LLVM 18.0.0git
DFAJumpThreading.cpp
Go to the documentation of this file.
1//===- DFAJumpThreading.cpp - Threads a switch statement inside a loop ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Transform each threading path to effectively jump thread the DFA. For
10// example, the CFG below could be transformed as follows, where the cloned
11// blocks unconditionally branch to the next correct case based on what is
12// identified in the analysis.
13//
14// sw.bb sw.bb
15// / | \ / | \
16// case1 case2 case3 case1 case2 case3
17// \ | / | | |
18// determinator det.2 det.3 det.1
19// br sw.bb / | \
20// sw.bb.2 sw.bb.3 sw.bb.1
21// br case2 br case3 br case1ยง
22//
23// Definitions and Terminology:
24//
25// * Threading path:
26// a list of basic blocks, the exit state, and the block that determines
27// the next state, for which the following notation will be used:
28// < path of BBs that form a cycle > [ state, determinator ]
29//
30// * Predictable switch:
31// The switch variable is always a known constant so that all conditional
32// jumps based on switch variable can be converted to unconditional jump.
33//
34// * Determinator:
35// The basic block that determines the next state of the DFA.
36//
37// Representing the optimization in C-like pseudocode: the code pattern on the
38// left could functionally be transformed to the right pattern if the switch
39// condition is predictable.
40//
41// X = A goto A
42// for (...) A:
43// switch (X) ...
44// case A goto B
45// X = B B:
46// case B ...
47// X = C goto C
48//
49// The pass first checks that switch variable X is decided by the control flow
50// path taken in the loop; for example, in case B, the next value of X is
51// decided to be C. It then enumerates through all paths in the loop and labels
52// the basic blocks where the next state is decided.
53//
54// Using this information it creates new paths that unconditionally branch to
55// the next case. This involves cloning code, so it only gets triggered if the
56// amount of code duplicated is below a threshold.
57//
58//===----------------------------------------------------------------------===//
59
61#include "llvm/ADT/APInt.h"
62#include "llvm/ADT/DenseMap.h"
63#include "llvm/ADT/SmallSet.h"
64#include "llvm/ADT/Statistic.h"
70#include "llvm/IR/CFG.h"
71#include "llvm/IR/Constants.h"
74#include "llvm/Support/Debug.h"
78#include <algorithm>
79#include <deque>
80
81#ifdef EXPENSIVE_CHECKS
82#include "llvm/IR/Verifier.h"
83#endif
84
85using namespace llvm;
86
87#define DEBUG_TYPE "dfa-jump-threading"
88
89STATISTIC(NumTransforms, "Number of transformations done");
90STATISTIC(NumCloned, "Number of blocks cloned");
91STATISTIC(NumPaths, "Number of individual paths threaded");
92
93static cl::opt<bool>
94 ClViewCfgBefore("dfa-jump-view-cfg-before",
95 cl::desc("View the CFG before DFA Jump Threading"),
96 cl::Hidden, cl::init(false));
97
99 "dfa-max-path-length",
100 cl::desc("Max number of blocks searched to find a threading path"),
101 cl::Hidden, cl::init(20));
102
104 "dfa-max-num-paths",
105 cl::desc("Max number of paths enumerated around a switch"),
106 cl::Hidden, cl::init(200));
107
109 CostThreshold("dfa-cost-threshold",
110 cl::desc("Maximum cost accepted for the transformation"),
111 cl::Hidden, cl::init(50));
112
113namespace {
114
115class SelectInstToUnfold {
116 SelectInst *SI;
117 PHINode *SIUse;
118
119public:
120 SelectInstToUnfold(SelectInst *SI, PHINode *SIUse) : SI(SI), SIUse(SIUse) {}
121
122 SelectInst *getInst() { return SI; }
123 PHINode *getUse() { return SIUse; }
124
125 explicit operator bool() const { return SI && SIUse; }
126};
127
128void unfold(DomTreeUpdater *DTU, SelectInstToUnfold SIToUnfold,
129 std::vector<SelectInstToUnfold> *NewSIsToUnfold,
130 std::vector<BasicBlock *> *NewBBs);
131
132class DFAJumpThreading {
133public:
134 DFAJumpThreading(AssumptionCache *AC, DominatorTree *DT,
136 : AC(AC), DT(DT), TTI(TTI), ORE(ORE) {}
137
138 bool run(Function &F);
139
140private:
141 void
142 unfoldSelectInstrs(DominatorTree *DT,
143 const SmallVector<SelectInstToUnfold, 4> &SelectInsts) {
144 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
146 for (SelectInstToUnfold SIToUnfold : SelectInsts)
147 Stack.push_back(SIToUnfold);
148
149 while (!Stack.empty()) {
150 SelectInstToUnfold SIToUnfold = Stack.pop_back_val();
151
152 std::vector<SelectInstToUnfold> NewSIsToUnfold;
153 std::vector<BasicBlock *> NewBBs;
154 unfold(&DTU, SIToUnfold, &NewSIsToUnfold, &NewBBs);
155
156 // Put newly discovered select instructions into the work list.
157 for (const SelectInstToUnfold &NewSIToUnfold : NewSIsToUnfold)
158 Stack.push_back(NewSIToUnfold);
159 }
160 }
161
162 AssumptionCache *AC;
163 DominatorTree *DT;
166};
167
168} // end anonymous namespace
169
170namespace {
171
172/// Create a new basic block and sink \p SIToSink into it.
173void createBasicBlockAndSinkSelectInst(
174 DomTreeUpdater *DTU, SelectInst *SI, PHINode *SIUse, SelectInst *SIToSink,
175 BasicBlock *EndBlock, StringRef NewBBName, BasicBlock **NewBlock,
176 BranchInst **NewBranch, std::vector<SelectInstToUnfold> *NewSIsToUnfold,
177 std::vector<BasicBlock *> *NewBBs) {
178 assert(SIToSink->hasOneUse());
179 assert(NewBlock);
180 assert(NewBranch);
181 *NewBlock = BasicBlock::Create(SI->getContext(), NewBBName,
182 EndBlock->getParent(), EndBlock);
183 NewBBs->push_back(*NewBlock);
184 *NewBranch = BranchInst::Create(EndBlock, *NewBlock);
185 SIToSink->moveBefore(*NewBranch);
186 NewSIsToUnfold->push_back(SelectInstToUnfold(SIToSink, SIUse));
187 DTU->applyUpdates({{DominatorTree::Insert, *NewBlock, EndBlock}});
188}
189
190/// Unfold the select instruction held in \p SIToUnfold by replacing it with
191/// control flow.
192///
193/// Put newly discovered select instructions into \p NewSIsToUnfold. Put newly
194/// created basic blocks into \p NewBBs.
195///
196/// TODO: merge it with CodeGenPrepare::optimizeSelectInst() if possible.
197void unfold(DomTreeUpdater *DTU, SelectInstToUnfold SIToUnfold,
198 std::vector<SelectInstToUnfold> *NewSIsToUnfold,
199 std::vector<BasicBlock *> *NewBBs) {
200 SelectInst *SI = SIToUnfold.getInst();
201 PHINode *SIUse = SIToUnfold.getUse();
202 BasicBlock *StartBlock = SI->getParent();
203 BasicBlock *EndBlock = SIUse->getParent();
204 BranchInst *StartBlockTerm =
205 dyn_cast<BranchInst>(StartBlock->getTerminator());
206
207 assert(StartBlockTerm && StartBlockTerm->isUnconditional());
208 assert(SI->hasOneUse());
209
210 // These are the new basic blocks for the conditional branch.
211 // At least one will become an actual new basic block.
212 BasicBlock *TrueBlock = nullptr;
213 BasicBlock *FalseBlock = nullptr;
214 BranchInst *TrueBranch = nullptr;
215 BranchInst *FalseBranch = nullptr;
216
217 // Sink select instructions to be able to unfold them later.
218 if (SelectInst *SIOp = dyn_cast<SelectInst>(SI->getTrueValue())) {
219 createBasicBlockAndSinkSelectInst(DTU, SI, SIUse, SIOp, EndBlock,
220 "si.unfold.true", &TrueBlock, &TrueBranch,
221 NewSIsToUnfold, NewBBs);
222 }
223 if (SelectInst *SIOp = dyn_cast<SelectInst>(SI->getFalseValue())) {
224 createBasicBlockAndSinkSelectInst(DTU, SI, SIUse, SIOp, EndBlock,
225 "si.unfold.false", &FalseBlock,
226 &FalseBranch, NewSIsToUnfold, NewBBs);
227 }
228
229 // If there was nothing to sink, then arbitrarily choose the 'false' side
230 // for a new input value to the PHI.
231 if (!TrueBlock && !FalseBlock) {
232 FalseBlock = BasicBlock::Create(SI->getContext(), "si.unfold.false",
233 EndBlock->getParent(), EndBlock);
234 NewBBs->push_back(FalseBlock);
235 BranchInst::Create(EndBlock, FalseBlock);
236 DTU->applyUpdates({{DominatorTree::Insert, FalseBlock, EndBlock}});
237 }
238
239 // Insert the real conditional branch based on the original condition.
240 // If we did not create a new block for one of the 'true' or 'false' paths
241 // of the condition, it means that side of the branch goes to the end block
242 // directly and the path originates from the start block from the point of
243 // view of the new PHI.
244 BasicBlock *TT = EndBlock;
245 BasicBlock *FT = EndBlock;
246 if (TrueBlock && FalseBlock) {
247 // A diamond.
248 TT = TrueBlock;
249 FT = FalseBlock;
250
251 // Update the phi node of SI.
252 SIUse->removeIncomingValue(StartBlock, /* DeletePHIIfEmpty = */ false);
253 SIUse->addIncoming(SI->getTrueValue(), TrueBlock);
254 SIUse->addIncoming(SI->getFalseValue(), FalseBlock);
255
256 // Update any other PHI nodes in EndBlock.
257 for (PHINode &Phi : EndBlock->phis()) {
258 if (&Phi != SIUse) {
259 Phi.addIncoming(Phi.getIncomingValueForBlock(StartBlock), TrueBlock);
260 Phi.addIncoming(Phi.getIncomingValueForBlock(StartBlock), FalseBlock);
261 }
262 }
263 } else {
264 BasicBlock *NewBlock = nullptr;
265 Value *SIOp1 = SI->getTrueValue();
266 Value *SIOp2 = SI->getFalseValue();
267
268 // A triangle pointing right.
269 if (!TrueBlock) {
270 NewBlock = FalseBlock;
271 FT = FalseBlock;
272 }
273 // A triangle pointing left.
274 else {
275 NewBlock = TrueBlock;
276 TT = TrueBlock;
277 std::swap(SIOp1, SIOp2);
278 }
279
280 // Update the phi node of SI.
281 for (unsigned Idx = 0; Idx < SIUse->getNumIncomingValues(); ++Idx) {
282 if (SIUse->getIncomingBlock(Idx) == StartBlock)
283 SIUse->setIncomingValue(Idx, SIOp1);
284 }
285 SIUse->addIncoming(SIOp2, NewBlock);
286
287 // Update any other PHI nodes in EndBlock.
288 for (auto II = EndBlock->begin(); PHINode *Phi = dyn_cast<PHINode>(II);
289 ++II) {
290 if (Phi != SIUse)
291 Phi->addIncoming(Phi->getIncomingValueForBlock(StartBlock), NewBlock);
292 }
293 }
294 StartBlockTerm->eraseFromParent();
295 BranchInst::Create(TT, FT, SI->getCondition(), StartBlock);
296 DTU->applyUpdates({{DominatorTree::Insert, StartBlock, TT},
297 {DominatorTree::Insert, StartBlock, FT}});
298
299 // The select is now dead.
300 SI->eraseFromParent();
301}
302
303struct ClonedBlock {
304 BasicBlock *BB;
305 uint64_t State; ///< \p State corresponds to the next value of a switch stmnt.
306};
307
308typedef std::deque<BasicBlock *> PathType;
309typedef std::vector<PathType> PathsType;
310typedef SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
311typedef std::vector<ClonedBlock> CloneList;
312
313// This data structure keeps track of all blocks that have been cloned. If two
314// different ThreadingPaths clone the same block for a certain state it should
315// be reused, and it can be looked up in this map.
316typedef DenseMap<BasicBlock *, CloneList> DuplicateBlockMap;
317
318// This map keeps track of all the new definitions for an instruction. This
319// information is needed when restoring SSA form after cloning blocks.
321
322inline raw_ostream &operator<<(raw_ostream &OS, const PathType &Path) {
323 OS << "< ";
324 for (const BasicBlock *BB : Path) {
325 std::string BBName;
326 if (BB->hasName())
327 raw_string_ostream(BBName) << BB->getName();
328 else
329 raw_string_ostream(BBName) << BB;
330 OS << BBName << " ";
331 }
332 OS << ">";
333 return OS;
334}
335
336/// ThreadingPath is a path in the control flow of a loop that can be threaded
337/// by cloning necessary basic blocks and replacing conditional branches with
338/// unconditional ones. A threading path includes a list of basic blocks, the
339/// exit state, and the block that determines the next state.
340struct ThreadingPath {
341 /// Exit value is DFA's exit state for the given path.
342 uint64_t getExitValue() const { return ExitVal; }
343 void setExitValue(const ConstantInt *V) {
344 ExitVal = V->getZExtValue();
345 IsExitValSet = true;
346 }
347 bool isExitValueSet() const { return IsExitValSet; }
348
349 /// Determinator is the basic block that determines the next state of the DFA.
350 const BasicBlock *getDeterminatorBB() const { return DBB; }
351 void setDeterminator(const BasicBlock *BB) { DBB = BB; }
352
353 /// Path is a list of basic blocks.
354 const PathType &getPath() const { return Path; }
355 void setPath(const PathType &NewPath) { Path = NewPath; }
356
357 void print(raw_ostream &OS) const {
358 OS << Path << " [ " << ExitVal << ", " << DBB->getName() << " ]";
359 }
360
361private:
362 PathType Path;
363 uint64_t ExitVal;
364 const BasicBlock *DBB = nullptr;
365 bool IsExitValSet = false;
366};
367
368#ifndef NDEBUG
369inline raw_ostream &operator<<(raw_ostream &OS, const ThreadingPath &TPath) {
370 TPath.print(OS);
371 return OS;
372}
373#endif
374
375struct MainSwitch {
376 MainSwitch(SwitchInst *SI, OptimizationRemarkEmitter *ORE) {
377 if (isCandidate(SI)) {
378 Instr = SI;
379 } else {
380 ORE->emit([&]() {
381 return OptimizationRemarkMissed(DEBUG_TYPE, "SwitchNotPredictable", SI)
382 << "Switch instruction is not predictable.";
383 });
384 }
385 }
386
387 virtual ~MainSwitch() = default;
388
389 SwitchInst *getInstr() const { return Instr; }
390 const SmallVector<SelectInstToUnfold, 4> getSelectInsts() {
391 return SelectInsts;
392 }
393
394private:
395 /// Do a use-def chain traversal starting from the switch condition to see if
396 /// \p SI is a potential condidate.
397 ///
398 /// Also, collect select instructions to unfold.
399 bool isCandidate(const SwitchInst *SI) {
400 std::deque<Value *> Q;
401 SmallSet<Value *, 16> SeenValues;
402 SelectInsts.clear();
403
404 Value *SICond = SI->getCondition();
405 LLVM_DEBUG(dbgs() << "\tSICond: " << *SICond << "\n");
406 if (!isa<PHINode>(SICond))
407 return false;
408
409 addToQueue(SICond, Q, SeenValues);
410
411 while (!Q.empty()) {
412 Value *Current = Q.front();
413 Q.pop_front();
414
415 if (auto *Phi = dyn_cast<PHINode>(Current)) {
416 for (Value *Incoming : Phi->incoming_values()) {
417 addToQueue(Incoming, Q, SeenValues);
418 }
419 LLVM_DEBUG(dbgs() << "\tphi: " << *Phi << "\n");
420 } else if (SelectInst *SelI = dyn_cast<SelectInst>(Current)) {
421 if (!isValidSelectInst(SelI))
422 return false;
423 addToQueue(SelI->getTrueValue(), Q, SeenValues);
424 addToQueue(SelI->getFalseValue(), Q, SeenValues);
425 LLVM_DEBUG(dbgs() << "\tselect: " << *SelI << "\n");
426 if (auto *SelIUse = dyn_cast<PHINode>(SelI->user_back()))
427 SelectInsts.push_back(SelectInstToUnfold(SelI, SelIUse));
428 } else if (isa<Constant>(Current)) {
429 LLVM_DEBUG(dbgs() << "\tconst: " << *Current << "\n");
430 continue;
431 } else {
432 LLVM_DEBUG(dbgs() << "\tother: " << *Current << "\n");
433 // Allow unpredictable values. The hope is that those will be the
434 // initial switch values that can be ignored (they will hit the
435 // unthreaded switch) but this assumption will get checked later after
436 // paths have been enumerated (in function getStateDefMap).
437 continue;
438 }
439 }
440
441 return true;
442 }
443
444 void addToQueue(Value *Val, std::deque<Value *> &Q,
445 SmallSet<Value *, 16> &SeenValues) {
446 if (SeenValues.contains(Val))
447 return;
448 Q.push_back(Val);
449 SeenValues.insert(Val);
450 }
451
452 bool isValidSelectInst(SelectInst *SI) {
453 if (!SI->hasOneUse())
454 return false;
455
456 Instruction *SIUse = dyn_cast<Instruction>(SI->user_back());
457 // The use of the select inst should be either a phi or another select.
458 if (!SIUse && !(isa<PHINode>(SIUse) || isa<SelectInst>(SIUse)))
459 return false;
460
461 BasicBlock *SIBB = SI->getParent();
462
463 // Currently, we can only expand select instructions in basic blocks with
464 // one successor.
465 BranchInst *SITerm = dyn_cast<BranchInst>(SIBB->getTerminator());
466 if (!SITerm || !SITerm->isUnconditional())
467 return false;
468
469 if (isa<PHINode>(SIUse) &&
470 SIBB->getSingleSuccessor() != cast<Instruction>(SIUse)->getParent())
471 return false;
472
473 // If select will not be sunk during unfolding, and it is in the same basic
474 // block as another state defining select, then cannot unfold both.
475 for (SelectInstToUnfold SIToUnfold : SelectInsts) {
476 SelectInst *PrevSI = SIToUnfold.getInst();
477 if (PrevSI->getTrueValue() != SI && PrevSI->getFalseValue() != SI &&
478 PrevSI->getParent() == SI->getParent())
479 return false;
480 }
481
482 return true;
483 }
484
485 SwitchInst *Instr = nullptr;
487};
488
489struct AllSwitchPaths {
490 AllSwitchPaths(const MainSwitch *MSwitch, OptimizationRemarkEmitter *ORE)
491 : Switch(MSwitch->getInstr()), SwitchBlock(Switch->getParent()),
492 ORE(ORE) {}
493
494 std::vector<ThreadingPath> &getThreadingPaths() { return TPaths; }
495 unsigned getNumThreadingPaths() { return TPaths.size(); }
496 SwitchInst *getSwitchInst() { return Switch; }
497 BasicBlock *getSwitchBlock() { return SwitchBlock; }
498
499 void run() {
500 VisitedBlocks Visited;
501 PathsType LoopPaths = paths(SwitchBlock, Visited, /* PathDepth = */ 1);
502 StateDefMap StateDef = getStateDefMap(LoopPaths);
503
504 if (StateDef.empty()) {
505 ORE->emit([&]() {
506 return OptimizationRemarkMissed(DEBUG_TYPE, "SwitchNotPredictable",
507 Switch)
508 << "Switch instruction is not predictable.";
509 });
510 return;
511 }
512
513 for (PathType Path : LoopPaths) {
514 ThreadingPath TPath;
515
516 const BasicBlock *PrevBB = Path.back();
517 for (const BasicBlock *BB : Path) {
518 if (StateDef.count(BB) != 0) {
519 const PHINode *Phi = dyn_cast<PHINode>(StateDef[BB]);
520 assert(Phi && "Expected a state-defining instr to be a phi node.");
521
522 const Value *V = Phi->getIncomingValueForBlock(PrevBB);
523 if (const ConstantInt *C = dyn_cast<const ConstantInt>(V)) {
524 TPath.setExitValue(C);
525 TPath.setDeterminator(BB);
526 TPath.setPath(Path);
527 }
528 }
529
530 // Switch block is the determinator, this is the final exit value.
531 if (TPath.isExitValueSet() && BB == Path.front())
532 break;
533
534 PrevBB = BB;
535 }
536
537 if (TPath.isExitValueSet() && isSupported(TPath))
538 TPaths.push_back(TPath);
539 }
540 }
541
542private:
543 // Value: an instruction that defines a switch state;
544 // Key: the parent basic block of that instruction.
546
547 PathsType paths(BasicBlock *BB, VisitedBlocks &Visited,
548 unsigned PathDepth) const {
549 PathsType Res;
550
551 // Stop exploring paths after visiting MaxPathLength blocks
552 if (PathDepth > MaxPathLength) {
553 ORE->emit([&]() {
554 return OptimizationRemarkAnalysis(DEBUG_TYPE, "MaxPathLengthReached",
555 Switch)
556 << "Exploration stopped after visiting MaxPathLength="
557 << ore::NV("MaxPathLength", MaxPathLength) << " blocks.";
558 });
559 return Res;
560 }
561
562 Visited.insert(BB);
563
564 // Some blocks have multiple edges to the same successor, and this set
565 // is used to prevent a duplicate path from being generated
566 SmallSet<BasicBlock *, 4> Successors;
567 for (BasicBlock *Succ : successors(BB)) {
568 if (!Successors.insert(Succ).second)
569 continue;
570
571 // Found a cycle through the SwitchBlock
572 if (Succ == SwitchBlock) {
573 Res.push_back({BB});
574 continue;
575 }
576
577 // We have encountered a cycle, do not get caught in it
578 if (Visited.contains(Succ))
579 continue;
580
581 PathsType SuccPaths = paths(Succ, Visited, PathDepth + 1);
582 for (const PathType &Path : SuccPaths) {
583 PathType NewPath(Path);
584 NewPath.push_front(BB);
585 Res.push_back(NewPath);
586 if (Res.size() >= MaxNumPaths) {
587 return Res;
588 }
589 }
590 }
591 // This block could now be visited again from a different predecessor. Note
592 // that this will result in exponential runtime. Subpaths could possibly be
593 // cached but it takes a lot of memory to store them.
594 Visited.erase(BB);
595 return Res;
596 }
597
598 /// Walk the use-def chain and collect all the state-defining instructions.
599 ///
600 /// Return an empty map if unpredictable values encountered inside the basic
601 /// blocks of \p LoopPaths.
602 StateDefMap getStateDefMap(const PathsType &LoopPaths) const {
603 StateDefMap Res;
604
605 // Basic blocks belonging to any of the loops around the switch statement.
607 for (const PathType &Path : LoopPaths) {
608 for (BasicBlock *BB : Path)
609 LoopBBs.insert(BB);
610 }
611
612 Value *FirstDef = Switch->getOperand(0);
613
614 assert(isa<PHINode>(FirstDef) && "The first definition must be a phi.");
615
617 Stack.push_back(dyn_cast<PHINode>(FirstDef));
618 SmallSet<Value *, 16> SeenValues;
619
620 while (!Stack.empty()) {
621 PHINode *CurPhi = Stack.pop_back_val();
622
623 Res[CurPhi->getParent()] = CurPhi;
624 SeenValues.insert(CurPhi);
625
626 for (BasicBlock *IncomingBB : CurPhi->blocks()) {
627 Value *Incoming = CurPhi->getIncomingValueForBlock(IncomingBB);
628 bool IsOutsideLoops = LoopBBs.count(IncomingBB) == 0;
629 if (Incoming == FirstDef || isa<ConstantInt>(Incoming) ||
630 SeenValues.contains(Incoming) || IsOutsideLoops) {
631 continue;
632 }
633
634 // Any unpredictable value inside the loops means we must bail out.
635 if (!isa<PHINode>(Incoming))
636 return StateDefMap();
637
638 Stack.push_back(cast<PHINode>(Incoming));
639 }
640 }
641
642 return Res;
643 }
644
645 /// The determinator BB should precede the switch-defining BB.
646 ///
647 /// Otherwise, it is possible that the state defined in the determinator block
648 /// defines the state for the next iteration of the loop, rather than for the
649 /// current one.
650 ///
651 /// Currently supported paths:
652 /// \code
653 /// < switch bb1 determ def > [ 42, determ ]
654 /// < switch_and_def bb1 determ > [ 42, determ ]
655 /// < switch_and_def_and_determ bb1 > [ 42, switch_and_def_and_determ ]
656 /// \endcode
657 ///
658 /// Unsupported paths:
659 /// \code
660 /// < switch bb1 def determ > [ 43, determ ]
661 /// < switch_and_determ bb1 def > [ 43, switch_and_determ ]
662 /// \endcode
663 bool isSupported(const ThreadingPath &TPath) {
664 Instruction *SwitchCondI = dyn_cast<Instruction>(Switch->getCondition());
665 assert(SwitchCondI);
666 if (!SwitchCondI)
667 return false;
668
669 const BasicBlock *SwitchCondDefBB = SwitchCondI->getParent();
670 const BasicBlock *SwitchCondUseBB = Switch->getParent();
671 const BasicBlock *DeterminatorBB = TPath.getDeterminatorBB();
672
673 assert(
674 SwitchCondUseBB == TPath.getPath().front() &&
675 "The first BB in a threading path should have the switch instruction");
676 if (SwitchCondUseBB != TPath.getPath().front())
677 return false;
678
679 // Make DeterminatorBB the first element in Path.
680 PathType Path = TPath.getPath();
681 auto ItDet = llvm::find(Path, DeterminatorBB);
682 std::rotate(Path.begin(), ItDet, Path.end());
683
684 bool IsDetBBSeen = false;
685 bool IsDefBBSeen = false;
686 bool IsUseBBSeen = false;
687 for (BasicBlock *BB : Path) {
688 if (BB == DeterminatorBB)
689 IsDetBBSeen = true;
690 if (BB == SwitchCondDefBB)
691 IsDefBBSeen = true;
692 if (BB == SwitchCondUseBB)
693 IsUseBBSeen = true;
694 if (IsDetBBSeen && IsUseBBSeen && !IsDefBBSeen)
695 return false;
696 }
697
698 return true;
699 }
700
702 BasicBlock *SwitchBlock;
704 std::vector<ThreadingPath> TPaths;
705};
706
707struct TransformDFA {
708 TransformDFA(AllSwitchPaths *SwitchPaths, DominatorTree *DT,
712 : SwitchPaths(SwitchPaths), DT(DT), AC(AC), TTI(TTI), ORE(ORE),
713 EphValues(EphValues) {}
714
715 void run() {
716 if (isLegalAndProfitableToTransform()) {
717 createAllExitPaths();
718 NumTransforms++;
719 }
720 }
721
722private:
723 /// This function performs both a legality check and profitability check at
724 /// the same time since it is convenient to do so. It iterates through all
725 /// blocks that will be cloned, and keeps track of the duplication cost. It
726 /// also returns false if it is illegal to clone some required block.
727 bool isLegalAndProfitableToTransform() {
729 SwitchInst *Switch = SwitchPaths->getSwitchInst();
730
731 // Note that DuplicateBlockMap is not being used as intended here. It is
732 // just being used to ensure (BB, State) pairs are only counted once.
733 DuplicateBlockMap DuplicateMap;
734
735 for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
736 PathType PathBBs = TPath.getPath();
737 uint64_t NextState = TPath.getExitValue();
738 const BasicBlock *Determinator = TPath.getDeterminatorBB();
739
740 // Update Metrics for the Switch block, this is always cloned
741 BasicBlock *BB = SwitchPaths->getSwitchBlock();
742 BasicBlock *VisitedBB = getClonedBB(BB, NextState, DuplicateMap);
743 if (!VisitedBB) {
744 Metrics.analyzeBasicBlock(BB, *TTI, EphValues);
745 DuplicateMap[BB].push_back({BB, NextState});
746 }
747
748 // If the Switch block is the Determinator, then we can continue since
749 // this is the only block that is cloned and we already counted for it.
750 if (PathBBs.front() == Determinator)
751 continue;
752
753 // Otherwise update Metrics for all blocks that will be cloned. If any
754 // block is already cloned and would be reused, don't double count it.
755 auto DetIt = llvm::find(PathBBs, Determinator);
756 for (auto BBIt = DetIt; BBIt != PathBBs.end(); BBIt++) {
757 BB = *BBIt;
758 VisitedBB = getClonedBB(BB, NextState, DuplicateMap);
759 if (VisitedBB)
760 continue;
761 Metrics.analyzeBasicBlock(BB, *TTI, EphValues);
762 DuplicateMap[BB].push_back({BB, NextState});
763 }
764
765 if (Metrics.notDuplicatable) {
766 LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains "
767 << "non-duplicatable instructions.\n");
768 ORE->emit([&]() {
769 return OptimizationRemarkMissed(DEBUG_TYPE, "NonDuplicatableInst",
770 Switch)
771 << "Contains non-duplicatable instructions.";
772 });
773 return false;
774 }
775
776 if (Metrics.convergent) {
777 LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains "
778 << "convergent instructions.\n");
779 ORE->emit([&]() {
780 return OptimizationRemarkMissed(DEBUG_TYPE, "ConvergentInst", Switch)
781 << "Contains convergent instructions.";
782 });
783 return false;
784 }
785
786 if (!Metrics.NumInsts.isValid()) {
787 LLVM_DEBUG(dbgs() << "DFA Jump Threading: Not jump threading, contains "
788 << "instructions with invalid cost.\n");
789 ORE->emit([&]() {
790 return OptimizationRemarkMissed(DEBUG_TYPE, "ConvergentInst", Switch)
791 << "Contains instructions with invalid cost.";
792 });
793 return false;
794 }
795 }
796
797 InstructionCost DuplicationCost = 0;
798
799 unsigned JumpTableSize = 0;
800 TTI->getEstimatedNumberOfCaseClusters(*Switch, JumpTableSize, nullptr,
801 nullptr);
802 if (JumpTableSize == 0) {
803 // Factor in the number of conditional branches reduced from jump
804 // threading. Assume that lowering the switch block is implemented by
805 // using binary search, hence the LogBase2().
806 unsigned CondBranches =
807 APInt(32, Switch->getNumSuccessors()).ceilLogBase2();
808 DuplicationCost = Metrics.NumInsts / CondBranches;
809 } else {
810 // Compared with jump tables, the DFA optimizer removes an indirect branch
811 // on each loop iteration, thus making branch prediction more precise. The
812 // more branch targets there are, the more likely it is for the branch
813 // predictor to make a mistake, and the more benefit there is in the DFA
814 // optimizer. Thus, the more branch targets there are, the lower is the
815 // cost of the DFA opt.
816 DuplicationCost = Metrics.NumInsts / JumpTableSize;
817 }
818
819 LLVM_DEBUG(dbgs() << "\nDFA Jump Threading: Cost to jump thread block "
820 << SwitchPaths->getSwitchBlock()->getName()
821 << " is: " << DuplicationCost << "\n\n");
822
823 if (DuplicationCost > CostThreshold) {
824 LLVM_DEBUG(dbgs() << "Not jump threading, duplication cost exceeds the "
825 << "cost threshold.\n");
826 ORE->emit([&]() {
827 return OptimizationRemarkMissed(DEBUG_TYPE, "NotProfitable", Switch)
828 << "Duplication cost exceeds the cost threshold (cost="
829 << ore::NV("Cost", DuplicationCost)
830 << ", threshold=" << ore::NV("Threshold", CostThreshold) << ").";
831 });
832 return false;
833 }
834
835 ORE->emit([&]() {
836 return OptimizationRemark(DEBUG_TYPE, "JumpThreaded", Switch)
837 << "Switch statement jump-threaded.";
838 });
839
840 return true;
841 }
842
843 /// Transform each threading path to effectively jump thread the DFA.
844 void createAllExitPaths() {
845 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Eager);
846
847 // Move the switch block to the end of the path, since it will be duplicated
848 BasicBlock *SwitchBlock = SwitchPaths->getSwitchBlock();
849 for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
850 LLVM_DEBUG(dbgs() << TPath << "\n");
851 PathType NewPath(TPath.getPath());
852 NewPath.push_back(SwitchBlock);
853 TPath.setPath(NewPath);
854 }
855
856 // Transform the ThreadingPaths and keep track of the cloned values
857 DuplicateBlockMap DuplicateMap;
858 DefMap NewDefs;
859
860 SmallSet<BasicBlock *, 16> BlocksToClean;
861 for (BasicBlock *BB : successors(SwitchBlock))
862 BlocksToClean.insert(BB);
863
864 for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths()) {
865 createExitPath(NewDefs, TPath, DuplicateMap, BlocksToClean, &DTU);
866 NumPaths++;
867 }
868
869 // After all paths are cloned, now update the last successor of the cloned
870 // path so it skips over the switch statement
871 for (ThreadingPath &TPath : SwitchPaths->getThreadingPaths())
872 updateLastSuccessor(TPath, DuplicateMap, &DTU);
873
874 // For each instruction that was cloned and used outside, update its uses
875 updateSSA(NewDefs);
876
877 // Clean PHI Nodes for the newly created blocks
878 for (BasicBlock *BB : BlocksToClean)
879 cleanPhiNodes(BB);
880 }
881
882 /// For a specific ThreadingPath \p Path, create an exit path starting from
883 /// the determinator block.
884 ///
885 /// To remember the correct destination, we have to duplicate blocks
886 /// corresponding to each state. Also update the terminating instruction of
887 /// the predecessors, and phis in the successor blocks.
888 void createExitPath(DefMap &NewDefs, ThreadingPath &Path,
889 DuplicateBlockMap &DuplicateMap,
890 SmallSet<BasicBlock *, 16> &BlocksToClean,
891 DomTreeUpdater *DTU) {
892 uint64_t NextState = Path.getExitValue();
893 const BasicBlock *Determinator = Path.getDeterminatorBB();
894 PathType PathBBs = Path.getPath();
895
896 // Don't select the placeholder block in front
897 if (PathBBs.front() == Determinator)
898 PathBBs.pop_front();
899
900 auto DetIt = llvm::find(PathBBs, Determinator);
901 auto Prev = std::prev(DetIt);
902 BasicBlock *PrevBB = *Prev;
903 for (auto BBIt = DetIt; BBIt != PathBBs.end(); BBIt++) {
904 BasicBlock *BB = *BBIt;
905 BlocksToClean.insert(BB);
906
907 // We already cloned BB for this NextState, now just update the branch
908 // and continue.
909 BasicBlock *NextBB = getClonedBB(BB, NextState, DuplicateMap);
910 if (NextBB) {
911 updatePredecessor(PrevBB, BB, NextBB, DTU);
912 PrevBB = NextBB;
913 continue;
914 }
915
916 // Clone the BB and update the successor of Prev to jump to the new block
917 BasicBlock *NewBB = cloneBlockAndUpdatePredecessor(
918 BB, PrevBB, NextState, DuplicateMap, NewDefs, DTU);
919 DuplicateMap[BB].push_back({NewBB, NextState});
920 BlocksToClean.insert(NewBB);
921 PrevBB = NewBB;
922 }
923 }
924
925 /// Restore SSA form after cloning blocks.
926 ///
927 /// Each cloned block creates new defs for a variable, and the uses need to be
928 /// updated to reflect this. The uses may be replaced with a cloned value, or
929 /// some derived phi instruction. Note that all uses of a value defined in the
930 /// same block were already remapped when cloning the block.
931 void updateSSA(DefMap &NewDefs) {
932 SSAUpdaterBulk SSAUpdate;
933 SmallVector<Use *, 16> UsesToRename;
934
935 for (const auto &KV : NewDefs) {
936 Instruction *I = KV.first;
937 BasicBlock *BB = I->getParent();
938 std::vector<Instruction *> Cloned = KV.second;
939
940 // Scan all uses of this instruction to see if it is used outside of its
941 // block, and if so, record them in UsesToRename.
942 for (Use &U : I->uses()) {
943 Instruction *User = cast<Instruction>(U.getUser());
944 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
945 if (UserPN->getIncomingBlock(U) == BB)
946 continue;
947 } else if (User->getParent() == BB) {
948 continue;
949 }
950
951 UsesToRename.push_back(&U);
952 }
953
954 // If there are no uses outside the block, we're done with this
955 // instruction.
956 if (UsesToRename.empty())
957 continue;
958 LLVM_DEBUG(dbgs() << "DFA-JT: Renaming non-local uses of: " << *I
959 << "\n");
960
961 // We found a use of I outside of BB. Rename all uses of I that are
962 // outside its block to be uses of the appropriate PHI node etc. See
963 // ValuesInBlocks with the values we know.
964 unsigned VarNum = SSAUpdate.AddVariable(I->getName(), I->getType());
965 SSAUpdate.AddAvailableValue(VarNum, BB, I);
966 for (Instruction *New : Cloned)
967 SSAUpdate.AddAvailableValue(VarNum, New->getParent(), New);
968
969 while (!UsesToRename.empty())
970 SSAUpdate.AddUse(VarNum, UsesToRename.pop_back_val());
971
972 LLVM_DEBUG(dbgs() << "\n");
973 }
974 // SSAUpdater handles phi placement and renaming uses with the appropriate
975 // value.
976 SSAUpdate.RewriteAllUses(DT);
977 }
978
979 /// Clones a basic block, and adds it to the CFG.
980 ///
981 /// This function also includes updating phi nodes in the successors of the
982 /// BB, and remapping uses that were defined locally in the cloned BB.
983 BasicBlock *cloneBlockAndUpdatePredecessor(BasicBlock *BB, BasicBlock *PrevBB,
984 uint64_t NextState,
985 DuplicateBlockMap &DuplicateMap,
986 DefMap &NewDefs,
987 DomTreeUpdater *DTU) {
990 BB, VMap, ".jt" + std::to_string(NextState), BB->getParent());
991 NewBB->moveAfter(BB);
992 NumCloned++;
993
994 for (Instruction &I : *NewBB) {
995 // Do not remap operands of PHINode in case a definition in BB is an
996 // incoming value to a phi in the same block. This incoming value will
997 // be renamed later while restoring SSA.
998 if (isa<PHINode>(&I))
999 continue;
1000 RemapInstruction(&I, VMap,
1002 if (AssumeInst *II = dyn_cast<AssumeInst>(&I))
1003 AC->registerAssumption(II);
1004 }
1005
1006 updateSuccessorPhis(BB, NewBB, NextState, VMap, DuplicateMap);
1007 updatePredecessor(PrevBB, BB, NewBB, DTU);
1008 updateDefMap(NewDefs, VMap);
1009
1010 // Add all successors to the DominatorTree
1012 for (auto *SuccBB : successors(NewBB)) {
1013 if (SuccSet.insert(SuccBB).second)
1014 DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}});
1015 }
1016 SuccSet.clear();
1017 return NewBB;
1018 }
1019
1020 /// Update the phi nodes in BB's successors.
1021 ///
1022 /// This means creating a new incoming value from NewBB with the new
1023 /// instruction wherever there is an incoming value from BB.
1024 void updateSuccessorPhis(BasicBlock *BB, BasicBlock *ClonedBB,
1025 uint64_t NextState, ValueToValueMapTy &VMap,
1026 DuplicateBlockMap &DuplicateMap) {
1027 std::vector<BasicBlock *> BlocksToUpdate;
1028
1029 // If BB is the last block in the path, we can simply update the one case
1030 // successor that will be reached.
1031 if (BB == SwitchPaths->getSwitchBlock()) {
1032 SwitchInst *Switch = SwitchPaths->getSwitchInst();
1033 BasicBlock *NextCase = getNextCaseSuccessor(Switch, NextState);
1034 BlocksToUpdate.push_back(NextCase);
1035 BasicBlock *ClonedSucc = getClonedBB(NextCase, NextState, DuplicateMap);
1036 if (ClonedSucc)
1037 BlocksToUpdate.push_back(ClonedSucc);
1038 }
1039 // Otherwise update phis in all successors.
1040 else {
1041 for (BasicBlock *Succ : successors(BB)) {
1042 BlocksToUpdate.push_back(Succ);
1043
1044 // Check if a successor has already been cloned for the particular exit
1045 // value. In this case if a successor was already cloned, the phi nodes
1046 // in the cloned block should be updated directly.
1047 BasicBlock *ClonedSucc = getClonedBB(Succ, NextState, DuplicateMap);
1048 if (ClonedSucc)
1049 BlocksToUpdate.push_back(ClonedSucc);
1050 }
1051 }
1052
1053 // If there is a phi with an incoming value from BB, create a new incoming
1054 // value for the new predecessor ClonedBB. The value will either be the same
1055 // value from BB or a cloned value.
1056 for (BasicBlock *Succ : BlocksToUpdate) {
1057 for (auto II = Succ->begin(); PHINode *Phi = dyn_cast<PHINode>(II);
1058 ++II) {
1059 Value *Incoming = Phi->getIncomingValueForBlock(BB);
1060 if (Incoming) {
1061 if (isa<Constant>(Incoming)) {
1062 Phi->addIncoming(Incoming, ClonedBB);
1063 continue;
1064 }
1065 Value *ClonedVal = VMap[Incoming];
1066 if (ClonedVal)
1067 Phi->addIncoming(ClonedVal, ClonedBB);
1068 else
1069 Phi->addIncoming(Incoming, ClonedBB);
1070 }
1071 }
1072 }
1073 }
1074
1075 /// Sets the successor of PrevBB to be NewBB instead of OldBB. Note that all
1076 /// other successors are kept as well.
1077 void updatePredecessor(BasicBlock *PrevBB, BasicBlock *OldBB,
1078 BasicBlock *NewBB, DomTreeUpdater *DTU) {
1079 // When a path is reused, there is a chance that predecessors were already
1080 // updated before. Check if the predecessor needs to be updated first.
1081 if (!isPredecessor(OldBB, PrevBB))
1082 return;
1083
1084 Instruction *PrevTerm = PrevBB->getTerminator();
1085 for (unsigned Idx = 0; Idx < PrevTerm->getNumSuccessors(); Idx++) {
1086 if (PrevTerm->getSuccessor(Idx) == OldBB) {
1087 OldBB->removePredecessor(PrevBB, /* KeepOneInputPHIs = */ true);
1088 PrevTerm->setSuccessor(Idx, NewBB);
1089 }
1090 }
1091 DTU->applyUpdates({{DominatorTree::Delete, PrevBB, OldBB},
1092 {DominatorTree::Insert, PrevBB, NewBB}});
1093 }
1094
1095 /// Add new value mappings to the DefMap to keep track of all new definitions
1096 /// for a particular instruction. These will be used while updating SSA form.
1097 void updateDefMap(DefMap &NewDefs, ValueToValueMapTy &VMap) {
1099 NewDefsVector.reserve(VMap.size());
1100
1101 for (auto Entry : VMap) {
1102 Instruction *Inst =
1103 dyn_cast<Instruction>(const_cast<Value *>(Entry.first));
1104 if (!Inst || !Entry.second || isa<BranchInst>(Inst) ||
1105 isa<SwitchInst>(Inst)) {
1106 continue;
1107 }
1108
1109 Instruction *Cloned = dyn_cast<Instruction>(Entry.second);
1110 if (!Cloned)
1111 continue;
1112
1113 NewDefsVector.push_back({Inst, Cloned});
1114 }
1115
1116 // Sort the defs to get deterministic insertion order into NewDefs.
1117 sort(NewDefsVector, [](const auto &LHS, const auto &RHS) {
1118 if (LHS.first == RHS.first)
1119 return LHS.second->comesBefore(RHS.second);
1120 return LHS.first->comesBefore(RHS.first);
1121 });
1122
1123 for (const auto &KV : NewDefsVector)
1124 NewDefs[KV.first].push_back(KV.second);
1125 }
1126
1127 /// Update the last branch of a particular cloned path to point to the correct
1128 /// case successor.
1129 ///
1130 /// Note that this is an optional step and would have been done in later
1131 /// optimizations, but it makes the CFG significantly easier to work with.
1132 void updateLastSuccessor(ThreadingPath &TPath,
1133 DuplicateBlockMap &DuplicateMap,
1134 DomTreeUpdater *DTU) {
1135 uint64_t NextState = TPath.getExitValue();
1136 BasicBlock *BB = TPath.getPath().back();
1137 BasicBlock *LastBlock = getClonedBB(BB, NextState, DuplicateMap);
1138
1139 // Note multiple paths can end at the same block so check that it is not
1140 // updated yet
1141 if (!isa<SwitchInst>(LastBlock->getTerminator()))
1142 return;
1143 SwitchInst *Switch = cast<SwitchInst>(LastBlock->getTerminator());
1144 BasicBlock *NextCase = getNextCaseSuccessor(Switch, NextState);
1145
1146 std::vector<DominatorTree::UpdateType> DTUpdates;
1148 for (BasicBlock *Succ : successors(LastBlock)) {
1149 if (Succ != NextCase && SuccSet.insert(Succ).second)
1150 DTUpdates.push_back({DominatorTree::Delete, LastBlock, Succ});
1151 }
1152
1153 Switch->eraseFromParent();
1154 BranchInst::Create(NextCase, LastBlock);
1155
1156 DTU->applyUpdates(DTUpdates);
1157 }
1158
1159 /// After cloning blocks, some of the phi nodes have extra incoming values
1160 /// that are no longer used. This function removes them.
1161 void cleanPhiNodes(BasicBlock *BB) {
1162 // If BB is no longer reachable, remove any remaining phi nodes
1163 if (pred_empty(BB)) {
1164 std::vector<PHINode *> PhiToRemove;
1165 for (auto II = BB->begin(); PHINode *Phi = dyn_cast<PHINode>(II); ++II) {
1166 PhiToRemove.push_back(Phi);
1167 }
1168 for (PHINode *PN : PhiToRemove) {
1169 PN->replaceAllUsesWith(PoisonValue::get(PN->getType()));
1170 PN->eraseFromParent();
1171 }
1172 return;
1173 }
1174
1175 // Remove any incoming values that come from an invalid predecessor
1176 for (auto II = BB->begin(); PHINode *Phi = dyn_cast<PHINode>(II); ++II) {
1177 std::vector<BasicBlock *> BlocksToRemove;
1178 for (BasicBlock *IncomingBB : Phi->blocks()) {
1179 if (!isPredecessor(BB, IncomingBB))
1180 BlocksToRemove.push_back(IncomingBB);
1181 }
1182 for (BasicBlock *BB : BlocksToRemove)
1183 Phi->removeIncomingValue(BB);
1184 }
1185 }
1186
1187 /// Checks if BB was already cloned for a particular next state value. If it
1188 /// was then it returns this cloned block, and otherwise null.
1189 BasicBlock *getClonedBB(BasicBlock *BB, uint64_t NextState,
1190 DuplicateBlockMap &DuplicateMap) {
1191 CloneList ClonedBBs = DuplicateMap[BB];
1192
1193 // Find an entry in the CloneList with this NextState. If it exists then
1194 // return the corresponding BB
1195 auto It = llvm::find_if(ClonedBBs, [NextState](const ClonedBlock &C) {
1196 return C.State == NextState;
1197 });
1198 return It != ClonedBBs.end() ? (*It).BB : nullptr;
1199 }
1200
1201 /// Helper to get the successor corresponding to a particular case value for
1202 /// a switch statement.
1203 BasicBlock *getNextCaseSuccessor(SwitchInst *Switch, uint64_t NextState) {
1204 BasicBlock *NextCase = nullptr;
1205 for (auto Case : Switch->cases()) {
1206 if (Case.getCaseValue()->getZExtValue() == NextState) {
1207 NextCase = Case.getCaseSuccessor();
1208 break;
1209 }
1210 }
1211 if (!NextCase)
1212 NextCase = Switch->getDefaultDest();
1213 return NextCase;
1214 }
1215
1216 /// Returns true if IncomingBB is a predecessor of BB.
1217 bool isPredecessor(BasicBlock *BB, BasicBlock *IncomingBB) {
1218 return llvm::is_contained(predecessors(BB), IncomingBB);
1219 }
1220
1221 AllSwitchPaths *SwitchPaths;
1222 DominatorTree *DT;
1223 AssumptionCache *AC;
1227 std::vector<ThreadingPath> TPaths;
1228};
1229
1230bool DFAJumpThreading::run(Function &F) {
1231 LLVM_DEBUG(dbgs() << "\nDFA Jump threading: " << F.getName() << "\n");
1232
1233 if (F.hasOptSize()) {
1234 LLVM_DEBUG(dbgs() << "Skipping due to the 'minsize' attribute\n");
1235 return false;
1236 }
1237
1238 if (ClViewCfgBefore)
1239 F.viewCFG();
1240
1241 SmallVector<AllSwitchPaths, 2> ThreadableLoops;
1242 bool MadeChanges = false;
1243
1244 for (BasicBlock &BB : F) {
1245 auto *SI = dyn_cast<SwitchInst>(BB.getTerminator());
1246 if (!SI)
1247 continue;
1248
1249 LLVM_DEBUG(dbgs() << "\nCheck if SwitchInst in BB " << BB.getName()
1250 << " is a candidate\n");
1251 MainSwitch Switch(SI, ORE);
1252
1253 if (!Switch.getInstr())
1254 continue;
1255
1256 LLVM_DEBUG(dbgs() << "\nSwitchInst in BB " << BB.getName() << " is a "
1257 << "candidate for jump threading\n");
1258 LLVM_DEBUG(SI->dump());
1259
1260 unfoldSelectInstrs(DT, Switch.getSelectInsts());
1261 if (!Switch.getSelectInsts().empty())
1262 MadeChanges = true;
1263
1264 AllSwitchPaths SwitchPaths(&Switch, ORE);
1265 SwitchPaths.run();
1266
1267 if (SwitchPaths.getNumThreadingPaths() > 0) {
1268 ThreadableLoops.push_back(SwitchPaths);
1269
1270 // For the time being limit this optimization to occurring once in a
1271 // function since it can change the CFG significantly. This is not a
1272 // strict requirement but it can cause buggy behavior if there is an
1273 // overlap of blocks in different opportunities. There is a lot of room to
1274 // experiment with catching more opportunities here.
1275 break;
1276 }
1277 }
1278
1280 if (ThreadableLoops.size() > 0)
1281 CodeMetrics::collectEphemeralValues(&F, AC, EphValues);
1282
1283 for (AllSwitchPaths SwitchPaths : ThreadableLoops) {
1284 TransformDFA Transform(&SwitchPaths, DT, AC, TTI, ORE, EphValues);
1285 Transform.run();
1286 MadeChanges = true;
1287 }
1288
1289#ifdef EXPENSIVE_CHECKS
1290 assert(DT->verify(DominatorTree::VerificationLevel::Full));
1291 verifyFunction(F, &dbgs());
1292#endif
1293
1294 return MadeChanges;
1295}
1296
1297} // end anonymous namespace
1298
1299/// Integrate with the new Pass Manager
1306
1307 if (!DFAJumpThreading(&AC, &DT, &TTI, &ORE).run(F))
1308 return PreservedAnalyses::all();
1309
1312 return PA;
1313}
This file implements a class to represent arbitrary precision integral constant values and operations...
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static const Function * getParent(const Value *V)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
static cl::opt< unsigned > MaxPathLength("dfa-max-path-length", cl::desc("Max number of blocks searched to find a threading path"), cl::Hidden, cl::init(20))
static cl::opt< bool > ClViewCfgBefore("dfa-jump-view-cfg-before", cl::desc("View the CFG before DFA Jump Threading"), cl::Hidden, cl::init(false))
static cl::opt< unsigned > CostThreshold("dfa-cost-threshold", cl::desc("Maximum cost accepted for the transformation"), cl::Hidden, cl::init(50))
static cl::opt< unsigned > MaxNumPaths("dfa-max-num-paths", cl::desc("Max number of paths enumerated around a switch"), cl::Hidden, cl::init(200))
#define DEBUG_TYPE
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
This file defines the DenseMap class.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
static bool isCandidate(const MachineInstr *MI, Register &DefedReg, Register FrameReg)
Machine Trace Metrics
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
raw_pwrite_stream & OS
This file defines the SmallSet class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
This pass exposes codegen information to IR-level passes.
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:76
unsigned ceilLogBase2() const
Definition: APInt.h:1699
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:620
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:774
This represents the llvm.assume intrinsic.
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition: BasicBlock.h:56
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:335
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:393
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:105
void moveAfter(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it right after MovePos in the function M...
Definition: BasicBlock.cpp:140
const BasicBlock * getSingleSuccessor() const
Return the successor of this block if it has a single successor.
Definition: BasicBlock.cpp:326
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:112
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:127
const Instruction & back() const
Definition: BasicBlock.h:349
void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
Definition: BasicBlock.cpp:353
Conditional or Unconditional Branch instruction.
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=nullptr)
bool isUnconditional() const
This is the shared class of boolean and integer constants.
Definition: Constants.h:78
void applyUpdates(ArrayRef< DominatorTree::UpdateType > Updates)
Submit updates to all available trees.
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
bool verify(VerificationLevel VL=VerificationLevel::Full) const
verify - checks if the tree is correct.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:166
unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
const BasicBlock * getParent() const
Definition: Instruction.h:90
BasicBlock * getSuccessor(unsigned Idx) const LLVM_READONLY
Return the specified successor. This instruction must be a terminator.
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:83
void setSuccessor(unsigned Idx, BasicBlock *BB)
Update the specified successor to point at the provided block.
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
Diagnostic information for optimization analysis remarks.
The optimization diagnostic interface.
void emit(DiagnosticInfoOptimizationBase &OptDiag)
Output the remark via the diagnostic handler and to the optimization record file.
Diagnostic information for missed-optimization remarks.
Diagnostic information for applied optimization remarks.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
iterator_range< const_block_iterator > blocks() const
Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
void setIncomingValue(unsigned i, Value *V)
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1743
A set of analyses that are preserved following a run of a transformation pass.
Definition: PassManager.h:152
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: PassManager.h:158
void preserve()
Mark an analysis as preserved.
Definition: PassManager.h:173
Helper class for SSA formation on a set of values defined in multiple blocks.
unsigned AddVariable(StringRef Name, Type *Ty)
Add a new variable to the SSA rewriter.
void AddAvailableValue(unsigned Var, BasicBlock *BB, Value *V)
Indicate that a rewritten value is available in the specified block with the specified value.
void RewriteAllUses(DominatorTree *DT, SmallVectorImpl< PHINode * > *InsertedPHIs=nullptr)
Perform all the necessary updates, including new PHI-nodes insertion and the requested uses update.
void AddUse(unsigned Var, Use *U)
Record a use of the symbolic value.
This class represents the LLVM 'select' instruction.
const Value * getFalseValue() const
const Value * getTrueValue() const
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:384
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:366
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:451
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:135
void clear()
Definition: SmallSet.h:218
bool contains(const T &V) const
Check if the SmallSet contains the given element.
Definition: SmallSet.h:236
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition: SmallSet.h:179
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
void reserve(size_type N)
Definition: SmallVector.h:667
void push_back(const T &Elt)
Definition: SmallVector.h:416
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Multiway switch.
Analysis pass providing the TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
size_type size() const
Definition: ValueMap.h:140
LLVM Value Representation.
Definition: Value.h:74
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:642
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:445
@ Switch
The "resume-switch" lowering, where there are separate resume and destroy functions that are shared b...
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
DiagnosticInfoOptimizationBase::Argument NV
NodeAddr< InstrNode * > Instr
Definition: RDFGraph.h:389
NodeAddr< PhiNode * > Phi
Definition: RDFGraph.h:390
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto find(R &&Range, const T &Val)
Provide wrappers to std::find which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1747
bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
Definition: Verifier.cpp:6570
auto successors(const MachineBasicBlock *BB)
BasicBlock * CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, const Twine &NameSuffix="", Function *F=nullptr, ClonedCodeInfo *CodeInfo=nullptr, DebugInfoFinder *DIFinder=nullptr)
Return a copy of the specified basic block, but without embedding the block into a particular functio...
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1652
@ RF_IgnoreMissingLocals
If this flag is set, the remapper ignores missing function-local entries (Argument,...
Definition: ValueMapper.h:89
@ RF_NoModuleLevelChanges
If this flag is set, the remapper knows that only local values within a function (such as an instruct...
Definition: ValueMapper.h:71
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
void RemapInstruction(Instruction *I, ValueToValueMapTy &VM, RemapFlags Flags=RF_None, ValueMapTypeRemapper *TypeMapper=nullptr, ValueMaterializer *Materializer=nullptr)
Convert the instruction operands from referencing the current values into those specified by VM.
Definition: ValueMapper.h:256
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
Definition: APFixedPoint.h:292
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1754
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1884
bool pred_empty(const BasicBlock *BB)
Definition: CFG.h:118
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
Utility to calculate the size and a few similar metrics for a set of basic blocks.
Definition: CodeMetrics.h:31
static void collectEphemeralValues(const Loop *L, AssumptionCache *AC, SmallPtrSetImpl< const Value * > &EphValues)
Collect a loop's ephemeral values (those used only by an assume or similar intrinsics in the loop).
Definition: CodeMetrics.cpp:70
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
Integrate with the new Pass Manager.