUnsignedSaturatedAdd(BinaryOperator &I)
static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned)
This file provides internal interfaces used to implement the InstCombine.
This file provides the interface for the instcombine pass implementation.
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition Lint.cpp:539
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
#define T
uint64_t IntrinsicInst * II
#define P(N)
const SmallVectorImpl< MachineOperand > & Cond
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallVector class.
static unsigned getScalarSizeInBits(Type *Ty)
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
Value * RHS
Value * LHS
const fltSemantics & getSemantics() const
Definition APFloat.h:1457
opStatus multiply(const APFloat &RHS, roundingMode RM)
Definition APFloat.h:1199
Class for arbitrary precision integers.
Definition APInt.h:78
LLVM_ABI APInt umul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1971
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
Definition APInt.h:449
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition APInt.h:423
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition APInt.h:206
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition APInt.h:380
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
Definition APInt.h:466
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1488
bool isNegative() const
Determine sign of this APInt.
Definition APInt.h:329
int32_t exactLogBase2() const
Definition APInt.h:1783
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition APInt.h:1639
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition APInt.h:1598
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition APInt.h:219
unsigned logBase2() const
Definition APInt.h:1761
LLVM_ABI APInt smul_ov(const APInt &RHS, bool &Overflow) const
Definition APInt.cpp:1960
bool isMask(unsigned numBits) const
Definition APInt.h:488
LLVM_ABI APInt sext(unsigned width) const
Sign extend to a new width.
Definition APInt.cpp:985
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition APInt.h:1257
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition APInt.h:440
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition APInt.h:296
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition APInt.h:1237
bool isOne() const
Determine if this is a value of 1.
Definition APInt.h:389
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
static BinaryOperator * CreateFAddFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition InstrTypes.h:236
static LLVM_ABI BinaryOperator * CreateNeg(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Helper functions to construct and inspect unary operations (NEG and NOT) via binary operators SUB and...
static LLVM_ABI BinaryOperator * CreateNot(Value *Op, const Twine &Name="", InsertPosition InsertBefore=nullptr)
static BinaryOperator * CreateFMulFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition InstrTypes.h:244
static BinaryOperator * CreateFDivFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition InstrTypes.h:248
static BinaryOperator * CreateFSubFMF(Value *V1, Value *V2, FastMathFlags FMF, const Twine &Name="")
Definition InstrTypes.h:240
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
static LLVM_ABI CastInst * CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a Trunc or BitCast cast instruction.
static LLVM_ABI CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
@ ICMP_UGT
unsigned greater than
Definition InstrTypes.h:699
@ ICMP_SGT
signed greater than
Definition InstrTypes.h:703
@ ICMP_NE
not equal
Definition InstrTypes.h:698
bool isSigned() const
Definition InstrTypes.h:930
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static LLVM_ABI Constant * getSub(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
static LLVM_ABI Constant * getAdd(Constant *C1, Constant *C2, bool HasNUW=false, bool HasNSW=false)
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:277
const APFloat & getValueAPF() const
Definition Constants.h:320
bool isZero() const
Return true if the value is positive or negative zero.
Definition Constants.h:324
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition Constants.h:131
This is an important base class in LLVM.
Definition Constant.h:43
static LLVM_ABI Constant * getAllOnesValue(Type *Ty)
static LLVM_ABI Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
LLVM_ABI bool isElementWiseEqual(Value *Y) const
Return true if this constant and a constant 'Y' are element-wise equal.
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
Convenience struct for specifying and reasoning about fast-math flags.
Definition FMF.h:22
static FastMathFlags intersectRewrite(FastMathFlags LHS, FastMathFlags RHS)
Intersect rewrite-based flags.
Definition FMF.h:112
bool noSignedZeros() const
Definition FMF.h:67
bool noInfs() const
Definition FMF.h:66
static FastMathFlags unionValue(FastMathFlags LHS, FastMathFlags RHS)
Union value flags.
Definition FMF.h:120
void setNoInfs(bool B=true)
Definition FMF.h:81
static bool isLT(Predicate P)
Return true if the predicate is SLT or ULT.
static bool isGT(Predicate P)
Return true if the predicate is SGT or UGT.
Instruction * FoldOpIntoSelect(Instruction &Op, SelectInst *SI, bool FoldWithMultiUse=false)
Given an instruction with a select as one operand and a constant as the other operand,...
Instruction * foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I)
Tries to simplify binops of select and cast of the select condition.
Instruction * visitAdd(BinaryOperator &I)
Instruction * canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(BinaryOperator &I)
Instruction * foldBinOpIntoSelectOrPhi(BinaryOperator &I)
This is a convenience wrapper function for the above two functions.
bool SimplifyAssociativeOrCommutative(BinaryOperator &I)
Performs a few simplifications for operators which are associative or commutative.
Value * foldUsingDistributiveLaws(BinaryOperator &I)
Tries to simplify binary operations which some other binary operation distributes over.
Instruction * foldBinOpShiftWithShift(BinaryOperator &I)
Instruction * foldSquareSumInt(BinaryOperator &I)
Instruction * foldOpIntoPhi(Instruction &I, PHINode *PN, bool AllowMultipleUses=false)
Given a binary operator, cast instruction, or select which has a PHI node as operand #0,...
SelectInst * createSelectInstWithUnknownProfile(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Create select C, S1, S2.
Instruction * foldSquareSumFP(BinaryOperator &I)
Instruction * visitSub(BinaryOperator &I)
Value * OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty, bool isNUW)
Optimize pointer differences into the same array into a size.
Instruction * visitFAdd(BinaryOperator &I)
Instruction * foldBinopWithPhiOperands(BinaryOperator &BO)
For a binary operator with 2 phi operands, try to hoist the binary operation before the phi.
Instruction * foldAddLikeCommutative(Value *LHS, Value *RHS, bool NSW, bool NUW)
Common transforms for add / disjoint or.
Instruction * tryFoldInstWithCtpopWithNot(Instruction *I)
Value * SimplifyAddWithRemainder(BinaryOperator &I)
Tries to simplify add operations using the definition of remainder.
Instruction * foldAddWithConstant(BinaryOperator &Add)
Instruction * foldVectorBinop(BinaryOperator &Inst)
Canonicalize the position of binops relative to shufflevector.
Value * SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS, Value *RHS)
Instruction * visitFNeg(UnaryOperator &I)
Instruction * visitFSub(BinaryOperator &I)
SimplifyQuery SQ
IRBuilder< TargetFolder, IRBuilderCallbackInserter > BuilderTy
An IRBuilder that automatically inserts new instructions into the worklist.
bool isFreeToInvert(Value *V, bool WillInvertAllUses, bool &DoesConsume)
Return true if the specified value is free to invert (apply ~ to).
unsigned ComputeNumSignBits(const Value *Op, const Instruction *CxtI=nullptr, unsigned Depth=0) const
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
static Constant * SubOne(Constant *C)
Subtract one from a Constant.
InstructionWorklist & Worklist
A worklist of the instructions that need to be simplified.
const DataLayout & DL
AssumptionCache & AC
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
DominatorTree & DT
BuilderTy & Builder
Value * getFreelyInverted(Value *V, bool WillInvertAllUses, BuilderTy *Builder, bool &DoesConsume)
const SimplifyQuery & getSimplifyQuery() const
static Constant * AddOne(Constant *C)
Add one to a Constant.
LLVM_ABI void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
LLVM_ABI bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
LLVM_ABI void copyFastMathFlags(FastMathFlags FMF)
Convenience function for transferring all fast-math flag values to this instruction,...
LLVM_ABI void setHasNoSignedZeros(bool B)
Set or clear the no-signed-zeros flag on this instruction, which must be an operator which supports t...
LLVM_ABI void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
LLVM_ABI void setFastMathFlags(FastMathFlags FMF)
Convenience function for setting multiple fast-math flags on this instruction, which must be an opera...
LLVM_ABI void setHasNoInfs(bool B)
Set or clear the no-infs flag on this instruction, which must be an operator which supports this flag...
LLVM_ABI FastMathFlags getFastMathFlags() const LLVM_READONLY
Convenience function for getting all the fast-math flags, which must be an operator which supports th...
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
LLVM_ABI void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
static Value * Negate(bool LHSIsZero, bool IsNSW, Value *Root, InstCombinerImpl &IC)
Attempt to negate Root.
Utility class for integer operators which may exhibit overflow - Add, Sub, Mul, and Shl.
Definition Operator.h:78
bool hasNoSignedWrap() const
Test whether this operation is known to never undergo signed overflow, aka the nsw property.
Definition Operator.h:111
bool hasNoUnsignedWrap() const
Test whether this operation is known to never undergo unsigned overflow, aka the nuw property.
Definition Operator.h:105
This class represents the LLVM 'select' instruction.
static SelectInst * Create(Value *C, Value *S1, Value *S2, const Twine &NameStr="", InsertPosition InsertBefore=nullptr, const Instruction *MDFrom=nullptr)
This instruction constructs a fixed permutation of two input vectors.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
Definition Type.cpp:231
static UnaryOperator * CreateFNegFMF(Value *Op, Instruction *FMFSource, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Definition InstrTypes.h:147
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
LLVM_ABI bool hasNUsesOrMore(unsigned N) const
Return true if this value has N uses or more.
Definition Value.cpp:158
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
This class represents zero extension of integer types.
CallInst * Call
Changed
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
LLVM_ABI Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SpecificConstantMatch, SrcTy, TargetOpcode::G_SUB > m_Neg(const SrcTy &&Src)
Matches a register negated by a G_SUB.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
OneUse_match< SubPat > m_OneUse(const SubPat &SP)
cst_pred_ty< is_all_ones > m_AllOnes()
Match an integer or vector with all bits set.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
cst_pred_ty< is_lowbit_mask > m_LowBitMask()
Match an integer or vector with only the low bit(s) set.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
PtrToIntSameSize_match< OpTy > m_PtrToIntSameSize(const DataLayout &DL, const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
BinaryOp_match< LHS, RHS, Instruction::FMul, true > m_c_FMul(const LHS &L, const RHS &R)
Matches FMul with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FSub > m_FSub(const LHS &L, const RHS &R)
cst_pred_ty< is_power2 > m_Power2()
Match an integer or vector power-of-2.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap, true > m_c_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, TruncInst >, OpTy > m_TruncOrSelf(const OpTy &Op)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
ap_match< APInt > m_APInt(const APInt *&Res)
Match a ConstantInt or splatted ConstantVector, binding the specified pointer to the contained APInt.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoSignedWrap > m_NSWSub(const LHS &L, const RHS &R)
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, OpTy > m_ZExtOrSelf(const OpTy &Op)
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
cstfp_pred_ty< is_any_zero_fp > m_AnyZeroFP()
Match a floating-point negative zero or positive zero.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
specific_intval< true > m_SpecificIntAllowPoison(const APInt &V)
ap_match< APFloat > m_APFloat(const APFloat *&Res)
Match a ConstantFP or splatted ConstantVector, binding the specified pointer to the contained APFloat...
CmpClass_match< LHS, RHS, ICmpInst, true > m_c_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
Matches an ICmp with a predicate over LHS and RHS in either order.
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_or< CastInst_match< OpTy, SExtInst >, OpTy > m_SExtOrSelf(const OpTy &Op)
specific_fpval m_SpecificFP(double V)
Match a specific floating point value or vector with all elements equal to the value.
BinaryOp_match< LHS, RHS, Instruction::Xor, true > m_c_Xor(const LHS &L, const RHS &R)
Matches an Xor with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::FAdd > m_FAdd(const LHS &L, const RHS &R)
match_combine_or< typename m_Intrinsic_Ty< T0, T1 >::Ty, typename m_Intrinsic_Ty< T1, T0 >::Ty > m_c_Intrinsic(const T0 &Op0, const T1 &Op1)
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
deferredval_ty< Value > m_Deferred(Value *const &V)
Like m_Specific(), but works if the specific value to match is determined as part of the same match()...
MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > m_c_SMin(const LHS &L, const RHS &R)
Matches an SMin with LHS and RHS in either order.
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true > m_c_UMax(const LHS &L, const RHS &R)
Matches a UMax with LHS and RHS in either order.
ThreeOps_match< decltype(m_Value()), LHS, RHS, Instruction::Select, true > m_c_Select(const LHS &L, const RHS &R)
Match Select(C, LHS, RHS) or Select(C, RHS, LHS)
CastInst_match< OpTy, FPExtInst > m_FPExt(const OpTy &Op)
SpecificCmpClass_match< LHS, RHS, ICmpInst > m_SpecificICmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinaryOp_match< LHS, RHS, Instruction::UDiv > m_UDiv(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty > m_UMax(const LHS &L, const RHS &R)
cst_pred_ty< is_negated_power2 > m_NegatedPower2()
Match a integer or vector negated power-of-2.
match_immconstant_ty m_ImmConstant()
Match an arbitrary immediate Constant and ignore it.
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > m_c_UMin(const LHS &L, const RHS &R)
Matches a UMin with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
match_combine_or< BinaryOp_match< LHS, RHS, Instruction::Add >, DisjointOr_match< LHS, RHS > > m_AddLike(const LHS &L, const RHS &R)
Match either "add" or "or disjoint".
MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true > m_c_SMax(const LHS &L, const RHS &R)
Matches an SMax with LHS and RHS in either order.
match_combine_or< match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, smax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, smin_pred_ty, true > >, match_combine_or< MaxMin_match< ICmpInst, LHS, RHS, umax_pred_ty, true >, MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty, true > > > m_c_MaxOrMin(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
BinaryOp_match< LHS, RHS, Instruction::SDiv > m_SDiv(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap >, DisjointOr_match< LHS, RHS > > m_NSWAddLike(const LHS &L, const RHS &R)
Match either "add nsw" or "or disjoint".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
AnyBinaryOp_match< LHS, RHS, true > m_c_BinOp(const LHS &L, const RHS &R)
Matches a BinaryOperator with LHS and RHS in either order.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinaryOp_match< LHS, RHS, Instruction::FAdd, true > m_c_FAdd(const LHS &L, const RHS &R)
Matches FAdd with LHS and RHS in either order.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::FDiv > m_FDiv(const LHS &L, const RHS &R)
m_Intrinsic_Ty< Opnd0 >::Ty m_VecReverse(const Opnd0 &Op0)
BinOpPred_match< LHS, RHS, is_irem_op > m_IRem(const LHS &L, const RHS &R)
Matches integer remainder operations.
CastInst_match< OpTy, FPTruncInst > m_FPTrunc(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::SRem > m_SRem(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
match_combine_or< OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap >, DisjointOr_match< LHS, RHS > > m_NUWAddLike(const LHS &L, const RHS &R)
Match either "add nuw" or "or disjoint".
BinaryOp_match< LHS, RHS, Instruction::Mul, true > m_c_Mul(const LHS &L, const RHS &R)
Matches a Mul with LHS and RHS in either order.
m_Intrinsic_Ty< Opnd0, Opnd1 >::Ty m_CopySign(const Opnd0 &Op0, const Opnd1 &Op1)
CastOperator_match< OpTy, Instruction::PtrToInt > m_PtrToInt(const OpTy &Op)
Matches PtrToInt.
MatchFunctor< Val, Pattern > match_fn(const Pattern &P)
A match functor that can be used as a UnaryPredicate in functional algorithms like all_of.
BinaryOp_match< LHS, RHS, Instruction::Sub > m_Sub(const LHS &L, const RHS &R)
MaxMin_match< ICmpInst, LHS, RHS, umin_pred_ty > m_UMin(const LHS &L, const RHS &R)
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
@ CE
Windows NT (Windows on ARM)
Definition MCAsmInfo.h:48
Context & getContext() const
Definition BasicBlock.h:99
friend class Instruction
Iterator for Instructions in a `BasicBlock.
Definition BasicBlock.h:73
This is an optimization pass for GlobalISel generic memory operations.
LLVM_ABI bool haveNoCommonBitsSet(const WithCache< const Value * > &LHSCache, const WithCache< const Value * > &RHSCache, const SimplifyQuery &SQ)
Return true if LHS and RHS have no common bits set.
LLVM_ABI Intrinsic::ID getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID)
@ Offset
Definition DWP.cpp:477
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
Definition MathExtras.h:174
LLVM_ABI bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, bool &TrueIfSigned)
Given an exploded icmp instruction, return true if the comparison only checks the sign bit.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:644
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator+=(DynamicAPInt &A, int64_t B)
LLVM_ABI bool canIgnoreSignBitOfZero(const Use &U)
Return true if the sign bit of the FP value can be ignored by the user when the value is zero.
LLVM_ABI bool isGuaranteedNotToBeUndef(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be undef, but may be poison.
LLVM_ABI bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
LLVM_ABI Value * simplifySubInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for a Sub, fold the result or return null.
LLVM_ABI bool matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, Value *&Start, Value *&Step)
Attempt to match a simple first order recurrence cycle of the form: iv = phi Ty [Start,...
LLVM_ABI Value * simplifyAddInst(Value *LHS, Value *RHS, bool IsNSW, bool IsNUW, const SimplifyQuery &Q)
Given operands for an Add, fold the result or return null.
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator*=(DynamicAPInt &A, int64_t B)
LLVM_ABI Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
LLVM_ABI Value * simplifyFNegInst(Value *Op, FastMathFlags FMF, const SimplifyQuery &Q)
Given operand for an FNeg, fold the result or return null.
LLVM_ABI Value * simplifyFSubInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FSub, fold the result or return null.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI Value * simplifyFAddInst(Value *LHS, Value *RHS, FastMathFlags FMF, const SimplifyQuery &Q, fp::ExceptionBehavior ExBehavior=fp::ebIgnore, RoundingMode Rounding=RoundingMode::NearestTiesToEven)
Given operands for an FAdd, fold the result or return null.
LLVM_ABI void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true, unsigned Depth=0)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
LLVM_ABI bool cannotBeNegativeZero(const Value *V, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if we can prove that the specified FP value is never equal to -0.0.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1739
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
LLVM_ABI Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
LLVM_ABI bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:71
@ Mul
Product of integers.
@ FMul
Product of floats.
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ Sub
Subtraction of integers.
@ Add
Sum of integers.
@ FAdd
Sum of floats.
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
DWARFExpression::Operation Op
RoundingMode
Rounding mode.
LLVM_ABI bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:560
LLVM_ABI Constant * ConstantFoldBinaryInstruction(unsigned Opcode, Constant *V1, Constant *V2)
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:869
A suitably aligned and sized character array member which can hold elements of any type.
Definition AlignOf.h:22
Value * Ptr
Common base pointer.
SmallVector< GEPOperator * > RHSGEPs
RHS GEPs until common base.
SmallVector< GEPOperator * > LHSGEPs
LHS GEPs until common base.
bool isExpensive() const
Whether expanding the GEP chains is expensive.
static CommonPointerBase compute(Value *LHS, Value *RHS)
Matching combinators.