LLVM 20.0.0git
NewGVN.cpp
Go to the documentation of this file.
1//===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file implements the new LLVM's Global Value Numbering pass.
11/// GVN partitions values computed by a function into congruence classes.
12/// Values ending up in the same congruence class are guaranteed to be the same
13/// for every execution of the program. In that respect, congruency is a
14/// compile-time approximation of equivalence of values at runtime.
15/// The algorithm implemented here uses a sparse formulation and it's based
16/// on the ideas described in the paper:
17/// "A Sparse Algorithm for Predicated Global Value Numbering" from
18/// Karthik Gargi.
19///
20/// A brief overview of the algorithm: The algorithm is essentially the same as
21/// the standard RPO value numbering algorithm (a good reference is the paper
22/// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23/// The RPO algorithm proceeds, on every iteration, to process every reachable
24/// block and every instruction in that block. This is because the standard RPO
25/// algorithm does not track what things have the same value number, it only
26/// tracks what the value number of a given operation is (the mapping is
27/// operation -> value number). Thus, when a value number of an operation
28/// changes, it must reprocess everything to ensure all uses of a value number
29/// get updated properly. In constrast, the sparse algorithm we use *also*
30/// tracks what operations have a given value number (IE it also tracks the
31/// reverse mapping from value number -> operations with that value number), so
32/// that it only needs to reprocess the instructions that are affected when
33/// something's value number changes. The vast majority of complexity and code
34/// in this file is devoted to tracking what value numbers could change for what
35/// instructions when various things happen. The rest of the algorithm is
36/// devoted to performing symbolic evaluation, forward propagation, and
37/// simplification of operations based on the value numbers deduced so far
38///
39/// In order to make the GVN mostly-complete, we use a technique derived from
40/// "Detection of Redundant Expressions: A Complete and Polynomial-time
41/// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA
42/// based GVN algorithms is related to their inability to detect equivalence
43/// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44/// We resolve this issue by generating the equivalent "phi of ops" form for
45/// each op of phis we see, in a way that only takes polynomial time to resolve.
46///
47/// We also do not perform elimination by using any published algorithm. All
48/// published algorithms are O(Instructions). Instead, we use a technique that
49/// is O(number of operations with the same value number), enabling us to skip
50/// trying to eliminate things that have unique value numbers.
51//
52//===----------------------------------------------------------------------===//
53
55#include "llvm/ADT/ArrayRef.h"
56#include "llvm/ADT/BitVector.h"
57#include "llvm/ADT/DenseMap.h"
59#include "llvm/ADT/DenseSet.h"
62#include "llvm/ADT/Hashing.h"
69#include "llvm/ADT/Statistic.h"
81#include "llvm/IR/Argument.h"
82#include "llvm/IR/BasicBlock.h"
83#include "llvm/IR/Constant.h"
84#include "llvm/IR/Constants.h"
85#include "llvm/IR/Dominators.h"
86#include "llvm/IR/Function.h"
87#include "llvm/IR/InstrTypes.h"
88#include "llvm/IR/Instruction.h"
92#include "llvm/IR/Type.h"
93#include "llvm/IR/Use.h"
94#include "llvm/IR/User.h"
95#include "llvm/IR/Value.h"
100#include "llvm/Support/Debug.h"
110#include <algorithm>
111#include <cassert>
112#include <cstdint>
113#include <iterator>
114#include <map>
115#include <memory>
116#include <set>
117#include <string>
118#include <tuple>
119#include <utility>
120#include <vector>
121
122using namespace llvm;
123using namespace llvm::GVNExpression;
124using namespace llvm::VNCoercion;
125using namespace llvm::PatternMatch;
126
127#define DEBUG_TYPE "newgvn"
128
129STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
130STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
131STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
132STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
133STATISTIC(NumGVNMaxIterations,
134 "Maximum Number of iterations it took to converge GVN");
135STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
136STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
137STATISTIC(NumGVNAvoidedSortedLeaderChanges,
138 "Number of avoided sorted leader changes");
139STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
140STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
141STATISTIC(NumGVNPHIOfOpsEliminations,
142 "Number of things eliminated using PHI of ops");
143DEBUG_COUNTER(VNCounter, "newgvn-vn",
144 "Controls which instructions are value numbered");
145DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
146 "Controls which instructions we create phi of ops for");
147// Currently store defining access refinement is too slow due to basicaa being
148// egregiously slow. This flag lets us keep it working while we work on this
149// issue.
150static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
151 cl::init(false), cl::Hidden);
152
153/// Currently, the generation "phi of ops" can result in correctness issues.
154static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
155 cl::Hidden);
156
157//===----------------------------------------------------------------------===//
158// GVN Pass
159//===----------------------------------------------------------------------===//
160
161// Anchor methods.
162namespace llvm {
163namespace GVNExpression {
164
165Expression::~Expression() = default;
172
173} // end namespace GVNExpression
174} // end namespace llvm
175
176namespace {
177
178// Tarjan's SCC finding algorithm with Nuutila's improvements
179// SCCIterator is actually fairly complex for the simple thing we want.
180// It also wants to hand us SCC's that are unrelated to the phi node we ask
181// about, and have us process them there or risk redoing work.
182// Graph traits over a filter iterator also doesn't work that well here.
183// This SCC finder is specialized to walk use-def chains, and only follows
184// instructions,
185// not generic values (arguments, etc).
186struct TarjanSCC {
187 TarjanSCC() : Components(1) {}
188
189 void Start(const Instruction *Start) {
190 if (Root.lookup(Start) == 0)
191 FindSCC(Start);
192 }
193
194 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
195 unsigned ComponentID = ValueToComponent.lookup(V);
196
197 assert(ComponentID > 0 &&
198 "Asking for a component for a value we never processed");
199 return Components[ComponentID];
200 }
201
202private:
203 void FindSCC(const Instruction *I) {
204 Root[I] = ++DFSNum;
205 // Store the DFS Number we had before it possibly gets incremented.
206 unsigned int OurDFS = DFSNum;
207 for (const auto &Op : I->operands()) {
208 if (auto *InstOp = dyn_cast<Instruction>(Op)) {
209 if (Root.lookup(Op) == 0)
210 FindSCC(InstOp);
211 if (!InComponent.count(Op))
212 Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
213 }
214 }
215 // See if we really were the root of a component, by seeing if we still have
216 // our DFSNumber. If we do, we are the root of the component, and we have
217 // completed a component. If we do not, we are not the root of a component,
218 // and belong on the component stack.
219 if (Root.lookup(I) == OurDFS) {
220 unsigned ComponentID = Components.size();
221 Components.resize(Components.size() + 1);
222 auto &Component = Components.back();
223 Component.insert(I);
224 LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
225 InComponent.insert(I);
226 ValueToComponent[I] = ComponentID;
227 // Pop a component off the stack and label it.
228 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
229 auto *Member = Stack.back();
230 LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
231 Component.insert(Member);
232 InComponent.insert(Member);
233 ValueToComponent[Member] = ComponentID;
234 Stack.pop_back();
235 }
236 } else {
237 // Part of a component, push to stack
238 Stack.push_back(I);
239 }
240 }
241
242 unsigned int DFSNum = 1;
246
247 // Store the components as vector of ptr sets, because we need the topo order
248 // of SCC's, but not individual member order
250
251 DenseMap<const Value *, unsigned> ValueToComponent;
252};
253
254// Congruence classes represent the set of expressions/instructions
255// that are all the same *during some scope in the function*.
256// That is, because of the way we perform equality propagation, and
257// because of memory value numbering, it is not correct to assume
258// you can willy-nilly replace any member with any other at any
259// point in the function.
260//
261// For any Value in the Member set, it is valid to replace any dominated member
262// with that Value.
263//
264// Every congruence class has a leader, and the leader is used to symbolize
265// instructions in a canonical way (IE every operand of an instruction that is a
266// member of the same congruence class will always be replaced with leader
267// during symbolization). To simplify symbolization, we keep the leader as a
268// constant if class can be proved to be a constant value. Otherwise, the
269// leader is the member of the value set with the smallest DFS number. Each
270// congruence class also has a defining expression, though the expression may be
271// null. If it exists, it can be used for forward propagation and reassociation
272// of values.
273
274// For memory, we also track a representative MemoryAccess, and a set of memory
275// members for MemoryPhis (which have no real instructions). Note that for
276// memory, it seems tempting to try to split the memory members into a
277// MemoryCongruenceClass or something. Unfortunately, this does not work
278// easily. The value numbering of a given memory expression depends on the
279// leader of the memory congruence class, and the leader of memory congruence
280// class depends on the value numbering of a given memory expression. This
281// leads to wasted propagation, and in some cases, missed optimization. For
282// example: If we had value numbered two stores together before, but now do not,
283// we move them to a new value congruence class. This in turn will move at one
284// of the memorydefs to a new memory congruence class. Which in turn, affects
285// the value numbering of the stores we just value numbered (because the memory
286// congruence class is part of the value number). So while theoretically
287// possible to split them up, it turns out to be *incredibly* complicated to get
288// it to work right, because of the interdependency. While structurally
289// slightly messier, it is algorithmically much simpler and faster to do what we
290// do here, and track them both at once in the same class.
291// Note: The default iterators for this class iterate over values
292class CongruenceClass {
293public:
294 using MemberType = Value;
295 using MemberSet = SmallPtrSet<MemberType *, 4>;
296 using MemoryMemberType = MemoryPhi;
297 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
298
299 explicit CongruenceClass(unsigned ID) : ID(ID) {}
300 CongruenceClass(unsigned ID, std::pair<Value *, unsigned int> Leader,
301 const Expression *E)
302 : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
303
304 unsigned getID() const { return ID; }
305
306 // True if this class has no members left. This is mainly used for assertion
307 // purposes, and for skipping empty classes.
308 bool isDead() const {
309 // If it's both dead from a value perspective, and dead from a memory
310 // perspective, it's really dead.
311 return empty() && memory_empty();
312 }
313
314 // Leader functions
315 Value *getLeader() const { return RepLeader.first; }
316 void setLeader(std::pair<Value *, unsigned int> Leader) {
317 RepLeader = Leader;
318 }
319 const std::pair<Value *, unsigned int> &getNextLeader() const {
320 return NextLeader;
321 }
322 void resetNextLeader() { NextLeader = {nullptr, ~0}; }
323 bool addPossibleLeader(std::pair<Value *, unsigned int> LeaderPair) {
324 if (LeaderPair.second < RepLeader.second) {
325 NextLeader = RepLeader;
326 RepLeader = LeaderPair;
327 return true;
328 } else if (LeaderPair.second < NextLeader.second) {
329 NextLeader = LeaderPair;
330 }
331 return false;
332 }
333
334 Value *getStoredValue() const { return RepStoredValue; }
335 void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
336 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
337 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
338
339 // Forward propagation info
340 const Expression *getDefiningExpr() const { return DefiningExpr; }
341
342 // Value member set
343 bool empty() const { return Members.empty(); }
344 unsigned size() const { return Members.size(); }
345 MemberSet::const_iterator begin() const { return Members.begin(); }
346 MemberSet::const_iterator end() const { return Members.end(); }
347 void insert(MemberType *M) { Members.insert(M); }
348 void erase(MemberType *M) { Members.erase(M); }
349 void swap(MemberSet &Other) { Members.swap(Other); }
350
351 // Memory member set
352 bool memory_empty() const { return MemoryMembers.empty(); }
353 unsigned memory_size() const { return MemoryMembers.size(); }
354 MemoryMemberSet::const_iterator memory_begin() const {
355 return MemoryMembers.begin();
356 }
357 MemoryMemberSet::const_iterator memory_end() const {
358 return MemoryMembers.end();
359 }
361 return make_range(memory_begin(), memory_end());
362 }
363
364 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
365 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
366
367 // Store count
368 unsigned getStoreCount() const { return StoreCount; }
369 void incStoreCount() { ++StoreCount; }
370 void decStoreCount() {
371 assert(StoreCount != 0 && "Store count went negative");
372 --StoreCount;
373 }
374
375 // True if this class has no memory members.
376 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
377
378 // Return true if two congruence classes are equivalent to each other. This
379 // means that every field but the ID number and the dead field are equivalent.
380 bool isEquivalentTo(const CongruenceClass *Other) const {
381 if (!Other)
382 return false;
383 if (this == Other)
384 return true;
385
386 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
387 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
388 Other->RepMemoryAccess))
389 return false;
390 if (DefiningExpr != Other->DefiningExpr)
391 if (!DefiningExpr || !Other->DefiningExpr ||
392 *DefiningExpr != *Other->DefiningExpr)
393 return false;
394
395 if (Members.size() != Other->Members.size())
396 return false;
397
398 return llvm::set_is_subset(Members, Other->Members);
399 }
400
401private:
402 unsigned ID;
403
404 // Representative leader and its corresponding RPO number.
405 // The leader must have the lowest RPO number.
406 std::pair<Value *, unsigned int> RepLeader = {nullptr, ~0U};
407
408 // The most dominating leader after our current leader (given by the RPO
409 // number), because the member set is not sorted and is expensive to keep
410 // sorted all the time.
411 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
412
413 // If this is represented by a store, the value of the store.
414 Value *RepStoredValue = nullptr;
415
416 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
417 // access.
418 const MemoryAccess *RepMemoryAccess = nullptr;
419
420 // Defining Expression.
421 const Expression *DefiningExpr = nullptr;
422
423 // Actual members of this class.
424 MemberSet Members;
425
426 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
427 // MemoryUses have real instructions representing them, so we only need to
428 // track MemoryPhis here.
429 MemoryMemberSet MemoryMembers;
430
431 // Number of stores in this congruence class.
432 // This is used so we can detect store equivalence changes properly.
433 int StoreCount = 0;
434};
435
436} // end anonymous namespace
437
438namespace llvm {
439
441 const Expression &E;
442
443 explicit ExactEqualsExpression(const Expression &E) : E(E) {}
444
445 hash_code getComputedHash() const { return E.getComputedHash(); }
446
447 bool operator==(const Expression &Other) const {
448 return E.exactlyEquals(Other);
449 }
450};
451
452template <> struct DenseMapInfo<const Expression *> {
453 static const Expression *getEmptyKey() {
454 auto Val = static_cast<uintptr_t>(-1);
455 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
456 return reinterpret_cast<const Expression *>(Val);
457 }
458
459 static const Expression *getTombstoneKey() {
460 auto Val = static_cast<uintptr_t>(~1U);
461 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
462 return reinterpret_cast<const Expression *>(Val);
463 }
464
465 static unsigned getHashValue(const Expression *E) {
466 return E->getComputedHash();
467 }
468
469 static unsigned getHashValue(const ExactEqualsExpression &E) {
470 return E.getComputedHash();
471 }
472
473 static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
474 if (RHS == getTombstoneKey() || RHS == getEmptyKey())
475 return false;
476 return LHS == *RHS;
477 }
478
479 static bool isEqual(const Expression *LHS, const Expression *RHS) {
480 if (LHS == RHS)
481 return true;
482 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
483 LHS == getEmptyKey() || RHS == getEmptyKey())
484 return false;
485 // Compare hashes before equality. This is *not* what the hashtable does,
486 // since it is computing it modulo the number of buckets, whereas we are
487 // using the full hash keyspace. Since the hashes are precomputed, this
488 // check is *much* faster than equality.
489 if (LHS->getComputedHash() != RHS->getComputedHash())
490 return false;
491 return *LHS == *RHS;
492 }
493};
494
495} // end namespace llvm
496
497namespace {
498
499class NewGVN {
500 Function &F;
501 DominatorTree *DT = nullptr;
502 const TargetLibraryInfo *TLI = nullptr;
503 AliasAnalysis *AA = nullptr;
504 MemorySSA *MSSA = nullptr;
505 MemorySSAWalker *MSSAWalker = nullptr;
506 AssumptionCache *AC = nullptr;
507 const DataLayout &DL;
508 std::unique_ptr<PredicateInfo> PredInfo;
509
510 // These are the only two things the create* functions should have
511 // side-effects on due to allocating memory.
512 mutable BumpPtrAllocator ExpressionAllocator;
513 mutable ArrayRecycler<Value *> ArgRecycler;
514 mutable TarjanSCC SCCFinder;
515 const SimplifyQuery SQ;
516
517 // Number of function arguments, used by ranking
518 unsigned int NumFuncArgs = 0;
519
520 // RPOOrdering of basic blocks
522
523 // Congruence class info.
524
525 // This class is called INITIAL in the paper. It is the class everything
526 // startsout in, and represents any value. Being an optimistic analysis,
527 // anything in the TOP class has the value TOP, which is indeterminate and
528 // equivalent to everything.
529 CongruenceClass *TOPClass = nullptr;
530 std::vector<CongruenceClass *> CongruenceClasses;
531 unsigned NextCongruenceNum = 0;
532
533 // Value Mappings.
536
537 // Value PHI handling, used to make equivalence between phi(op, op) and
538 // op(phi, phi).
539 // These mappings just store various data that would normally be part of the
540 // IR.
542
543 // The cached results, in general, are only valid for the specific block where
544 // they were computed. The unsigned part of the key is a unique block
545 // identifier
546 DenseMap<std::pair<const Value *, unsigned>, bool> OpSafeForPHIOfOps;
547 unsigned CacheIdx;
548
549 // Map a temporary instruction we created to a parent block.
551
552 // Map between the already in-program instructions and the temporary phis we
553 // created that they are known equivalent to.
555
556 // In order to know when we should re-process instructions that have
557 // phi-of-ops, we track the set of expressions that they needed as
558 // leaders. When we discover new leaders for those expressions, we process the
559 // associated phi-of-op instructions again in case they have changed. The
560 // other way they may change is if they had leaders, and those leaders
561 // disappear. However, at the point they have leaders, there are uses of the
562 // relevant operands in the created phi node, and so they will get reprocessed
563 // through the normal user marking we perform.
566 ExpressionToPhiOfOps;
567
568 // Map from temporary operation to MemoryAccess.
570
571 // Set of all temporary instructions we created.
572 // Note: This will include instructions that were just created during value
573 // numbering. The way to test if something is using them is to check
574 // RealToTemp.
575 DenseSet<Instruction *> AllTempInstructions;
576
577 // This is the set of instructions to revisit on a reachability change. At
578 // the end of the main iteration loop it will contain at least all the phi of
579 // ops instructions that will be changed to phis, as well as regular phis.
580 // During the iteration loop, it may contain other things, such as phi of ops
581 // instructions that used edge reachability to reach a result, and so need to
582 // be revisited when the edge changes, independent of whether the phi they
583 // depended on changes.
584 DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
585
586 // Mapping from predicate info we used to the instructions we used it with.
587 // In order to correctly ensure propagation, we must keep track of what
588 // comparisons we used, so that when the values of the comparisons change, we
589 // propagate the information to the places we used the comparison.
591 PredicateToUsers;
592
593 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
594 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
596 MemoryToUsers;
597
598 // A table storing which memorydefs/phis represent a memory state provably
599 // equivalent to another memory state.
600 // We could use the congruence class machinery, but the MemoryAccess's are
601 // abstract memory states, so they can only ever be equivalent to each other,
602 // and not to constants, etc.
604
605 // We could, if we wanted, build MemoryPhiExpressions and
606 // MemoryVariableExpressions, etc, and value number them the same way we value
607 // number phi expressions. For the moment, this seems like overkill. They
608 // can only exist in one of three states: they can be TOP (equal to
609 // everything), Equivalent to something else, or unique. Because we do not
610 // create expressions for them, we need to simulate leader change not just
611 // when they change class, but when they change state. Note: We can do the
612 // same thing for phis, and avoid having phi expressions if we wanted, We
613 // should eventually unify in one direction or the other, so this is a little
614 // bit of an experiment in which turns out easier to maintain.
615 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
617
618 enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
620
621 // Expression to class mapping.
622 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
623 ExpressionClassMap ExpressionToClass;
624
625 // We have a single expression that represents currently DeadExpressions.
626 // For dead expressions we can prove will stay dead, we mark them with
627 // DFS number zero. However, it's possible in the case of phi nodes
628 // for us to assume/prove all arguments are dead during fixpointing.
629 // We use DeadExpression for that case.
630 DeadExpression *SingletonDeadExpression = nullptr;
631
632 // Which values have changed as a result of leader changes.
633 SmallPtrSet<Value *, 8> LeaderChanges;
634
635 // Reachability info.
636 using BlockEdge = BasicBlockEdge;
637 DenseSet<BlockEdge> ReachableEdges;
639
640 // This is a bitvector because, on larger functions, we may have
641 // thousands of touched instructions at once (entire blocks,
642 // instructions with hundreds of uses, etc). Even with optimization
643 // for when we mark whole blocks as touched, when this was a
644 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
645 // the time in GVN just managing this list. The bitvector, on the
646 // other hand, efficiently supports test/set/clear of both
647 // individual and ranges, as well as "find next element" This
648 // enables us to use it as a worklist with essentially 0 cost.
649 BitVector TouchedInstructions;
650
652 mutable DenseMap<const IntrinsicInst *, const Value *> IntrinsicInstPred;
653
654#ifndef NDEBUG
655 // Debugging for how many times each block and instruction got processed.
657#endif
658
659 // DFS info.
660 // This contains a mapping from Instructions to DFS numbers.
661 // The numbering starts at 1. An instruction with DFS number zero
662 // means that the instruction is dead.
664
665 // This contains the mapping DFS numbers to instructions.
666 SmallVector<Value *, 32> DFSToInstr;
667
668 // Deletion info.
669 SmallPtrSet<Instruction *, 8> InstructionsToErase;
670
671public:
672 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
674 const DataLayout &DL)
675 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL),
676 PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
677 SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false,
678 /*CanUseUndef=*/false) {}
679
680 bool runGVN();
681
682private:
683 /// Helper struct return a Expression with an optional extra dependency.
684 struct ExprResult {
685 const Expression *Expr;
686 Value *ExtraDep;
687 const PredicateBase *PredDep;
688
689 ExprResult(const Expression *Expr, Value *ExtraDep = nullptr,
690 const PredicateBase *PredDep = nullptr)
691 : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {}
692 ExprResult(const ExprResult &) = delete;
693 ExprResult(ExprResult &&Other)
694 : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) {
695 Other.Expr = nullptr;
696 Other.ExtraDep = nullptr;
697 Other.PredDep = nullptr;
698 }
699 ExprResult &operator=(const ExprResult &Other) = delete;
700 ExprResult &operator=(ExprResult &&Other) = delete;
701
702 ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); }
703
704 operator bool() const { return Expr; }
705
706 static ExprResult none() { return {nullptr, nullptr, nullptr}; }
707 static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) {
708 return {Expr, ExtraDep, nullptr};
709 }
710 static ExprResult some(const Expression *Expr,
711 const PredicateBase *PredDep) {
712 return {Expr, nullptr, PredDep};
713 }
714 static ExprResult some(const Expression *Expr, Value *ExtraDep,
715 const PredicateBase *PredDep) {
716 return {Expr, ExtraDep, PredDep};
717 }
718 };
719
720 // Expression handling.
721 ExprResult createExpression(Instruction *) const;
722 const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
723 Instruction *) const;
724
725 // Our canonical form for phi arguments is a pair of incoming value, incoming
726 // basic block.
727 using ValPair = std::pair<Value *, BasicBlock *>;
728
729 PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
730 BasicBlock *, bool &HasBackEdge,
731 bool &OriginalOpsConstant) const;
732 const DeadExpression *createDeadExpression() const;
733 const VariableExpression *createVariableExpression(Value *) const;
734 const ConstantExpression *createConstantExpression(Constant *) const;
735 const Expression *createVariableOrConstant(Value *V) const;
736 const UnknownExpression *createUnknownExpression(Instruction *) const;
737 const StoreExpression *createStoreExpression(StoreInst *,
738 const MemoryAccess *) const;
739 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
740 const MemoryAccess *) const;
741 const CallExpression *createCallExpression(CallInst *,
742 const MemoryAccess *) const;
744 createAggregateValueExpression(Instruction *) const;
745 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
746
747 // Congruence class handling.
748 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
749 // Set RPO to 0 for values that are always available (constants and function
750 // args). These should always be made leader.
751 unsigned LeaderDFS = 0;
752
753 // If Leader is not specified, either we have a memory class or the leader
754 // will be set later. Otherwise, if Leader is an Instruction, set LeaderDFS
755 // to its RPO number.
756 if (!Leader)
757 LeaderDFS = ~0;
758 else if (auto *I = dyn_cast<Instruction>(Leader))
759 LeaderDFS = InstrToDFSNum(I);
760 auto *result =
761 new CongruenceClass(NextCongruenceNum++, {Leader, LeaderDFS}, E);
762 CongruenceClasses.emplace_back(result);
763 return result;
764 }
765
766 CongruenceClass *createMemoryClass(MemoryAccess *MA) {
767 auto *CC = createCongruenceClass(nullptr, nullptr);
768 CC->setMemoryLeader(MA);
769 return CC;
770 }
771
772 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
773 auto *CC = getMemoryClass(MA);
774 if (CC->getMemoryLeader() != MA)
775 CC = createMemoryClass(MA);
776 return CC;
777 }
778
779 CongruenceClass *createSingletonCongruenceClass(Value *Member) {
780 CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
781 CClass->insert(Member);
782 ValueToClass[Member] = CClass;
783 return CClass;
784 }
785
786 void initializeCongruenceClasses(Function &F);
787 const Expression *makePossiblePHIOfOps(Instruction *,
789 Value *findLeaderForInst(Instruction *ValueOp,
791 MemoryAccess *MemAccess, Instruction *OrigInst,
792 BasicBlock *PredBB);
793 bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
795 void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
796 void removePhiOfOps(Instruction *I, PHINode *PHITemp);
797
798 // Value number an Instruction or MemoryPhi.
799 void valueNumberMemoryPhi(MemoryPhi *);
800 void valueNumberInstruction(Instruction *);
801
802 // Symbolic evaluation.
803 ExprResult checkExprResults(Expression *, Instruction *, Value *) const;
804 ExprResult performSymbolicEvaluation(Instruction *,
806 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
807 Instruction *,
808 MemoryAccess *) const;
809 const Expression *performSymbolicLoadEvaluation(Instruction *) const;
810 const Expression *performSymbolicStoreEvaluation(Instruction *) const;
811 ExprResult performSymbolicCallEvaluation(Instruction *) const;
812 void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
813 const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
814 Instruction *I,
815 BasicBlock *PHIBlock) const;
816 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
817 ExprResult performSymbolicCmpEvaluation(Instruction *) const;
818 ExprResult performSymbolicPredicateInfoEvaluation(IntrinsicInst *) const;
819
820 // Congruence finding.
821 bool someEquivalentDominates(const Instruction *, const Instruction *) const;
822 Value *lookupOperandLeader(Value *) const;
823 CongruenceClass *getClassForExpression(const Expression *E) const;
824 void performCongruenceFinding(Instruction *, const Expression *);
825 void moveValueToNewCongruenceClass(Instruction *, const Expression *,
826 CongruenceClass *, CongruenceClass *);
827 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
828 CongruenceClass *, CongruenceClass *);
829 Value *getNextValueLeader(CongruenceClass *) const;
830 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
831 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
832 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
833 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
834 bool isMemoryAccessTOP(const MemoryAccess *) const;
835
836 // Ranking
837 unsigned int getRank(const Value *) const;
838 bool shouldSwapOperands(const Value *, const Value *) const;
839 bool shouldSwapOperandsForIntrinsic(const Value *, const Value *,
840 const IntrinsicInst *I) const;
841
842 // Reachability handling.
843 void updateReachableEdge(BasicBlock *, BasicBlock *);
844 void processOutgoingEdges(Instruction *, BasicBlock *);
845 Value *findConditionEquivalence(Value *) const;
846
847 // Elimination.
848 struct ValueDFS;
849 void convertClassToDFSOrdered(const CongruenceClass &,
853 void convertClassToLoadsAndStores(const CongruenceClass &,
855
856 bool eliminateInstructions(Function &);
857 void replaceInstruction(Instruction *, Value *);
858 void markInstructionForDeletion(Instruction *);
859 void deleteInstructionsInBlock(BasicBlock *);
860 Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
861 const BasicBlock *) const;
862
863 // Various instruction touch utilities
864 template <typename Map, typename KeyType>
865 void touchAndErase(Map &, const KeyType &);
866 void markUsersTouched(Value *);
867 void markMemoryUsersTouched(const MemoryAccess *);
868 void markMemoryDefTouched(const MemoryAccess *);
869 void markPredicateUsersTouched(Instruction *);
870 void markValueLeaderChangeTouched(CongruenceClass *CC);
871 void markMemoryLeaderChangeTouched(CongruenceClass *CC);
872 void markPhiOfOpsChanged(const Expression *E);
873 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
874 void addAdditionalUsers(Value *To, Value *User) const;
875 void addAdditionalUsers(ExprResult &Res, Instruction *User) const;
876
877 // Main loop of value numbering
878 void iterateTouchedInstructions();
879
880 // Utilities.
881 void cleanupTables();
882 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
883 void updateProcessedCount(const Value *V);
884 void verifyMemoryCongruency() const;
885 void verifyIterationSettled(Function &F);
886 void verifyStoreExpressions() const;
887 bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
888 const MemoryAccess *, const MemoryAccess *) const;
889 BasicBlock *getBlockForValue(Value *V) const;
890 void deleteExpression(const Expression *E) const;
891 MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
892 MemoryPhi *getMemoryAccess(const BasicBlock *) const;
893 template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
894
895 unsigned InstrToDFSNum(const Value *V) const {
896 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
897 return InstrDFS.lookup(V);
898 }
899
900 unsigned InstrToDFSNum(const MemoryAccess *MA) const {
901 return MemoryToDFSNum(MA);
902 }
903
904 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
905
906 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
907 // This deliberately takes a value so it can be used with Use's, which will
908 // auto-convert to Value's but not to MemoryAccess's.
909 unsigned MemoryToDFSNum(const Value *MA) const {
910 assert(isa<MemoryAccess>(MA) &&
911 "This should not be used with instructions");
912 return isa<MemoryUseOrDef>(MA)
913 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
914 : InstrDFS.lookup(MA);
915 }
916
917 bool isCycleFree(const Instruction *) const;
918 bool isBackedge(BasicBlock *From, BasicBlock *To) const;
919
920 // Debug counter info. When verifying, we have to reset the value numbering
921 // debug counter to the same state it started in to get the same results.
922 DebugCounter::CounterState StartingVNCounter;
923};
924
925} // end anonymous namespace
926
927template <typename T>
928static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
929 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
930 return false;
931 return LHS.MemoryExpression::equals(RHS);
932}
933
935 return equalsLoadStoreHelper(*this, Other);
936}
937
939 if (!equalsLoadStoreHelper(*this, Other))
940 return false;
941 // Make sure that store vs store includes the value operand.
942 if (const auto *S = dyn_cast<StoreExpression>(&Other))
943 if (getStoredValue() != S->getStoredValue())
944 return false;
945 return true;
946}
947
950 return false;
951
952 if (auto *RHS = dyn_cast<CallExpression>(&Other))
953 return Call->getAttributes()
954 .intersectWith(Call->getContext(), RHS->Call->getAttributes())
955 .has_value();
956
957 return false;
958}
959
960// Determine if the edge From->To is a backedge
961bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
962 return From == To ||
963 RPOOrdering.lookup(DT->getNode(From)) >=
964 RPOOrdering.lookup(DT->getNode(To));
965}
966
967#ifndef NDEBUG
968static std::string getBlockName(const BasicBlock *B) {
970}
971#endif
972
973// Get a MemoryAccess for an instruction, fake or real.
974MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
975 auto *Result = MSSA->getMemoryAccess(I);
976 return Result ? Result : TempToMemory.lookup(I);
977}
978
979// Get a MemoryPhi for a basic block. These are all real.
980MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
981 return MSSA->getMemoryAccess(BB);
982}
983
984// Get the basic block from an instruction/memory value.
985BasicBlock *NewGVN::getBlockForValue(Value *V) const {
986 if (auto *I = dyn_cast<Instruction>(V)) {
987 auto *Parent = I->getParent();
988 if (Parent)
989 return Parent;
990 Parent = TempToBlock.lookup(V);
991 assert(Parent && "Every fake instruction should have a block");
992 return Parent;
993 }
994
995 auto *MP = dyn_cast<MemoryPhi>(V);
996 assert(MP && "Should have been an instruction or a MemoryPhi");
997 return MP->getBlock();
998}
999
1000// Delete a definitely dead expression, so it can be reused by the expression
1001// allocator. Some of these are not in creation functions, so we have to accept
1002// const versions.
1003void NewGVN::deleteExpression(const Expression *E) const {
1004 assert(isa<BasicExpression>(E));
1005 auto *BE = cast<BasicExpression>(E);
1006 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
1007 ExpressionAllocator.Deallocate(E);
1008}
1009
1010// If V is a predicateinfo copy, get the thing it is a copy of.
1011static Value *getCopyOf(const Value *V) {
1012 if (auto *II = dyn_cast<IntrinsicInst>(V))
1013 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1014 return II->getOperand(0);
1015 return nullptr;
1016}
1017
1018// Return true if V is really PN, even accounting for predicateinfo copies.
1019static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
1020 return V == PN || getCopyOf(V) == PN;
1021}
1022
1023static bool isCopyOfAPHI(const Value *V) {
1024 auto *CO = getCopyOf(V);
1025 return CO && isa<PHINode>(CO);
1026}
1027
1028// Sort PHI Operands into a canonical order. What we use here is an RPO
1029// order. The BlockInstRange numbers are generated in an RPO walk of the basic
1030// blocks.
1031void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
1032 llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
1033 return BlockInstRange.lookup(P1.second).first <
1034 BlockInstRange.lookup(P2.second).first;
1035 });
1036}
1037
1038// Return true if V is a value that will always be available (IE can
1039// be placed anywhere) in the function. We don't do globals here
1040// because they are often worse to put in place.
1041static bool alwaysAvailable(Value *V) {
1042 return isa<Constant>(V) || isa<Argument>(V);
1043}
1044
1045// Create a PHIExpression from an array of {incoming edge, value} pairs. I is
1046// the original instruction we are creating a PHIExpression for (but may not be
1047// a phi node). We require, as an invariant, that all the PHIOperands in the
1048// same block are sorted the same way. sortPHIOps will sort them into a
1049// canonical order.
1050PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
1051 const Instruction *I,
1052 BasicBlock *PHIBlock,
1053 bool &HasBackedge,
1054 bool &OriginalOpsConstant) const {
1055 unsigned NumOps = PHIOperands.size();
1056 auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
1057
1058 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1059 E->setType(PHIOperands.begin()->first->getType());
1060 E->setOpcode(Instruction::PHI);
1061
1062 // Filter out unreachable phi operands.
1063 auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
1064 auto *BB = P.second;
1065 if (auto *PHIOp = dyn_cast<PHINode>(I))
1066 if (isCopyOfPHI(P.first, PHIOp))
1067 return false;
1068 if (!ReachableEdges.count({BB, PHIBlock}))
1069 return false;
1070 // Things in TOPClass are equivalent to everything.
1071 if (ValueToClass.lookup(P.first) == TOPClass)
1072 return false;
1073 OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1074 HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1075 return lookupOperandLeader(P.first) != I;
1076 });
1077 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1078 [&](const ValPair &P) -> Value * {
1079 return lookupOperandLeader(P.first);
1080 });
1081 return E;
1082}
1083
1084// Set basic expression info (Arguments, type, opcode) for Expression
1085// E from Instruction I in block B.
1086bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1087 bool AllConstant = true;
1088 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1089 E->setType(GEP->getSourceElementType());
1090 else
1091 E->setType(I->getType());
1092 E->setOpcode(I->getOpcode());
1093 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1094
1095 // Transform the operand array into an operand leader array, and keep track of
1096 // whether all members are constant.
1097 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1098 auto Operand = lookupOperandLeader(O);
1099 AllConstant = AllConstant && isa<Constant>(Operand);
1100 return Operand;
1101 });
1102
1103 return AllConstant;
1104}
1105
1106const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1107 Value *Arg1, Value *Arg2,
1108 Instruction *I) const {
1109 auto *E = new (ExpressionAllocator) BasicExpression(2);
1110 // TODO: we need to remove context instruction after Value Tracking
1111 // can run without context instruction
1112 const SimplifyQuery Q = SQ.getWithInstruction(I);
1113
1114 E->setType(T);
1115 E->setOpcode(Opcode);
1116 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1117 if (Instruction::isCommutative(Opcode)) {
1118 // Ensure that commutative instructions that only differ by a permutation
1119 // of their operands get the same value number by sorting the operand value
1120 // numbers. Since all commutative instructions have two operands it is more
1121 // efficient to sort by hand rather than using, say, std::sort.
1122 if (shouldSwapOperands(Arg1, Arg2))
1123 std::swap(Arg1, Arg2);
1124 }
1125 E->op_push_back(lookupOperandLeader(Arg1));
1126 E->op_push_back(lookupOperandLeader(Arg2));
1127
1128 Value *V = simplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), Q);
1129 if (auto Simplified = checkExprResults(E, I, V)) {
1130 addAdditionalUsers(Simplified, I);
1131 return Simplified.Expr;
1132 }
1133 return E;
1134}
1135
1136// Take a Value returned by simplification of Expression E/Instruction
1137// I, and see if it resulted in a simpler expression. If so, return
1138// that expression.
1139NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I,
1140 Value *V) const {
1141 if (!V)
1142 return ExprResult::none();
1143
1144 if (auto *C = dyn_cast<Constant>(V)) {
1145 if (I)
1146 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1147 << " constant " << *C << "\n");
1148 NumGVNOpsSimplified++;
1149 assert(isa<BasicExpression>(E) &&
1150 "We should always have had a basic expression here");
1151 deleteExpression(E);
1152 return ExprResult::some(createConstantExpression(C));
1153 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1154 if (I)
1155 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1156 << " variable " << *V << "\n");
1157 deleteExpression(E);
1158 return ExprResult::some(createVariableExpression(V));
1159 }
1160
1161 CongruenceClass *CC = ValueToClass.lookup(V);
1162 if (CC) {
1163 if (CC->getLeader() && CC->getLeader() != I) {
1164 return ExprResult::some(createVariableOrConstant(CC->getLeader()), V);
1165 }
1166 if (CC->getDefiningExpr()) {
1167 if (I)
1168 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1169 << " expression " << *CC->getDefiningExpr() << "\n");
1170 NumGVNOpsSimplified++;
1171 deleteExpression(E);
1172 return ExprResult::some(CC->getDefiningExpr(), V);
1173 }
1174 }
1175
1176 return ExprResult::none();
1177}
1178
1179// Create a value expression from the instruction I, replacing operands with
1180// their leaders.
1181
1182NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const {
1183 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1184 // TODO: we need to remove context instruction after Value Tracking
1185 // can run without context instruction
1186 const SimplifyQuery Q = SQ.getWithInstruction(I);
1187
1188 bool AllConstant = setBasicExpressionInfo(I, E);
1189
1190 if (I->isCommutative()) {
1191 // Ensure that commutative instructions that only differ by a permutation
1192 // of their operands get the same value number by sorting the operand value
1193 // numbers. Since all commutative instructions have two operands it is more
1194 // efficient to sort by hand rather than using, say, std::sort.
1195 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1196 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1197 E->swapOperands(0, 1);
1198 }
1199 // Perform simplification.
1200 if (auto *CI = dyn_cast<CmpInst>(I)) {
1201 // Sort the operand value numbers so x<y and y>x get the same value
1202 // number.
1203 CmpInst::Predicate Predicate = CI->getPredicate();
1204 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1205 E->swapOperands(0, 1);
1207 }
1208 E->setOpcode((CI->getOpcode() << 8) | Predicate);
1209 // TODO: 25% of our time is spent in simplifyCmpInst with pointer operands
1210 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1211 "Wrong types on cmp instruction");
1212 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1213 E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1214 Value *V =
1215 simplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), Q);
1216 if (auto Simplified = checkExprResults(E, I, V))
1217 return Simplified;
1218 } else if (isa<SelectInst>(I)) {
1219 if (isa<Constant>(E->getOperand(0)) ||
1220 E->getOperand(1) == E->getOperand(2)) {
1221 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1222 E->getOperand(2)->getType() == I->getOperand(2)->getType());
1223 Value *V = simplifySelectInst(E->getOperand(0), E->getOperand(1),
1224 E->getOperand(2), Q);
1225 if (auto Simplified = checkExprResults(E, I, V))
1226 return Simplified;
1227 }
1228 } else if (I->isBinaryOp()) {
1229 Value *V =
1230 simplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), Q);
1231 if (auto Simplified = checkExprResults(E, I, V))
1232 return Simplified;
1233 } else if (auto *CI = dyn_cast<CastInst>(I)) {
1234 Value *V =
1235 simplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), Q);
1236 if (auto Simplified = checkExprResults(E, I, V))
1237 return Simplified;
1238 } else if (auto *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1239 Value *V = simplifyGEPInst(GEPI->getSourceElementType(), *E->op_begin(),
1240 ArrayRef(std::next(E->op_begin()), E->op_end()),
1241 GEPI->getNoWrapFlags(), Q);
1242 if (auto Simplified = checkExprResults(E, I, V))
1243 return Simplified;
1244 } else if (AllConstant) {
1245 // We don't bother trying to simplify unless all of the operands
1246 // were constant.
1247 // TODO: There are a lot of Simplify*'s we could call here, if we
1248 // wanted to. The original motivating case for this code was a
1249 // zext i1 false to i8, which we don't have an interface to
1250 // simplify (IE there is no SimplifyZExt).
1251
1253 for (Value *Arg : E->operands())
1254 C.emplace_back(cast<Constant>(Arg));
1255
1256 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1257 if (auto Simplified = checkExprResults(E, I, V))
1258 return Simplified;
1259 }
1260 return ExprResult::some(E);
1261}
1262
1264NewGVN::createAggregateValueExpression(Instruction *I) const {
1265 if (auto *II = dyn_cast<InsertValueInst>(I)) {
1266 auto *E = new (ExpressionAllocator)
1267 AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1268 setBasicExpressionInfo(I, E);
1269 E->allocateIntOperands(ExpressionAllocator);
1270 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1271 return E;
1272 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1273 auto *E = new (ExpressionAllocator)
1274 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1275 setBasicExpressionInfo(EI, E);
1276 E->allocateIntOperands(ExpressionAllocator);
1277 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1278 return E;
1279 }
1280 llvm_unreachable("Unhandled type of aggregate value operation");
1281}
1282
1283const DeadExpression *NewGVN::createDeadExpression() const {
1284 // DeadExpression has no arguments and all DeadExpression's are the same,
1285 // so we only need one of them.
1286 return SingletonDeadExpression;
1287}
1288
1289const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1290 auto *E = new (ExpressionAllocator) VariableExpression(V);
1291 E->setOpcode(V->getValueID());
1292 return E;
1293}
1294
1295const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1296 if (auto *C = dyn_cast<Constant>(V))
1297 return createConstantExpression(C);
1298 return createVariableExpression(V);
1299}
1300
1301const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1302 auto *E = new (ExpressionAllocator) ConstantExpression(C);
1303 E->setOpcode(C->getValueID());
1304 return E;
1305}
1306
1307const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1308 auto *E = new (ExpressionAllocator) UnknownExpression(I);
1309 E->setOpcode(I->getOpcode());
1310 return E;
1311}
1312
1313const CallExpression *
1314NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1315 // FIXME: Add operand bundles for calls.
1316 auto *E =
1317 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1318 setBasicExpressionInfo(CI, E);
1319 if (CI->isCommutative()) {
1320 // Ensure that commutative intrinsics that only differ by a permutation
1321 // of their operands get the same value number by sorting the operand value
1322 // numbers.
1323 assert(CI->getNumOperands() >= 2 && "Unsupported commutative intrinsic!");
1324 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1325 E->swapOperands(0, 1);
1326 }
1327 return E;
1328}
1329
1330// Return true if some equivalent of instruction Inst dominates instruction U.
1331bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1332 const Instruction *U) const {
1333 auto *CC = ValueToClass.lookup(Inst);
1334 // This must be an instruction because we are only called from phi nodes
1335 // in the case that the value it needs to check against is an instruction.
1336
1337 // The most likely candidates for dominance are the leader and the next leader.
1338 // The leader or nextleader will dominate in all cases where there is an
1339 // equivalent that is higher up in the dom tree.
1340 // We can't *only* check them, however, because the
1341 // dominator tree could have an infinite number of non-dominating siblings
1342 // with instructions that are in the right congruence class.
1343 // A
1344 // B C D E F G
1345 // |
1346 // H
1347 // Instruction U could be in H, with equivalents in every other sibling.
1348 // Depending on the rpo order picked, the leader could be the equivalent in
1349 // any of these siblings.
1350 if (!CC)
1351 return false;
1352 if (alwaysAvailable(CC->getLeader()))
1353 return true;
1354 if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1355 return true;
1356 if (CC->getNextLeader().first &&
1357 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1358 return true;
1359 return llvm::any_of(*CC, [&](const Value *Member) {
1360 return Member != CC->getLeader() &&
1361 DT->dominates(cast<Instruction>(Member), U);
1362 });
1363}
1364
1365// See if we have a congruence class and leader for this operand, and if so,
1366// return it. Otherwise, return the operand itself.
1367Value *NewGVN::lookupOperandLeader(Value *V) const {
1368 CongruenceClass *CC = ValueToClass.lookup(V);
1369 if (CC) {
1370 // Everything in TOP is represented by poison, as it can be any value.
1371 // We do have to make sure we get the type right though, so we can't set the
1372 // RepLeader to poison.
1373 if (CC == TOPClass)
1374 return PoisonValue::get(V->getType());
1375 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1376 }
1377
1378 return V;
1379}
1380
1381const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1382 auto *CC = getMemoryClass(MA);
1383 assert(CC->getMemoryLeader() &&
1384 "Every MemoryAccess should be mapped to a congruence class with a "
1385 "representative memory access");
1386 return CC->getMemoryLeader();
1387}
1388
1389// Return true if the MemoryAccess is really equivalent to everything. This is
1390// equivalent to the lattice value "TOP" in most lattices. This is the initial
1391// state of all MemoryAccesses.
1392bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1393 return getMemoryClass(MA) == TOPClass;
1394}
1395
1396LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1397 LoadInst *LI,
1398 const MemoryAccess *MA) const {
1399 auto *E =
1400 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1401 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1402 E->setType(LoadType);
1403
1404 // Give store and loads same opcode so they value number together.
1405 E->setOpcode(0);
1406 E->op_push_back(PointerOp);
1407
1408 // TODO: Value number heap versions. We may be able to discover
1409 // things alias analysis can't on it's own (IE that a store and a
1410 // load have the same value, and thus, it isn't clobbering the load).
1411 return E;
1412}
1413
1414const StoreExpression *
1415NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1416 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1417 auto *E = new (ExpressionAllocator)
1418 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1419 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1420 E->setType(SI->getValueOperand()->getType());
1421
1422 // Give store and loads same opcode so they value number together.
1423 E->setOpcode(0);
1424 E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1425
1426 // TODO: Value number heap versions. We may be able to discover
1427 // things alias analysis can't on it's own (IE that a store and a
1428 // load have the same value, and thus, it isn't clobbering the load).
1429 return E;
1430}
1431
1432const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1433 // Unlike loads, we never try to eliminate stores, so we do not check if they
1434 // are simple and avoid value numbering them.
1435 auto *SI = cast<StoreInst>(I);
1436 auto *StoreAccess = getMemoryAccess(SI);
1437 // Get the expression, if any, for the RHS of the MemoryDef.
1438 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1440 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1441 // If we bypassed the use-def chains, make sure we add a use.
1442 StoreRHS = lookupMemoryLeader(StoreRHS);
1443 if (StoreRHS != StoreAccess->getDefiningAccess())
1444 addMemoryUsers(StoreRHS, StoreAccess);
1445 // If we are defined by ourselves, use the live on entry def.
1446 if (StoreRHS == StoreAccess)
1447 StoreRHS = MSSA->getLiveOnEntryDef();
1448
1449 if (SI->isSimple()) {
1450 // See if we are defined by a previous store expression, it already has a
1451 // value, and it's the same value as our current store. FIXME: Right now, we
1452 // only do this for simple stores, we should expand to cover memcpys, etc.
1453 const auto *LastStore = createStoreExpression(SI, StoreRHS);
1454 const auto *LastCC = ExpressionToClass.lookup(LastStore);
1455 // We really want to check whether the expression we matched was a store. No
1456 // easy way to do that. However, we can check that the class we found has a
1457 // store, which, assuming the value numbering state is not corrupt, is
1458 // sufficient, because we must also be equivalent to that store's expression
1459 // for it to be in the same class as the load.
1460 if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1461 return LastStore;
1462 // Also check if our value operand is defined by a load of the same memory
1463 // location, and the memory state is the same as it was then (otherwise, it
1464 // could have been overwritten later. See test32 in
1465 // transforms/DeadStoreElimination/simple.ll).
1466 if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1467 if ((lookupOperandLeader(LI->getPointerOperand()) ==
1468 LastStore->getOperand(0)) &&
1469 (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1470 StoreRHS))
1471 return LastStore;
1472 deleteExpression(LastStore);
1473 }
1474
1475 // If the store is not equivalent to anything, value number it as a store that
1476 // produces a unique memory state (instead of using it's MemoryUse, we use
1477 // it's MemoryDef).
1478 return createStoreExpression(SI, StoreAccess);
1479}
1480
1481// See if we can extract the value of a loaded pointer from a load, a store, or
1482// a memory instruction.
1483const Expression *
1484NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1485 LoadInst *LI, Instruction *DepInst,
1486 MemoryAccess *DefiningAccess) const {
1487 assert((!LI || LI->isSimple()) && "Not a simple load");
1488 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1489 // Can't forward from non-atomic to atomic without violating memory model.
1490 // Also don't need to coerce if they are the same type, we will just
1491 // propagate.
1492 if (LI->isAtomic() > DepSI->isAtomic() ||
1493 LoadType == DepSI->getValueOperand()->getType())
1494 return nullptr;
1495 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1496 if (Offset >= 0) {
1497 if (auto *C = dyn_cast<Constant>(
1498 lookupOperandLeader(DepSI->getValueOperand()))) {
1499 if (Constant *Res = getConstantValueForLoad(C, Offset, LoadType, DL)) {
1500 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1501 << " to constant " << *Res << "\n");
1502 return createConstantExpression(Res);
1503 }
1504 }
1505 }
1506 } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1507 // Can't forward from non-atomic to atomic without violating memory model.
1508 if (LI->isAtomic() > DepLI->isAtomic())
1509 return nullptr;
1510 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1511 if (Offset >= 0) {
1512 // We can coerce a constant load into a load.
1513 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1514 if (auto *PossibleConstant =
1515 getConstantValueForLoad(C, Offset, LoadType, DL)) {
1516 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1517 << " to constant " << *PossibleConstant << "\n");
1518 return createConstantExpression(PossibleConstant);
1519 }
1520 }
1521 } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1522 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1523 if (Offset >= 0) {
1524 if (auto *PossibleConstant =
1525 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1526 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1527 << " to constant " << *PossibleConstant << "\n");
1528 return createConstantExpression(PossibleConstant);
1529 }
1530 }
1531 }
1532
1533 // All of the below are only true if the loaded pointer is produced
1534 // by the dependent instruction.
1535 if (LoadPtr != lookupOperandLeader(DepInst) &&
1536 !AA->isMustAlias(LoadPtr, DepInst))
1537 return nullptr;
1538 // If this load really doesn't depend on anything, then we must be loading an
1539 // undef value. This can happen when loading for a fresh allocation with no
1540 // intervening stores, for example. Note that this is only true in the case
1541 // that the result of the allocation is pointer equal to the load ptr.
1542 if (isa<AllocaInst>(DepInst)) {
1543 return createConstantExpression(UndefValue::get(LoadType));
1544 }
1545 // If this load occurs either right after a lifetime begin,
1546 // then the loaded value is undefined.
1547 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1548 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1549 return createConstantExpression(UndefValue::get(LoadType));
1550 } else if (auto *InitVal =
1551 getInitialValueOfAllocation(DepInst, TLI, LoadType))
1552 return createConstantExpression(InitVal);
1553
1554 return nullptr;
1555}
1556
1557const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1558 auto *LI = cast<LoadInst>(I);
1559
1560 // We can eliminate in favor of non-simple loads, but we won't be able to
1561 // eliminate the loads themselves.
1562 if (!LI->isSimple())
1563 return nullptr;
1564
1565 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1566 // Load of undef is UB.
1567 if (isa<UndefValue>(LoadAddressLeader))
1568 return createConstantExpression(PoisonValue::get(LI->getType()));
1569 MemoryAccess *OriginalAccess = getMemoryAccess(I);
1570 MemoryAccess *DefiningAccess =
1571 MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1572
1573 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1574 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1575 Instruction *DefiningInst = MD->getMemoryInst();
1576 // If the defining instruction is not reachable, replace with poison.
1577 if (!ReachableBlocks.count(DefiningInst->getParent()))
1578 return createConstantExpression(PoisonValue::get(LI->getType()));
1579 // This will handle stores and memory insts. We only do if it the
1580 // defining access has a different type, or it is a pointer produced by
1581 // certain memory operations that cause the memory to have a fixed value
1582 // (IE things like calloc).
1583 if (const auto *CoercionResult =
1584 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1585 DefiningInst, DefiningAccess))
1586 return CoercionResult;
1587 }
1588 }
1589
1590 const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1591 DefiningAccess);
1592 // If our MemoryLeader is not our defining access, add a use to the
1593 // MemoryLeader, so that we get reprocessed when it changes.
1594 if (LE->getMemoryLeader() != DefiningAccess)
1595 addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1596 return LE;
1597}
1598
1599NewGVN::ExprResult
1600NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst *I) const {
1601 auto *PI = PredInfo->getPredicateInfoFor(I);
1602 if (!PI)
1603 return ExprResult::none();
1604
1605 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1606
1607 const std::optional<PredicateConstraint> &Constraint = PI->getConstraint();
1608 if (!Constraint)
1609 return ExprResult::none();
1610
1611 CmpInst::Predicate Predicate = Constraint->Predicate;
1612 Value *CmpOp0 = I->getOperand(0);
1613 Value *CmpOp1 = Constraint->OtherOp;
1614
1615 Value *FirstOp = lookupOperandLeader(CmpOp0);
1616 Value *SecondOp = lookupOperandLeader(CmpOp1);
1617 Value *AdditionallyUsedValue = CmpOp0;
1618
1619 // Sort the ops.
1620 if (shouldSwapOperandsForIntrinsic(FirstOp, SecondOp, I)) {
1621 std::swap(FirstOp, SecondOp);
1623 AdditionallyUsedValue = CmpOp1;
1624 }
1625
1626 if (Predicate == CmpInst::ICMP_EQ)
1627 return ExprResult::some(createVariableOrConstant(FirstOp),
1628 AdditionallyUsedValue, PI);
1629
1630 // Handle the special case of floating point.
1631 if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) &&
1632 !cast<ConstantFP>(FirstOp)->isZero())
1633 return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)),
1634 AdditionallyUsedValue, PI);
1635
1636 return ExprResult::none();
1637}
1638
1639// Evaluate read only and pure calls, and create an expression result.
1640NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1641 auto *CI = cast<CallInst>(I);
1642 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1643 // Intrinsics with the returned attribute are copies of arguments.
1644 if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1645 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1646 if (auto Res = performSymbolicPredicateInfoEvaluation(II))
1647 return Res;
1648 return ExprResult::some(createVariableOrConstant(ReturnedValue));
1649 }
1650 }
1651
1652 // FIXME: Currently the calls which may access the thread id may
1653 // be considered as not accessing the memory. But this is
1654 // problematic for coroutines, since coroutines may resume in a
1655 // different thread. So we disable the optimization here for the
1656 // correctness. However, it may block many other correct
1657 // optimizations. Revert this one when we detect the memory
1658 // accessing kind more precisely.
1659 if (CI->getFunction()->isPresplitCoroutine())
1660 return ExprResult::none();
1661
1662 // Do not combine convergent calls since they implicitly depend on the set of
1663 // threads that is currently executing, and they might be in different basic
1664 // blocks.
1665 if (CI->isConvergent())
1666 return ExprResult::none();
1667
1668 if (AA->doesNotAccessMemory(CI)) {
1669 return ExprResult::some(
1670 createCallExpression(CI, TOPClass->getMemoryLeader()));
1671 } else if (AA->onlyReadsMemory(CI)) {
1672 if (auto *MA = MSSA->getMemoryAccess(CI)) {
1673 auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1674 return ExprResult::some(createCallExpression(CI, DefiningAccess));
1675 } else // MSSA determined that CI does not access memory.
1676 return ExprResult::some(
1677 createCallExpression(CI, TOPClass->getMemoryLeader()));
1678 }
1679 return ExprResult::none();
1680}
1681
1682// Retrieve the memory class for a given MemoryAccess.
1683CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1684 auto *Result = MemoryAccessToClass.lookup(MA);
1685 assert(Result && "Should have found memory class");
1686 return Result;
1687}
1688
1689// Update the MemoryAccess equivalence table to say that From is equal to To,
1690// and return true if this is different from what already existed in the table.
1691bool NewGVN::setMemoryClass(const MemoryAccess *From,
1692 CongruenceClass *NewClass) {
1693 assert(NewClass &&
1694 "Every MemoryAccess should be getting mapped to a non-null class");
1695 LLVM_DEBUG(dbgs() << "Setting " << *From);
1696 LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1697 LLVM_DEBUG(dbgs() << NewClass->getID()
1698 << " with current MemoryAccess leader ");
1699 LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1700
1701 auto LookupResult = MemoryAccessToClass.find(From);
1702 bool Changed = false;
1703 // If it's already in the table, see if the value changed.
1704 if (LookupResult != MemoryAccessToClass.end()) {
1705 auto *OldClass = LookupResult->second;
1706 if (OldClass != NewClass) {
1707 // If this is a phi, we have to handle memory member updates.
1708 if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1709 OldClass->memory_erase(MP);
1710 NewClass->memory_insert(MP);
1711 // This may have killed the class if it had no non-memory members
1712 if (OldClass->getMemoryLeader() == From) {
1713 if (OldClass->definesNoMemory()) {
1714 OldClass->setMemoryLeader(nullptr);
1715 } else {
1716 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1717 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1718 << OldClass->getID() << " to "
1719 << *OldClass->getMemoryLeader()
1720 << " due to removal of a memory member " << *From
1721 << "\n");
1722 markMemoryLeaderChangeTouched(OldClass);
1723 }
1724 }
1725 }
1726 // It wasn't equivalent before, and now it is.
1727 LookupResult->second = NewClass;
1728 Changed = true;
1729 }
1730 }
1731
1732 return Changed;
1733}
1734
1735// Determine if a instruction is cycle-free. That means the values in the
1736// instruction don't depend on any expressions that can change value as a result
1737// of the instruction. For example, a non-cycle free instruction would be v =
1738// phi(0, v+1).
1739bool NewGVN::isCycleFree(const Instruction *I) const {
1740 // In order to compute cycle-freeness, we do SCC finding on the instruction,
1741 // and see what kind of SCC it ends up in. If it is a singleton, it is
1742 // cycle-free. If it is not in a singleton, it is only cycle free if the
1743 // other members are all phi nodes (as they do not compute anything, they are
1744 // copies).
1745 auto ICS = InstCycleState.lookup(I);
1746 if (ICS == ICS_Unknown) {
1747 SCCFinder.Start(I);
1748 auto &SCC = SCCFinder.getComponentFor(I);
1749 // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1750 if (SCC.size() == 1)
1751 InstCycleState.insert({I, ICS_CycleFree});
1752 else {
1753 bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1754 return isa<PHINode>(V) || isCopyOfAPHI(V);
1755 });
1756 ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1757 for (const auto *Member : SCC)
1758 if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1759 InstCycleState.insert({MemberPhi, ICS});
1760 }
1761 }
1762 if (ICS == ICS_Cycle)
1763 return false;
1764 return true;
1765}
1766
1767// Evaluate PHI nodes symbolically and create an expression result.
1768const Expression *
1769NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1770 Instruction *I,
1771 BasicBlock *PHIBlock) const {
1772 // True if one of the incoming phi edges is a backedge.
1773 bool HasBackedge = false;
1774 // All constant tracks the state of whether all the *original* phi operands
1775 // This is really shorthand for "this phi cannot cycle due to forward
1776 // change in value of the phi is guaranteed not to later change the value of
1777 // the phi. IE it can't be v = phi(undef, v+1)
1778 bool OriginalOpsConstant = true;
1779 auto *E = cast<PHIExpression>(createPHIExpression(
1780 PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1781 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1782 // See if all arguments are the same.
1783 // We track if any were undef because they need special handling.
1784 bool HasUndef = false, HasPoison = false;
1785 auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1786 if (isa<PoisonValue>(Arg)) {
1787 HasPoison = true;
1788 return false;
1789 }
1790 if (isa<UndefValue>(Arg)) {
1791 HasUndef = true;
1792 return false;
1793 }
1794 return true;
1795 });
1796 // If we are left with no operands, it's dead.
1797 if (Filtered.empty()) {
1798 // If it has undef or poison at this point, it means there are no-non-undef
1799 // arguments, and thus, the value of the phi node must be undef.
1800 if (HasUndef) {
1801 LLVM_DEBUG(
1802 dbgs() << "PHI Node " << *I
1803 << " has no non-undef arguments, valuing it as undef\n");
1804 return createConstantExpression(UndefValue::get(I->getType()));
1805 }
1806 if (HasPoison) {
1807 LLVM_DEBUG(
1808 dbgs() << "PHI Node " << *I
1809 << " has no non-poison arguments, valuing it as poison\n");
1810 return createConstantExpression(PoisonValue::get(I->getType()));
1811 }
1812
1813 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1814 deleteExpression(E);
1815 return createDeadExpression();
1816 }
1817 Value *AllSameValue = *(Filtered.begin());
1818 ++Filtered.begin();
1819 // Can't use std::equal here, sadly, because filter.begin moves.
1820 if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1821 // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef
1822 // in the worst case).
1823 if (HasUndef && !isGuaranteedNotToBePoison(AllSameValue, AC, nullptr, DT))
1824 return E;
1825
1826 // In LLVM's non-standard representation of phi nodes, it's possible to have
1827 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1828 // on the original phi node), especially in weird CFG's where some arguments
1829 // are unreachable, or uninitialized along certain paths. This can cause
1830 // infinite loops during evaluation. We work around this by not trying to
1831 // really evaluate them independently, but instead using a variable
1832 // expression to say if one is equivalent to the other.
1833 // We also special case undef/poison, so that if we have an undef, we can't
1834 // use the common value unless it dominates the phi block.
1835 if (HasPoison || HasUndef) {
1836 // If we have undef and at least one other value, this is really a
1837 // multivalued phi, and we need to know if it's cycle free in order to
1838 // evaluate whether we can ignore the undef. The other parts of this are
1839 // just shortcuts. If there is no backedge, or all operands are
1840 // constants, it also must be cycle free.
1841 if (HasBackedge && !OriginalOpsConstant &&
1842 !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1843 return E;
1844
1845 // Only have to check for instructions
1846 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1847 if (!someEquivalentDominates(AllSameInst, I))
1848 return E;
1849 }
1850 // Can't simplify to something that comes later in the iteration.
1851 // Otherwise, when and if it changes congruence class, we will never catch
1852 // up. We will always be a class behind it.
1853 if (isa<Instruction>(AllSameValue) &&
1854 InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1855 return E;
1856 NumGVNPhisAllSame++;
1857 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1858 << "\n");
1859 deleteExpression(E);
1860 return createVariableOrConstant(AllSameValue);
1861 }
1862 return E;
1863}
1864
1865const Expression *
1866NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1867 if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1868 auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1869 if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1870 // EI is an extract from one of our with.overflow intrinsics. Synthesize
1871 // a semantically equivalent expression instead of an extract value
1872 // expression.
1873 return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1874 WO->getLHS(), WO->getRHS(), I);
1875 }
1876
1877 return createAggregateValueExpression(I);
1878}
1879
1880NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1881 assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1882
1883 auto *CI = cast<CmpInst>(I);
1884 // See if our operands are equal to those of a previous predicate, and if so,
1885 // if it implies true or false.
1886 auto Op0 = lookupOperandLeader(CI->getOperand(0));
1887 auto Op1 = lookupOperandLeader(CI->getOperand(1));
1888 auto OurPredicate = CI->getPredicate();
1889 if (shouldSwapOperands(Op0, Op1)) {
1890 std::swap(Op0, Op1);
1891 OurPredicate = CI->getSwappedPredicate();
1892 }
1893
1894 // Avoid processing the same info twice.
1895 const PredicateBase *LastPredInfo = nullptr;
1896 // See if we know something about the comparison itself, like it is the target
1897 // of an assume.
1898 auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1899 if (isa_and_nonnull<PredicateAssume>(CmpPI))
1900 return ExprResult::some(
1901 createConstantExpression(ConstantInt::getTrue(CI->getType())));
1902
1903 if (Op0 == Op1) {
1904 // This condition does not depend on predicates, no need to add users
1905 if (CI->isTrueWhenEqual())
1906 return ExprResult::some(
1907 createConstantExpression(ConstantInt::getTrue(CI->getType())));
1908 else if (CI->isFalseWhenEqual())
1909 return ExprResult::some(
1910 createConstantExpression(ConstantInt::getFalse(CI->getType())));
1911 }
1912
1913 // NOTE: Because we are comparing both operands here and below, and using
1914 // previous comparisons, we rely on fact that predicateinfo knows to mark
1915 // comparisons that use renamed operands as users of the earlier comparisons.
1916 // It is *not* enough to just mark predicateinfo renamed operands as users of
1917 // the earlier comparisons, because the *other* operand may have changed in a
1918 // previous iteration.
1919 // Example:
1920 // icmp slt %a, %b
1921 // %b.0 = ssa.copy(%b)
1922 // false branch:
1923 // icmp slt %c, %b.0
1924
1925 // %c and %a may start out equal, and thus, the code below will say the second
1926 // %icmp is false. c may become equal to something else, and in that case the
1927 // %second icmp *must* be reexamined, but would not if only the renamed
1928 // %operands are considered users of the icmp.
1929
1930 // *Currently* we only check one level of comparisons back, and only mark one
1931 // level back as touched when changes happen. If you modify this code to look
1932 // back farther through comparisons, you *must* mark the appropriate
1933 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1934 // we know something just from the operands themselves
1935
1936 // See if our operands have predicate info, so that we may be able to derive
1937 // something from a previous comparison.
1938 for (const auto &Op : CI->operands()) {
1939 auto *PI = PredInfo->getPredicateInfoFor(Op);
1940 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1941 if (PI == LastPredInfo)
1942 continue;
1943 LastPredInfo = PI;
1944 // In phi of ops cases, we may have predicate info that we are evaluating
1945 // in a different context.
1946 if (!DT->dominates(PBranch->To, I->getParent()))
1947 continue;
1948 // TODO: Along the false edge, we may know more things too, like
1949 // icmp of
1950 // same operands is false.
1951 // TODO: We only handle actual comparison conditions below, not
1952 // and/or.
1953 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1954 if (!BranchCond)
1955 continue;
1956 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1957 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1958 auto BranchPredicate = BranchCond->getPredicate();
1959 if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1960 std::swap(BranchOp0, BranchOp1);
1961 BranchPredicate = BranchCond->getSwappedPredicate();
1962 }
1963 if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1964 if (PBranch->TrueEdge) {
1965 // If we know the previous predicate is true and we are in the true
1966 // edge then we may be implied true or false.
1967 if (auto R = ICmpInst::isImpliedByMatchingCmp(BranchPredicate,
1968 OurPredicate)) {
1969 auto *C = ConstantInt::getBool(CI->getType(), *R);
1970 return ExprResult::some(createConstantExpression(C), PI);
1971 }
1972 } else {
1973 // Just handle the ne and eq cases, where if we have the same
1974 // operands, we may know something.
1975 if (BranchPredicate == OurPredicate) {
1976 // Same predicate, same ops,we know it was false, so this is false.
1977 return ExprResult::some(
1978 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1979 PI);
1980 } else if (BranchPredicate ==
1981 CmpInst::getInversePredicate(OurPredicate)) {
1982 // Inverse predicate, we know the other was false, so this is true.
1983 return ExprResult::some(
1984 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1985 PI);
1986 }
1987 }
1988 }
1989 }
1990 }
1991 // Create expression will take care of simplifyCmpInst
1992 return createExpression(I);
1993}
1994
1995// Substitute and symbolize the instruction before value numbering.
1996NewGVN::ExprResult
1997NewGVN::performSymbolicEvaluation(Instruction *I,
1998 SmallPtrSetImpl<Value *> &Visited) const {
1999
2000 const Expression *E = nullptr;
2001 // TODO: memory intrinsics.
2002 // TODO: Some day, we should do the forward propagation and reassociation
2003 // parts of the algorithm.
2004 switch (I->getOpcode()) {
2005 case Instruction::ExtractValue:
2006 case Instruction::InsertValue:
2007 E = performSymbolicAggrValueEvaluation(I);
2008 break;
2009 case Instruction::PHI: {
2011 auto *PN = cast<PHINode>(I);
2012 for (unsigned i = 0; i < PN->getNumOperands(); ++i)
2013 Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
2014 // Sort to ensure the invariant createPHIExpression requires is met.
2015 sortPHIOps(Ops);
2016 E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
2017 } break;
2018 case Instruction::Call:
2019 return performSymbolicCallEvaluation(I);
2020 break;
2021 case Instruction::Store:
2022 E = performSymbolicStoreEvaluation(I);
2023 break;
2024 case Instruction::Load:
2025 E = performSymbolicLoadEvaluation(I);
2026 break;
2027 case Instruction::BitCast:
2028 case Instruction::AddrSpaceCast:
2029 case Instruction::Freeze:
2030 return createExpression(I);
2031 break;
2032 case Instruction::ICmp:
2033 case Instruction::FCmp:
2034 return performSymbolicCmpEvaluation(I);
2035 break;
2036 case Instruction::FNeg:
2037 case Instruction::Add:
2038 case Instruction::FAdd:
2039 case Instruction::Sub:
2040 case Instruction::FSub:
2041 case Instruction::Mul:
2042 case Instruction::FMul:
2043 case Instruction::UDiv:
2044 case Instruction::SDiv:
2045 case Instruction::FDiv:
2046 case Instruction::URem:
2047 case Instruction::SRem:
2048 case Instruction::FRem:
2049 case Instruction::Shl:
2050 case Instruction::LShr:
2051 case Instruction::AShr:
2052 case Instruction::And:
2053 case Instruction::Or:
2054 case Instruction::Xor:
2055 case Instruction::Trunc:
2056 case Instruction::ZExt:
2057 case Instruction::SExt:
2058 case Instruction::FPToUI:
2059 case Instruction::FPToSI:
2060 case Instruction::UIToFP:
2061 case Instruction::SIToFP:
2062 case Instruction::FPTrunc:
2063 case Instruction::FPExt:
2064 case Instruction::PtrToInt:
2065 case Instruction::IntToPtr:
2066 case Instruction::Select:
2067 case Instruction::ExtractElement:
2068 case Instruction::InsertElement:
2069 case Instruction::GetElementPtr:
2070 return createExpression(I);
2071 break;
2072 case Instruction::ShuffleVector:
2073 // FIXME: Add support for shufflevector to createExpression.
2074 return ExprResult::none();
2075 default:
2076 return ExprResult::none();
2077 }
2078 return ExprResult::some(E);
2079}
2080
2081// Look up a container of values/instructions in a map, and touch all the
2082// instructions in the container. Then erase value from the map.
2083template <typename Map, typename KeyType>
2084void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2085 const auto Result = M.find_as(Key);
2086 if (Result != M.end()) {
2087 for (const typename Map::mapped_type::value_type Mapped : Result->second)
2088 TouchedInstructions.set(InstrToDFSNum(Mapped));
2089 M.erase(Result);
2090 }
2091}
2092
2093void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2094 assert(User && To != User);
2095 if (isa<Instruction>(To))
2096 AdditionalUsers[To].insert(User);
2097}
2098
2099void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const {
2100 if (Res.ExtraDep && Res.ExtraDep != User)
2101 addAdditionalUsers(Res.ExtraDep, User);
2102 Res.ExtraDep = nullptr;
2103
2104 if (Res.PredDep) {
2105 if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep))
2106 PredicateToUsers[PBranch->Condition].insert(User);
2107 else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep))
2108 PredicateToUsers[PAssume->Condition].insert(User);
2109 }
2110 Res.PredDep = nullptr;
2111}
2112
2113void NewGVN::markUsersTouched(Value *V) {
2114 // Now mark the users as touched.
2115 for (auto *User : V->users()) {
2116 assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2117 TouchedInstructions.set(InstrToDFSNum(User));
2118 }
2119 touchAndErase(AdditionalUsers, V);
2120}
2121
2122void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2123 LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2124 MemoryToUsers[To].insert(U);
2125}
2126
2127void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2128 TouchedInstructions.set(MemoryToDFSNum(MA));
2129}
2130
2131void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2132 if (isa<MemoryUse>(MA))
2133 return;
2134 for (const auto *U : MA->users())
2135 TouchedInstructions.set(MemoryToDFSNum(U));
2136 touchAndErase(MemoryToUsers, MA);
2137}
2138
2139// Touch all the predicates that depend on this instruction.
2140void NewGVN::markPredicateUsersTouched(Instruction *I) {
2141 touchAndErase(PredicateToUsers, I);
2142}
2143
2144// Mark users affected by a memory leader change.
2145void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2146 for (const auto *M : CC->memory())
2147 markMemoryDefTouched(M);
2148}
2149
2150// Touch the instructions that need to be updated after a congruence class has a
2151// leader change, and mark changed values.
2152void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2153 for (auto *M : *CC) {
2154 if (auto *I = dyn_cast<Instruction>(M))
2155 TouchedInstructions.set(InstrToDFSNum(I));
2156 LeaderChanges.insert(M);
2157 }
2158}
2159
2160// Give a range of things that have instruction DFS numbers, this will return
2161// the member of the range with the smallest dfs number.
2162template <class T, class Range>
2163T *NewGVN::getMinDFSOfRange(const Range &R) const {
2164 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2165 for (const auto X : R) {
2166 auto DFSNum = InstrToDFSNum(X);
2167 if (DFSNum < MinDFS.second)
2168 MinDFS = {X, DFSNum};
2169 }
2170 return MinDFS.first;
2171}
2172
2173// This function returns the MemoryAccess that should be the next leader of
2174// congruence class CC, under the assumption that the current leader is going to
2175// disappear.
2176const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2177 // TODO: If this ends up to slow, we can maintain a next memory leader like we
2178 // do for regular leaders.
2179 // Make sure there will be a leader to find.
2180 assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2181 if (CC->getStoreCount() > 0) {
2182 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2183 return getMemoryAccess(NL);
2184 // Find the store with the minimum DFS number.
2185 auto *V = getMinDFSOfRange<Value>(make_filter_range(
2186 *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2187 return getMemoryAccess(cast<StoreInst>(V));
2188 }
2189 assert(CC->getStoreCount() == 0);
2190
2191 // Given our assertion, hitting this part must mean
2192 // !OldClass->memory_empty()
2193 if (CC->memory_size() == 1)
2194 return *CC->memory_begin();
2195 return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2196}
2197
2198// This function returns the next value leader of a congruence class, under the
2199// assumption that the current leader is going away. This should end up being
2200// the next most dominating member.
2201Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2202 // We don't need to sort members if there is only 1, and we don't care about
2203 // sorting the TOP class because everything either gets out of it or is
2204 // unreachable.
2205
2206 if (CC->size() == 1 || CC == TOPClass) {
2207 return *(CC->begin());
2208 } else if (CC->getNextLeader().first) {
2209 ++NumGVNAvoidedSortedLeaderChanges;
2210 return CC->getNextLeader().first;
2211 } else {
2212 ++NumGVNSortedLeaderChanges;
2213 // NOTE: If this ends up to slow, we can maintain a dual structure for
2214 // member testing/insertion, or keep things mostly sorted, and sort only
2215 // here, or use SparseBitVector or ....
2216 return getMinDFSOfRange<Value>(*CC);
2217 }
2218}
2219
2220// Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2221// the memory members, etc for the move.
2222//
2223// The invariants of this function are:
2224//
2225// - I must be moving to NewClass from OldClass
2226// - The StoreCount of OldClass and NewClass is expected to have been updated
2227// for I already if it is a store.
2228// - The OldClass memory leader has not been updated yet if I was the leader.
2229void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2230 MemoryAccess *InstMA,
2231 CongruenceClass *OldClass,
2232 CongruenceClass *NewClass) {
2233 // If the leader is I, and we had a representative MemoryAccess, it should
2234 // be the MemoryAccess of OldClass.
2235 assert((!InstMA || !OldClass->getMemoryLeader() ||
2236 OldClass->getLeader() != I ||
2237 MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2238 MemoryAccessToClass.lookup(InstMA)) &&
2239 "Representative MemoryAccess mismatch");
2240 // First, see what happens to the new class
2241 if (!NewClass->getMemoryLeader()) {
2242 // Should be a new class, or a store becoming a leader of a new class.
2243 assert(NewClass->size() == 1 ||
2244 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2245 NewClass->setMemoryLeader(InstMA);
2246 // Mark it touched if we didn't just create a singleton
2247 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2248 << NewClass->getID()
2249 << " due to new memory instruction becoming leader\n");
2250 markMemoryLeaderChangeTouched(NewClass);
2251 }
2252 setMemoryClass(InstMA, NewClass);
2253 // Now, fixup the old class if necessary
2254 if (OldClass->getMemoryLeader() == InstMA) {
2255 if (!OldClass->definesNoMemory()) {
2256 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2257 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2258 << OldClass->getID() << " to "
2259 << *OldClass->getMemoryLeader()
2260 << " due to removal of old leader " << *InstMA << "\n");
2261 markMemoryLeaderChangeTouched(OldClass);
2262 } else
2263 OldClass->setMemoryLeader(nullptr);
2264 }
2265}
2266
2267// Move a value, currently in OldClass, to be part of NewClass
2268// Update OldClass and NewClass for the move (including changing leaders, etc).
2269void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2270 CongruenceClass *OldClass,
2271 CongruenceClass *NewClass) {
2272 if (I == OldClass->getNextLeader().first)
2273 OldClass->resetNextLeader();
2274
2275 OldClass->erase(I);
2276 NewClass->insert(I);
2277
2278 // Ensure that the leader has the lowest RPO. If the leader changed notify all
2279 // members of the class.
2280 if (NewClass->getLeader() != I &&
2281 NewClass->addPossibleLeader({I, InstrToDFSNum(I)})) {
2282 markValueLeaderChangeTouched(NewClass);
2283 }
2284
2285 // Handle our special casing of stores.
2286 if (auto *SI = dyn_cast<StoreInst>(I)) {
2287 OldClass->decStoreCount();
2288 // Okay, so when do we want to make a store a leader of a class?
2289 // If we have a store defined by an earlier load, we want the earlier load
2290 // to lead the class.
2291 // If we have a store defined by something else, we want the store to lead
2292 // the class so everything else gets the "something else" as a value.
2293 // If we have a store as the single member of the class, we want the store
2294 // as the leader
2295 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2296 // If it's a store expression we are using, it means we are not equivalent
2297 // to something earlier.
2298 if (auto *SE = dyn_cast<StoreExpression>(E)) {
2299 NewClass->setStoredValue(SE->getStoredValue());
2300 markValueLeaderChangeTouched(NewClass);
2301 // Shift the new class leader to be the store
2302 LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2303 << NewClass->getID() << " from "
2304 << *NewClass->getLeader() << " to " << *SI
2305 << " because store joined class\n");
2306 // If we changed the leader, we have to mark it changed because we don't
2307 // know what it will do to symbolic evaluation.
2308 NewClass->setLeader({SI, InstrToDFSNum(SI)});
2309 }
2310 // We rely on the code below handling the MemoryAccess change.
2311 }
2312 NewClass->incStoreCount();
2313 }
2314 // True if there is no memory instructions left in a class that had memory
2315 // instructions before.
2316
2317 // If it's not a memory use, set the MemoryAccess equivalence
2318 auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2319 if (InstMA)
2320 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2321 ValueToClass[I] = NewClass;
2322 // See if we destroyed the class or need to swap leaders.
2323 if (OldClass->empty() && OldClass != TOPClass) {
2324 if (OldClass->getDefiningExpr()) {
2325 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2326 << " from table\n");
2327 // We erase it as an exact expression to make sure we don't just erase an
2328 // equivalent one.
2329 auto Iter = ExpressionToClass.find_as(
2330 ExactEqualsExpression(*OldClass->getDefiningExpr()));
2331 if (Iter != ExpressionToClass.end())
2332 ExpressionToClass.erase(Iter);
2333#ifdef EXPENSIVE_CHECKS
2334 assert(
2335 (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2336 "We erased the expression we just inserted, which should not happen");
2337#endif
2338 }
2339 } else if (OldClass->getLeader() == I) {
2340 // When the leader changes, the value numbering of
2341 // everything may change due to symbolization changes, so we need to
2342 // reprocess.
2343 LLVM_DEBUG(dbgs() << "Value class leader change for class "
2344 << OldClass->getID() << "\n");
2345 ++NumGVNLeaderChanges;
2346 // Destroy the stored value if there are no more stores to represent it.
2347 // Note that this is basically clean up for the expression removal that
2348 // happens below. If we remove stores from a class, we may leave it as a
2349 // class of equivalent memory phis.
2350 if (OldClass->getStoreCount() == 0) {
2351 if (OldClass->getStoredValue())
2352 OldClass->setStoredValue(nullptr);
2353 }
2354 OldClass->setLeader({getNextValueLeader(OldClass),
2355 InstrToDFSNum(getNextValueLeader(OldClass))});
2356 OldClass->resetNextLeader();
2357 markValueLeaderChangeTouched(OldClass);
2358 }
2359}
2360
2361// For a given expression, mark the phi of ops instructions that could have
2362// changed as a result.
2363void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2364 touchAndErase(ExpressionToPhiOfOps, E);
2365}
2366
2367// Perform congruence finding on a given value numbering expression.
2368void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2369 // This is guaranteed to return something, since it will at least find
2370 // TOP.
2371
2372 CongruenceClass *IClass = ValueToClass.lookup(I);
2373 assert(IClass && "Should have found a IClass");
2374 // Dead classes should have been eliminated from the mapping.
2375 assert(!IClass->isDead() && "Found a dead class");
2376
2377 CongruenceClass *EClass = nullptr;
2378 if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2379 EClass = ValueToClass.lookup(VE->getVariableValue());
2380 } else if (isa<DeadExpression>(E)) {
2381 EClass = TOPClass;
2382 }
2383 if (!EClass) {
2384 auto lookupResult = ExpressionToClass.insert({E, nullptr});
2385
2386 // If it's not in the value table, create a new congruence class.
2387 if (lookupResult.second) {
2388 CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2389 auto place = lookupResult.first;
2390 place->second = NewClass;
2391
2392 // Constants and variables should always be made the leader.
2393 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2394 NewClass->setLeader({CE->getConstantValue(), 0});
2395 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2396 StoreInst *SI = SE->getStoreInst();
2397 NewClass->setLeader({SI, InstrToDFSNum(SI)});
2398 NewClass->setStoredValue(SE->getStoredValue());
2399 // The RepMemoryAccess field will be filled in properly by the
2400 // moveValueToNewCongruenceClass call.
2401 } else {
2402 NewClass->setLeader({I, InstrToDFSNum(I)});
2403 }
2404 assert(!isa<VariableExpression>(E) &&
2405 "VariableExpression should have been handled already");
2406
2407 EClass = NewClass;
2408 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2409 << " using expression " << *E << " at "
2410 << NewClass->getID() << " and leader "
2411 << *(NewClass->getLeader()));
2412 if (NewClass->getStoredValue())
2413 LLVM_DEBUG(dbgs() << " and stored value "
2414 << *(NewClass->getStoredValue()));
2415 LLVM_DEBUG(dbgs() << "\n");
2416 } else {
2417 EClass = lookupResult.first->second;
2418 if (isa<ConstantExpression>(E))
2419 assert((isa<Constant>(EClass->getLeader()) ||
2420 (EClass->getStoredValue() &&
2421 isa<Constant>(EClass->getStoredValue()))) &&
2422 "Any class with a constant expression should have a "
2423 "constant leader");
2424
2425 assert(EClass && "Somehow don't have an eclass");
2426
2427 assert(!EClass->isDead() && "We accidentally looked up a dead class");
2428 }
2429 }
2430 bool ClassChanged = IClass != EClass;
2431 bool LeaderChanged = LeaderChanges.erase(I);
2432 if (ClassChanged || LeaderChanged) {
2433 LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2434 << *E << "\n");
2435 if (ClassChanged) {
2436 moveValueToNewCongruenceClass(I, E, IClass, EClass);
2437 markPhiOfOpsChanged(E);
2438 }
2439
2440 markUsersTouched(I);
2441 if (MemoryAccess *MA = getMemoryAccess(I))
2442 markMemoryUsersTouched(MA);
2443 if (auto *CI = dyn_cast<CmpInst>(I))
2444 markPredicateUsersTouched(CI);
2445 }
2446 // If we changed the class of the store, we want to ensure nothing finds the
2447 // old store expression. In particular, loads do not compare against stored
2448 // value, so they will find old store expressions (and associated class
2449 // mappings) if we leave them in the table.
2450 if (ClassChanged && isa<StoreInst>(I)) {
2451 auto *OldE = ValueToExpression.lookup(I);
2452 // It could just be that the old class died. We don't want to erase it if we
2453 // just moved classes.
2454 if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2455 // Erase this as an exact expression to ensure we don't erase expressions
2456 // equivalent to it.
2457 auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2458 if (Iter != ExpressionToClass.end())
2459 ExpressionToClass.erase(Iter);
2460 }
2461 }
2462 ValueToExpression[I] = E;
2463}
2464
2465// Process the fact that Edge (from, to) is reachable, including marking
2466// any newly reachable blocks and instructions for processing.
2467void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2468 // Check if the Edge was reachable before.
2469 if (ReachableEdges.insert({From, To}).second) {
2470 // If this block wasn't reachable before, all instructions are touched.
2471 if (ReachableBlocks.insert(To).second) {
2472 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2473 << " marked reachable\n");
2474 const auto &InstRange = BlockInstRange.lookup(To);
2475 TouchedInstructions.set(InstRange.first, InstRange.second);
2476 } else {
2477 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2478 << " was reachable, but new edge {"
2479 << getBlockName(From) << "," << getBlockName(To)
2480 << "} to it found\n");
2481
2482 // We've made an edge reachable to an existing block, which may
2483 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2484 // they are the only thing that depend on new edges. Anything using their
2485 // values will get propagated to if necessary.
2486 if (MemoryAccess *MemPhi = getMemoryAccess(To))
2487 TouchedInstructions.set(InstrToDFSNum(MemPhi));
2488
2489 // FIXME: We should just add a union op on a Bitvector and
2490 // SparseBitVector. We can do it word by word faster than we are doing it
2491 // here.
2492 for (auto InstNum : RevisitOnReachabilityChange[To])
2493 TouchedInstructions.set(InstNum);
2494 }
2495 }
2496}
2497
2498// Given a predicate condition (from a switch, cmp, or whatever) and a block,
2499// see if we know some constant value for it already.
2500Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2501 auto Result = lookupOperandLeader(Cond);
2502 return isa<Constant>(Result) ? Result : nullptr;
2503}
2504
2505// Process the outgoing edges of a block for reachability.
2506void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2507 // Evaluate reachability of terminator instruction.
2508 Value *Cond;
2509 BasicBlock *TrueSucc, *FalseSucc;
2510 if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2511 Value *CondEvaluated = findConditionEquivalence(Cond);
2512 if (!CondEvaluated) {
2513 if (auto *I = dyn_cast<Instruction>(Cond)) {
2515 auto Res = performSymbolicEvaluation(I, Visited);
2516 if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) {
2517 CondEvaluated = CE->getConstantValue();
2518 addAdditionalUsers(Res, I);
2519 } else {
2520 // Did not use simplification result, no need to add the extra
2521 // dependency.
2522 Res.ExtraDep = nullptr;
2523 }
2524 } else if (isa<ConstantInt>(Cond)) {
2525 CondEvaluated = Cond;
2526 }
2527 }
2528 ConstantInt *CI;
2529 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2530 if (CI->isOne()) {
2531 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2532 << " evaluated to true\n");
2533 updateReachableEdge(B, TrueSucc);
2534 } else if (CI->isZero()) {
2535 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2536 << " evaluated to false\n");
2537 updateReachableEdge(B, FalseSucc);
2538 }
2539 } else {
2540 updateReachableEdge(B, TrueSucc);
2541 updateReachableEdge(B, FalseSucc);
2542 }
2543 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2544 // For switches, propagate the case values into the case
2545 // destinations.
2546
2547 Value *SwitchCond = SI->getCondition();
2548 Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2549 // See if we were able to turn this switch statement into a constant.
2550 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2551 auto *CondVal = cast<ConstantInt>(CondEvaluated);
2552 // We should be able to get case value for this.
2553 auto Case = *SI->findCaseValue(CondVal);
2554 if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2555 // We proved the value is outside of the range of the case.
2556 // We can't do anything other than mark the default dest as reachable,
2557 // and go home.
2558 updateReachableEdge(B, SI->getDefaultDest());
2559 return;
2560 }
2561 // Now get where it goes and mark it reachable.
2562 BasicBlock *TargetBlock = Case.getCaseSuccessor();
2563 updateReachableEdge(B, TargetBlock);
2564 } else {
2565 for (BasicBlock *TargetBlock : successors(SI->getParent()))
2566 updateReachableEdge(B, TargetBlock);
2567 }
2568 } else {
2569 // Otherwise this is either unconditional, or a type we have no
2570 // idea about. Just mark successors as reachable.
2571 for (BasicBlock *TargetBlock : successors(TI->getParent()))
2572 updateReachableEdge(B, TargetBlock);
2573
2574 // This also may be a memory defining terminator, in which case, set it
2575 // equivalent only to itself.
2576 //
2577 auto *MA = getMemoryAccess(TI);
2578 if (MA && !isa<MemoryUse>(MA)) {
2579 auto *CC = ensureLeaderOfMemoryClass(MA);
2580 if (setMemoryClass(MA, CC))
2581 markMemoryUsersTouched(MA);
2582 }
2583 }
2584}
2585
2586// Remove the PHI of Ops PHI for I
2587void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2588 InstrDFS.erase(PHITemp);
2589 // It's still a temp instruction. We keep it in the array so it gets erased.
2590 // However, it's no longer used by I, or in the block
2591 TempToBlock.erase(PHITemp);
2592 RealToTemp.erase(I);
2593 // We don't remove the users from the phi node uses. This wastes a little
2594 // time, but such is life. We could use two sets to track which were there
2595 // are the start of NewGVN, and which were added, but right nowt he cost of
2596 // tracking is more than the cost of checking for more phi of ops.
2597}
2598
2599// Add PHI Op in BB as a PHI of operations version of ExistingValue.
2600void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2601 Instruction *ExistingValue) {
2602 InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2603 AllTempInstructions.insert(Op);
2604 TempToBlock[Op] = BB;
2605 RealToTemp[ExistingValue] = Op;
2606 // Add all users to phi node use, as they are now uses of the phi of ops phis
2607 // and may themselves be phi of ops.
2608 for (auto *U : ExistingValue->users())
2609 if (auto *UI = dyn_cast<Instruction>(U))
2610 PHINodeUses.insert(UI);
2611}
2612
2613static bool okayForPHIOfOps(const Instruction *I) {
2614 if (!EnablePhiOfOps)
2615 return false;
2616 return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2617 isa<LoadInst>(I);
2618}
2619
2620// Return true if this operand will be safe to use for phi of ops.
2621//
2622// The reason some operands are unsafe is that we are not trying to recursively
2623// translate everything back through phi nodes. We actually expect some lookups
2624// of expressions to fail. In particular, a lookup where the expression cannot
2625// exist in the predecessor. This is true even if the expression, as shown, can
2626// be determined to be constant.
2627bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2629 SmallVector<Value *, 4> Worklist;
2630 Worklist.push_back(V);
2631 while (!Worklist.empty()) {
2632 auto *I = Worklist.pop_back_val();
2633 if (!isa<Instruction>(I))
2634 continue;
2635
2636 auto OISIt = OpSafeForPHIOfOps.find({I, CacheIdx});
2637 if (OISIt != OpSafeForPHIOfOps.end())
2638 return OISIt->second;
2639
2640 // Keep walking until we either dominate the phi block, or hit a phi, or run
2641 // out of things to check.
2642 if (DT->properlyDominates(getBlockForValue(I), PHIBlock)) {
2643 OpSafeForPHIOfOps.insert({{I, CacheIdx}, true});
2644 continue;
2645 }
2646 // PHI in the same block.
2647 if (isa<PHINode>(I) && getBlockForValue(I) == PHIBlock) {
2648 OpSafeForPHIOfOps.insert({{I, CacheIdx}, false});
2649 return false;
2650 }
2651
2652 auto *OrigI = cast<Instruction>(I);
2653 // When we hit an instruction that reads memory (load, call, etc), we must
2654 // consider any store that may happen in the loop. For now, we assume the
2655 // worst: there is a store in the loop that alias with this read.
2656 // The case where the load is outside the loop is already covered by the
2657 // dominator check above.
2658 // TODO: relax this condition
2659 if (OrigI->mayReadFromMemory())
2660 return false;
2661
2662 // Check the operands of the current instruction.
2663 for (auto *Op : OrigI->operand_values()) {
2664 if (!isa<Instruction>(Op))
2665 continue;
2666 // Stop now if we find an unsafe operand.
2667 auto OISIt = OpSafeForPHIOfOps.find({OrigI, CacheIdx});
2668 if (OISIt != OpSafeForPHIOfOps.end()) {
2669 if (!OISIt->second) {
2670 OpSafeForPHIOfOps.insert({{I, CacheIdx}, false});
2671 return false;
2672 }
2673 continue;
2674 }
2675 if (!Visited.insert(Op).second)
2676 continue;
2677 Worklist.push_back(cast<Instruction>(Op));
2678 }
2679 }
2680 OpSafeForPHIOfOps.insert({{V, CacheIdx}, true});
2681 return true;
2682}
2683
2684// Try to find a leader for instruction TransInst, which is a phi translated
2685// version of something in our original program. Visited is used to ensure we
2686// don't infinite loop during translations of cycles. OrigInst is the
2687// instruction in the original program, and PredBB is the predecessor we
2688// translated it through.
2689Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2690 SmallPtrSetImpl<Value *> &Visited,
2691 MemoryAccess *MemAccess, Instruction *OrigInst,
2692 BasicBlock *PredBB) {
2693 unsigned IDFSNum = InstrToDFSNum(OrigInst);
2694 // Make sure it's marked as a temporary instruction.
2695 AllTempInstructions.insert(TransInst);
2696 // and make sure anything that tries to add it's DFS number is
2697 // redirected to the instruction we are making a phi of ops
2698 // for.
2699 TempToBlock.insert({TransInst, PredBB});
2700 InstrDFS.insert({TransInst, IDFSNum});
2701
2702 auto Res = performSymbolicEvaluation(TransInst, Visited);
2703 const Expression *E = Res.Expr;
2704 addAdditionalUsers(Res, OrigInst);
2705 InstrDFS.erase(TransInst);
2706 AllTempInstructions.erase(TransInst);
2707 TempToBlock.erase(TransInst);
2708 if (MemAccess)
2709 TempToMemory.erase(TransInst);
2710 if (!E)
2711 return nullptr;
2712 auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2713 if (!FoundVal) {
2714 ExpressionToPhiOfOps[E].insert(OrigInst);
2715 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2716 << " in block " << getBlockName(PredBB) << "\n");
2717 return nullptr;
2718 }
2719 if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2720 FoundVal = SI->getValueOperand();
2721 return FoundVal;
2722}
2723
2724// When we see an instruction that is an op of phis, generate the equivalent phi
2725// of ops form.
2726const Expression *
2727NewGVN::makePossiblePHIOfOps(Instruction *I,
2728 SmallPtrSetImpl<Value *> &Visited) {
2729 if (!okayForPHIOfOps(I))
2730 return nullptr;
2731
2732 if (!Visited.insert(I).second)
2733 return nullptr;
2734 // For now, we require the instruction be cycle free because we don't
2735 // *always* create a phi of ops for instructions that could be done as phi
2736 // of ops, we only do it if we think it is useful. If we did do it all the
2737 // time, we could remove the cycle free check.
2738 if (!isCycleFree(I))
2739 return nullptr;
2740
2741 SmallPtrSet<const Value *, 8> ProcessedPHIs;
2742 // TODO: We don't do phi translation on memory accesses because it's
2743 // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2744 // which we don't have a good way of doing ATM.
2745 auto *MemAccess = getMemoryAccess(I);
2746 // If the memory operation is defined by a memory operation this block that
2747 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2748 // can't help, as it would still be killed by that memory operation.
2749 if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2750 MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2751 return nullptr;
2752
2753 // Convert op of phis to phi of ops
2755 SmallVector<Value *, 4> Ops(I->operand_values());
2756 BasicBlock *SamePHIBlock = nullptr;
2757 PHINode *OpPHI = nullptr;
2758 if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2759 return nullptr;
2760 for (auto *Op : Ops) {
2761 if (!isa<PHINode>(Op)) {
2762 auto *ValuePHI = RealToTemp.lookup(Op);
2763 if (!ValuePHI)
2764 continue;
2765 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2766 Op = ValuePHI;
2767 }
2768 OpPHI = cast<PHINode>(Op);
2769 if (!SamePHIBlock) {
2770 SamePHIBlock = getBlockForValue(OpPHI);
2771 } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2772 LLVM_DEBUG(
2773 dbgs()
2774 << "PHIs for operands are not all in the same block, aborting\n");
2775 return nullptr;
2776 }
2777 // No point in doing this for one-operand phis.
2778 // Since all PHIs for operands must be in the same block, then they must
2779 // have the same number of operands so we can just abort.
2780 if (OpPHI->getNumOperands() == 1)
2781 return nullptr;
2782 }
2783
2784 if (!OpPHI)
2785 return nullptr;
2786
2789 auto *PHIBlock = getBlockForValue(OpPHI);
2790 RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2791 for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2792 auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2793 Value *FoundVal = nullptr;
2794 SmallPtrSet<Value *, 4> CurrentDeps;
2795 // We could just skip unreachable edges entirely but it's tricky to do
2796 // with rewriting existing phi nodes.
2797 if (ReachableEdges.count({PredBB, PHIBlock})) {
2798 // Clone the instruction, create an expression from it that is
2799 // translated back into the predecessor, and see if we have a leader.
2800 Instruction *ValueOp = I->clone();
2801 // Emit the temporal instruction in the predecessor basic block where the
2802 // corresponding value is defined.
2803 ValueOp->insertBefore(PredBB->getTerminator());
2804 if (MemAccess)
2805 TempToMemory.insert({ValueOp, MemAccess});
2806 bool SafeForPHIOfOps = true;
2807 VisitedOps.clear();
2808 for (auto &Op : ValueOp->operands()) {
2809 auto *OrigOp = &*Op;
2810 // When these operand changes, it could change whether there is a
2811 // leader for us or not, so we have to add additional users.
2812 if (isa<PHINode>(Op)) {
2813 Op = Op->DoPHITranslation(PHIBlock, PredBB);
2814 if (Op != OrigOp && Op != I)
2815 CurrentDeps.insert(Op);
2816 } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2817 if (getBlockForValue(ValuePHI) == PHIBlock)
2818 Op = ValuePHI->getIncomingValueForBlock(PredBB);
2819 }
2820 // If we phi-translated the op, it must be safe.
2821 SafeForPHIOfOps =
2822 SafeForPHIOfOps &&
2823 (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2824 }
2825 // FIXME: For those things that are not safe we could generate
2826 // expressions all the way down, and see if this comes out to a
2827 // constant. For anything where that is true, and unsafe, we should
2828 // have made a phi-of-ops (or value numbered it equivalent to something)
2829 // for the pieces already.
2830 FoundVal = !SafeForPHIOfOps ? nullptr
2831 : findLeaderForInst(ValueOp, Visited,
2832 MemAccess, I, PredBB);
2833 ValueOp->eraseFromParent();
2834 if (!FoundVal) {
2835 // We failed to find a leader for the current ValueOp, but this might
2836 // change in case of the translated operands change.
2837 if (SafeForPHIOfOps)
2838 for (auto *Dep : CurrentDeps)
2839 addAdditionalUsers(Dep, I);
2840
2841 return nullptr;
2842 }
2843 Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2844 } else {
2845 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2846 << getBlockName(PredBB)
2847 << " because the block is unreachable\n");
2848 FoundVal = PoisonValue::get(I->getType());
2849 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2850 }
2851
2852 PHIOps.push_back({FoundVal, PredBB});
2853 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2854 << getBlockName(PredBB) << "\n");
2855 }
2856 for (auto *Dep : Deps)
2857 addAdditionalUsers(Dep, I);
2858 sortPHIOps(PHIOps);
2859 auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2860 if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2861 LLVM_DEBUG(
2862 dbgs()
2863 << "Not creating real PHI of ops because it simplified to existing "
2864 "value or constant\n");
2865 // We have leaders for all operands, but do not create a real PHI node with
2866 // those leaders as operands, so the link between the operands and the
2867 // PHI-of-ops is not materialized in the IR. If any of those leaders
2868 // changes, the PHI-of-op may change also, so we need to add the operands as
2869 // additional users.
2870 for (auto &O : PHIOps)
2871 addAdditionalUsers(O.first, I);
2872
2873 return E;
2874 }
2875 auto *ValuePHI = RealToTemp.lookup(I);
2876 bool NewPHI = false;
2877 if (!ValuePHI) {
2878 ValuePHI =
2879 PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2880 addPhiOfOps(ValuePHI, PHIBlock, I);
2881 NewPHI = true;
2882 NumGVNPHIOfOpsCreated++;
2883 }
2884 if (NewPHI) {
2885 for (auto PHIOp : PHIOps)
2886 ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2887 } else {
2888 TempToBlock[ValuePHI] = PHIBlock;
2889 unsigned int i = 0;
2890 for (auto PHIOp : PHIOps) {
2891 ValuePHI->setIncomingValue(i, PHIOp.first);
2892 ValuePHI->setIncomingBlock(i, PHIOp.second);
2893 ++i;
2894 }
2895 }
2896 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2897 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2898 << "\n");
2899
2900 return E;
2901}
2902
2903// The algorithm initially places the values of the routine in the TOP
2904// congruence class. The leader of TOP is the undetermined value `poison`.
2905// When the algorithm has finished, values still in TOP are unreachable.
2906void NewGVN::initializeCongruenceClasses(Function &F) {
2907 NextCongruenceNum = 0;
2908
2909 // Note that even though we use the live on entry def as a representative
2910 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2911 // have no real equivalent to poison for MemoryAccesses, and so we really
2912 // should be checking whether the MemoryAccess is top if we want to know if it
2913 // is equivalent to everything. Otherwise, what this really signifies is that
2914 // the access "it reaches all the way back to the beginning of the function"
2915
2916 // Initialize all other instructions to be in TOP class.
2917 TOPClass = createCongruenceClass(nullptr, nullptr);
2918 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2919 // The live on entry def gets put into it's own class
2920 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2921 createMemoryClass(MSSA->getLiveOnEntryDef());
2922
2923 for (auto *DTN : nodes(DT)) {
2924 BasicBlock *BB = DTN->getBlock();
2925 // All MemoryAccesses are equivalent to live on entry to start. They must
2926 // be initialized to something so that initial changes are noticed. For
2927 // the maximal answer, we initialize them all to be the same as
2928 // liveOnEntry.
2929 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2930 if (MemoryBlockDefs)
2931 for (const auto &Def : *MemoryBlockDefs) {
2932 MemoryAccessToClass[&Def] = TOPClass;
2933 auto *MD = dyn_cast<MemoryDef>(&Def);
2934 // Insert the memory phis into the member list.
2935 if (!MD) {
2936 const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2937 TOPClass->memory_insert(MP);
2938 MemoryPhiState.insert({MP, MPS_TOP});
2939 }
2940
2941 if (MD && isa<StoreInst>(MD->getMemoryInst()))
2942 TOPClass->incStoreCount();
2943 }
2944
2945 // FIXME: This is trying to discover which instructions are uses of phi
2946 // nodes. We should move this into one of the myriad of places that walk
2947 // all the operands already.
2948 for (auto &I : *BB) {
2949 if (isa<PHINode>(&I))
2950 for (auto *U : I.users())
2951 if (auto *UInst = dyn_cast<Instruction>(U))
2952 if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2953 PHINodeUses.insert(UInst);
2954 // Don't insert void terminators into the class. We don't value number
2955 // them, and they just end up sitting in TOP.
2956 if (I.isTerminator() && I.getType()->isVoidTy())
2957 continue;
2958 TOPClass->insert(&I);
2959 ValueToClass[&I] = TOPClass;
2960 }
2961 }
2962
2963 // Initialize arguments to be in their own unique congruence classes
2964 for (auto &FA : F.args())
2965 createSingletonCongruenceClass(&FA);
2966}
2967
2968void NewGVN::cleanupTables() {
2969 for (CongruenceClass *&CC : CongruenceClasses) {
2970 LLVM_DEBUG(dbgs() << "Congruence class " << CC->getID() << " has "
2971 << CC->size() << " members\n");
2972 // Make sure we delete the congruence class (probably worth switching to
2973 // a unique_ptr at some point.
2974 delete CC;
2975 CC = nullptr;
2976 }
2977
2978 // Destroy the value expressions
2979 SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2980 AllTempInstructions.end());
2981 AllTempInstructions.clear();
2982
2983 // We have to drop all references for everything first, so there are no uses
2984 // left as we delete them.
2985 for (auto *I : TempInst) {
2986 I->dropAllReferences();
2987 }
2988
2989 while (!TempInst.empty()) {
2990 auto *I = TempInst.pop_back_val();
2991 I->deleteValue();
2992 }
2993
2994 ValueToClass.clear();
2995 ArgRecycler.clear(ExpressionAllocator);
2996 ExpressionAllocator.Reset();
2997 CongruenceClasses.clear();
2998 ExpressionToClass.clear();
2999 ValueToExpression.clear();
3000 RealToTemp.clear();
3001 AdditionalUsers.clear();
3002 ExpressionToPhiOfOps.clear();
3003 TempToBlock.clear();
3004 TempToMemory.clear();
3005 PHINodeUses.clear();
3006 OpSafeForPHIOfOps.clear();
3007 ReachableBlocks.clear();
3008 ReachableEdges.clear();
3009#ifndef NDEBUG
3010 ProcessedCount.clear();
3011#endif
3012 InstrDFS.clear();
3013 InstructionsToErase.clear();
3014 DFSToInstr.clear();
3015 BlockInstRange.clear();
3016 TouchedInstructions.clear();
3017 MemoryAccessToClass.clear();
3018 PredicateToUsers.clear();
3019 MemoryToUsers.clear();
3020 RevisitOnReachabilityChange.clear();
3021 IntrinsicInstPred.clear();
3022}
3023
3024// Assign local DFS number mapping to instructions, and leave space for Value
3025// PHI's.
3026std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
3027 unsigned Start) {
3028 unsigned End = Start;
3029 if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
3030 InstrDFS[MemPhi] = End++;
3031 DFSToInstr.emplace_back(MemPhi);
3032 }
3033
3034 // Then the real block goes next.
3035 for (auto &I : *B) {
3036 // There's no need to call isInstructionTriviallyDead more than once on
3037 // an instruction. Therefore, once we know that an instruction is dead
3038 // we change its DFS number so that it doesn't get value numbered.
3039 if (isInstructionTriviallyDead(&I, TLI)) {
3040 InstrDFS[&I] = 0;
3041 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
3042 markInstructionForDeletion(&I);
3043 continue;
3044 }
3045 if (isa<PHINode>(&I))
3046 RevisitOnReachabilityChange[B].set(End);
3047 InstrDFS[&I] = End++;
3048 DFSToInstr.emplace_back(&I);
3049 }
3050
3051 // All of the range functions taken half-open ranges (open on the end side).
3052 // So we do not subtract one from count, because at this point it is one
3053 // greater than the last instruction.
3054 return std::make_pair(Start, End);
3055}
3056
3057void NewGVN::updateProcessedCount(const Value *V) {
3058#ifndef NDEBUG
3059 if (ProcessedCount.count(V) == 0) {
3060 ProcessedCount.insert({V, 1});
3061 } else {
3062 ++ProcessedCount[V];
3063 assert(ProcessedCount[V] < 100 &&
3064 "Seem to have processed the same Value a lot");
3065 }
3066#endif
3067}
3068
3069// Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3070void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3071 // If all the arguments are the same, the MemoryPhi has the same value as the
3072 // argument. Filter out unreachable blocks and self phis from our operands.
3073 // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3074 // self-phi checking.
3075 const BasicBlock *PHIBlock = MP->getBlock();
3076 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3077 return cast<MemoryAccess>(U) != MP &&
3078 !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3079 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3080 });
3081 // If all that is left is nothing, our memoryphi is poison. We keep it as
3082 // InitialClass. Note: The only case this should happen is if we have at
3083 // least one self-argument.
3084 if (Filtered.begin() == Filtered.end()) {
3085 if (setMemoryClass(MP, TOPClass))
3086 markMemoryUsersTouched(MP);
3087 return;
3088 }
3089
3090 // Transform the remaining operands into operand leaders.
3091 // FIXME: mapped_iterator should have a range version.
3092 auto LookupFunc = [&](const Use &U) {
3093 return lookupMemoryLeader(cast<MemoryAccess>(U));
3094 };
3095 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3096 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3097
3098 // and now check if all the elements are equal.
3099 // Sadly, we can't use std::equals since these are random access iterators.
3100 const auto *AllSameValue = *MappedBegin;
3101 ++MappedBegin;
3102 bool AllEqual = std::all_of(
3103 MappedBegin, MappedEnd,
3104 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3105
3106 if (AllEqual)
3107 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3108 << "\n");
3109 else
3110 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3111 // If it's equal to something, it's in that class. Otherwise, it has to be in
3112 // a class where it is the leader (other things may be equivalent to it, but
3113 // it needs to start off in its own class, which means it must have been the
3114 // leader, and it can't have stopped being the leader because it was never
3115 // removed).
3116 CongruenceClass *CC =
3117 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3118 auto OldState = MemoryPhiState.lookup(MP);
3119 assert(OldState != MPS_Invalid && "Invalid memory phi state");
3120 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3121 MemoryPhiState[MP] = NewState;
3122 if (setMemoryClass(MP, CC) || OldState != NewState)
3123 markMemoryUsersTouched(MP);
3124}
3125
3126// Value number a single instruction, symbolically evaluating, performing
3127// congruence finding, and updating mappings.
3128void NewGVN::valueNumberInstruction(Instruction *I) {
3129 LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3130 if (!I->isTerminator()) {
3131 const Expression *Symbolized = nullptr;
3133 if (DebugCounter::shouldExecute(VNCounter)) {
3134 auto Res = performSymbolicEvaluation(I, Visited);
3135 Symbolized = Res.Expr;
3136 addAdditionalUsers(Res, I);
3137
3138 // Make a phi of ops if necessary
3139 if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3140 !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3141 auto *PHIE = makePossiblePHIOfOps(I, Visited);
3142 // If we created a phi of ops, use it.
3143 // If we couldn't create one, make sure we don't leave one lying around
3144 if (PHIE) {
3145 Symbolized = PHIE;
3146 } else if (auto *Op = RealToTemp.lookup(I)) {
3147 removePhiOfOps(I, Op);
3148 }
3149 }
3150 } else {
3151 // Mark the instruction as unused so we don't value number it again.
3152 InstrDFS[I] = 0;
3153 }
3154 // If we couldn't come up with a symbolic expression, use the unknown
3155 // expression
3156 if (Symbolized == nullptr)
3157 Symbolized = createUnknownExpression(I);
3158 performCongruenceFinding(I, Symbolized);
3159 } else {
3160 // Handle terminators that return values. All of them produce values we
3161 // don't currently understand. We don't place non-value producing
3162 // terminators in a class.
3163 if (!I->getType()->isVoidTy()) {
3164 auto *Symbolized = createUnknownExpression(I);
3165 performCongruenceFinding(I, Symbolized);
3166 }
3167 processOutgoingEdges(I, I->getParent());
3168 }
3169}
3170
3171// Check if there is a path, using single or equal argument phi nodes, from
3172// First to Second.
3173bool NewGVN::singleReachablePHIPath(
3175 const MemoryAccess *Second) const {
3176 if (First == Second)
3177 return true;
3178 if (MSSA->isLiveOnEntryDef(First))
3179 return false;
3180
3181 // This is not perfect, but as we're just verifying here, we can live with
3182 // the loss of precision. The real solution would be that of doing strongly
3183 // connected component finding in this routine, and it's probably not worth
3184 // the complexity for the time being. So, we just keep a set of visited
3185 // MemoryAccess and return true when we hit a cycle.
3186 if (!Visited.insert(First).second)
3187 return true;
3188
3189 const auto *EndDef = First;
3190 for (const auto *ChainDef : optimized_def_chain(First)) {
3191 if (ChainDef == Second)
3192 return true;
3193 if (MSSA->isLiveOnEntryDef(ChainDef))
3194 return false;
3195 EndDef = ChainDef;
3196 }
3197 auto *MP = cast<MemoryPhi>(EndDef);
3198 auto ReachableOperandPred = [&](const Use &U) {
3199 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3200 };
3201 auto FilteredPhiArgs =
3202 make_filter_range(MP->operands(), ReachableOperandPred);
3204 llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3205 bool Okay = all_equal(OperandList);
3206 if (Okay)
3207 return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3208 Second);
3209 return false;
3210}
3211
3212// Verify the that the memory equivalence table makes sense relative to the
3213// congruence classes. Note that this checking is not perfect, and is currently
3214// subject to very rare false negatives. It is only useful for
3215// testing/debugging.
3216void NewGVN::verifyMemoryCongruency() const {
3217#ifndef NDEBUG
3218 // Verify that the memory table equivalence and memory member set match
3219 for (const auto *CC : CongruenceClasses) {
3220 if (CC == TOPClass || CC->isDead())
3221 continue;
3222 if (CC->getStoreCount() != 0) {
3223 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3224 "Any class with a store as a leader should have a "
3225 "representative stored value");
3226 assert(CC->getMemoryLeader() &&
3227 "Any congruence class with a store should have a "
3228 "representative access");
3229 }
3230
3231 if (CC->getMemoryLeader())
3232 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3233 "Representative MemoryAccess does not appear to be reverse "
3234 "mapped properly");
3235 for (const auto *M : CC->memory())
3236 assert(MemoryAccessToClass.lookup(M) == CC &&
3237 "Memory member does not appear to be reverse mapped properly");
3238 }
3239
3240 // Anything equivalent in the MemoryAccess table should be in the same
3241 // congruence class.
3242
3243 // Filter out the unreachable and trivially dead entries, because they may
3244 // never have been updated if the instructions were not processed.
3245 auto ReachableAccessPred =
3246 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3247 bool Result = ReachableBlocks.count(Pair.first->getBlock());
3248 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3249 MemoryToDFSNum(Pair.first) == 0)
3250 return false;
3251 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3252 return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3253
3254 // We could have phi nodes which operands are all trivially dead,
3255 // so we don't process them.
3256 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3257 for (const auto &U : MemPHI->incoming_values()) {
3258 if (auto *I = dyn_cast<Instruction>(&*U)) {
3260 return true;
3261 }
3262 }
3263 return false;
3264 }
3265
3266 return true;
3267 };
3268
3269 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3270 for (auto KV : Filtered) {
3271 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3272 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3273 if (FirstMUD && SecondMUD) {
3275 assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3276 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3277 ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3278 "The instructions for these memory operations should have "
3279 "been in the same congruence class or reachable through"
3280 "a single argument phi");
3281 }
3282 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3283 // We can only sanely verify that MemoryDefs in the operand list all have
3284 // the same class.
3285 auto ReachableOperandPred = [&](const Use &U) {
3286 return ReachableEdges.count(
3287 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3288 isa<MemoryDef>(U);
3289 };
3290 // All arguments should in the same class, ignoring unreachable arguments
3291 auto FilteredPhiArgs =
3292 make_filter_range(FirstMP->operands(), ReachableOperandPred);
3294 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3295 std::back_inserter(PhiOpClasses), [&](const Use &U) {
3296 const MemoryDef *MD = cast<MemoryDef>(U);
3297 return ValueToClass.lookup(MD->getMemoryInst());
3298 });
3299 assert(all_equal(PhiOpClasses) &&
3300 "All MemoryPhi arguments should be in the same class");
3301 }
3302 }
3303#endif
3304}
3305
3306// Verify that the sparse propagation we did actually found the maximal fixpoint
3307// We do this by storing the value to class mapping, touching all instructions,
3308// and redoing the iteration to see if anything changed.
3309void NewGVN::verifyIterationSettled(Function &F) {
3310#ifndef NDEBUG
3311 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3312 if (DebugCounter::isCounterSet(VNCounter))
3313 DebugCounter::setCounterState(VNCounter, StartingVNCounter);
3314
3315 // Note that we have to store the actual classes, as we may change existing
3316 // classes during iteration. This is because our memory iteration propagation
3317 // is not perfect, and so may waste a little work. But it should generate
3318 // exactly the same congruence classes we have now, with different IDs.
3319 std::map<const Value *, CongruenceClass> BeforeIteration;
3320
3321 for (auto &KV : ValueToClass) {
3322 if (auto *I = dyn_cast<Instruction>(KV.first))
3323 // Skip unused/dead instructions.
3324 if (InstrToDFSNum(I) == 0)
3325 continue;
3326 BeforeIteration.insert({KV.first, *KV.second});
3327 }
3328
3329 TouchedInstructions.set();
3330 TouchedInstructions.reset(0);
3331 OpSafeForPHIOfOps.clear();
3332 CacheIdx = 0;
3333 iterateTouchedInstructions();
3335 EqualClasses;
3336 for (const auto &KV : ValueToClass) {
3337 if (auto *I = dyn_cast<Instruction>(KV.first))
3338 // Skip unused/dead instructions.
3339 if (InstrToDFSNum(I) == 0)
3340 continue;
3341 // We could sink these uses, but i think this adds a bit of clarity here as
3342 // to what we are comparing.
3343 auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3344 auto *AfterCC = KV.second;
3345 // Note that the classes can't change at this point, so we memoize the set
3346 // that are equal.
3347 if (!EqualClasses.count({BeforeCC, AfterCC})) {
3348 assert(BeforeCC->isEquivalentTo(AfterCC) &&
3349 "Value number changed after main loop completed!");
3350 EqualClasses.insert({BeforeCC, AfterCC});
3351 }
3352 }
3353#endif
3354}
3355
3356// Verify that for each store expression in the expression to class mapping,
3357// only the latest appears, and multiple ones do not appear.
3358// Because loads do not use the stored value when doing equality with stores,
3359// if we don't erase the old store expressions from the table, a load can find
3360// a no-longer valid StoreExpression.
3361void NewGVN::verifyStoreExpressions() const {
3362#ifndef NDEBUG
3363 // This is the only use of this, and it's not worth defining a complicated
3364 // densemapinfo hash/equality function for it.
3365 std::set<
3366 std::pair<const Value *,
3367 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3368 StoreExpressionSet;
3369 for (const auto &KV : ExpressionToClass) {
3370 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3371 // Make sure a version that will conflict with loads is not already there
3372 auto Res = StoreExpressionSet.insert(
3373 {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3374 SE->getStoredValue())});
3375 bool Okay = Res.second;
3376 // It's okay to have the same expression already in there if it is
3377 // identical in nature.
3378 // This can happen when the leader of the stored value changes over time.
3379 if (!Okay)
3380 Okay = (std::get<1>(Res.first->second) == KV.second) &&
3381 (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3382 lookupOperandLeader(SE->getStoredValue()));
3383 assert(Okay && "Stored expression conflict exists in expression table");
3384 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3385 assert(ValueExpr && ValueExpr->equals(*SE) &&
3386 "StoreExpression in ExpressionToClass is not latest "
3387 "StoreExpression for value");
3388 }
3389 }
3390#endif
3391}
3392
3393// This is the main value numbering loop, it iterates over the initial touched
3394// instruction set, propagating value numbers, marking things touched, etc,
3395// until the set of touched instructions is completely empty.
3396void NewGVN::iterateTouchedInstructions() {
3397 uint64_t Iterations = 0;
3398 // Figure out where touchedinstructions starts
3399 int FirstInstr = TouchedInstructions.find_first();
3400 // Nothing set, nothing to iterate, just return.
3401 if (FirstInstr == -1)
3402 return;
3403 const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3404 while (TouchedInstructions.any()) {
3405 ++Iterations;
3406 // Walk through all the instructions in all the blocks in RPO.
3407 // TODO: As we hit a new block, we should push and pop equalities into a
3408 // table lookupOperandLeader can use, to catch things PredicateInfo
3409 // might miss, like edge-only equivalences.
3410 for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3411
3412 // This instruction was found to be dead. We don't bother looking
3413 // at it again.
3414 if (InstrNum == 0) {
3415 TouchedInstructions.reset(InstrNum);
3416 continue;
3417 }
3418
3419 Value *V = InstrFromDFSNum(InstrNum);
3420 const BasicBlock *CurrBlock = getBlockForValue(V);
3421
3422 // If we hit a new block, do reachability processing.
3423 if (CurrBlock != LastBlock) {
3424 LastBlock = CurrBlock;
3425 bool BlockReachable = ReachableBlocks.count(CurrBlock);
3426 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3427
3428 // If it's not reachable, erase any touched instructions and move on.
3429 if (!BlockReachable) {
3430 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3431 LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3432 << getBlockName(CurrBlock)
3433 << " because it is unreachable\n");
3434 continue;
3435 }
3436 // Use the appropriate cache for "OpIsSafeForPHIOfOps".
3437 CacheIdx = RPOOrdering.lookup(DT->getNode(CurrBlock)) - 1;
3438 updateProcessedCount(CurrBlock);
3439 }
3440 // Reset after processing (because we may mark ourselves as touched when
3441 // we propagate equalities).
3442 TouchedInstructions.reset(InstrNum);
3443
3444 if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3445 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3446 valueNumberMemoryPhi(MP);
3447 } else if (auto *I = dyn_cast<Instruction>(V)) {
3448 valueNumberInstruction(I);
3449 } else {
3450 llvm_unreachable("Should have been a MemoryPhi or Instruction");
3451 }
3452 updateProcessedCount(V);
3453 }
3454 }
3455 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3456}
3457
3458// This is the main transformation entry point.
3459bool NewGVN::runGVN() {
3460 if (DebugCounter::isCounterSet(VNCounter))
3461 StartingVNCounter = DebugCounter::getCounterState(VNCounter);
3462 bool Changed = false;
3463 NumFuncArgs = F.arg_size();
3464 MSSAWalker = MSSA->getWalker();
3465 SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3466
3467 // Count number of instructions for sizing of hash tables, and come
3468 // up with a global dfs numbering for instructions.
3469 unsigned ICount = 1;
3470 // Add an empty instruction to account for the fact that we start at 1
3471 DFSToInstr.emplace_back(nullptr);
3472 // Note: We want ideal RPO traversal of the blocks, which is not quite the
3473 // same as dominator tree order, particularly with regard whether backedges
3474 // get visited first or second, given a block with multiple successors.
3475 // If we visit in the wrong order, we will end up performing N times as many
3476 // iterations.
3477 // The dominator tree does guarantee that, for a given dom tree node, it's
3478 // parent must occur before it in the RPO ordering. Thus, we only need to sort
3479 // the siblings.
3481 unsigned Counter = 0;
3482 for (auto &B : RPOT) {
3483 auto *Node = DT->getNode(B);
3484 assert(Node && "RPO and Dominator tree should have same reachability");
3485 RPOOrdering[Node] = ++Counter;
3486 }
3487 // Sort dominator tree children arrays into RPO.
3488 for (auto &B : RPOT) {
3489 auto *Node = DT->getNode(B);
3490 if (Node->getNumChildren() > 1)
3491 llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) {
3492 return RPOOrdering[A] < RPOOrdering[B];
3493 });
3494 }
3495
3496 // Now a standard depth first ordering of the domtree is equivalent to RPO.
3497 for (auto *DTN : depth_first(DT->getRootNode())) {
3498 BasicBlock *B = DTN->getBlock();
3499 const auto &BlockRange = assignDFSNumbers(B, ICount);
3500 BlockInstRange.insert({B, BlockRange});
3501 ICount += BlockRange.second - BlockRange.first;
3502 }
3503 initializeCongruenceClasses(F);
3504
3505 TouchedInstructions.resize(ICount);
3506 // Ensure we don't end up resizing the expressionToClass map, as
3507 // that can be quite expensive. At most, we have one expression per
3508 // instruction.
3509 ExpressionToClass.reserve(ICount);
3510
3511 // Initialize the touched instructions to include the entry block.
3512 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3513 TouchedInstructions.set(InstRange.first, InstRange.second);
3514 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3515 << " marked reachable\n");
3516 ReachableBlocks.insert(&F.getEntryBlock());
3517 // Use index corresponding to entry block.
3518 CacheIdx = 0;
3519
3520 iterateTouchedInstructions();
3521 verifyMemoryCongruency();
3522 verifyIterationSettled(F);
3523 verifyStoreExpressions();
3524
3525 Changed |= eliminateInstructions(F);
3526
3527 // Delete all instructions marked for deletion.
3528 for (Instruction *ToErase : InstructionsToErase) {
3529 if (!ToErase->use_empty())
3530 ToErase->replaceAllUsesWith(PoisonValue::get(ToErase->getType()));
3531
3532 assert(ToErase->getParent() &&
3533 "BB containing ToErase deleted unexpectedly!");
3534 ToErase->eraseFromParent();
3535 }
3536 Changed |= !InstructionsToErase.empty();
3537
3538 // Delete all unreachable blocks.
3539 auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3540 return !ReachableBlocks.count(&BB);
3541 };
3542
3543 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3544 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3545 << " is unreachable\n");
3546 deleteInstructionsInBlock(&BB);
3547 Changed = true;
3548 }
3549
3550 cleanupTables();
3551 return Changed;
3552}
3553
3555 int DFSIn = 0;
3556 int DFSOut = 0;
3557 int LocalNum = 0;
3558
3559 // Only one of Def and U will be set.
3560 // The bool in the Def tells us whether the Def is the stored value of a
3561 // store.
3563 Use *U = nullptr;
3564
3565 bool operator<(const ValueDFS &Other) const {
3566 // It's not enough that any given field be less than - we have sets
3567 // of fields that need to be evaluated together to give a proper ordering.
3568 // For example, if you have;
3569 // DFS (1, 3)
3570 // Val 0
3571 // DFS (1, 2)
3572 // Val 50
3573 // We want the second to be less than the first, but if we just go field
3574 // by field, we will get to Val 0 < Val 50 and say the first is less than
3575 // the second. We only want it to be less than if the DFS orders are equal.
3576 //
3577 // Each LLVM instruction only produces one value, and thus the lowest-level
3578 // differentiator that really matters for the stack (and what we use as a
3579 // replacement) is the local dfs number.
3580 // Everything else in the structure is instruction level, and only affects
3581 // the order in which we will replace operands of a given instruction.
3582 //
3583 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3584 // the order of replacement of uses does not matter.
3585 // IE given,
3586 // a = 5
3587 // b = a + a
3588 // When you hit b, you will have two valuedfs with the same dfsin, out, and
3589 // localnum.
3590 // The .val will be the same as well.
3591 // The .u's will be different.
3592 // You will replace both, and it does not matter what order you replace them
3593 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3594 // operand 2).
3595 // Similarly for the case of same dfsin, dfsout, localnum, but different
3596 // .val's
3597 // a = 5
3598 // b = 6
3599 // c = a + b
3600 // in c, we will a valuedfs for a, and one for b,with everything the same
3601 // but .val and .u.
3602 // It does not matter what order we replace these operands in.
3603 // You will always end up with the same IR, and this is guaranteed.
3604 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3605 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3606 Other.U);
3607 }
3608};
3609
3610// This function converts the set of members for a congruence class from values,
3611// to sets of defs and uses with associated DFS info. The total number of
3612// reachable uses for each value is stored in UseCount, and instructions that
3613// seem
3614// dead (have no non-dead uses) are stored in ProbablyDead.
3615void NewGVN::convertClassToDFSOrdered(
3616 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3618 SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3619 for (auto *D : Dense) {
3620 // First add the value.
3621 BasicBlock *BB = getBlockForValue(D);
3622 // Constants are handled prior to ever calling this function, so
3623 // we should only be left with instructions as members.
3624 assert(BB && "Should have figured out a basic block for value");
3625 ValueDFS VDDef;
3626 DomTreeNode *DomNode = DT->getNode(BB);
3627 VDDef.DFSIn = DomNode->getDFSNumIn();
3628 VDDef.DFSOut = DomNode->getDFSNumOut();
3629 // If it's a store, use the leader of the value operand, if it's always
3630 // available, or the value operand. TODO: We could do dominance checks to
3631 // find a dominating leader, but not worth it ATM.
3632 if (auto *SI = dyn_cast<StoreInst>(D)) {
3633 auto Leader = lookupOperandLeader(SI->getValueOperand());
3634 if (alwaysAvailable(Leader)) {
3635 VDDef.Def.setPointer(Leader);
3636 } else {
3637 VDDef.Def.setPointer(SI->getValueOperand());
3638 VDDef.Def.setInt(true);
3639 }
3640 } else {
3641 VDDef.Def.setPointer(D);
3642 }
3643 assert(isa<Instruction>(D) &&
3644 "The dense set member should always be an instruction");
3645 Instruction *Def = cast<Instruction>(D);
3646 VDDef.LocalNum = InstrToDFSNum(D);
3647 DFSOrderedSet.push_back(VDDef);
3648 // If there is a phi node equivalent, add it
3649 if (auto *PN = RealToTemp.lookup(Def)) {
3650 auto *PHIE =
3651 dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3652 if (PHIE) {
3653 VDDef.Def.setInt(false);
3654 VDDef.Def.setPointer(PN);
3655 VDDef.LocalNum = 0;
3656 DFSOrderedSet.push_back(VDDef);
3657 }
3658 }
3659
3660 unsigned int UseCount = 0;
3661 // Now add the uses.
3662 for (auto &U : Def->uses()) {
3663 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3664 // Don't try to replace into dead uses
3665 if (InstructionsToErase.count(I))
3666 continue;
3667 ValueDFS VDUse;
3668 // Put the phi node uses in the incoming block.
3669 BasicBlock *IBlock;
3670 if (auto *P = dyn_cast<PHINode>(I)) {
3671 IBlock = P->getIncomingBlock(U);
3672 // Make phi node users appear last in the incoming block
3673 // they are from.
3674 VDUse.LocalNum = InstrDFS.size() + 1;
3675 } else {
3676 IBlock = getBlockForValue(I);
3677 VDUse.LocalNum = InstrToDFSNum(I);
3678 }
3679
3680 // Skip uses in unreachable blocks, as we're going
3681 // to delete them.
3682 if (!ReachableBlocks.contains(IBlock))
3683 continue;
3684
3685 DomTreeNode *DomNode = DT->getNode(IBlock);
3686 VDUse.DFSIn = DomNode->getDFSNumIn();
3687 VDUse.DFSOut = DomNode->getDFSNumOut();
3688 VDUse.U = &U;
3689 ++UseCount;
3690 DFSOrderedSet.emplace_back(VDUse);
3691 }
3692 }
3693
3694 // If there are no uses, it's probably dead (but it may have side-effects,
3695 // so not definitely dead. Otherwise, store the number of uses so we can
3696 // track if it becomes dead later).
3697 if (UseCount == 0)
3698 ProbablyDead.insert(Def);
3699 else
3700 UseCounts[Def] = UseCount;
3701 }
3702}
3703
3704// This function converts the set of members for a congruence class from values,
3705// to the set of defs for loads and stores, with associated DFS info.
3706void NewGVN::convertClassToLoadsAndStores(
3707 const CongruenceClass &Dense,
3708 SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3709 for (auto *D : Dense) {
3710 if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3711 continue;
3712
3713 BasicBlock *BB = getBlockForValue(D);
3714 ValueDFS VD;
3715 DomTreeNode *DomNode = DT->getNode(BB);
3716 VD.DFSIn = DomNode->getDFSNumIn();
3717 VD.DFSOut = DomNode->getDFSNumOut();
3718 VD.Def.setPointer(D);
3719
3720 // If it's an instruction, use the real local dfs number.
3721 if (auto *I = dyn_cast<Instruction>(D))
3722 VD.LocalNum = InstrToDFSNum(I);
3723 else
3724 llvm_unreachable("Should have been an instruction");
3725
3726 LoadsAndStores.emplace_back(VD);
3727 }
3728}
3729
3732 I->replaceAllUsesWith(Repl);
3733}
3734
3735void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3736 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
3737 ++NumGVNBlocksDeleted;
3738
3739 // Delete the instructions backwards, as it has a reduced likelihood of having
3740 // to update as many def-use and use-def chains. Start after the terminator.
3741 auto StartPoint = BB->rbegin();
3742 ++StartPoint;
3743 // Note that we explicitly recalculate BB->rend() on each iteration,
3744 // as it may change when we remove the first instruction.
3745 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3746 Instruction &Inst = *I++;
3747 if (!Inst.use_empty())
3749 if (isa<LandingPadInst>(Inst))
3750 continue;
3751 salvageKnowledge(&Inst, AC);
3752
3753 Inst.eraseFromParent();
3754 ++NumGVNInstrDeleted;
3755 }
3756 // Now insert something that simplifycfg will turn into an unreachable.
3757 Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3758 new StoreInst(
3759 PoisonValue::get(Int8Ty),
3761 BB->getTerminator()->getIterator());
3762}
3763
3764void NewGVN::markInstructionForDeletion(Instruction *I) {
3765 LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3766 InstructionsToErase.insert(I);
3767}
3768
3769void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3770 LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3772 // We save the actual erasing to avoid invalidating memory
3773 // dependencies until we are done with everything.
3774 markInstructionForDeletion(I);
3775}
3776
3777namespace {
3778
3779// This is a stack that contains both the value and dfs info of where
3780// that value is valid.
3781class ValueDFSStack {
3782public:
3783 Value *back() const { return ValueStack.back(); }
3784 std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3785
3786 void push_back(Value *V, int DFSIn, int DFSOut) {
3787 ValueStack.emplace_back(V);
3788 DFSStack.emplace_back(DFSIn, DFSOut);
3789 }
3790
3791 bool empty() const { return DFSStack.empty(); }
3792
3793 bool isInScope(int DFSIn, int DFSOut) const {
3794 if (empty())
3795 return false;
3796 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3797 }
3798
3799 void popUntilDFSScope(int DFSIn, int DFSOut) {
3800
3801 // These two should always be in sync at this point.
3802 assert(ValueStack.size() == DFSStack.size() &&
3803 "Mismatch between ValueStack and DFSStack");
3804 while (
3805 !DFSStack.empty() &&
3806 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3807 DFSStack.pop_back();
3808 ValueStack.pop_back();
3809 }
3810 }
3811
3812private:
3813 SmallVector<Value *, 8> ValueStack;
3815};
3816
3817} // end anonymous namespace
3818
3819// Given an expression, get the congruence class for it.
3820CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3821 if (auto *VE = dyn_cast<VariableExpression>(E))
3822 return ValueToClass.lookup(VE->getVariableValue());
3823 else if (isa<DeadExpression>(E))
3824 return TOPClass;
3825 return ExpressionToClass.lookup(E);
3826}
3827
3828// Given a value and a basic block we are trying to see if it is available in,
3829// see if the value has a leader available in that block.
3830Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3831 const Instruction *OrigInst,
3832 const BasicBlock *BB) const {
3833 // It would already be constant if we could make it constant
3834 if (auto *CE = dyn_cast<ConstantExpression>(E))
3835 return CE->getConstantValue();
3836 if (auto *VE = dyn_cast<VariableExpression>(E)) {
3837 auto *V = VE->getVariableValue();
3838 if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3839 return VE->getVariableValue();
3840 }
3841
3842 auto *CC = getClassForExpression(E);
3843 if (!CC)
3844 return nullptr;
3845 if (alwaysAvailable(CC->getLeader()))
3846 return CC->getLeader();
3847
3848 for (auto *Member : *CC) {
3849 auto *MemberInst = dyn_cast<Instruction>(Member);
3850 if (MemberInst == OrigInst)
3851 continue;
3852 // Anything that isn't an instruction is always available.
3853 if (!MemberInst)
3854 return Member;
3855 if (DT->dominates(getBlockForValue(MemberInst), BB))
3856 return Member;
3857 }
3858 return nullptr;
3859}
3860
3861bool NewGVN::eliminateInstructions(Function &F) {
3862 // This is a non-standard eliminator. The normal way to eliminate is
3863 // to walk the dominator tree in order, keeping track of available
3864 // values, and eliminating them. However, this is mildly
3865 // pointless. It requires doing lookups on every instruction,
3866 // regardless of whether we will ever eliminate it. For
3867 // instructions part of most singleton congruence classes, we know we
3868 // will never eliminate them.
3869
3870 // Instead, this eliminator looks at the congruence classes directly, sorts
3871 // them into a DFS ordering of the dominator tree, and then we just
3872 // perform elimination straight on the sets by walking the congruence
3873 // class member uses in order, and eliminate the ones dominated by the
3874 // last member. This is worst case O(E log E) where E = number of
3875 // instructions in a single congruence class. In theory, this is all
3876 // instructions. In practice, it is much faster, as most instructions are
3877 // either in singleton congruence classes or can't possibly be eliminated
3878 // anyway (if there are no overlapping DFS ranges in class).
3879 // When we find something not dominated, it becomes the new leader
3880 // for elimination purposes.
3881 // TODO: If we wanted to be faster, We could remove any members with no
3882 // overlapping ranges while sorting, as we will never eliminate anything
3883 // with those members, as they don't dominate anything else in our set.
3884
3885 bool AnythingReplaced = false;
3886
3887 // Since we are going to walk the domtree anyway, and we can't guarantee the
3888 // DFS numbers are updated, we compute some ourselves.
3889 DT->updateDFSNumbers();
3890
3891 // Go through all of our phi nodes, and kill the arguments associated with
3892 // unreachable edges.
3893 auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3894 for (auto &Operand : PHI->incoming_values())
3895 if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3896 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3897 << " for block "
3898 << getBlockName(PHI->getIncomingBlock(Operand))
3899 << " with poison due to it being unreachable\n");
3900 Operand.set(PoisonValue::get(PHI->getType()));
3901 }
3902 };
3903 // Replace unreachable phi arguments.
3904 // At this point, RevisitOnReachabilityChange only contains:
3905 //
3906 // 1. PHIs
3907 // 2. Temporaries that will convert to PHIs
3908 // 3. Operations that are affected by an unreachable edge but do not fit into
3909 // 1 or 2 (rare).
3910 // So it is a slight overshoot of what we want. We could make it exact by
3911 // using two SparseBitVectors per block.
3912 DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3913 for (auto &KV : ReachableEdges)
3914 ReachablePredCount[KV.getEnd()]++;
3915 for (auto &BBPair : RevisitOnReachabilityChange) {
3916 for (auto InstNum : BBPair.second) {
3917 auto *Inst = InstrFromDFSNum(InstNum);
3918 auto *PHI = dyn_cast<PHINode>(Inst);
3919 PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3920 if (!PHI)
3921 continue;
3922 auto *BB = BBPair.first;
3923 if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3924 ReplaceUnreachablePHIArgs(PHI, BB);
3925 }
3926 }
3927
3928 // Map to store the use counts
3930 for (auto *CC : reverse(CongruenceClasses)) {
3931 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3932 << "\n");
3933 // Track the equivalent store info so we can decide whether to try
3934 // dead store elimination.
3935 SmallVector<ValueDFS, 8> PossibleDeadStores;
3936 SmallPtrSet<Instruction *, 8> ProbablyDead;
3937 if (CC->isDead() || CC->empty())
3938 continue;
3939 // Everything still in the TOP class is unreachable or dead.
3940 if (CC == TOPClass) {
3941 for (auto *M : *CC) {
3942 auto *VTE = ValueToExpression.lookup(M);
3943 if (VTE && isa<DeadExpression>(VTE))
3944 markInstructionForDeletion(cast<Instruction>(M));
3945 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3946 InstructionsToErase.count(cast<Instruction>(M))) &&
3947 "Everything in TOP should be unreachable or dead at this "
3948 "point");
3949 }
3950 continue;
3951 }
3952
3953 assert(CC->getLeader() && "We should have had a leader");
3954 // If this is a leader that is always available, and it's a
3955 // constant or has no equivalences, just replace everything with
3956 // it. We then update the congruence class with whatever members
3957 // are left.
3958 Value *Leader =
3959 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3960 if (alwaysAvailable(Leader)) {
3961 CongruenceClass::MemberSet MembersLeft;
3962 for (auto *M : *CC) {
3963 Value *Member = M;
3964 // Void things have no uses we can replace.
3965 if (Member == Leader || !isa<Instruction>(Member) ||
3966 Member->getType()->isVoidTy()) {
3967 MembersLeft.insert(Member);
3968 continue;
3969 }
3970
3971 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3972 << *Member << "\n");
3973 auto *I = cast<Instruction>(Member);
3974 assert(Leader != I && "About to accidentally remove our leader");
3975 replaceInstruction(I, Leader);
3976 AnythingReplaced = true;
3977 }
3978 CC->swap(MembersLeft);
3979 } else {
3980 // If this is a singleton, we can skip it.
3981 if (CC->size() != 1 || RealToTemp.count(Leader)) {
3982 // This is a stack because equality replacement/etc may place
3983 // constants in the middle of the member list, and we want to use
3984 // those constant values in preference to the current leader, over
3985 // the scope of those constants.
3986 ValueDFSStack EliminationStack;
3987
3988 // Convert the members to DFS ordered sets and then merge them.
3989 SmallVector<ValueDFS, 8> DFSOrderedSet;
3990 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3991
3992 // Sort the whole thing.
3993 llvm::sort(DFSOrderedSet);
3994 for (auto &VD : DFSOrderedSet) {
3995 int MemberDFSIn = VD.DFSIn;
3996 int MemberDFSOut = VD.DFSOut;
3997 Value *Def = VD.Def.getPointer();
3998 bool FromStore = VD.Def.getInt();
3999 Use *U = VD.U;
4000 // We ignore void things because we can't get a value from them.
4001 if (Def && Def->getType()->isVoidTy())
4002 continue;
4003 auto *DefInst = dyn_cast_or_null<Instruction>(Def);
4004 if (DefInst && AllTempInstructions.count(DefInst)) {
4005 auto *PN = cast<PHINode>(DefInst);
4006
4007 // If this is a value phi and that's the expression we used, insert
4008 // it into the program
4009 // remove from temp instruction list.
4010 AllTempInstructions.erase(PN);
4011 auto *DefBlock = getBlockForValue(Def);
4012 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
4013 << " into block "
4014 << getBlockName(getBlockForValue(Def)) << "\n");
4015 PN->insertBefore(&DefBlock->front());
4016 Def = PN;
4017 NumGVNPHIOfOpsEliminations++;
4018 }
4019
4020 if (EliminationStack.empty()) {
4021 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
4022 } else {
4023 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
4024 << EliminationStack.dfs_back().first << ","
4025 << EliminationStack.dfs_back().second << ")\n");
4026 }
4027
4028 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
4029 << MemberDFSOut << ")\n");
4030 // First, we see if we are out of scope or empty. If so,
4031 // and there equivalences, we try to replace the top of
4032 // stack with equivalences (if it's on the stack, it must
4033 // not have been eliminated yet).
4034 // Then we synchronize to our current scope, by
4035 // popping until we are back within a DFS scope that
4036 // dominates the current member.
4037 // Then, what happens depends on a few factors
4038 // If the stack is now empty, we need to push
4039 // If we have a constant or a local equivalence we want to
4040 // start using, we also push.
4041 // Otherwise, we walk along, processing members who are
4042 // dominated by this scope, and eliminate them.
4043 bool ShouldPush = Def && EliminationStack.empty();
4044 bool OutOfScope =
4045 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
4046
4047 if (OutOfScope || ShouldPush) {
4048 // Sync to our current scope.
4049 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4050 bool ShouldPush = Def && EliminationStack.empty();
4051 if (ShouldPush) {
4052 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
4053 }
4054 }
4055
4056 // Skip the Def's, we only want to eliminate on their uses. But mark
4057 // dominated defs as dead.
4058 if (Def) {
4059 // For anything in this case, what and how we value number
4060 // guarantees that any side-effects that would have occurred (ie
4061 // throwing, etc) can be proven to either still occur (because it's
4062 // dominated by something that has the same side-effects), or never
4063 // occur. Otherwise, we would not have been able to prove it value
4064 // equivalent to something else. For these things, we can just mark
4065 // it all dead. Note that this is different from the "ProbablyDead"
4066 // set, which may not be dominated by anything, and thus, are only
4067 // easy to prove dead if they are also side-effect free. Note that
4068 // because stores are put in terms of the stored value, we skip
4069 // stored values here. If the stored value is really dead, it will
4070 // still be marked for deletion when we process it in its own class.
4071 auto *DefI = dyn_cast<Instruction>(Def);
4072 if (!EliminationStack.empty() && DefI && !FromStore) {
4073 Value *DominatingLeader = EliminationStack.back();
4074 if (DominatingLeader != Def) {
4075 // Even if the instruction is removed, we still need to update
4076 // flags/metadata due to downstreams users of the leader.
4077 if (!match(DefI, m_Intrinsic<Intrinsic::ssa_copy>()))
4078 patchReplacementInstruction(DefI, DominatingLeader);
4079
4080 markInstructionForDeletion(DefI);
4081 }
4082 }
4083 continue;
4084 }
4085 // At this point, we know it is a Use we are trying to possibly
4086 // replace.
4087
4088 assert(isa<Instruction>(U->get()) &&
4089 "Current def should have been an instruction");
4090 assert(isa<Instruction>(U->getUser()) &&
4091 "Current user should have been an instruction");
4092
4093 // If the thing we are replacing into is already marked to be dead,
4094 // this use is dead. Note that this is true regardless of whether
4095 // we have anything dominating the use or not. We do this here
4096 // because we are already walking all the uses anyway.
4097 Instruction *InstUse = cast<Instruction>(U->getUser());
4098 if (InstructionsToErase.count(InstUse)) {
4099 auto &UseCount = UseCounts[U->get()];
4100 if (--UseCount == 0) {
4101 ProbablyDead.insert(cast<Instruction>(U->get()));
4102 }
4103 }
4104
4105 // If we get to this point, and the stack is empty we must have a use
4106 // with nothing we can use to eliminate this use, so just skip it.
4107 if (EliminationStack.empty())
4108 continue;
4109
4110 Value *DominatingLeader = EliminationStack.back();
4111
4112 auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4113 bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4114 if (isSSACopy)
4115 DominatingLeader = II->getOperand(0);
4116
4117 // Don't replace our existing users with ourselves.
4118 if (U->get() == DominatingLeader)
4119 continue;
4120
4121 // If we replaced something in an instruction, handle the patching of
4122 // metadata. Skip this if we are replacing predicateinfo with its
4123 // original operand, as we already know we can just drop it.
4124 auto *ReplacedInst = cast<Instruction>(U->get());
4125 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4126 if (!PI || DominatingLeader != PI->OriginalOp)
4127 patchReplacementInstruction(ReplacedInst, DominatingLeader);
4128
4130 << "Found replacement " << *DominatingLeader << " for "
4131 << *U->get() << " in " << *(U->getUser()) << "\n");
4132 U->set(DominatingLeader);
4133 // This is now a use of the dominating leader, which means if the
4134 // dominating leader was dead, it's now live!
4135 auto &LeaderUseCount = UseCounts[DominatingLeader];
4136 // It's about to be alive again.
4137 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4138 ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4139 // For copy instructions, we use their operand as a leader,
4140 // which means we remove a user of the copy and it may become dead.
4141 if (isSSACopy) {
4142 auto It = UseCounts.find(II);
4143 if (It != UseCounts.end()) {
4144 unsigned &IIUseCount = It->second;
4145 if (--IIUseCount == 0)
4146 ProbablyDead.insert(II);
4147 }
4148 }
4149 ++LeaderUseCount;
4150 AnythingReplaced = true;
4151 }
4152 }
4153 }
4154
4155 // At this point, anything still in the ProbablyDead set is actually dead if
4156 // would be trivially dead.
4157 for (auto *I : ProbablyDead)
4159 markInstructionForDeletion(I);
4160
4161 // Cleanup the congruence class.
4162 CongruenceClass::MemberSet MembersLeft;
4163 for (auto *Member : *CC)
4164 if (!isa<Instruction>(Member) ||
4165 !InstructionsToErase.count(cast<Instruction>(Member)))
4166 MembersLeft.insert(Member);
4167 CC->swap(MembersLeft);
4168
4169 // If we have possible dead stores to look at, try to eliminate them.
4170 if (CC->getStoreCount() > 0) {
4171 convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4172 llvm::sort(PossibleDeadStores);
4173 ValueDFSStack EliminationStack;
4174 for (auto &VD : PossibleDeadStores) {
4175 int MemberDFSIn = VD.DFSIn;
4176 int MemberDFSOut = VD.DFSOut;
4177 Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4178 if (EliminationStack.empty() ||
4179 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4180 // Sync to our current scope.
4181 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4182 if (EliminationStack.empty()) {
4183 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4184 continue;
4185 }
4186 }
4187 // We already did load elimination, so nothing to do here.
4188 if (isa<LoadInst>(Member))
4189 continue;
4190 assert(!EliminationStack.empty());
4191 Instruction *Leader = cast<Instruction>(EliminationStack.back());
4192 (void)Leader;
4193 assert(DT->dominates(Leader->getParent(), Member->getParent()));
4194 // Member is dominater by Leader, and thus dead
4195 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4196 << " that is dominated by " << *Leader << "\n");
4197 markInstructionForDeletion(Member);
4198 CC->erase(Member);
4199 ++NumGVNDeadStores;
4200 }
4201 }
4202 }
4203 return AnythingReplaced;
4204}
4205
4206// This function provides global ranking of operations so that we can place them
4207// in a canonical order. Note that rank alone is not necessarily enough for a
4208// complete ordering, as constants all have the same rank. However, generally,
4209// we will simplify an operation with all constants so that it doesn't matter
4210// what order they appear in.
4211unsigned int NewGVN::getRank(const Value *V) const {
4212 // Prefer constants to undef to anything else
4213 // Undef is a constant, have to check it first.
4214 // Prefer poison to undef as it's less defined.
4215 // Prefer smaller constants to constantexprs
4216 // Note that the order here matters because of class inheritance
4217 if (isa<ConstantExpr>(V))
4218 return 3;
4219 if (isa<PoisonValue>(V))
4220 return 1;
4221 if (isa<UndefValue>(V))
4222 return 2;
4223 if (isa<Constant>(V))
4224 return 0;
4225 if (auto *A = dyn_cast<Argument>(V))
4226 return 4 + A->getArgNo();
4227
4228 // Need to shift the instruction DFS by number of arguments + 5 to account for
4229 // the constant and argument ranking above.
4230 unsigned Result = InstrToDFSNum(V);
4231 if (Result > 0)
4232 return 5 + NumFuncArgs + Result;
4233 // Unreachable or something else, just return a really large number.
4234 return ~0;
4235}
4236
4237// This is a function that says whether two commutative operations should
4238// have their order swapped when canonicalizing.
4239bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4240 // Because we only care about a total ordering, and don't rewrite expressions
4241 // in this order, we order by rank, which will give a strict weak ordering to
4242 // everything but constants, and then we order by pointer address.
4243 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4244}
4245
4246bool NewGVN::shouldSwapOperandsForIntrinsic(const Value *A, const Value *B,
4247 const IntrinsicInst *I) const {
4248 auto LookupResult = IntrinsicInstPred.find(I);
4249 if (shouldSwapOperands(A, B)) {
4250 if (LookupResult == IntrinsicInstPred.end())
4251 IntrinsicInstPred.insert({I, B});
4252 else
4253 LookupResult->second = B;
4254 return true;
4255 }
4256
4257 if (LookupResult != IntrinsicInstPred.end()) {
4258 auto *SeenPredicate = LookupResult->second;
4259 if (SeenPredicate) {
4260 if (SeenPredicate == B)
4261 return true;
4262 else
4263 LookupResult->second = nullptr;
4264 }
4265 }
4266 return false;
4267}
4268
4270 // Apparently the order in which we get these results matter for
4271 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4272 // the same order here, just in case.
4273 auto &AC = AM.getResult<AssumptionAnalysis>(F);
4274 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4275 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4276 auto &AA = AM.getResult<AAManager>(F);
4277 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4278 bool Changed =
4279 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getDataLayout())
4280 .runGVN();
4281 if (!Changed)
4282 return PreservedAnalyses::all();
4285 return PA;
4286}
aarch64 promote const
Rewrite undef for PHI
Unify divergent function exit nodes
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file defines the BumpPtrAllocator interface.
This file implements the BitVector class.
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< StatepointGC > D("statepoint-example", "an example strategy for statepoint")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
Definition: DebugCounter.h:190
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines DenseMapInfo traits for DenseMap.
This file defines the DenseMap class.
This file defines the DenseSet and SmallDenseSet classes.
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
std::optional< std::vector< StOtherPiece > > Other
Definition: ELFYAML.cpp:1315
bool End
Definition: ELF_riscv.cpp:480
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
The header file for the GVN pass that contains expression handling classes.
static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl)
Definition: GVN.cpp:2162
This is the interface for a simple mod/ref and alias analysis over globals.
This file defines the little GraphTraits<X> template class that should be specialized by classes that...
Hexagon Common GEP
This defines the Use class.
static bool lookup(const GsymReader &GR, DataExtractor &Data, uint64_t &Offset, uint64_t BaseAddr, uint64_t Addr, SourceLocations &SrcLocs, llvm::Error &Err)
A Lookup helper functions.
Definition: InlineInfo.cpp:108
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition: Lint.cpp:557
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
Branch Probability Basic Block static false std::string getBlockName(const MachineBasicBlock *BB)
Helper to print the name of a MBB.
This file exposes an interface to building/using memory SSA to walk memory instructions using a use/d...
ConstantRange Range(APInt(BitWidth, Low), APInt(BitWidth, High))
uint64_t IntrinsicInst * II
static bool alwaysAvailable(Value *V)
Definition: NewGVN.cpp:1041
static Value * getCopyOf(const Value *V)
Definition: NewGVN.cpp:1011
static bool isCopyOfPHI(const Value *V, const PHINode *PN)
Definition: NewGVN.cpp:1019
static bool isCopyOfAPHI(const Value *V)
Definition: NewGVN.cpp:1023
static bool okayForPHIOfOps(const Instruction *I)
Definition: NewGVN.cpp:2613
static cl::opt< bool > EnableStoreRefinement("enable-store-refinement", cl::init(false), cl::Hidden)
static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS)
Definition: NewGVN.cpp:928
static cl::opt< bool > EnablePhiOfOps("enable-phi-of-ops", cl::init(true), cl::Hidden)
Currently, the generation "phi of ops" can result in correctness issues.
This file provides the interface for LLVM's Global Value Numbering pass.
#define P(N)
if(PassOpts->AAPipeline)
This file defines the PointerIntPair class.
This file builds on the ADT/GraphTraits.h file to build a generic graph post order iterator.
This file implements the PredicateInfo analysis, which creates an Extended SSA form for operations us...
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool isDead(const MachineInstr &MI, const MachineRegisterInfo &MRI)
This file defines generic set operations that may be used on set's of different types,...
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the SparseBitVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
Value * RHS
Value * LHS
A manager for alias analyses.
bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB)
A trivial helper function to check to see if the specified pointers are must-alias.
bool doesNotAccessMemory(const CallBase *Call)
Checks if the specified call is known to never read or write memory.
bool onlyReadsMemory(const CallBase *Call)
Checks if the specified call is known to only read from non-volatile memory (or not access memory at ...
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:410
Recycle small arrays allocated from a BumpPtrAllocator.
Definition: ArrayRecycler.h:28
void clear(AllocatorType &Allocator)
Release all the tracked allocations to the allocator.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
iterator begin() const
Definition: ArrayRef.h:156
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
std::optional< AttributeList > intersectWith(LLVMContext &C, AttributeList Other) const
Try to intersect this AttributeList with Other.
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
reverse_iterator rbegin()
Definition: BasicBlock.h:464
InstListType::reverse_iterator reverse_iterator
Definition: BasicBlock.h:179
reverse_iterator rend()
Definition: BasicBlock.h:466
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:168
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
BitVector & reset()
Definition: BitVector.h:392
int find_first() const
find_first - Returns the index of the first set bit, -1 if none of the bits are set.
Definition: BitVector.h:300
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition: BitVector.h:341
void clear()
clear - Removes all bits from the bitvector.
Definition: BitVector.h:335
BitVector & set()
Definition: BitVector.h:351
bool any() const
any - Returns true if any bit is set.
Definition: BitVector.h:170
iterator_range< const_set_bits_iterator > set_bits() const
Definition: BitVector.h:140
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:66
void Reset()
Deallocate all but the current slab and reset the current pointer to the beginning of it,...
Definition: Allocator.h:123
void Deallocate(const void *Ptr, size_t Size, size_t)
Definition: Allocator.h:225
bool isConvergent() const
Determine if the invoke is convergent.
Definition: InstrTypes.h:1932
AttributeList getAttributes() const
Return the attributes for this call.
Definition: InstrTypes.h:1417
This class represents a function call, abstracting a target machine's calling convention.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:673
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:676
@ ICMP_EQ
equal
Definition: InstrTypes.h:694
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition: InstrTypes.h:825
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition: InstrTypes.h:787
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
bool isOne() const
This is just a convenience method to make client code smaller for a common case.
Definition: Constants.h:214
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:866
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:208
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:873
static ConstantInt * getBool(LLVMContext &Context, bool V)
Definition: Constants.cpp:880
This is an important base class in LLVM.
Definition: Constant.h:42
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:373
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
static CounterState getCounterState(unsigned ID)
Definition: DebugCounter.h:106
static bool isCounterSet(unsigned ID)
Definition: DebugCounter.h:96
static bool shouldExecute(unsigned CounterName)
Definition: DebugCounter.h:87
static void setCounterState(unsigned ID, CounterState State)
Definition: DebugCounter.h:114
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:194
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:156
bool erase(const KeyT &Val)
Definition: DenseMap.h:321
unsigned size() const
Definition: DenseMap.h:99
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:152
iterator end()
Definition: DenseMap.h:84
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:211
Implements a dense probed hash-table based set.
Definition: DenseSet.h:278
unsigned getDFSNumIn() const
getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes in the dominator tree.
unsigned getDFSNumOut() const
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
DomTreeNodeBase< NodeT > * getRootNode()
getRootNode - This returns the entry node for the CFG of the function.
void updateDFSNumbers() const
updateDFSNumbers - Assign In and Out numbers to the nodes while walking dominator tree in dfs order.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
bool properlyDominates(const DomTreeNodeBase< NodeT > *A, const DomTreeNodeBase< NodeT > *B) const
properlyDominates - Returns true iff A dominates B and A != B.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
Class representing an expression and its matching format.
bool isPresplitCoroutine() const
Determine if the function is presplit coroutine.
Definition: Function.h:540
bool equals(const Expression &Other) const override
Definition: NewGVN.cpp:948
bool equals(const Expression &Other) const override
Definition: NewGVN.cpp:934
bool equals(const Expression &Other) const override
bool equals(const Expression &Other) const override
Definition: NewGVN.cpp:938
static std::optional< bool > isImpliedByMatchingCmp(CmpPredicate Pred1, CmpPredicate Pred2)
Determine if Pred1 implies Pred2 is true, false, or if nothing can be inferred about the implication,...
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction.
Definition: Instruction.cpp:99
bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
bool isAtomic() const LLVM_READONLY
Return true if this instruction has an AtomicOrdering of unordered or higher.
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:94
const Function * getFunction() const
Return the function this instruction belongs to.
Definition: Instruction.cpp:72
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
An instruction for reading from memory.
Definition: Instructions.h:176
Value * getPointerOperand()
Definition: Instructions.h:255
bool isSimple() const
Definition: Instructions.h:247
BasicBlock * getBlock() const
Definition: MemorySSA.h:161
Represents phi nodes for memory accesses.
Definition: MemorySSA.h:478
BasicBlock * getIncomingBlock(unsigned I) const
Return incoming basic block number i.
Definition: MemorySSA.h:541
An analysis that produces MemorySSA for a function.
Definition: MemorySSA.h:928
This is the generic walker interface for walkers of MemorySSA.
Definition: MemorySSA.h:1016
MemoryAccess * getClobberingMemoryAccess(const Instruction *I, BatchAAResults &AA)
Given a memory Mod/Ref/ModRef'ing instruction, calling this will give you the nearest dominating Memo...
Definition: MemorySSA.h:1045
Encapsulates MemorySSA, including all data associated with memory accesses.
Definition: MemorySSA.h:701
MemorySSAWalker * getWalker()
Definition: MemorySSA.cpp:1590
MemoryUseOrDef * getMemoryAccess(const Instruction *I) const
Given a memory Mod/Ref'ing instruction, get the MemorySSA access associated with it.
Definition: MemorySSA.h:719
MemoryAccess * getLiveOnEntryDef() const
Definition: MemorySSA.h:743
const DefsList * getBlockDefs(const BasicBlock *BB) const
Return the list of MemoryDef's and MemoryPhi's for a given basic block.
Definition: MemorySSA.h:767
bool isLiveOnEntryDef(const MemoryAccess *MA) const
Return true if MA represents the live on entry value.
Definition: MemorySSA.h:739
Class that has the common methods + fields of memory uses/defs.
Definition: MemorySSA.h:249
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition: ArrayRef.h:310
PreservedAnalyses run(Function &F, AnalysisManager< Function > &AM)
Run the pass over the function.
Definition: NewGVN.cpp:4269
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
PointerIntPair - This class implements a pair of a pointer and small integer.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Definition: DerivedTypes.h:686
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1878
Encapsulates PredicateInfo, including all data associated with memory accesses.
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
void preserve()
Mark an analysis as preserved.
Definition: Analysis.h:131
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:363
SmallPtrSetIterator< PtrType > const_iterator
Definition: SmallPtrSet.h:374
bool erase(PtrType Ptr)
Remove pointer from the set.
Definition: SmallPtrSet.h:401
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:452
iterator end() const
Definition: SmallPtrSet.h:477
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
iterator begin() const
Definition: SmallPtrSet.h:472
bool contains(ConstPtrType Ptr) const
Definition: SmallPtrSet.h:458
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
bool empty() const
Definition: SmallVector.h:81
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:937
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
An instruction for storing to memory.
Definition: Instructions.h:292
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static IntegerType * getInt8Ty(LLVMContext &C)
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1859
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
op_range operands()
Definition: User.h:288
Value * getOperand(unsigned i) const
Definition: User.h:228
unsigned getNumOperands() const
Definition: User.h:250
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
iterator_range< user_iterator > users()
Definition: Value.h:421
bool use_empty() const
Definition: Value.h:344
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1075
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:213
iterator find(const_arg_type_t< ValueT > V)
Definition: DenseSet.h:187
bool erase(const ValueT &V)
Definition: DenseSet.h:97
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition: DenseSet.h:95
An opaque object representing a hash code.
Definition: Hashing.h:75
const ParentTy * getParent() const
Definition: ilist_node.h:32
self_iterator getIterator()
Definition: ilist_node.h:132
A range adaptor for a pair of iterators.
friend const_iterator begin(StringRef path, Style style)
Get begin iterator over path.
Definition: Path.cpp:226
friend const_iterator end(StringRef path)
Get end iterator over path.
Definition: Path.cpp:235
This provides a very simple, boring adaptor for a begin and end iterator into a range type.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
Definition: PPCPredicates.h:26
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, StoreInst *DepSI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the store at D...
Definition: VNCoercion.cpp:210
Constant * getConstantValueForLoad(Constant *SrcVal, unsigned Offset, Type *LoadTy, const DataLayout &DL)
Definition: VNCoercion.cpp:347
int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the load at De...
Definition: VNCoercion.cpp:231
Constant * getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, Type *LoadTy, const DataLayout &DL)
Definition: VNCoercion.cpp:406
int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, MemIntrinsic *DepMI, const DataLayout &DL)
This function determines whether a value for the pointer LoadPtr can be extracted from the memory int...
Definition: VNCoercion.cpp:245
@ CE
Windows NT (Windows on ARM)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
std::vector< ExecutorSymbolDef > LookupResult
NodeAddr< DefNode * > Def
Definition: RDFGraph.h:384
const_iterator begin(StringRef path LLVM_LIFETIME_BOUND, Style style=Style::native)
Get begin iterator over path.
Definition: Path.cpp:226
const_iterator end(StringRef path LLVM_LIFETIME_BOUND)
Get end iterator over path.
Definition: Path.cpp:235
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
Value * simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef< Value * > Indices, GEPNoWrapFlags NW, const SimplifyQuery &Q)
Given operands for a GetElementPtrInst, fold the result or return null.
Constant * getInitialValueOfAllocation(const Value *V, const TargetLibraryInfo *TLI, Type *Ty)
If this is a call to an allocation function that initializes memory to a fixed value,...
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
auto successors(const MachineBasicBlock *BB)
SDValue getStoredValue(SDValue Op)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
mapped_iterator< ItTy, FuncTy > map_iterator(ItTy I, FuncTy F)
Definition: STLExtras.h:372
bool set_is_subset(const S1Ty &S1, const S2Ty &S2)
set_is_subset(A, B) - Return true iff A in B
Value * simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, const SimplifyQuery &Q)
Given operands for a CastInst, fold the result or return null.
void erase(Container &C, ValueType V)
Wrapper function to remove a value from a container:
Definition: STLExtras.h:2107
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
Definition: Local.cpp:406
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:420
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1664
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
Definition: Local.cpp:425
void patchReplacementInstruction(Instruction *I, Value *Repl)
Patch the replacement so that it is not more restrictive than the value being replaced.
Definition: Local.cpp:3500
iterator_range< filter_iterator< detail::IterOfRange< RangeT >, PredicateT > > make_filter_range(RangeT &&Range, PredicateT Pred)
Convenience function that takes a range of elements and a predicate, and return a new filter_iterator...
Definition: STLExtras.h:573
Constant * ConstantFoldInstOperands(Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, bool AllowNonDeterministic=true)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
@ Other
Any other memory.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
bool salvageKnowledge(Instruction *I, AssumptionCache *AC=nullptr, DominatorTree *DT=nullptr)
Calls BuildAssumeFromInst and if the resulting llvm.assume is valid insert if before I.
Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
DWARFExpression::Operation Op
OutputIt copy(R &&Range, OutputIt Out)
Definition: STLExtras.h:1841
iterator_range< df_iterator< T > > depth_first(const T &G)
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Definition: STLExtras.h:2087
Value * simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a CmpInst, fold the result or return null.
bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
Value * simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, const SimplifyQuery &Q)
Given operands for a SelectInst, fold the result or return null.
iterator_range< def_chain_iterator< T, true > > optimized_def_chain(T MA)
Definition: MemorySSA.h:1364
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
PointerIntPair< Value *, 1, bool > Def
Definition: NewGVN.cpp:3562
bool operator<(const ValueDFS &Other) const
Definition: NewGVN.cpp:3565
DOTGraphTraits - Template class that can be specialized to customize how graphs are converted to 'dot...
static unsigned getHashValue(const ExactEqualsExpression &E)
Definition: NewGVN.cpp:469
static unsigned getHashValue(const Expression *E)
Definition: NewGVN.cpp:465
static const Expression * getTombstoneKey()
Definition: NewGVN.cpp:459
static bool isEqual(const Expression *LHS, const Expression *RHS)
Definition: NewGVN.cpp:479
static const Expression * getEmptyKey()
Definition: NewGVN.cpp:453
static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS)
Definition: NewGVN.cpp:473
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition: DenseMapInfo.h:52
ExactEqualsExpression(const Expression &E)
Definition: NewGVN.cpp:443
const Expression & E
Definition: NewGVN.cpp:441
hash_code getComputedHash() const
Definition: NewGVN.cpp:445
bool operator==(const Expression &Other) const
Definition: NewGVN.cpp:447
SimplifyQuery getWithInstruction(const Instruction *I) const
unsigned int LocalNum