LLVM 19.0.0git
AArch64PostLegalizerCombiner.cpp
Go to the documentation of this file.
1//=== AArch64PostLegalizerCombiner.cpp --------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Post-legalization combines on generic MachineInstrs.
11///
12/// The combines here must preserve instruction legality.
13///
14/// Lowering combines (e.g. pseudo matching) should be handled by
15/// AArch64PostLegalizerLowering.
16///
17/// Combines which don't rely on instruction legality should go in the
18/// AArch64PreLegalizerCombiner.
19///
20//===----------------------------------------------------------------------===//
21
23#include "llvm/ADT/STLExtras.h"
41#include "llvm/Support/Debug.h"
42
43#define GET_GICOMBINER_DEPS
44#include "AArch64GenPostLegalizeGICombiner.inc"
45#undef GET_GICOMBINER_DEPS
46
47#define DEBUG_TYPE "aarch64-postlegalizer-combiner"
48
49using namespace llvm;
50using namespace MIPatternMatch;
51
52namespace {
53
54#define GET_GICOMBINER_TYPES
55#include "AArch64GenPostLegalizeGICombiner.inc"
56#undef GET_GICOMBINER_TYPES
57
58/// This combine tries do what performExtractVectorEltCombine does in SDAG.
59/// Rewrite for pairwise fadd pattern
60/// (s32 (g_extract_vector_elt
61/// (g_fadd (vXs32 Other)
62/// (g_vector_shuffle (vXs32 Other) undef <1,X,...> )) 0))
63/// ->
64/// (s32 (g_fadd (g_extract_vector_elt (vXs32 Other) 0)
65/// (g_extract_vector_elt (vXs32 Other) 1))
66bool matchExtractVecEltPairwiseAdd(
68 std::tuple<unsigned, LLT, Register> &MatchInfo) {
69 Register Src1 = MI.getOperand(1).getReg();
70 Register Src2 = MI.getOperand(2).getReg();
71 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
72
74 if (!Cst || Cst->Value != 0)
75 return false;
76 // SDAG also checks for FullFP16, but this looks to be beneficial anyway.
77
78 // Now check for an fadd operation. TODO: expand this for integer add?
79 auto *FAddMI = getOpcodeDef(TargetOpcode::G_FADD, Src1, MRI);
80 if (!FAddMI)
81 return false;
82
83 // If we add support for integer add, must restrict these types to just s64.
84 unsigned DstSize = DstTy.getSizeInBits();
85 if (DstSize != 16 && DstSize != 32 && DstSize != 64)
86 return false;
87
88 Register Src1Op1 = FAddMI->getOperand(1).getReg();
89 Register Src1Op2 = FAddMI->getOperand(2).getReg();
90 MachineInstr *Shuffle =
91 getOpcodeDef(TargetOpcode::G_SHUFFLE_VECTOR, Src1Op2, MRI);
92 MachineInstr *Other = MRI.getVRegDef(Src1Op1);
93 if (!Shuffle) {
94 Shuffle = getOpcodeDef(TargetOpcode::G_SHUFFLE_VECTOR, Src1Op1, MRI);
95 Other = MRI.getVRegDef(Src1Op2);
96 }
97
98 // We're looking for a shuffle that moves the second element to index 0.
99 if (Shuffle && Shuffle->getOperand(3).getShuffleMask()[0] == 1 &&
100 Other == MRI.getVRegDef(Shuffle->getOperand(1).getReg())) {
101 std::get<0>(MatchInfo) = TargetOpcode::G_FADD;
102 std::get<1>(MatchInfo) = DstTy;
103 std::get<2>(MatchInfo) = Other->getOperand(0).getReg();
104 return true;
105 }
106 return false;
107}
108
109void applyExtractVecEltPairwiseAdd(
111 std::tuple<unsigned, LLT, Register> &MatchInfo) {
112 unsigned Opc = std::get<0>(MatchInfo);
113 assert(Opc == TargetOpcode::G_FADD && "Unexpected opcode!");
114 // We want to generate two extracts of elements 0 and 1, and add them.
115 LLT Ty = std::get<1>(MatchInfo);
116 Register Src = std::get<2>(MatchInfo);
117 LLT s64 = LLT::scalar(64);
118 B.setInstrAndDebugLoc(MI);
119 auto Elt0 = B.buildExtractVectorElement(Ty, Src, B.buildConstant(s64, 0));
120 auto Elt1 = B.buildExtractVectorElement(Ty, Src, B.buildConstant(s64, 1));
121 B.buildInstr(Opc, {MI.getOperand(0).getReg()}, {Elt0, Elt1});
122 MI.eraseFromParent();
123}
124
126 // TODO: check if extended build vector as well.
127 unsigned Opc = MRI.getVRegDef(R)->getOpcode();
128 return Opc == TargetOpcode::G_SEXT || Opc == TargetOpcode::G_SEXT_INREG;
129}
130
132 // TODO: check if extended build vector as well.
133 return MRI.getVRegDef(R)->getOpcode() == TargetOpcode::G_ZEXT;
134}
135
136bool matchAArch64MulConstCombine(
138 std::function<void(MachineIRBuilder &B, Register DstReg)> &ApplyFn) {
139 assert(MI.getOpcode() == TargetOpcode::G_MUL);
140 Register LHS = MI.getOperand(1).getReg();
141 Register RHS = MI.getOperand(2).getReg();
142 Register Dst = MI.getOperand(0).getReg();
143 const LLT Ty = MRI.getType(LHS);
144
145 // The below optimizations require a constant RHS.
147 if (!Const)
148 return false;
149
150 APInt ConstValue = Const->Value.sext(Ty.getSizeInBits());
151 // The following code is ported from AArch64ISelLowering.
152 // Multiplication of a power of two plus/minus one can be done more
153 // cheaply as shift+add/sub. For now, this is true unilaterally. If
154 // future CPUs have a cheaper MADD instruction, this may need to be
155 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
156 // 64-bit is 5 cycles, so this is always a win.
157 // More aggressively, some multiplications N0 * C can be lowered to
158 // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
159 // e.g. 6=3*2=(2+1)*2.
160 // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
161 // which equals to (1+2)*16-(1+2).
162 // TrailingZeroes is used to test if the mul can be lowered to
163 // shift+add+shift.
164 unsigned TrailingZeroes = ConstValue.countr_zero();
165 if (TrailingZeroes) {
166 // Conservatively do not lower to shift+add+shift if the mul might be
167 // folded into smul or umul.
168 if (MRI.hasOneNonDBGUse(LHS) &&
169 (isSignExtended(LHS, MRI) || isZeroExtended(LHS, MRI)))
170 return false;
171 // Conservatively do not lower to shift+add+shift if the mul might be
172 // folded into madd or msub.
173 if (MRI.hasOneNonDBGUse(Dst)) {
174 MachineInstr &UseMI = *MRI.use_instr_begin(Dst);
175 unsigned UseOpc = UseMI.getOpcode();
176 if (UseOpc == TargetOpcode::G_ADD || UseOpc == TargetOpcode::G_PTR_ADD ||
177 UseOpc == TargetOpcode::G_SUB)
178 return false;
179 }
180 }
181 // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
182 // and shift+add+shift.
183 APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes);
184
185 unsigned ShiftAmt, AddSubOpc;
186 // Is the shifted value the LHS operand of the add/sub?
187 bool ShiftValUseIsLHS = true;
188 // Do we need to negate the result?
189 bool NegateResult = false;
190
191 if (ConstValue.isNonNegative()) {
192 // (mul x, 2^N + 1) => (add (shl x, N), x)
193 // (mul x, 2^N - 1) => (sub (shl x, N), x)
194 // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
195 APInt SCVMinus1 = ShiftedConstValue - 1;
196 APInt CVPlus1 = ConstValue + 1;
197 if (SCVMinus1.isPowerOf2()) {
198 ShiftAmt = SCVMinus1.logBase2();
199 AddSubOpc = TargetOpcode::G_ADD;
200 } else if (CVPlus1.isPowerOf2()) {
201 ShiftAmt = CVPlus1.logBase2();
202 AddSubOpc = TargetOpcode::G_SUB;
203 } else
204 return false;
205 } else {
206 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
207 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
208 APInt CVNegPlus1 = -ConstValue + 1;
209 APInt CVNegMinus1 = -ConstValue - 1;
210 if (CVNegPlus1.isPowerOf2()) {
211 ShiftAmt = CVNegPlus1.logBase2();
212 AddSubOpc = TargetOpcode::G_SUB;
213 ShiftValUseIsLHS = false;
214 } else if (CVNegMinus1.isPowerOf2()) {
215 ShiftAmt = CVNegMinus1.logBase2();
216 AddSubOpc = TargetOpcode::G_ADD;
217 NegateResult = true;
218 } else
219 return false;
220 }
221
222 if (NegateResult && TrailingZeroes)
223 return false;
224
225 ApplyFn = [=](MachineIRBuilder &B, Register DstReg) {
226 auto Shift = B.buildConstant(LLT::scalar(64), ShiftAmt);
227 auto ShiftedVal = B.buildShl(Ty, LHS, Shift);
228
229 Register AddSubLHS = ShiftValUseIsLHS ? ShiftedVal.getReg(0) : LHS;
230 Register AddSubRHS = ShiftValUseIsLHS ? LHS : ShiftedVal.getReg(0);
231 auto Res = B.buildInstr(AddSubOpc, {Ty}, {AddSubLHS, AddSubRHS});
232 assert(!(NegateResult && TrailingZeroes) &&
233 "NegateResult and TrailingZeroes cannot both be true for now.");
234 // Negate the result.
235 if (NegateResult) {
236 B.buildSub(DstReg, B.buildConstant(Ty, 0), Res);
237 return;
238 }
239 // Shift the result.
240 if (TrailingZeroes) {
241 B.buildShl(DstReg, Res, B.buildConstant(LLT::scalar(64), TrailingZeroes));
242 return;
243 }
244 B.buildCopy(DstReg, Res.getReg(0));
245 };
246 return true;
247}
248
249void applyAArch64MulConstCombine(
251 std::function<void(MachineIRBuilder &B, Register DstReg)> &ApplyFn) {
252 B.setInstrAndDebugLoc(MI);
253 ApplyFn(B, MI.getOperand(0).getReg());
254 MI.eraseFromParent();
255}
256
257/// Try to fold a G_MERGE_VALUES of 2 s32 sources, where the second source
258/// is a zero, into a G_ZEXT of the first.
259bool matchFoldMergeToZext(MachineInstr &MI, MachineRegisterInfo &MRI) {
260 auto &Merge = cast<GMerge>(MI);
261 LLT SrcTy = MRI.getType(Merge.getSourceReg(0));
262 if (SrcTy != LLT::scalar(32) || Merge.getNumSources() != 2)
263 return false;
264 return mi_match(Merge.getSourceReg(1), MRI, m_SpecificICst(0));
265}
266
267void applyFoldMergeToZext(MachineInstr &MI, MachineRegisterInfo &MRI,
269 // Mutate %d(s64) = G_MERGE_VALUES %a(s32), 0(s32)
270 // ->
271 // %d(s64) = G_ZEXT %a(s32)
272 Observer.changingInstr(MI);
273 MI.setDesc(B.getTII().get(TargetOpcode::G_ZEXT));
274 MI.removeOperand(2);
275 Observer.changedInstr(MI);
276}
277
278/// \returns True if a G_ANYEXT instruction \p MI should be mutated to a G_ZEXT
279/// instruction.
280bool matchMutateAnyExtToZExt(MachineInstr &MI, MachineRegisterInfo &MRI) {
281 // If this is coming from a scalar compare then we can use a G_ZEXT instead of
282 // a G_ANYEXT:
283 //
284 // %cmp:_(s32) = G_[I|F]CMP ... <-- produces 0/1.
285 // %ext:_(s64) = G_ANYEXT %cmp(s32)
286 //
287 // By doing this, we can leverage more KnownBits combines.
288 assert(MI.getOpcode() == TargetOpcode::G_ANYEXT);
289 Register Dst = MI.getOperand(0).getReg();
290 Register Src = MI.getOperand(1).getReg();
291 return MRI.getType(Dst).isScalar() &&
292 mi_match(Src, MRI,
294 m_GFCmp(m_Pred(), m_Reg(), m_Reg())));
295}
296
297void applyMutateAnyExtToZExt(MachineInstr &MI, MachineRegisterInfo &MRI,
299 GISelChangeObserver &Observer) {
300 Observer.changingInstr(MI);
301 MI.setDesc(B.getTII().get(TargetOpcode::G_ZEXT));
302 Observer.changedInstr(MI);
303}
304
305/// Match a 128b store of zero and split it into two 64 bit stores, for
306/// size/performance reasons.
307bool matchSplitStoreZero128(MachineInstr &MI, MachineRegisterInfo &MRI) {
308 GStore &Store = cast<GStore>(MI);
309 if (!Store.isSimple())
310 return false;
311 LLT ValTy = MRI.getType(Store.getValueReg());
312 if (ValTy.isScalableVector())
313 return false;
314 if (!ValTy.isVector() || ValTy.getSizeInBits() != 128)
315 return false;
316 if (Store.getMemSizeInBits() != ValTy.getSizeInBits())
317 return false; // Don't split truncating stores.
318 if (!MRI.hasOneNonDBGUse(Store.getValueReg()))
319 return false;
320 auto MaybeCst = isConstantOrConstantSplatVector(
321 *MRI.getVRegDef(Store.getValueReg()), MRI);
322 return MaybeCst && MaybeCst->isZero();
323}
324
325void applySplitStoreZero128(MachineInstr &MI, MachineRegisterInfo &MRI,
327 GISelChangeObserver &Observer) {
328 B.setInstrAndDebugLoc(MI);
329 GStore &Store = cast<GStore>(MI);
330 assert(MRI.getType(Store.getValueReg()).isVector() &&
331 "Expected a vector store value");
332 LLT NewTy = LLT::scalar(64);
333 Register PtrReg = Store.getPointerReg();
334 auto Zero = B.buildConstant(NewTy, 0);
335 auto HighPtr = B.buildPtrAdd(MRI.getType(PtrReg), PtrReg,
336 B.buildConstant(LLT::scalar(64), 8));
337 auto &MF = *MI.getMF();
338 auto *LowMMO = MF.getMachineMemOperand(&Store.getMMO(), 0, NewTy);
339 auto *HighMMO = MF.getMachineMemOperand(&Store.getMMO(), 8, NewTy);
340 B.buildStore(Zero, PtrReg, *LowMMO);
341 B.buildStore(Zero, HighPtr, *HighMMO);
342 Store.eraseFromParent();
343}
344
345bool matchOrToBSP(MachineInstr &MI, MachineRegisterInfo &MRI,
346 std::tuple<Register, Register, Register> &MatchInfo) {
347 const LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
348 if (!DstTy.isVector())
349 return false;
350
351 Register AO1, AO2, BVO1, BVO2;
352 if (!mi_match(MI, MRI,
353 m_GOr(m_GAnd(m_Reg(AO1), m_Reg(BVO1)),
354 m_GAnd(m_Reg(AO2), m_Reg(BVO2)))))
355 return false;
356
357 auto *BV1 = getOpcodeDef<GBuildVector>(BVO1, MRI);
358 auto *BV2 = getOpcodeDef<GBuildVector>(BVO2, MRI);
359 if (!BV1 || !BV2)
360 return false;
361
362 for (int I = 0, E = DstTy.getNumElements(); I < E; I++) {
363 auto ValAndVReg1 =
364 getIConstantVRegValWithLookThrough(BV1->getSourceReg(I), MRI);
365 auto ValAndVReg2 =
366 getIConstantVRegValWithLookThrough(BV2->getSourceReg(I), MRI);
367 if (!ValAndVReg1 || !ValAndVReg2 ||
368 ValAndVReg1->Value != ~ValAndVReg2->Value)
369 return false;
370 }
371
372 MatchInfo = {AO1, AO2, BVO1};
373 return true;
374}
375
376void applyOrToBSP(MachineInstr &MI, MachineRegisterInfo &MRI,
378 std::tuple<Register, Register, Register> &MatchInfo) {
379 B.setInstrAndDebugLoc(MI);
380 B.buildInstr(
381 AArch64::G_BSP, {MI.getOperand(0).getReg()},
382 {std::get<2>(MatchInfo), std::get<0>(MatchInfo), std::get<1>(MatchInfo)});
383 MI.eraseFromParent();
384}
385
386// Combines Mul(And(Srl(X, 15), 0x10001), 0xffff) into CMLTz
387bool matchCombineMulCMLT(MachineInstr &MI, MachineRegisterInfo &MRI,
388 Register &SrcReg) {
389 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
390
391 if (DstTy != LLT::fixed_vector(2, 64) && DstTy != LLT::fixed_vector(2, 32) &&
392 DstTy != LLT::fixed_vector(4, 32) && DstTy != LLT::fixed_vector(4, 16) &&
393 DstTy != LLT::fixed_vector(8, 16))
394 return false;
395
396 auto AndMI = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI);
397 if (AndMI->getOpcode() != TargetOpcode::G_AND)
398 return false;
399 auto LShrMI = getDefIgnoringCopies(AndMI->getOperand(1).getReg(), MRI);
400 if (LShrMI->getOpcode() != TargetOpcode::G_LSHR)
401 return false;
402
403 // Check the constant splat values
405 *MRI.getVRegDef(MI.getOperand(2).getReg()), MRI);
407 *MRI.getVRegDef(AndMI->getOperand(2).getReg()), MRI);
409 *MRI.getVRegDef(LShrMI->getOperand(2).getReg()), MRI);
410 if (!V1.has_value() || !V2.has_value() || !V3.has_value())
411 return false;
412 unsigned HalfSize = DstTy.getScalarSizeInBits() / 2;
413 if (!V1.value().isMask(HalfSize) || V2.value() != (1ULL | 1ULL << HalfSize) ||
414 V3 != (HalfSize - 1))
415 return false;
416
417 SrcReg = LShrMI->getOperand(1).getReg();
418
419 return true;
420}
421
422void applyCombineMulCMLT(MachineInstr &MI, MachineRegisterInfo &MRI,
423 MachineIRBuilder &B, Register &SrcReg) {
424 Register DstReg = MI.getOperand(0).getReg();
425 LLT DstTy = MRI.getType(DstReg);
426 LLT HalfTy =
429
430 Register ZeroVec = B.buildConstant(HalfTy, 0).getReg(0);
431 Register CastReg =
432 B.buildInstr(TargetOpcode::G_BITCAST, {HalfTy}, {SrcReg}).getReg(0);
433 Register CMLTReg =
434 B.buildICmp(CmpInst::Predicate::ICMP_SLT, HalfTy, CastReg, ZeroVec)
435 .getReg(0);
436
437 B.buildInstr(TargetOpcode::G_BITCAST, {DstReg}, {CMLTReg}).getReg(0);
438 MI.eraseFromParent();
439}
440
441class AArch64PostLegalizerCombinerImpl : public Combiner {
442protected:
443 // TODO: Make CombinerHelper methods const.
444 mutable CombinerHelper Helper;
445 const AArch64PostLegalizerCombinerImplRuleConfig &RuleConfig;
446 const AArch64Subtarget &STI;
447
448public:
449 AArch64PostLegalizerCombinerImpl(
450 MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC,
451 GISelKnownBits &KB, GISelCSEInfo *CSEInfo,
452 const AArch64PostLegalizerCombinerImplRuleConfig &RuleConfig,
453 const AArch64Subtarget &STI, MachineDominatorTree *MDT,
454 const LegalizerInfo *LI);
455
456 static const char *getName() { return "AArch64PostLegalizerCombiner"; }
457
458 bool tryCombineAll(MachineInstr &I) const override;
459
460private:
461#define GET_GICOMBINER_CLASS_MEMBERS
462#include "AArch64GenPostLegalizeGICombiner.inc"
463#undef GET_GICOMBINER_CLASS_MEMBERS
464};
465
466#define GET_GICOMBINER_IMPL
467#include "AArch64GenPostLegalizeGICombiner.inc"
468#undef GET_GICOMBINER_IMPL
469
470AArch64PostLegalizerCombinerImpl::AArch64PostLegalizerCombinerImpl(
471 MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC,
472 GISelKnownBits &KB, GISelCSEInfo *CSEInfo,
473 const AArch64PostLegalizerCombinerImplRuleConfig &RuleConfig,
474 const AArch64Subtarget &STI, MachineDominatorTree *MDT,
475 const LegalizerInfo *LI)
476 : Combiner(MF, CInfo, TPC, &KB, CSEInfo),
477 Helper(Observer, B, /*IsPreLegalize*/ false, &KB, MDT, LI),
478 RuleConfig(RuleConfig), STI(STI),
480#include "AArch64GenPostLegalizeGICombiner.inc"
482{
483}
484
485class AArch64PostLegalizerCombiner : public MachineFunctionPass {
486public:
487 static char ID;
488
489 AArch64PostLegalizerCombiner(bool IsOptNone = false);
490
491 StringRef getPassName() const override {
492 return "AArch64PostLegalizerCombiner";
493 }
494
495 bool runOnMachineFunction(MachineFunction &MF) override;
496 void getAnalysisUsage(AnalysisUsage &AU) const override;
497
498private:
499 bool IsOptNone;
500 AArch64PostLegalizerCombinerImplRuleConfig RuleConfig;
501
502
503 struct StoreInfo {
504 GStore *St = nullptr;
505 // The G_PTR_ADD that's used by the store. We keep this to cache the
506 // MachineInstr def.
507 GPtrAdd *Ptr = nullptr;
508 // The signed offset to the Ptr instruction.
509 int64_t Offset = 0;
510 LLT StoredType;
511 };
512 bool tryOptimizeConsecStores(SmallVectorImpl<StoreInfo> &Stores,
513 CSEMIRBuilder &MIB);
514
515 bool optimizeConsecutiveMemOpAddressing(MachineFunction &MF,
516 CSEMIRBuilder &MIB);
517};
518} // end anonymous namespace
519
520void AArch64PostLegalizerCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
522 AU.setPreservesCFG();
526 if (!IsOptNone) {
531 }
533}
534
535AArch64PostLegalizerCombiner::AArch64PostLegalizerCombiner(bool IsOptNone)
536 : MachineFunctionPass(ID), IsOptNone(IsOptNone) {
538
539 if (!RuleConfig.parseCommandLineOption())
540 report_fatal_error("Invalid rule identifier");
541}
542
543bool AArch64PostLegalizerCombiner::runOnMachineFunction(MachineFunction &MF) {
544 if (MF.getProperties().hasProperty(
545 MachineFunctionProperties::Property::FailedISel))
546 return false;
548 MachineFunctionProperties::Property::Legalized) &&
549 "Expected a legalized function?");
550 auto *TPC = &getAnalysis<TargetPassConfig>();
551 const Function &F = MF.getFunction();
552 bool EnableOpt =
553 MF.getTarget().getOptLevel() != CodeGenOptLevel::None && !skipFunction(F);
554
556 const auto *LI = ST.getLegalizerInfo();
557
558 GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF);
560 IsOptNone ? nullptr
561 : &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
563 getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
564 auto *CSEInfo = &Wrapper.get(TPC->getCSEConfig());
565
566 CombinerInfo CInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
567 /*LegalizerInfo*/ nullptr, EnableOpt, F.hasOptSize(),
568 F.hasMinSize());
569 AArch64PostLegalizerCombinerImpl Impl(MF, CInfo, TPC, *KB, CSEInfo,
570 RuleConfig, ST, MDT, LI);
571 bool Changed = Impl.combineMachineInstrs();
572
573 auto MIB = CSEMIRBuilder(MF);
574 MIB.setCSEInfo(CSEInfo);
575 Changed |= optimizeConsecutiveMemOpAddressing(MF, MIB);
576 return Changed;
577}
578
579bool AArch64PostLegalizerCombiner::tryOptimizeConsecStores(
581 if (Stores.size() <= 2)
582 return false;
583
584 // Profitabity checks:
585 int64_t BaseOffset = Stores[0].Offset;
586 unsigned NumPairsExpected = Stores.size() / 2;
587 unsigned TotalInstsExpected = NumPairsExpected + (Stores.size() % 2);
588 // Size savings will depend on whether we can fold the offset, as an
589 // immediate of an ADD.
590 auto &TLI = *MIB.getMF().getSubtarget().getTargetLowering();
591 if (!TLI.isLegalAddImmediate(BaseOffset))
592 TotalInstsExpected++;
593 int SavingsExpected = Stores.size() - TotalInstsExpected;
594 if (SavingsExpected <= 0)
595 return false;
596
597 auto &MRI = MIB.getMF().getRegInfo();
598
599 // We have a series of consecutive stores. Factor out the common base
600 // pointer and rewrite the offsets.
601 Register NewBase = Stores[0].Ptr->getReg(0);
602 for (auto &SInfo : Stores) {
603 // Compute a new pointer with the new base ptr and adjusted offset.
604 MIB.setInstrAndDebugLoc(*SInfo.St);
605 auto NewOff = MIB.buildConstant(LLT::scalar(64), SInfo.Offset - BaseOffset);
606 auto NewPtr = MIB.buildPtrAdd(MRI.getType(SInfo.St->getPointerReg()),
607 NewBase, NewOff);
608 if (MIB.getObserver())
609 MIB.getObserver()->changingInstr(*SInfo.St);
610 SInfo.St->getOperand(1).setReg(NewPtr.getReg(0));
611 if (MIB.getObserver())
612 MIB.getObserver()->changedInstr(*SInfo.St);
613 }
614 LLVM_DEBUG(dbgs() << "Split a series of " << Stores.size()
615 << " stores into a base pointer and offsets.\n");
616 return true;
617}
618
619static cl::opt<bool>
620 EnableConsecutiveMemOpOpt("aarch64-postlegalizer-consecutive-memops",
621 cl::init(true), cl::Hidden,
622 cl::desc("Enable consecutive memop optimization "
623 "in AArch64PostLegalizerCombiner"));
624
625bool AArch64PostLegalizerCombiner::optimizeConsecutiveMemOpAddressing(
626 MachineFunction &MF, CSEMIRBuilder &MIB) {
627 // This combine needs to run after all reassociations/folds on pointer
628 // addressing have been done, specifically those that combine two G_PTR_ADDs
629 // with constant offsets into a single G_PTR_ADD with a combined offset.
630 // The goal of this optimization is to undo that combine in the case where
631 // doing so has prevented the formation of pair stores due to illegal
632 // addressing modes of STP. The reason that we do it here is because
633 // it's much easier to undo the transformation of a series consecutive
634 // mem ops, than it is to detect when doing it would be a bad idea looking
635 // at a single G_PTR_ADD in the reassociation/ptradd_immed_chain combine.
636 //
637 // An example:
638 // G_STORE %11:_(<2 x s64>), %base:_(p0) :: (store (<2 x s64>), align 1)
639 // %off1:_(s64) = G_CONSTANT i64 4128
640 // %p1:_(p0) = G_PTR_ADD %0:_, %off1:_(s64)
641 // G_STORE %11:_(<2 x s64>), %p1:_(p0) :: (store (<2 x s64>), align 1)
642 // %off2:_(s64) = G_CONSTANT i64 4144
643 // %p2:_(p0) = G_PTR_ADD %0:_, %off2:_(s64)
644 // G_STORE %11:_(<2 x s64>), %p2:_(p0) :: (store (<2 x s64>), align 1)
645 // %off3:_(s64) = G_CONSTANT i64 4160
646 // %p3:_(p0) = G_PTR_ADD %0:_, %off3:_(s64)
647 // G_STORE %11:_(<2 x s64>), %17:_(p0) :: (store (<2 x s64>), align 1)
648 bool Changed = false;
649 auto &MRI = MF.getRegInfo();
650
652 return Changed;
653
655 // If we see a load, then we keep track of any values defined by it.
656 // In the following example, STP formation will fail anyway because
657 // the latter store is using a load result that appears after the
658 // the prior store. In this situation if we factor out the offset then
659 // we increase code size for no benefit.
660 // G_STORE %v1:_(s64), %base:_(p0) :: (store (s64))
661 // %v2:_(s64) = G_LOAD %ldptr:_(p0) :: (load (s64))
662 // G_STORE %v2:_(s64), %base:_(p0) :: (store (s64))
663 SmallVector<Register> LoadValsSinceLastStore;
664
665 auto storeIsValid = [&](StoreInfo &Last, StoreInfo New) {
666 // Check if this store is consecutive to the last one.
667 if (Last.Ptr->getBaseReg() != New.Ptr->getBaseReg() ||
668 (Last.Offset + static_cast<int64_t>(Last.StoredType.getSizeInBytes()) !=
669 New.Offset) ||
670 Last.StoredType != New.StoredType)
671 return false;
672
673 // Check if this store is using a load result that appears after the
674 // last store. If so, bail out.
675 if (any_of(LoadValsSinceLastStore, [&](Register LoadVal) {
676 return New.St->getValueReg() == LoadVal;
677 }))
678 return false;
679
680 // Check if the current offset would be too large for STP.
681 // If not, then STP formation should be able to handle it, so we don't
682 // need to do anything.
683 int64_t MaxLegalOffset;
684 switch (New.StoredType.getSizeInBits()) {
685 case 32:
686 MaxLegalOffset = 252;
687 break;
688 case 64:
689 MaxLegalOffset = 504;
690 break;
691 case 128:
692 MaxLegalOffset = 1008;
693 break;
694 default:
695 llvm_unreachable("Unexpected stored type size");
696 }
697 if (New.Offset < MaxLegalOffset)
698 return false;
699
700 // If factoring it out still wouldn't help then don't bother.
701 return New.Offset - Stores[0].Offset <= MaxLegalOffset;
702 };
703
704 auto resetState = [&]() {
705 Stores.clear();
706 LoadValsSinceLastStore.clear();
707 };
708
709 for (auto &MBB : MF) {
710 // We're looking inside a single BB at a time since the memset pattern
711 // should only be in a single block.
712 resetState();
713 for (auto &MI : MBB) {
714 // Skip for scalable vectors
715 if (auto *LdSt = dyn_cast<GLoadStore>(&MI);
716 LdSt && MRI.getType(LdSt->getOperand(0).getReg()).isScalableVector())
717 continue;
718
719 if (auto *St = dyn_cast<GStore>(&MI)) {
720 Register PtrBaseReg;
722 LLT StoredValTy = MRI.getType(St->getValueReg());
723 unsigned ValSize = StoredValTy.getSizeInBits();
724 if (ValSize < 32 || St->getMMO().getSizeInBits() != ValSize)
725 continue;
726
727 Register PtrReg = St->getPointerReg();
728 if (mi_match(
729 PtrReg, MRI,
730 m_OneNonDBGUse(m_GPtrAdd(m_Reg(PtrBaseReg), m_ICst(Offset))))) {
731 GPtrAdd *PtrAdd = cast<GPtrAdd>(MRI.getVRegDef(PtrReg));
732 StoreInfo New = {St, PtrAdd, Offset.getSExtValue(), StoredValTy};
733
734 if (Stores.empty()) {
735 Stores.push_back(New);
736 continue;
737 }
738
739 // Check if this store is a valid continuation of the sequence.
740 auto &Last = Stores.back();
741 if (storeIsValid(Last, New)) {
742 Stores.push_back(New);
743 LoadValsSinceLastStore.clear(); // Reset the load value tracking.
744 } else {
745 // The store isn't a valid to consider for the prior sequence,
746 // so try to optimize what we have so far and start a new sequence.
747 Changed |= tryOptimizeConsecStores(Stores, MIB);
748 resetState();
749 Stores.push_back(New);
750 }
751 }
752 } else if (auto *Ld = dyn_cast<GLoad>(&MI)) {
753 LoadValsSinceLastStore.push_back(Ld->getDstReg());
754 }
755 }
756 Changed |= tryOptimizeConsecStores(Stores, MIB);
757 resetState();
758 }
759
760 return Changed;
761}
762
763char AArch64PostLegalizerCombiner::ID = 0;
764INITIALIZE_PASS_BEGIN(AArch64PostLegalizerCombiner, DEBUG_TYPE,
765 "Combine AArch64 MachineInstrs after legalization", false,
766 false)
769INITIALIZE_PASS_END(AArch64PostLegalizerCombiner, DEBUG_TYPE,
770 "Combine AArch64 MachineInstrs after legalization", false,
771 false)
772
773namespace llvm {
775 return new AArch64PostLegalizerCombiner(IsOptNone);
776}
777} // end namespace llvm
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
static bool isZeroExtended(SDValue N, SelectionDAG &DAG)
static bool isSignExtended(SDValue N, SelectionDAG &DAG)
#define GET_GICOMBINER_CONSTRUCTOR_INITS
static cl::opt< bool > EnableConsecutiveMemOpOpt("aarch64-postlegalizer-consecutive-memops", cl::init(true), cl::Hidden, cl::desc("Enable consecutive memop optimization " "in AArch64PostLegalizerCombiner"))
#define DEBUG_TYPE
Combine AArch64 MachineInstrs after legalization
amdgpu aa AMDGPU Address space based Alias Analysis Wrapper
MachineBasicBlock & MBB
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
Provides analysis for continuously CSEing during GISel passes.
This file implements a version of MachineIRBuilder which CSEs insts within a MachineBasicBlock.
This contains common combine transformations that may be used in a combine pass,or by the target else...
Option class for Targets to specify which operations are combined how and when.
This contains the base class for all Combiners generated by TableGen.
#define LLVM_DEBUG(X)
Definition: Debug.h:101
std::optional< std::vector< StOtherPiece > > Other
Definition: ELFYAML.cpp:1294
This contains common code to allow clients to notify changes to machine instr.
Provides analysis for querying information about KnownBits during GISel passes.
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
Hexagon Vector Combine
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
Contains matchers for matching SSA Machine Instructions.
This file declares the MachineIRBuilder class.
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:59
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
static StringRef getName(Value *V)
R600 Clause Merge
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
Target-Independent Code Generator Pass Configuration Options pass.
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:78
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition: APInt.h:1598
unsigned logBase2() const
Definition: APInt.h:1719
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition: APInt.h:807
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition: APInt.h:314
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition: APInt.h:420
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
AnalysisUsage & addPreserved()
Add the specified Pass class to the set of analyses preserved by this pass.
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:269
Defines a builder that does CSE of MachineInstructions using GISelCSEInfo.
Definition: CSEMIRBuilder.h:32
MachineInstrBuilder buildConstant(const DstOp &Res, const ConstantInt &Val) override
Build and insert Res = G_CONSTANT Val.
Combiner implementation.
Definition: Combiner.h:34
virtual bool tryCombineAll(MachineInstr &I) const =0
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:311
The actual analysis pass wrapper.
Definition: CSEInfo.h:222
Simple wrapper that does the following.
Definition: CSEInfo.h:204
The CSE Analysis object.
Definition: CSEInfo.h:69
Abstract class that contains various methods for clients to notify about changes.
virtual void changingInstr(MachineInstr &MI)=0
This instruction is about to be mutated in some way.
virtual void changedInstr(MachineInstr &MI)=0
This instruction was mutated in some way.
To use KnownBitsInfo analysis in a pass, KnownBitsInfo &Info = getAnalysis<GISelKnownBitsInfoAnalysis...
Represents a G_PTR_ADD.
Represents a G_STORE.
constexpr bool isScalableVector() const
Returns true if the LLT is a scalable vector.
Definition: LowLevelType.h:182
constexpr unsigned getScalarSizeInBits() const
Definition: LowLevelType.h:267
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
Definition: LowLevelType.h:42
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
Definition: LowLevelType.h:159
constexpr bool isVector() const
Definition: LowLevelType.h:148
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
Definition: LowLevelType.h:193
constexpr ElementCount getElementCount() const
Definition: LowLevelType.h:184
constexpr LLT changeElementSize(unsigned NewEltSize) const
If this type is a vector, return a vector with the same number of elements but the new element size.
Definition: LowLevelType.h:221
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
Definition: LowLevelType.h:100
constexpr LLT changeElementCount(ElementCount EC) const
Return a vector or scalar with the same element type and the new element count.
Definition: LowLevelType.h:230
Analysis pass which computes a MachineDominatorTree.
DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to compute a normal dominat...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
bool hasProperty(Property P) const
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
const LLVMTargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineFunctionProperties & getProperties() const
Get the function properties.
Helper class to build MachineInstr.
GISelChangeObserver * getObserver()
MachineInstrBuilder buildPtrAdd(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_PTR_ADD Op0, Op1.
MachineFunction & getMF()
Getter for the function we currently build.
void setInstrAndDebugLoc(MachineInstr &MI)
Set the insertion point to before MI, and set the debug loc to MI's loc.
Representation of each machine instruction.
Definition: MachineInstr.h:69
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:579
ArrayRef< int > getShuffleMask() const
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
CodeGenOptLevel getOptLevel() const
Returns the optimization level: None, Less, Default, or Aggressive.
Target-Independent Code Generator Pass Configuration Options.
virtual const TargetLowering * getTargetLowering() const
constexpr LeafTy multiplyCoefficientBy(ScalarTy RHS) const
Definition: TypeSize.h:258
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
operand_type_match m_Reg()
SpecificConstantMatch m_SpecificICst(int64_t RequestedValue)
Matches a constant equal to RequestedValue.
operand_type_match m_Pred()
ConstantMatch< APInt > m_ICst(APInt &Cst)
BinaryOp_match< LHS, RHS, TargetOpcode::G_OR, true > m_GOr(const LHS &L, const RHS &R)
OneNonDBGUse_match< SubPat > m_OneNonDBGUse(const SubPat &SP)
CompareOp_match< Pred, LHS, RHS, TargetOpcode::G_ICMP > m_GICmp(const Pred &P, const LHS &L, const RHS &R)
bool mi_match(Reg R, const MachineRegisterInfo &MRI, Pattern &&P)
BinaryOp_match< LHS, RHS, TargetOpcode::G_PTR_ADD, false > m_GPtrAdd(const LHS &L, const RHS &R)
Or< Preds... > m_any_of(Preds &&... preds)
BinaryOp_match< LHS, RHS, TargetOpcode::G_AND, true > m_GAnd(const LHS &L, const RHS &R)
CompareOp_match< Pred, LHS, RHS, TargetOpcode::G_FCMP > m_GFCmp(const Pred &P, const LHS &L, const RHS &R)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
MachineInstr * getOpcodeDef(unsigned Opcode, Register Reg, const MachineRegisterInfo &MRI)
See if Reg is defined by an single def instruction that is Opcode.
Definition: Utils.cpp:639
void initializeAArch64PostLegalizerCombinerPass(PassRegistry &)
std::optional< APInt > isConstantOrConstantSplatVector(MachineInstr &MI, const MachineRegisterInfo &MRI)
Determines if MI defines a constant integer or a splat vector of constant integers.
Definition: Utils.cpp:1516
MachineInstr * getDefIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI)
Find the def instruction for Reg, folding away any trivial copies.
Definition: Utils.cpp:479
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
FunctionPass * createAArch64PostLegalizerCombiner(bool IsOptNone)
void getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU)
Modify analysis usage so it preserves passes required for the SelectionDAG fallback.
Definition: Utils.cpp:1161
std::optional< ValueAndVReg > getIConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_CONSTANT returns its...
Definition: Utils.cpp:426