LLVM 20.0.0git
X86MCCodeEmitter.cpp
Go to the documentation of this file.
1//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the X86MCCodeEmitter class.
10//
11//===----------------------------------------------------------------------===//
12
18#include "llvm/MC/MCContext.h"
19#include "llvm/MC/MCExpr.h"
20#include "llvm/MC/MCFixup.h"
21#include "llvm/MC/MCInst.h"
22#include "llvm/MC/MCInstrDesc.h"
23#include "llvm/MC/MCInstrInfo.h"
26#include "llvm/MC/MCSymbol.h"
29#include <cassert>
30#include <cstdint>
31#include <cstdlib>
32
33using namespace llvm;
34
35#define DEBUG_TYPE "mccodeemitter"
36
37namespace {
38
39enum PrefixKind { None, REX, REX2, XOP, VEX2, VEX3, EVEX };
40
41static void emitByte(uint8_t C, SmallVectorImpl<char> &CB) { CB.push_back(C); }
42
43class X86OpcodePrefixHelper {
44 // REX (1 byte)
45 // +-----+ +------+
46 // | 40H | | WRXB |
47 // +-----+ +------+
48
49 // REX2 (2 bytes)
50 // +-----+ +-------------------+
51 // | D5H | | M | R'X'B' | WRXB |
52 // +-----+ +-------------------+
53
54 // XOP (3-byte)
55 // +-----+ +--------------+ +-------------------+
56 // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
57 // +-----+ +--------------+ +-------------------+
58
59 // VEX2 (2 bytes)
60 // +-----+ +-------------------+
61 // | C5h | | R | vvvv | L | pp |
62 // +-----+ +-------------------+
63
64 // VEX3 (3 bytes)
65 // +-----+ +--------------+ +-------------------+
66 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
67 // +-----+ +--------------+ +-------------------+
68
69 // VEX_R: opcode externsion equivalent to REX.R in
70 // 1's complement (inverted) form
71 //
72 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
73 // 0: Same as REX_R=1 (64 bit mode only)
74
75 // VEX_X: equivalent to REX.X, only used when a
76 // register is used for index in SIB Byte.
77 //
78 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
79 // 0: Same as REX.X=1 (64-bit mode only)
80
81 // VEX_B:
82 // 1: Same as REX_B=0 (ignored in 32-bit mode)
83 // 0: Same as REX_B=1 (64 bit mode only)
84
85 // VEX_W: opcode specific (use like REX.W, or used for
86 // opcode extension, or ignored, depending on the opcode byte)
87
88 // VEX_5M (VEX m-mmmmm field):
89 //
90 // 0b00000: Reserved for future use
91 // 0b00001: implied 0F leading opcode
92 // 0b00010: implied 0F 38 leading opcode bytes
93 // 0b00011: implied 0F 3A leading opcode bytes
94 // 0b00100: Reserved for future use
95 // 0b00101: VEX MAP5
96 // 0b00110: VEX MAP6
97 // 0b00111: VEX MAP7
98 // 0b00111-0b11111: Reserved for future use
99 // 0b01000: XOP map select - 08h instructions with imm byte
100 // 0b01001: XOP map select - 09h instructions with no imm byte
101 // 0b01010: XOP map select - 0Ah instructions with imm dword
102
103 // VEX_4V (VEX vvvv field): a register specifier
104 // (in 1's complement form) or 1111 if unused.
105
106 // VEX_PP: opcode extension providing equivalent
107 // functionality of a SIMD prefix
108 // 0b00: None
109 // 0b01: 66
110 // 0b10: F3
111 // 0b11: F2
112
113 // EVEX (4 bytes)
114 // +-----+ +---------------+ +-------------------+ +------------------------+
115 // | 62h | | RXBR' | B'mmm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
116 // +-----+ +---------------+ +-------------------+ +------------------------+
117
118 // EVEX_L2/VEX_L (Vector Length):
119 // L2 L
120 // 0 0: scalar or 128-bit vector
121 // 0 1: 256-bit vector
122 // 1 0: 512-bit vector
123
124 // 32-Register Support in 64-bit Mode Using EVEX with Embedded REX/REX2 Bits:
125 //
126 // +----------+---------+--------+-----------+---------+--------------+
127 // | | 4 | 3 | [2:0] | Type | Common Usage |
128 // +----------+---------+--------+-----------+---------+--------------+
129 // | REG | EVEX_R' | EVEX_R | modrm.reg | GPR, VR | Dest or Src |
130 // | VVVV | EVEX_v' | EVEX.vvvv | GPR, VR | Dest or Src |
131 // | RM (VR) | EVEX_X | EVEX_B | modrm.r/m | VR | Dest or Src |
132 // | RM (GPR) | EVEX_B' | EVEX_B | modrm.r/m | GPR | Dest or Src |
133 // | BASE | EVEX_B' | EVEX_B | modrm.r/m | GPR | MA |
134 // | INDEX | EVEX_U | EVEX_X | sib.index | GPR | MA |
135 // | VIDX | EVEX_v' | EVEX_X | sib.index | VR | VSIB MA |
136 // +----------+---------+--------+-----------+---------+--------------+
137 //
138 // * GPR - General-purpose register
139 // * VR - Vector register
140 // * VIDX - Vector index
141 // * VSIB - Vector SIB
142 // * MA - Memory addressing
143
144private:
145 unsigned W : 1;
146 unsigned R : 1;
147 unsigned X : 1;
148 unsigned B : 1;
149 unsigned M : 1;
150 unsigned R2 : 1;
151 unsigned X2 : 1;
152 unsigned B2 : 1;
153 unsigned VEX_4V : 4;
154 unsigned VEX_L : 1;
155 unsigned VEX_PP : 2;
156 unsigned VEX_5M : 5;
157 unsigned EVEX_z : 1;
158 unsigned EVEX_L2 : 1;
159 unsigned EVEX_b : 1;
160 unsigned EVEX_V2 : 1;
161 unsigned EVEX_aaa : 3;
162 PrefixKind Kind = None;
163 const MCRegisterInfo &MRI;
164
165 unsigned getRegEncoding(const MCInst &MI, unsigned OpNum) const {
166 return MRI.getEncodingValue(MI.getOperand(OpNum).getReg());
167 }
168
169 void setR(unsigned Encoding) { R = Encoding >> 3 & 1; }
170 void setR2(unsigned Encoding) {
171 R2 = Encoding >> 4 & 1;
172 assert((!R2 || (Kind <= REX2 || Kind == EVEX)) && "invalid setting");
173 }
174 void setX(unsigned Encoding) { X = Encoding >> 3 & 1; }
175 void setX2(unsigned Encoding) {
176 assert((Kind <= REX2 || Kind == EVEX) && "invalid setting");
177 X2 = Encoding >> 4 & 1;
178 }
179 void setB(unsigned Encoding) { B = Encoding >> 3 & 1; }
180 void setB2(unsigned Encoding) {
181 assert((Kind <= REX2 || Kind == EVEX) && "invalid setting");
182 B2 = Encoding >> 4 & 1;
183 }
184 void set4V(unsigned Encoding) { VEX_4V = Encoding & 0xf; }
185 void setV2(unsigned Encoding) { EVEX_V2 = Encoding >> 4 & 1; }
186
187public:
188 void setW(bool V) { W = V; }
189 void setR(const MCInst &MI, unsigned OpNum) {
190 setR(getRegEncoding(MI, OpNum));
191 }
192 void setX(const MCInst &MI, unsigned OpNum, unsigned Shift = 3) {
193 MCRegister Reg = MI.getOperand(OpNum).getReg();
194 // X is used to extend vector register only when shift is not 3.
195 if (Shift != 3 && X86II::isApxExtendedReg(Reg))
196 return;
197 unsigned Encoding = MRI.getEncodingValue(Reg);
198 X = Encoding >> Shift & 1;
199 }
200 void setB(const MCInst &MI, unsigned OpNum) {
201 B = getRegEncoding(MI, OpNum) >> 3 & 1;
202 }
203 void set4V(const MCInst &MI, unsigned OpNum, bool IsImm = false) {
204 // OF, SF, ZF and CF reuse VEX_4V bits but are not reversed
205 if (IsImm)
206 set4V(~(MI.getOperand(OpNum).getImm()));
207 else
208 set4V(getRegEncoding(MI, OpNum));
209 }
210 void setL(bool V) { VEX_L = V; }
211 void setPP(unsigned V) { VEX_PP = V; }
212 void set5M(unsigned V) { VEX_5M = V; }
213 void setR2(const MCInst &MI, unsigned OpNum) {
214 setR2(getRegEncoding(MI, OpNum));
215 }
216 void setRR2(const MCInst &MI, unsigned OpNum) {
217 unsigned Encoding = getRegEncoding(MI, OpNum);
218 setR(Encoding);
219 setR2(Encoding);
220 }
221 void setM(bool V) { M = V; }
222 void setXX2(const MCInst &MI, unsigned OpNum) {
223 MCRegister Reg = MI.getOperand(OpNum).getReg();
224 unsigned Encoding = MRI.getEncodingValue(Reg);
225 setX(Encoding);
226 // Index can be a vector register while X2 is used to extend GPR only.
227 if (Kind <= REX2 || X86II::isApxExtendedReg(Reg))
228 setX2(Encoding);
229 }
230 void setBB2(const MCInst &MI, unsigned OpNum) {
231 MCRegister Reg = MI.getOperand(OpNum).getReg();
232 unsigned Encoding = MRI.getEncodingValue(Reg);
233 setB(Encoding);
234 // Base can be a vector register while B2 is used to extend GPR only
235 if (Kind <= REX2 || X86II::isApxExtendedReg(Reg))
236 setB2(Encoding);
237 }
238 void setZ(bool V) { EVEX_z = V; }
239 void setL2(bool V) { EVEX_L2 = V; }
240 void setEVEX_b(bool V) { EVEX_b = V; }
241 void setEVEX_U(bool V) { X2 = V; }
242 void setV2(const MCInst &MI, unsigned OpNum, bool HasVEX_4V) {
243 // Only needed with VSIB which don't use VVVV.
244 if (HasVEX_4V)
245 return;
246 MCRegister Reg = MI.getOperand(OpNum).getReg();
248 return;
249 setV2(MRI.getEncodingValue(Reg));
250 }
251 void set4VV2(const MCInst &MI, unsigned OpNum) {
252 unsigned Encoding = getRegEncoding(MI, OpNum);
253 set4V(Encoding);
254 setV2(Encoding);
255 }
256 void setAAA(const MCInst &MI, unsigned OpNum) {
257 EVEX_aaa = getRegEncoding(MI, OpNum);
258 }
259 void setNF(bool V) { EVEX_aaa |= V << 2; }
260 void setSC(const MCInst &MI, unsigned OpNum) {
261 unsigned Encoding = MI.getOperand(OpNum).getImm();
262 EVEX_V2 = ~(Encoding >> 3) & 0x1;
263 EVEX_aaa = Encoding & 0x7;
264 }
265
266 X86OpcodePrefixHelper(const MCRegisterInfo &MRI)
267 : W(0), R(0), X(0), B(0), M(0), R2(0), X2(0), B2(0), VEX_4V(0), VEX_L(0),
268 VEX_PP(0), VEX_5M(0), EVEX_z(0), EVEX_L2(0), EVEX_b(0), EVEX_V2(0),
269 EVEX_aaa(0), MRI(MRI) {}
270
271 void setLowerBound(PrefixKind K) { Kind = K; }
272
273 PrefixKind determineOptimalKind() {
274 switch (Kind) {
275 case None:
276 // Not M bit here by intention b/c
277 // 1. No guarantee that REX2 is supported by arch w/o explict EGPR
278 // 2. REX2 is longer than 0FH
279 Kind = (R2 | X2 | B2) ? REX2 : (W | R | X | B) ? REX : None;
280 break;
281 case REX:
282 Kind = (R2 | X2 | B2) ? REX2 : REX;
283 break;
284 case REX2:
285 case XOP:
286 case VEX3:
287 case EVEX:
288 break;
289 case VEX2:
290 Kind = (W | X | B | (VEX_5M != 1)) ? VEX3 : VEX2;
291 break;
292 }
293 return Kind;
294 }
295
296 void emit(SmallVectorImpl<char> &CB) const {
297 uint8_t FirstPayload =
298 ((~R) & 0x1) << 7 | ((~X) & 0x1) << 6 | ((~B) & 0x1) << 5;
299 uint8_t LastPayload = ((~VEX_4V) & 0xf) << 3 | VEX_L << 2 | VEX_PP;
300 switch (Kind) {
301 case None:
302 return;
303 case REX:
304 emitByte(0x40 | W << 3 | R << 2 | X << 1 | B, CB);
305 return;
306 case REX2:
307 emitByte(0xD5, CB);
308 emitByte(M << 7 | R2 << 6 | X2 << 5 | B2 << 4 | W << 3 | R << 2 | X << 1 |
309 B,
310 CB);
311 return;
312 case VEX2:
313 emitByte(0xC5, CB);
314 emitByte(((~R) & 1) << 7 | LastPayload, CB);
315 return;
316 case VEX3:
317 case XOP:
318 emitByte(Kind == VEX3 ? 0xC4 : 0x8F, CB);
319 emitByte(FirstPayload | VEX_5M, CB);
320 emitByte(W << 7 | LastPayload, CB);
321 return;
322 case EVEX:
323 assert(VEX_5M && !(VEX_5M & 0x8) && "invalid mmm fields for EVEX!");
324 emitByte(0x62, CB);
325 emitByte(FirstPayload | ((~R2) & 0x1) << 4 | B2 << 3 | VEX_5M, CB);
326 emitByte(W << 7 | ((~VEX_4V) & 0xf) << 3 | ((~X2) & 0x1) << 2 | VEX_PP,
327 CB);
328 emitByte(EVEX_z << 7 | EVEX_L2 << 6 | VEX_L << 5 | EVEX_b << 4 |
329 ((~EVEX_V2) & 0x1) << 3 | EVEX_aaa,
330 CB);
331 return;
332 }
333 }
334};
335
336class X86MCCodeEmitter : public MCCodeEmitter {
337 const MCInstrInfo &MCII;
338 MCContext &Ctx;
339
340public:
341 X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
342 : MCII(mcii), Ctx(ctx) {}
343 X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
344 X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete;
345 ~X86MCCodeEmitter() override = default;
346
347 void emitPrefix(const MCInst &MI, SmallVectorImpl<char> &CB,
348 const MCSubtargetInfo &STI) const;
349
352 const MCSubtargetInfo &STI) const override;
353
354private:
355 unsigned getX86RegNum(const MCOperand &MO) const;
356
357 unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const;
358
359 void emitImmediate(const MCOperand &Disp, SMLoc Loc, unsigned ImmSize,
360 MCFixupKind FixupKind, uint64_t StartByte,
362 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset = 0) const;
363
364 void emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
365 SmallVectorImpl<char> &CB) const;
366
367 void emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
368 SmallVectorImpl<char> &CB) const;
369
370 void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField,
371 uint64_t TSFlags, PrefixKind Kind, uint64_t StartByte,
374 const MCSubtargetInfo &STI,
375 bool ForceSIB = false) const;
376
377 PrefixKind emitPrefixImpl(unsigned &CurOp, const MCInst &MI,
378 const MCSubtargetInfo &STI,
379 SmallVectorImpl<char> &CB) const;
380
381 PrefixKind emitVEXOpcodePrefix(int MemOperand, const MCInst &MI,
382 const MCSubtargetInfo &STI,
383 SmallVectorImpl<char> &CB) const;
384
385 void emitSegmentOverridePrefix(unsigned SegOperand, const MCInst &MI,
386 SmallVectorImpl<char> &CB) const;
387
388 PrefixKind emitOpcodePrefix(int MemOperand, const MCInst &MI,
389 const MCSubtargetInfo &STI,
390 SmallVectorImpl<char> &CB) const;
391
392 PrefixKind emitREXPrefix(int MemOperand, const MCInst &MI,
393 const MCSubtargetInfo &STI,
394 SmallVectorImpl<char> &CB) const;
395};
396
397} // end anonymous namespace
398
399static uint8_t modRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) {
400 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
401 return RM | (RegOpcode << 3) | (Mod << 6);
402}
403
404static void emitConstant(uint64_t Val, unsigned Size,
406 // Output the constant in little endian byte order.
407 for (unsigned i = 0; i != Size; ++i) {
408 emitByte(Val & 255, CB);
409 Val >>= 8;
410 }
411}
412
413/// Determine if this immediate can fit in a disp8 or a compressed disp8 for
414/// EVEX instructions. \p will be set to the value to pass to the ImmOffset
415/// parameter of emitImmediate.
416static bool isDispOrCDisp8(uint64_t TSFlags, int Value, int &ImmOffset) {
417 bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
418
419 unsigned CD8_Scale =
421 CD8_Scale = CD8_Scale ? 1U << (CD8_Scale - 1) : 0U;
422 if (!HasEVEX || !CD8_Scale)
423 return isInt<8>(Value);
424
425 assert(isPowerOf2_32(CD8_Scale) && "Unexpected CD8 scale!");
426 if (Value & (CD8_Scale - 1)) // Unaligned offset
427 return false;
428
429 int CDisp8 = Value / static_cast<int>(CD8_Scale);
430 if (!isInt<8>(CDisp8))
431 return false;
432
433 // ImmOffset will be added to Value in emitImmediate leaving just CDisp8.
434 ImmOffset = CDisp8 - Value;
435 return true;
436}
437
438/// \returns the appropriate fixup kind to use for an immediate in an
439/// instruction with the specified TSFlags.
441 unsigned Size = X86II::getSizeOfImm(TSFlags);
442 bool isPCRel = X86II::isImmPCRel(TSFlags);
443
444 if (X86II::isImmSigned(TSFlags)) {
445 switch (Size) {
446 default:
447 llvm_unreachable("Unsupported signed fixup size!");
448 case 4:
450 }
451 }
453}
454
456
457/// Check if this expression starts with _GLOBAL_OFFSET_TABLE_ and if it is
458/// of the form _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on
459/// ELF i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
460/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start of a
461/// binary expression.
464 const MCExpr *RHS = nullptr;
465 if (Expr->getKind() == MCExpr::Binary) {
466 const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
467 Expr = BE->getLHS();
468 RHS = BE->getRHS();
469 }
470
471 if (Expr->getKind() != MCExpr::SymbolRef)
472 return GOT_None;
473
474 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
475 const MCSymbol &S = Ref->getSymbol();
476 if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
477 return GOT_None;
478 if (RHS && RHS->getKind() == MCExpr::SymbolRef)
479 return GOT_SymDiff;
480 return GOT_Normal;
481}
482
483static bool hasSecRelSymbolRef(const MCExpr *Expr) {
484 if (Expr->getKind() == MCExpr::SymbolRef) {
485 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
486 return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
487 }
488 return false;
489}
490
491static bool isPCRel32Branch(const MCInst &MI, const MCInstrInfo &MCII) {
492 unsigned Opcode = MI.getOpcode();
493 const MCInstrDesc &Desc = MCII.get(Opcode);
494 if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4 &&
495 Opcode != X86::JCC_4) ||
496 getImmFixupKind(Desc.TSFlags) != FK_PCRel_4)
497 return false;
498
499 unsigned CurOp = X86II::getOperandBias(Desc);
500 const MCOperand &Op = MI.getOperand(CurOp);
501 if (!Op.isExpr())
502 return false;
503
504 const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Op.getExpr());
505 return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None;
506}
507
508unsigned X86MCCodeEmitter::getX86RegNum(const MCOperand &MO) const {
509 return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
510}
511
512unsigned X86MCCodeEmitter::getX86RegEncoding(const MCInst &MI,
513 unsigned OpNum) const {
514 return Ctx.getRegisterInfo()->getEncodingValue(MI.getOperand(OpNum).getReg());
515}
516
517void X86MCCodeEmitter::emitImmediate(const MCOperand &DispOp, SMLoc Loc,
518 unsigned Size, MCFixupKind FixupKind,
519 uint64_t StartByte,
522 int ImmOffset) const {
523 const MCExpr *Expr = nullptr;
524 if (DispOp.isImm()) {
525 // If this is a simple integer displacement that doesn't require a
526 // relocation, emit it now.
527 if (FixupKind != FK_PCRel_1 && FixupKind != FK_PCRel_2 &&
528 FixupKind != FK_PCRel_4) {
529 emitConstant(DispOp.getImm() + ImmOffset, Size, CB);
530 return;
531 }
532 Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
533 } else {
534 Expr = DispOp.getExpr();
535 }
536
537 // If we have an immoffset, add it to the expression.
538 if ((FixupKind == FK_Data_4 || FixupKind == FK_Data_8 ||
539 FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
541 if (Kind != GOT_None) {
542 assert(ImmOffset == 0);
543
544 if (Size == 8) {
546 } else {
547 assert(Size == 4);
549 }
550
551 if (Kind == GOT_Normal)
552 ImmOffset = static_cast<int>(CB.size() - StartByte);
553 } else if (Expr->getKind() == MCExpr::SymbolRef) {
554 if (hasSecRelSymbolRef(Expr)) {
556 }
557 } else if (Expr->getKind() == MCExpr::Binary) {
558 const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr *>(Expr);
559 if (hasSecRelSymbolRef(Bin->getLHS()) ||
560 hasSecRelSymbolRef(Bin->getRHS())) {
562 }
563 }
564 }
565
566 // If the fixup is pc-relative, we need to bias the value to be relative to
567 // the start of the field, not the end of the field.
568 if (FixupKind == FK_PCRel_4 ||
569 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
577 ImmOffset -= 4;
578 // If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_:
579 // leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15
580 // this needs to be a GOTPC32 relocation.
583 }
584
585 if (FixupKind == FK_PCRel_2)
586 ImmOffset -= 2;
587 if (FixupKind == FK_PCRel_1)
588 ImmOffset -= 1;
589
590 if (ImmOffset)
591 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
592 Ctx);
593
594 // Emit a symbolic constant as a fixup and 4 zeros.
595 Fixups.push_back(MCFixup::create(static_cast<uint32_t>(CB.size() - StartByte),
596 Expr, FixupKind, Loc));
597 emitConstant(0, Size, CB);
598}
599
600void X86MCCodeEmitter::emitRegModRMByte(const MCOperand &ModRMReg,
601 unsigned RegOpcodeFld,
602 SmallVectorImpl<char> &CB) const {
603 emitByte(modRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)), CB);
604}
605
606void X86MCCodeEmitter::emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
607 SmallVectorImpl<char> &CB) const {
608 // SIB byte is in the same format as the modRMByte.
609 emitByte(modRMByte(SS, Index, Base), CB);
610}
611
612void X86MCCodeEmitter::emitMemModRMByte(
613 const MCInst &MI, unsigned Op, unsigned RegOpcodeField, uint64_t TSFlags,
614 PrefixKind Kind, uint64_t StartByte, SmallVectorImpl<char> &CB,
615 SmallVectorImpl<MCFixup> &Fixups, const MCSubtargetInfo &STI,
616 bool ForceSIB) const {
617 const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp);
618 const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
619 const MCOperand &Scale = MI.getOperand(Op + X86::AddrScaleAmt);
620 const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
621 MCRegister BaseReg = Base.getReg();
622
623 // Handle %rip relative addressing.
624 if (BaseReg == X86::RIP ||
625 BaseReg == X86::EIP) { // [disp32+rIP] in X86-64 mode
626 assert(STI.hasFeature(X86::Is64Bit) &&
627 "Rip-relative addressing requires 64-bit mode");
628 assert(!IndexReg.getReg() && !ForceSIB && "Invalid rip-relative address");
629 emitByte(modRMByte(0, RegOpcodeField, 5), CB);
630
631 unsigned Opcode = MI.getOpcode();
632 unsigned FixupKind = [&]() {
633 // Enable relaxed relocation only for a MCSymbolRefExpr. We cannot use a
634 // relaxed relocation if an offset is present (e.g. x@GOTPCREL+4).
635 if (!(Disp.isExpr() && isa<MCSymbolRefExpr>(Disp.getExpr())))
637
638 // Certain loads for GOT references can be relocated against the symbol
639 // directly if the symbol ends up in the same linkage unit.
640 switch (Opcode) {
641 default:
643 case X86::MOV64rm:
644 // movq loads is a subset of reloc_riprel_4byte_relax_rex/rex2. It is a
645 // special case because COFF and Mach-O don't support ELF's more
646 // flexible R_X86_64_REX_GOTPCRELX/R_X86_64_CODE_4_GOTPCRELX relaxation.
649 case X86::ADC32rm:
650 case X86::ADD32rm:
651 case X86::AND32rm:
652 case X86::CMP32rm:
653 case X86::MOV32rm:
654 case X86::OR32rm:
655 case X86::SBB32rm:
656 case X86::SUB32rm:
657 case X86::TEST32mr:
658 case X86::XOR32rm:
659 case X86::CALL64m:
660 case X86::JMP64m:
661 case X86::TAILJMPm64:
662 case X86::TEST64mr:
663 case X86::ADC64rm:
664 case X86::ADD64rm:
665 case X86::AND64rm:
666 case X86::CMP64rm:
667 case X86::OR64rm:
668 case X86::SBB64rm:
669 case X86::SUB64rm:
670 case X86::XOR64rm:
671 case X86::LEA64r:
675 case X86::ADD64rm_NF:
676 case X86::ADD64rm_ND:
677 case X86::ADD64mr_ND:
678 case X86::ADD64mr_NF_ND:
679 case X86::ADD64rm_NF_ND:
681 }
682 }();
683
684 // rip-relative addressing is actually relative to the *next* instruction.
685 // Since an immediate can follow the mod/rm byte for an instruction, this
686 // means that we need to bias the displacement field of the instruction with
687 // the size of the immediate field. If we have this case, add it into the
688 // expression to emit.
689 // Note: rip-relative addressing using immediate displacement values should
690 // not be adjusted, assuming it was the user's intent.
691 int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags)
692 ? X86II::getSizeOfImm(TSFlags)
693 : 0;
694
695 emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, CB,
696 Fixups, -ImmSize);
697 return;
698 }
699
700 unsigned BaseRegNo = BaseReg ? getX86RegNum(Base) : -1U;
701
702 bool IsAdSize16 = STI.hasFeature(X86::Is32Bit) &&
703 (TSFlags & X86II::AdSizeMask) == X86II::AdSize16;
704
705 // 16-bit addressing forms of the ModR/M byte have a different encoding for
706 // the R/M field and are far more limited in which registers can be used.
707 if (IsAdSize16 || X86_MC::is16BitMemOperand(MI, Op, STI)) {
708 if (BaseReg) {
709 // For 32-bit addressing, the row and column values in Table 2-2 are
710 // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
711 // some special cases. And getX86RegNum reflects that numbering.
712 // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
713 // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
714 // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
715 // while values 0-3 indicate the allowed combinations (base+index) of
716 // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
717 //
718 // R16Table[] is a lookup from the normal RegNo, to the row values from
719 // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
720 static const unsigned R16Table[] = {0, 0, 0, 7, 0, 6, 4, 5};
721 unsigned RMfield = R16Table[BaseRegNo];
722
723 assert(RMfield && "invalid 16-bit base register");
724
725 if (IndexReg.getReg()) {
726 unsigned IndexReg16 = R16Table[getX86RegNum(IndexReg)];
727
728 assert(IndexReg16 && "invalid 16-bit index register");
729 // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
730 assert(((IndexReg16 ^ RMfield) & 2) &&
731 "invalid 16-bit base/index register combination");
732 assert(Scale.getImm() == 1 &&
733 "invalid scale for 16-bit memory reference");
734
735 // Allow base/index to appear in either order (although GAS doesn't).
736 if (IndexReg16 & 2)
737 RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
738 else
739 RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
740 }
741
742 if (Disp.isImm() && isInt<8>(Disp.getImm())) {
743 if (Disp.getImm() == 0 && RMfield != 6) {
744 // There is no displacement; just the register.
745 emitByte(modRMByte(0, RegOpcodeField, RMfield), CB);
746 return;
747 }
748 // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
749 emitByte(modRMByte(1, RegOpcodeField, RMfield), CB);
750 emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, CB, Fixups);
751 return;
752 }
753 // This is the [REG]+disp16 case.
754 emitByte(modRMByte(2, RegOpcodeField, RMfield), CB);
755 } else {
756 assert(!IndexReg.getReg() && "Unexpected index register!");
757 // There is no BaseReg; this is the plain [disp16] case.
758 emitByte(modRMByte(0, RegOpcodeField, 6), CB);
759 }
760
761 // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
762 emitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, StartByte, CB, Fixups);
763 return;
764 }
765
766 // Check for presence of {disp8} or {disp32} pseudo prefixes.
767 bool UseDisp8 = MI.getFlags() & X86::IP_USE_DISP8;
768 bool UseDisp32 = MI.getFlags() & X86::IP_USE_DISP32;
769
770 // We only allow no displacement if no pseudo prefix is present.
771 bool AllowNoDisp = !UseDisp8 && !UseDisp32;
772 // Disp8 is allowed unless the {disp32} prefix is present.
773 bool AllowDisp8 = !UseDisp32;
774
775 // Determine whether a SIB byte is needed.
776 if (!ForceSIB && !X86II::needSIB(BaseReg, IndexReg.getReg(),
777 STI.hasFeature(X86::Is64Bit))) {
778 if (!BaseReg) { // [disp32] in X86-32 mode
779 emitByte(modRMByte(0, RegOpcodeField, 5), CB);
780 emitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, StartByte, CB, Fixups);
781 return;
782 }
783
784 // If the base is not EBP/ESP/R12/R13/R20/R21/R28/R29 and there is no
785 // displacement, use simple indirect register encoding, this handles
786 // addresses like [EAX]. The encoding for [EBP], [R13], [R20], [R21], [R28]
787 // or [R29] with no displacement means [disp32] so we handle it by emitting
788 // a displacement of 0 later.
789 if (BaseRegNo != N86::EBP) {
790 if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp) {
791 emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), CB);
792 return;
793 }
794
795 // If the displacement is @tlscall, treat it as a zero.
796 if (Disp.isExpr()) {
797 auto *Sym = dyn_cast<MCSymbolRefExpr>(Disp.getExpr());
798 if (Sym && Sym->getKind() == MCSymbolRefExpr::VK_TLSCALL) {
799 // This is exclusively used by call *a@tlscall(base). The relocation
800 // (R_386_TLSCALL or R_X86_64_TLSCALL) applies to the beginning.
801 Fixups.push_back(MCFixup::create(0, Sym, FK_NONE, MI.getLoc()));
802 emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), CB);
803 return;
804 }
805 }
806 }
807
808 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
809 // Including a compressed disp8 for EVEX instructions that support it.
810 // This also handles the 0 displacement for [EBP], [R13], [R21] or [R29]. We
811 // can't use disp8 if the {disp32} pseudo prefix is present.
812 if (Disp.isImm() && AllowDisp8) {
813 int ImmOffset = 0;
814 if (isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) {
815 emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), CB);
816 emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, CB, Fixups,
817 ImmOffset);
818 return;
819 }
820 }
821
822 // Otherwise, emit the most general non-SIB encoding: [REG+disp32].
823 // Displacement may be 0 for [EBP], [R13], [R21], [R29] case if {disp32}
824 // pseudo prefix prevented using disp8 above.
825 emitByte(modRMByte(2, RegOpcodeField, BaseRegNo), CB);
826 unsigned Opcode = MI.getOpcode();
827 unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax
829 emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), StartByte, CB,
830 Fixups);
831 return;
832 }
833
834 // We need a SIB byte, so start by outputting the ModR/M byte first
835 assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP &&
836 "Cannot use ESP as index reg!");
837
838 bool ForceDisp32 = false;
839 bool ForceDisp8 = false;
840 int ImmOffset = 0;
841 if (!BaseReg) {
842 // If there is no base register, we emit the special case SIB byte with
843 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
844 BaseRegNo = 5;
845 emitByte(modRMByte(0, RegOpcodeField, 4), CB);
846 ForceDisp32 = true;
847 } else if (Disp.isImm() && Disp.getImm() == 0 && AllowNoDisp &&
848 // Base reg can't be EBP/RBP/R13/R21/R29 as that would end up with
849 // '5' as the base field, but that is the magic [*] nomenclature
850 // that indicates no base when mod=0. For these cases we'll emit a
851 // 0 displacement instead.
852 BaseRegNo != N86::EBP) {
853 // Emit no displacement ModR/M byte
854 emitByte(modRMByte(0, RegOpcodeField, 4), CB);
855 } else if (Disp.isImm() && AllowDisp8 &&
856 isDispOrCDisp8(TSFlags, Disp.getImm(), ImmOffset)) {
857 // Displacement fits in a byte or matches an EVEX compressed disp8, use
858 // disp8 encoding. This also handles EBP/R13/R21/R29 base with 0
859 // displacement unless {disp32} pseudo prefix was used.
860 emitByte(modRMByte(1, RegOpcodeField, 4), CB);
861 ForceDisp8 = true;
862 } else {
863 // Otherwise, emit the normal disp32 encoding.
864 emitByte(modRMByte(2, RegOpcodeField, 4), CB);
865 ForceDisp32 = true;
866 }
867
868 // Calculate what the SS field value should be...
869 static const unsigned SSTable[] = {~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3};
870 unsigned SS = SSTable[Scale.getImm()];
871
872 unsigned IndexRegNo = IndexReg.getReg() ? getX86RegNum(IndexReg) : 4;
873
874 emitSIBByte(SS, IndexRegNo, BaseRegNo, CB);
875
876 // Do we need to output a displacement?
877 if (ForceDisp8)
878 emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, StartByte, CB, Fixups,
879 ImmOffset);
880 else if (ForceDisp32)
881 emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
882 StartByte, CB, Fixups);
883}
884
885/// Emit all instruction prefixes.
886///
887/// \returns one of the REX, XOP, VEX2, VEX3, EVEX if any of them is used,
888/// otherwise returns None.
889PrefixKind X86MCCodeEmitter::emitPrefixImpl(unsigned &CurOp, const MCInst &MI,
890 const MCSubtargetInfo &STI,
891 SmallVectorImpl<char> &CB) const {
892 uint64_t TSFlags = MCII.get(MI.getOpcode()).TSFlags;
893 // Determine where the memory operand starts, if present.
894 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
895 // Emit segment override opcode prefix as needed.
896 if (MemoryOperand != -1) {
897 MemoryOperand += CurOp;
898 emitSegmentOverridePrefix(MemoryOperand + X86::AddrSegmentReg, MI, CB);
899 }
900
901 // Emit the repeat opcode prefix as needed.
902 unsigned Flags = MI.getFlags();
903 if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT)
904 emitByte(0xF3, CB);
905 if (Flags & X86::IP_HAS_REPEAT_NE)
906 emitByte(0xF2, CB);
907
908 // Emit the address size opcode prefix as needed.
909 if (X86_MC::needsAddressSizeOverride(MI, STI, MemoryOperand, TSFlags) ||
910 Flags & X86::IP_HAS_AD_SIZE)
911 emitByte(0x67, CB);
912
913 uint64_t Form = TSFlags & X86II::FormMask;
914 switch (Form) {
915 default:
916 break;
917 case X86II::RawFrmDstSrc: {
918 // Emit segment override opcode prefix as needed (not for %ds).
919 if (MI.getOperand(2).getReg() != X86::DS)
920 emitSegmentOverridePrefix(2, MI, CB);
921 CurOp += 3; // Consume operands.
922 break;
923 }
924 case X86II::RawFrmSrc: {
925 // Emit segment override opcode prefix as needed (not for %ds).
926 if (MI.getOperand(1).getReg() != X86::DS)
927 emitSegmentOverridePrefix(1, MI, CB);
928 CurOp += 2; // Consume operands.
929 break;
930 }
931 case X86II::RawFrmDst: {
932 ++CurOp; // Consume operand.
933 break;
934 }
936 // Emit segment override opcode prefix as needed.
937 emitSegmentOverridePrefix(1, MI, CB);
938 break;
939 }
940 }
941
942 // REX prefix is optional, but if used must be immediately before the opcode
943 // Encoding type for this instruction.
944 return (TSFlags & X86II::EncodingMask)
945 ? emitVEXOpcodePrefix(MemoryOperand, MI, STI, CB)
946 : emitOpcodePrefix(MemoryOperand, MI, STI, CB);
947}
948
949// AVX instructions are encoded using an encoding scheme that combines
950// prefix bytes, opcode extension field, operand encoding fields, and vector
951// length encoding capability into a new prefix, referred to as VEX.
952
953// The majority of the AVX-512 family of instructions (operating on
954// 512/256/128-bit vector register operands) are encoded using a new prefix
955// (called EVEX).
956
957// XOP is a revised subset of what was originally intended as SSE5. It was
958// changed to be similar but not overlapping with AVX.
959
960/// Emit XOP, VEX2, VEX3 or EVEX prefix.
961/// \returns the used prefix.
962PrefixKind
963X86MCCodeEmitter::emitVEXOpcodePrefix(int MemOperand, const MCInst &MI,
964 const MCSubtargetInfo &STI,
965 SmallVectorImpl<char> &CB) const {
966 const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
967 uint64_t TSFlags = Desc.TSFlags;
968
969 assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
970
971#ifndef NDEBUG
972 unsigned NumOps = MI.getNumOperands();
973 for (unsigned I = NumOps ? X86II::getOperandBias(Desc) : 0; I != NumOps;
974 ++I) {
975 const MCOperand &MO = MI.getOperand(I);
976 if (!MO.isReg())
977 continue;
978 MCRegister Reg = MO.getReg();
979 if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
981 "Cannot encode high byte register in VEX/EVEX-prefixed instruction");
982 }
983#endif
984
985 X86OpcodePrefixHelper Prefix(*Ctx.getRegisterInfo());
986 switch (TSFlags & X86II::EncodingMask) {
987 default:
988 break;
989 case X86II::XOP:
990 Prefix.setLowerBound(XOP);
991 break;
992 case X86II::VEX:
993 // VEX can be 2 byte or 3 byte, not determined yet if not explicit
994 Prefix.setLowerBound((MI.getFlags() & X86::IP_USE_VEX3) ? VEX3 : VEX2);
995 break;
996 case X86II::EVEX:
997 Prefix.setLowerBound(EVEX);
998 break;
999 }
1000
1001 Prefix.setW(TSFlags & X86II::REX_W);
1002 Prefix.setNF(TSFlags & X86II::EVEX_NF);
1003
1004 bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1005 bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1006 bool IsND = X86II::hasNewDataDest(TSFlags); // IsND implies HasVEX_4V
1007 bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
1008
1009 switch (TSFlags & X86II::OpMapMask) {
1010 default:
1011 llvm_unreachable("Invalid prefix!");
1012 case X86II::TB:
1013 Prefix.set5M(0x1); // 0F
1014 break;
1015 case X86II::T8:
1016 Prefix.set5M(0x2); // 0F 38
1017 break;
1018 case X86II::TA:
1019 Prefix.set5M(0x3); // 0F 3A
1020 break;
1021 case X86II::XOP8:
1022 Prefix.set5M(0x8);
1023 break;
1024 case X86II::XOP9:
1025 Prefix.set5M(0x9);
1026 break;
1027 case X86II::XOPA:
1028 Prefix.set5M(0xA);
1029 break;
1030 case X86II::T_MAP4:
1031 Prefix.set5M(0x4);
1032 break;
1033 case X86II::T_MAP5:
1034 Prefix.set5M(0x5);
1035 break;
1036 case X86II::T_MAP6:
1037 Prefix.set5M(0x6);
1038 break;
1039 case X86II::T_MAP7:
1040 Prefix.set5M(0x7);
1041 break;
1042 }
1043
1044 Prefix.setL(TSFlags & X86II::VEX_L);
1045 Prefix.setL2(TSFlags & X86II::EVEX_L2);
1046 if ((TSFlags & X86II::EVEX_L2) && STI.hasFeature(X86::FeatureAVX512) &&
1047 !STI.hasFeature(X86::FeatureEVEX512))
1048 report_fatal_error("ZMM registers are not supported without EVEX512");
1049 switch (TSFlags & X86II::OpPrefixMask) {
1050 case X86II::PD:
1051 Prefix.setPP(0x1); // 66
1052 break;
1053 case X86II::XS:
1054 Prefix.setPP(0x2); // F3
1055 break;
1056 case X86II::XD:
1057 Prefix.setPP(0x3); // F2
1058 break;
1059 }
1060
1061 Prefix.setZ(HasEVEX_K && (TSFlags & X86II::EVEX_Z));
1062 Prefix.setEVEX_b(TSFlags & X86II::EVEX_B);
1063 Prefix.setEVEX_U(TSFlags & X86II::EVEX_U);
1064
1065 bool EncodeRC = false;
1066 uint8_t EVEX_rc = 0;
1067
1068 unsigned CurOp = X86II::getOperandBias(Desc);
1069 bool HasTwoConditionalOps = TSFlags & X86II::TwoConditionalOps;
1070
1071 switch (TSFlags & X86II::FormMask) {
1072 default:
1073 llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!");
1075 // src1(ModR/M), MemAddr, src2(VEX_4V)
1076 Prefix.setRR2(MI, CurOp++);
1077 Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1078 Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1079 CurOp += X86::AddrNumOperands;
1080 Prefix.set4VV2(MI, CurOp++);
1081 break;
1082 }
1083 case X86II::MRM_C0:
1084 case X86II::RawFrm:
1085 break;
1088 case X86II::MRMDestMem: {
1089 // MRMDestMem instructions forms:
1090 // MemAddr, src1(ModR/M)
1091 // MemAddr, src1(VEX_4V), src2(ModR/M)
1092 // MemAddr, src1(ModR/M), imm8
1093 //
1094 // NDD:
1095 // dst(VEX_4V), MemAddr, src1(ModR/M)
1096 Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1097 Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1098 Prefix.setV2(MI, MemOperand + X86::AddrIndexReg, HasVEX_4V);
1099
1100 if (IsND)
1101 Prefix.set4VV2(MI, CurOp++);
1102
1103 CurOp += X86::AddrNumOperands;
1104
1105 if (HasEVEX_K)
1106 Prefix.setAAA(MI, CurOp++);
1107
1108 if (!IsND && HasVEX_4V)
1109 Prefix.set4VV2(MI, CurOp++);
1110
1111 Prefix.setRR2(MI, CurOp++);
1112 if (HasTwoConditionalOps) {
1113 Prefix.set4V(MI, CurOp++, /*IsImm=*/true);
1114 Prefix.setSC(MI, CurOp++);
1115 }
1116 break;
1117 }
1118 case X86II::MRMSrcMemCC:
1120 case X86II::MRMSrcMem: {
1121 // MRMSrcMem instructions forms:
1122 // src1(ModR/M), MemAddr
1123 // src1(ModR/M), src2(VEX_4V), MemAddr
1124 // src1(ModR/M), MemAddr, imm8
1125 // src1(ModR/M), MemAddr, src2(Imm[7:4])
1126 //
1127 // FMA4:
1128 // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
1129 //
1130 // NDD:
1131 // dst(VEX_4V), src1(ModR/M), MemAddr
1132 if (IsND)
1133 Prefix.set4VV2(MI, CurOp++);
1134
1135 Prefix.setRR2(MI, CurOp++);
1136
1137 if (HasEVEX_K)
1138 Prefix.setAAA(MI, CurOp++);
1139
1140 if (!IsND && HasVEX_4V)
1141 Prefix.set4VV2(MI, CurOp++);
1142
1143 Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1144 Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1145 Prefix.setV2(MI, MemOperand + X86::AddrIndexReg, HasVEX_4V);
1146 CurOp += X86::AddrNumOperands;
1147 if (HasTwoConditionalOps) {
1148 Prefix.set4V(MI, CurOp++, /*IsImm=*/true);
1149 Prefix.setSC(MI, CurOp++);
1150 }
1151 break;
1152 }
1153 case X86II::MRMSrcMem4VOp3: {
1154 // Instruction format for 4VOp3:
1155 // src1(ModR/M), MemAddr, src3(VEX_4V)
1156 Prefix.setRR2(MI, CurOp++);
1157 Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1158 Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1159 Prefix.set4VV2(MI, CurOp + X86::AddrNumOperands);
1160 break;
1161 }
1162 case X86II::MRMSrcMemOp4: {
1163 // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
1164 Prefix.setR(MI, CurOp++);
1165 Prefix.set4V(MI, CurOp++);
1166 Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1167 Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1168 break;
1169 }
1170 case X86II::MRMXmCC:
1171 case X86II::MRM0m:
1172 case X86II::MRM1m:
1173 case X86II::MRM2m:
1174 case X86II::MRM3m:
1175 case X86II::MRM4m:
1176 case X86II::MRM5m:
1177 case X86II::MRM6m:
1178 case X86II::MRM7m: {
1179 // MRM[0-9]m instructions forms:
1180 // MemAddr
1181 // src1(VEX_4V), MemAddr
1182 if (HasVEX_4V)
1183 Prefix.set4VV2(MI, CurOp++);
1184
1185 if (HasEVEX_K)
1186 Prefix.setAAA(MI, CurOp++);
1187
1188 Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1189 Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1190 Prefix.setV2(MI, MemOperand + X86::AddrIndexReg, HasVEX_4V);
1191 CurOp += X86::AddrNumOperands + 1; // Skip first imm.
1192 if (HasTwoConditionalOps) {
1193 Prefix.set4V(MI, CurOp++, /*IsImm=*/true);
1194 Prefix.setSC(MI, CurOp++);
1195 }
1196 break;
1197 }
1198 case X86II::MRMSrcRegCC:
1199 case X86II::MRMSrcReg: {
1200 // MRMSrcReg instructions forms:
1201 // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
1202 // dst(ModR/M), src1(ModR/M)
1203 // dst(ModR/M), src1(ModR/M), imm8
1204 //
1205 // FMA4:
1206 // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
1207 //
1208 // NDD:
1209 // dst(VEX_4V), src1(ModR/M.reg), src2(ModR/M)
1210 if (IsND)
1211 Prefix.set4VV2(MI, CurOp++);
1212 Prefix.setRR2(MI, CurOp++);
1213
1214 if (HasEVEX_K)
1215 Prefix.setAAA(MI, CurOp++);
1216
1217 if (!IsND && HasVEX_4V)
1218 Prefix.set4VV2(MI, CurOp++);
1219
1220 Prefix.setBB2(MI, CurOp);
1221 Prefix.setX(MI, CurOp, 4);
1222 ++CurOp;
1223
1224 if (HasTwoConditionalOps) {
1225 Prefix.set4V(MI, CurOp++, /*IsImm=*/true);
1226 Prefix.setSC(MI, CurOp++);
1227 }
1228
1229 if (TSFlags & X86II::EVEX_B) {
1230 if (HasEVEX_RC) {
1231 unsigned NumOps = Desc.getNumOperands();
1232 unsigned RcOperand = NumOps - 1;
1233 assert(RcOperand >= CurOp);
1234 EVEX_rc = MI.getOperand(RcOperand).getImm();
1235 assert(EVEX_rc <= 3 && "Invalid rounding control!");
1236 }
1237 EncodeRC = true;
1238 }
1239 break;
1240 }
1241 case X86II::MRMSrcReg4VOp3: {
1242 // Instruction format for 4VOp3:
1243 // src1(ModR/M), src2(ModR/M), src3(VEX_4V)
1244 Prefix.setRR2(MI, CurOp++);
1245 Prefix.setBB2(MI, CurOp++);
1246 Prefix.set4VV2(MI, CurOp++);
1247 break;
1248 }
1249 case X86II::MRMSrcRegOp4: {
1250 // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
1251 Prefix.setR(MI, CurOp++);
1252 Prefix.set4V(MI, CurOp++);
1253 // Skip second register source (encoded in Imm[7:4])
1254 ++CurOp;
1255
1256 Prefix.setB(MI, CurOp);
1257 Prefix.setX(MI, CurOp, 4);
1258 ++CurOp;
1259 break;
1260 }
1262 case X86II::MRMDestReg: {
1263 // MRMDestReg instructions forms:
1264 // dst(ModR/M), src(ModR/M)
1265 // dst(ModR/M), src(ModR/M), imm8
1266 // dst(ModR/M), src1(VEX_4V), src2(ModR/M)
1267 //
1268 // NDD:
1269 // dst(VEX_4V), src1(ModR/M), src2(ModR/M)
1270 if (IsND)
1271 Prefix.set4VV2(MI, CurOp++);
1272 Prefix.setBB2(MI, CurOp);
1273 Prefix.setX(MI, CurOp, 4);
1274 ++CurOp;
1275
1276 if (HasEVEX_K)
1277 Prefix.setAAA(MI, CurOp++);
1278
1279 if (!IsND && HasVEX_4V)
1280 Prefix.set4VV2(MI, CurOp++);
1281
1282 Prefix.setRR2(MI, CurOp++);
1283 if (HasTwoConditionalOps) {
1284 Prefix.set4V(MI, CurOp++, /*IsImm=*/true);
1285 Prefix.setSC(MI, CurOp++);
1286 }
1287 if (TSFlags & X86II::EVEX_B)
1288 EncodeRC = true;
1289 break;
1290 }
1291 case X86II::MRMr0: {
1292 // MRMr0 instructions forms:
1293 // 11:rrr:000
1294 // dst(ModR/M)
1295 Prefix.setRR2(MI, CurOp++);
1296 break;
1297 }
1298 case X86II::MRMXrCC:
1299 case X86II::MRM0r:
1300 case X86II::MRM1r:
1301 case X86II::MRM2r:
1302 case X86II::MRM3r:
1303 case X86II::MRM4r:
1304 case X86II::MRM5r:
1305 case X86II::MRM6r:
1306 case X86II::MRM7r: {
1307 // MRM0r-MRM7r instructions forms:
1308 // dst(VEX_4V), src(ModR/M), imm8
1309 if (HasVEX_4V)
1310 Prefix.set4VV2(MI, CurOp++);
1311
1312 if (HasEVEX_K)
1313 Prefix.setAAA(MI, CurOp++);
1314
1315 Prefix.setBB2(MI, CurOp);
1316 Prefix.setX(MI, CurOp, 4);
1317 ++CurOp;
1318 if (HasTwoConditionalOps) {
1319 Prefix.set4V(MI, ++CurOp, /*IsImm=*/true);
1320 Prefix.setSC(MI, ++CurOp);
1321 }
1322 break;
1323 }
1324 }
1325 if (EncodeRC) {
1326 Prefix.setL(EVEX_rc & 0x1);
1327 Prefix.setL2(EVEX_rc & 0x2);
1328 }
1329 PrefixKind Kind = Prefix.determineOptimalKind();
1330 Prefix.emit(CB);
1331 return Kind;
1332}
1333
1334/// Emit REX prefix which specifies
1335/// 1) 64-bit instructions,
1336/// 2) non-default operand size, and
1337/// 3) use of X86-64 extended registers.
1338///
1339/// \returns the used prefix (REX or None).
1340PrefixKind X86MCCodeEmitter::emitREXPrefix(int MemOperand, const MCInst &MI,
1341 const MCSubtargetInfo &STI,
1342 SmallVectorImpl<char> &CB) const {
1343 if (!STI.hasFeature(X86::Is64Bit))
1344 return None;
1345 X86OpcodePrefixHelper Prefix(*Ctx.getRegisterInfo());
1346 const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
1347 uint64_t TSFlags = Desc.TSFlags;
1348 Prefix.setW(TSFlags & X86II::REX_W);
1349 unsigned NumOps = MI.getNumOperands();
1350 bool UsesHighByteReg = false;
1351#ifndef NDEBUG
1352 bool HasRegOp = false;
1353#endif
1354 unsigned CurOp = NumOps ? X86II::getOperandBias(Desc) : 0;
1355 for (unsigned i = CurOp; i != NumOps; ++i) {
1356 const MCOperand &MO = MI.getOperand(i);
1357 if (MO.isReg()) {
1358#ifndef NDEBUG
1359 HasRegOp = true;
1360#endif
1361 MCRegister Reg = MO.getReg();
1362 if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
1363 UsesHighByteReg = true;
1364 // If it accesses SPL, BPL, SIL, or DIL, then it requires a REX prefix.
1366 Prefix.setLowerBound(REX);
1367 } else if (MO.isExpr() && STI.getTargetTriple().isX32()) {
1368 // GOTTPOFF and TLSDESC relocations require a REX prefix to allow
1369 // linker optimizations: even if the instructions we see may not require
1370 // any prefix, they may be replaced by instructions that do. This is
1371 // handled as a special case here so that it also works for hand-written
1372 // assembly without the user needing to write REX, as with GNU as.
1373 const auto *Ref = dyn_cast<MCSymbolRefExpr>(MO.getExpr());
1374 if (Ref && (Ref->getKind() == MCSymbolRefExpr::VK_GOTTPOFF ||
1375 Ref->getKind() == MCSymbolRefExpr::VK_TLSDESC)) {
1376 Prefix.setLowerBound(REX);
1377 }
1378 }
1379 }
1380 if (MI.getFlags() & X86::IP_USE_REX)
1381 Prefix.setLowerBound(REX);
1383 MI.getFlags() & X86::IP_USE_REX2)
1384 Prefix.setLowerBound(REX2);
1385 switch (TSFlags & X86II::FormMask) {
1386 default:
1387 assert(!HasRegOp && "Unexpected form in emitREXPrefix!");
1388 break;
1389 case X86II::RawFrm:
1391 case X86II::RawFrmSrc:
1392 case X86II::RawFrmDst:
1394 break;
1395 case X86II::AddRegFrm:
1396 Prefix.setBB2(MI, CurOp++);
1397 break;
1398 case X86II::MRMSrcReg:
1399 case X86II::MRMSrcRegCC:
1400 Prefix.setRR2(MI, CurOp++);
1401 Prefix.setBB2(MI, CurOp++);
1402 break;
1403 case X86II::MRMSrcMem:
1404 case X86II::MRMSrcMemCC:
1405 Prefix.setRR2(MI, CurOp++);
1406 Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1407 Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1408 CurOp += X86::AddrNumOperands;
1409 break;
1410 case X86II::MRMDestReg:
1411 Prefix.setBB2(MI, CurOp++);
1412 Prefix.setRR2(MI, CurOp++);
1413 break;
1414 case X86II::MRMDestMem:
1415 Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1416 Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1417 CurOp += X86::AddrNumOperands;
1418 Prefix.setRR2(MI, CurOp++);
1419 break;
1420 case X86II::MRMXmCC:
1421 case X86II::MRMXm:
1422 case X86II::MRM0m:
1423 case X86II::MRM1m:
1424 case X86II::MRM2m:
1425 case X86II::MRM3m:
1426 case X86II::MRM4m:
1427 case X86II::MRM5m:
1428 case X86II::MRM6m:
1429 case X86II::MRM7m:
1430 Prefix.setBB2(MI, MemOperand + X86::AddrBaseReg);
1431 Prefix.setXX2(MI, MemOperand + X86::AddrIndexReg);
1432 break;
1433 case X86II::MRMXrCC:
1434 case X86II::MRMXr:
1435 case X86II::MRM0r:
1436 case X86II::MRM1r:
1437 case X86II::MRM2r:
1438 case X86II::MRM3r:
1439 case X86II::MRM4r:
1440 case X86II::MRM5r:
1441 case X86II::MRM6r:
1442 case X86II::MRM7r:
1443 Prefix.setBB2(MI, CurOp++);
1444 break;
1445 }
1446 Prefix.setM((TSFlags & X86II::OpMapMask) == X86II::TB);
1447 PrefixKind Kind = Prefix.determineOptimalKind();
1448 if (Kind && UsesHighByteReg)
1450 "Cannot encode high byte register in REX-prefixed instruction");
1451 Prefix.emit(CB);
1452 return Kind;
1453}
1454
1455/// Emit segment override opcode prefix as needed.
1456void X86MCCodeEmitter::emitSegmentOverridePrefix(
1457 unsigned SegOperand, const MCInst &MI, SmallVectorImpl<char> &CB) const {
1458 // Check for explicit segment override on memory operand.
1459 if (MCRegister Reg = MI.getOperand(SegOperand).getReg())
1460 emitByte(X86::getSegmentOverridePrefixForReg(Reg), CB);
1461}
1462
1463/// Emit all instruction prefixes prior to the opcode.
1464///
1465/// \param MemOperand the operand # of the start of a memory operand if present.
1466/// If not present, it is -1.
1467///
1468/// \returns the used prefix (REX or None).
1469PrefixKind X86MCCodeEmitter::emitOpcodePrefix(int MemOperand, const MCInst &MI,
1470 const MCSubtargetInfo &STI,
1471 SmallVectorImpl<char> &CB) const {
1472 const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
1473 uint64_t TSFlags = Desc.TSFlags;
1474
1475 // Emit the operand size opcode prefix as needed.
1476 if ((TSFlags & X86II::OpSizeMask) ==
1477 (STI.hasFeature(X86::Is16Bit) ? X86II::OpSize32 : X86II::OpSize16))
1478 emitByte(0x66, CB);
1479
1480 // Emit the LOCK opcode prefix.
1481 if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK)
1482 emitByte(0xF0, CB);
1483
1484 // Emit the NOTRACK opcode prefix.
1485 if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK)
1486 emitByte(0x3E, CB);
1487
1488 switch (TSFlags & X86II::OpPrefixMask) {
1489 case X86II::PD: // 66
1490 emitByte(0x66, CB);
1491 break;
1492 case X86II::XS: // F3
1493 emitByte(0xF3, CB);
1494 break;
1495 case X86II::XD: // F2
1496 emitByte(0xF2, CB);
1497 break;
1498 }
1499
1500 // Handle REX prefix.
1501 assert((STI.hasFeature(X86::Is64Bit) || !(TSFlags & X86II::REX_W)) &&
1502 "REX.W requires 64bit mode.");
1503 PrefixKind Kind = emitREXPrefix(MemOperand, MI, STI, CB);
1504
1505 // 0x0F escape code must be emitted just before the opcode.
1506 switch (TSFlags & X86II::OpMapMask) {
1507 case X86II::TB: // Two-byte opcode map
1508 // Encoded by M bit in REX2
1509 if (Kind == REX2)
1510 break;
1511 [[fallthrough]];
1512 case X86II::T8: // 0F 38
1513 case X86II::TA: // 0F 3A
1514 case X86II::ThreeDNow: // 0F 0F, second 0F emitted by caller.
1515 emitByte(0x0F, CB);
1516 break;
1517 }
1518
1519 switch (TSFlags & X86II::OpMapMask) {
1520 case X86II::T8: // 0F 38
1521 emitByte(0x38, CB);
1522 break;
1523 case X86II::TA: // 0F 3A
1524 emitByte(0x3A, CB);
1525 break;
1526 }
1527
1528 return Kind;
1529}
1530
1531void X86MCCodeEmitter::emitPrefix(const MCInst &MI, SmallVectorImpl<char> &CB,
1532 const MCSubtargetInfo &STI) const {
1533 unsigned Opcode = MI.getOpcode();
1534 const MCInstrDesc &Desc = MCII.get(Opcode);
1535 uint64_t TSFlags = Desc.TSFlags;
1536
1537 // Pseudo instructions don't get encoded.
1538 if (X86II::isPseudo(TSFlags))
1539 return;
1540
1541 unsigned CurOp = X86II::getOperandBias(Desc);
1542
1543 emitPrefixImpl(CurOp, MI, STI, CB);
1544}
1545
1547 SmallVectorImpl<char> &CB, const MCSubtargetInfo &STI) {
1548 static_cast<X86MCCodeEmitter &>(MCE).emitPrefix(MI, CB, STI);
1549}
1550
1551void X86MCCodeEmitter::encodeInstruction(const MCInst &MI,
1554 const MCSubtargetInfo &STI) const {
1555 unsigned Opcode = MI.getOpcode();
1556 const MCInstrDesc &Desc = MCII.get(Opcode);
1557 uint64_t TSFlags = Desc.TSFlags;
1558
1559 // Pseudo instructions don't get encoded.
1560 if (X86II::isPseudo(TSFlags))
1561 return;
1562
1563 unsigned NumOps = Desc.getNumOperands();
1564 unsigned CurOp = X86II::getOperandBias(Desc);
1565
1566 uint64_t StartByte = CB.size();
1567
1568 PrefixKind Kind = emitPrefixImpl(CurOp, MI, STI, CB);
1569
1570 // It uses the VEX.VVVV field?
1571 bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1572 bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg;
1573
1574 // It uses the EVEX.aaa field?
1575 bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1576 bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
1577
1578 // Used if a register is encoded in 7:4 of immediate.
1579 unsigned I8RegNum = 0;
1580
1581 uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1582
1583 if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
1584 BaseOpcode = 0x0F; // Weird 3DNow! encoding.
1585
1586 unsigned OpcodeOffset = 0;
1587
1588 bool IsND = X86II::hasNewDataDest(TSFlags);
1589 bool HasTwoConditionalOps = TSFlags & X86II::TwoConditionalOps;
1590
1591 uint64_t Form = TSFlags & X86II::FormMask;
1592 switch (Form) {
1593 default:
1594 errs() << "FORM: " << Form << "\n";
1595 llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1596 case X86II::Pseudo:
1597 llvm_unreachable("Pseudo instruction shouldn't be emitted");
1599 case X86II::RawFrmSrc:
1600 case X86II::RawFrmDst:
1601 case X86II::PrefixByte:
1602 emitByte(BaseOpcode, CB);
1603 break;
1604 case X86II::AddCCFrm: {
1605 // This will be added to the opcode in the fallthrough.
1606 OpcodeOffset = MI.getOperand(NumOps - 1).getImm();
1607 assert(OpcodeOffset < 16 && "Unexpected opcode offset!");
1608 --NumOps; // Drop the operand from the end.
1609 [[fallthrough]];
1610 case X86II::RawFrm:
1611 emitByte(BaseOpcode + OpcodeOffset, CB);
1612
1613 if (!STI.hasFeature(X86::Is64Bit) || !isPCRel32Branch(MI, MCII))
1614 break;
1615
1616 const MCOperand &Op = MI.getOperand(CurOp++);
1617 emitImmediate(Op, MI.getLoc(), X86II::getSizeOfImm(TSFlags),
1619 Fixups);
1620 break;
1621 }
1623 emitByte(BaseOpcode, CB);
1624 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1625 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1626 StartByte, CB, Fixups);
1627 ++CurOp; // skip segment operand
1628 break;
1629 case X86II::RawFrmImm8:
1630 emitByte(BaseOpcode, CB);
1631 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1632 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1633 StartByte, CB, Fixups);
1634 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, StartByte,
1635 CB, Fixups);
1636 break;
1637 case X86II::RawFrmImm16:
1638 emitByte(BaseOpcode, CB);
1639 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1640 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1641 StartByte, CB, Fixups);
1642 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, StartByte,
1643 CB, Fixups);
1644 break;
1645
1646 case X86II::AddRegFrm:
1647 emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++)), CB);
1648 break;
1649
1650 case X86II::MRMDestReg: {
1651 emitByte(BaseOpcode, CB);
1652 unsigned SrcRegNum = CurOp + 1;
1653
1654 if (HasEVEX_K) // Skip writemask
1655 ++SrcRegNum;
1656
1657 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1658 ++SrcRegNum;
1659 if (IsND) // Skip the NDD operand encoded in EVEX_VVVV
1660 ++CurOp;
1661
1662 emitRegModRMByte(MI.getOperand(CurOp),
1663 getX86RegNum(MI.getOperand(SrcRegNum)), CB);
1664 CurOp = SrcRegNum + 1;
1665 break;
1666 }
1667 case X86II::MRMDestRegCC: {
1668 unsigned FirstOp = CurOp++;
1669 unsigned SecondOp = CurOp++;
1670 unsigned CC = MI.getOperand(CurOp++).getImm();
1671 emitByte(BaseOpcode + CC, CB);
1672 emitRegModRMByte(MI.getOperand(FirstOp),
1673 getX86RegNum(MI.getOperand(SecondOp)), CB);
1674 break;
1675 }
1677 unsigned CC = MI.getOperand(8).getImm();
1678 emitByte(BaseOpcode + CC, CB);
1679 unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
1680 emitMemModRMByte(MI, CurOp + 1, getX86RegNum(MI.getOperand(0)), TSFlags,
1681 Kind, StartByte, CB, Fixups, STI, false);
1682 CurOp = SrcRegNum + 3; // skip reg, VEX_V4 and CC
1683 break;
1684 }
1686 case X86II::MRMDestMem: {
1687 emitByte(BaseOpcode, CB);
1688 unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
1689
1690 if (HasEVEX_K) // Skip writemask
1691 ++SrcRegNum;
1692
1693 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1694 ++SrcRegNum;
1695
1696 if (IsND) // Skip new data destination
1697 ++CurOp;
1698
1699 bool ForceSIB = (Form == X86II::MRMDestMemFSIB);
1700 emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(SrcRegNum)), TSFlags,
1701 Kind, StartByte, CB, Fixups, STI, ForceSIB);
1702 CurOp = SrcRegNum + 1;
1703 break;
1704 }
1705 case X86II::MRMDestMemCC: {
1706 unsigned MemOp = CurOp;
1707 CurOp = MemOp + X86::AddrNumOperands;
1708 unsigned RegOp = CurOp++;
1709 unsigned CC = MI.getOperand(CurOp++).getImm();
1710 emitByte(BaseOpcode + CC, CB);
1711 emitMemModRMByte(MI, MemOp, getX86RegNum(MI.getOperand(RegOp)), TSFlags,
1712 Kind, StartByte, CB, Fixups, STI);
1713 break;
1714 }
1715 case X86II::MRMSrcReg: {
1716 emitByte(BaseOpcode, CB);
1717 unsigned SrcRegNum = CurOp + 1;
1718
1719 if (HasEVEX_K) // Skip writemask
1720 ++SrcRegNum;
1721
1722 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1723 ++SrcRegNum;
1724
1725 if (IsND) // Skip new data destination
1726 ++CurOp;
1727
1728 emitRegModRMByte(MI.getOperand(SrcRegNum),
1729 getX86RegNum(MI.getOperand(CurOp)), CB);
1730 CurOp = SrcRegNum + 1;
1731 if (HasVEX_I8Reg)
1732 I8RegNum = getX86RegEncoding(MI, CurOp++);
1733 // do not count the rounding control operand
1734 if (HasEVEX_RC)
1735 --NumOps;
1736 break;
1737 }
1738 case X86II::MRMSrcReg4VOp3: {
1739 emitByte(BaseOpcode, CB);
1740 unsigned SrcRegNum = CurOp + 1;
1741
1742 emitRegModRMByte(MI.getOperand(SrcRegNum),
1743 getX86RegNum(MI.getOperand(CurOp)), CB);
1744 CurOp = SrcRegNum + 1;
1745 ++CurOp; // Encoded in VEX.VVVV
1746 break;
1747 }
1748 case X86II::MRMSrcRegOp4: {
1749 emitByte(BaseOpcode, CB);
1750 unsigned SrcRegNum = CurOp + 1;
1751
1752 // Skip 1st src (which is encoded in VEX_VVVV)
1753 ++SrcRegNum;
1754
1755 // Capture 2nd src (which is encoded in Imm[7:4])
1756 assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1757 I8RegNum = getX86RegEncoding(MI, SrcRegNum++);
1758
1759 emitRegModRMByte(MI.getOperand(SrcRegNum),
1760 getX86RegNum(MI.getOperand(CurOp)), CB);
1761 CurOp = SrcRegNum + 1;
1762 break;
1763 }
1764 case X86II::MRMSrcRegCC: {
1765 if (IsND) // Skip new data destination
1766 ++CurOp;
1767 unsigned FirstOp = CurOp++;
1768 unsigned SecondOp = CurOp++;
1769
1770 unsigned CC = MI.getOperand(CurOp++).getImm();
1771 emitByte(BaseOpcode + CC, CB);
1772
1773 emitRegModRMByte(MI.getOperand(SecondOp),
1774 getX86RegNum(MI.getOperand(FirstOp)), CB);
1775 break;
1776 }
1778 case X86II::MRMSrcMem: {
1779 unsigned FirstMemOp = CurOp + 1;
1780
1781 if (IsND) // Skip new data destination
1782 CurOp++;
1783
1784 if (HasEVEX_K) // Skip writemask
1785 ++FirstMemOp;
1786
1787 if (HasVEX_4V)
1788 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1789
1790 emitByte(BaseOpcode, CB);
1791
1792 bool ForceSIB = (Form == X86II::MRMSrcMemFSIB);
1793 emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1794 TSFlags, Kind, StartByte, CB, Fixups, STI, ForceSIB);
1795 CurOp = FirstMemOp + X86::AddrNumOperands;
1796 if (HasVEX_I8Reg)
1797 I8RegNum = getX86RegEncoding(MI, CurOp++);
1798 break;
1799 }
1800 case X86II::MRMSrcMem4VOp3: {
1801 unsigned FirstMemOp = CurOp + 1;
1802
1803 emitByte(BaseOpcode, CB);
1804
1805 emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1806 TSFlags, Kind, StartByte, CB, Fixups, STI);
1807 CurOp = FirstMemOp + X86::AddrNumOperands;
1808 ++CurOp; // Encoded in VEX.VVVV.
1809 break;
1810 }
1811 case X86II::MRMSrcMemOp4: {
1812 unsigned FirstMemOp = CurOp + 1;
1813
1814 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1815
1816 // Capture second register source (encoded in Imm[7:4])
1817 assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1818 I8RegNum = getX86RegEncoding(MI, FirstMemOp++);
1819
1820 emitByte(BaseOpcode, CB);
1821
1822 emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1823 TSFlags, Kind, StartByte, CB, Fixups, STI);
1824 CurOp = FirstMemOp + X86::AddrNumOperands;
1825 break;
1826 }
1827 case X86II::MRMSrcMemCC: {
1828 if (IsND) // Skip new data destination
1829 ++CurOp;
1830 unsigned RegOp = CurOp++;
1831 unsigned FirstMemOp = CurOp;
1832 CurOp = FirstMemOp + X86::AddrNumOperands;
1833
1834 unsigned CC = MI.getOperand(CurOp++).getImm();
1835 emitByte(BaseOpcode + CC, CB);
1836
1837 emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(RegOp)),
1838 TSFlags, Kind, StartByte, CB, Fixups, STI);
1839 break;
1840 }
1841
1842 case X86II::MRMXrCC: {
1843 unsigned RegOp = CurOp++;
1844
1845 unsigned CC = MI.getOperand(CurOp++).getImm();
1846 emitByte(BaseOpcode + CC, CB);
1847 emitRegModRMByte(MI.getOperand(RegOp), 0, CB);
1848 break;
1849 }
1850
1851 case X86II::MRMXr:
1852 case X86II::MRM0r:
1853 case X86II::MRM1r:
1854 case X86II::MRM2r:
1855 case X86II::MRM3r:
1856 case X86II::MRM4r:
1857 case X86II::MRM5r:
1858 case X86II::MRM6r:
1859 case X86II::MRM7r:
1860 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1861 ++CurOp;
1862 if (HasEVEX_K) // Skip writemask
1863 ++CurOp;
1864 emitByte(BaseOpcode, CB);
1865 emitRegModRMByte(MI.getOperand(CurOp++),
1866 (Form == X86II::MRMXr) ? 0 : Form - X86II::MRM0r, CB);
1867 break;
1868 case X86II::MRMr0:
1869 emitByte(BaseOpcode, CB);
1870 emitByte(modRMByte(3, getX86RegNum(MI.getOperand(CurOp++)), 0), CB);
1871 break;
1872
1873 case X86II::MRMXmCC: {
1874 unsigned FirstMemOp = CurOp;
1875 CurOp = FirstMemOp + X86::AddrNumOperands;
1876
1877 unsigned CC = MI.getOperand(CurOp++).getImm();
1878 emitByte(BaseOpcode + CC, CB);
1879
1880 emitMemModRMByte(MI, FirstMemOp, 0, TSFlags, Kind, StartByte, CB, Fixups,
1881 STI);
1882 break;
1883 }
1884
1885 case X86II::MRMXm:
1886 case X86II::MRM0m:
1887 case X86II::MRM1m:
1888 case X86II::MRM2m:
1889 case X86II::MRM3m:
1890 case X86II::MRM4m:
1891 case X86II::MRM5m:
1892 case X86II::MRM6m:
1893 case X86II::MRM7m:
1894 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1895 ++CurOp;
1896 if (HasEVEX_K) // Skip writemask
1897 ++CurOp;
1898 emitByte(BaseOpcode, CB);
1899 emitMemModRMByte(MI, CurOp,
1900 (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags,
1901 Kind, StartByte, CB, Fixups, STI);
1902 CurOp += X86::AddrNumOperands;
1903 break;
1904
1905 case X86II::MRM0X:
1906 case X86II::MRM1X:
1907 case X86II::MRM2X:
1908 case X86II::MRM3X:
1909 case X86II::MRM4X:
1910 case X86II::MRM5X:
1911 case X86II::MRM6X:
1912 case X86II::MRM7X:
1913 emitByte(BaseOpcode, CB);
1914 emitByte(0xC0 + ((Form - X86II::MRM0X) << 3), CB);
1915 break;
1916
1917 case X86II::MRM_C0:
1918 case X86II::MRM_C1:
1919 case X86II::MRM_C2:
1920 case X86II::MRM_C3:
1921 case X86II::MRM_C4:
1922 case X86II::MRM_C5:
1923 case X86II::MRM_C6:
1924 case X86II::MRM_C7:
1925 case X86II::MRM_C8:
1926 case X86II::MRM_C9:
1927 case X86II::MRM_CA:
1928 case X86II::MRM_CB:
1929 case X86II::MRM_CC:
1930 case X86II::MRM_CD:
1931 case X86II::MRM_CE:
1932 case X86II::MRM_CF:
1933 case X86II::MRM_D0:
1934 case X86II::MRM_D1:
1935 case X86II::MRM_D2:
1936 case X86II::MRM_D3:
1937 case X86II::MRM_D4:
1938 case X86II::MRM_D5:
1939 case X86II::MRM_D6:
1940 case X86II::MRM_D7:
1941 case X86II::MRM_D8:
1942 case X86II::MRM_D9:
1943 case X86II::MRM_DA:
1944 case X86II::MRM_DB:
1945 case X86II::MRM_DC:
1946 case X86II::MRM_DD:
1947 case X86II::MRM_DE:
1948 case X86II::MRM_DF:
1949 case X86II::MRM_E0:
1950 case X86II::MRM_E1:
1951 case X86II::MRM_E2:
1952 case X86II::MRM_E3:
1953 case X86II::MRM_E4:
1954 case X86II::MRM_E5:
1955 case X86II::MRM_E6:
1956 case X86II::MRM_E7:
1957 case X86II::MRM_E8:
1958 case X86II::MRM_E9:
1959 case X86II::MRM_EA:
1960 case X86II::MRM_EB:
1961 case X86II::MRM_EC:
1962 case X86II::MRM_ED:
1963 case X86II::MRM_EE:
1964 case X86II::MRM_EF:
1965 case X86II::MRM_F0:
1966 case X86II::MRM_F1:
1967 case X86II::MRM_F2:
1968 case X86II::MRM_F3:
1969 case X86II::MRM_F4:
1970 case X86II::MRM_F5:
1971 case X86II::MRM_F6:
1972 case X86II::MRM_F7:
1973 case X86II::MRM_F8:
1974 case X86II::MRM_F9:
1975 case X86II::MRM_FA:
1976 case X86II::MRM_FB:
1977 case X86II::MRM_FC:
1978 case X86II::MRM_FD:
1979 case X86II::MRM_FE:
1980 case X86II::MRM_FF:
1981 emitByte(BaseOpcode, CB);
1982 emitByte(0xC0 + Form - X86II::MRM_C0, CB);
1983 break;
1984 }
1985
1986 if (HasVEX_I8Reg) {
1987 // The last source register of a 4 operand instruction in AVX is encoded
1988 // in bits[7:4] of a immediate byte.
1989 assert(I8RegNum < 16 && "Register encoding out of range");
1990 I8RegNum <<= 4;
1991 if (CurOp != NumOps) {
1992 unsigned Val = MI.getOperand(CurOp++).getImm();
1993 assert(Val < 16 && "Immediate operand value out of range");
1994 I8RegNum |= Val;
1995 }
1996 emitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1,
1997 StartByte, CB, Fixups);
1998 } else {
1999 // If there is a remaining operand, it must be a trailing immediate. Emit it
2000 // according to the right size for the instruction. Some instructions
2001 // (SSE4a extrq and insertq) have two trailing immediates.
2002
2003 // Skip two trainling conditional operands encoded in EVEX prefix
2004 unsigned RemaningOps = NumOps - CurOp - 2 * HasTwoConditionalOps;
2005 while (RemaningOps) {
2006 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
2007 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
2008 StartByte, CB, Fixups);
2009 --RemaningOps;
2010 }
2011 CurOp += 2 * HasTwoConditionalOps;
2012 }
2013
2014 if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
2015 emitByte(X86II::getBaseOpcodeFor(TSFlags), CB);
2016
2017 if (CB.size() - StartByte > 15)
2018 Ctx.reportError(MI.getLoc(), "instruction length exceeds the limit of 15");
2019#ifndef NDEBUG
2020 // FIXME: Verify.
2021 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
2022 errs() << "Cannot encode all operands of: ";
2023 MI.dump();
2024 errs() << '\n';
2025 abort();
2026 }
2027#endif
2028}
2029
2031 MCContext &Ctx) {
2032 return new X86MCCodeEmitter(MCII, Ctx);
2033}
unsigned const MachineRegisterInfo * MRI
uint64_t Size
Symbol * Sym
Definition: ELF_riscv.cpp:479
static bool isPCRel(unsigned Kind)
IRTranslator LLVM IR MI
#define I(x, y, z)
Definition: MD5.cpp:58
#define R2(n)
if(auto Err=PB.parsePassPipeline(MPM, Passes)) return wrap(std MPM run * Mod
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
static MCFixupKind getImmFixupKind(uint64_t TSFlags)
static bool isPCRel32Branch(const MCInst &MI, const MCInstrInfo &MCII)
static GlobalOffsetTableExprKind startsWithGlobalOffsetTable(const MCExpr *Expr)
Check if this expression starts with GLOBAL_OFFSET_TABLE and if it is of the form GLOBAL_OFFSET_TABLE...
static uint8_t modRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM)
static bool isDispOrCDisp8(uint64_t TSFlags, int Value, int &ImmOffset)
Determine if this immediate can fit in a disp8 or a compressed disp8 for EVEX instructions.
GlobalOffsetTableExprKind
@ GOT_Normal
@ GOT_None
@ GOT_SymDiff
static void emitConstant(uint64_t Val, unsigned Size, SmallVectorImpl< char > &CB)
static bool hasSecRelSymbolRef(const MCExpr *Expr)
Value * RHS
This class represents an Operation in the Expression.
Binary assembler expressions.
Definition: MCExpr.h:493
const MCExpr * getLHS() const
Get the left-hand side expression of the binary operator.
Definition: MCExpr.h:640
const MCExpr * getRHS() const
Get the right-hand side expression of the binary operator.
Definition: MCExpr.h:643
static const MCBinaryExpr * createAdd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition: MCExpr.h:537
MCCodeEmitter - Generic instruction encoding interface.
Definition: MCCodeEmitter.h:21
virtual void encodeInstruction(const MCInst &Inst, SmallVectorImpl< char > &CB, SmallVectorImpl< MCFixup > &Fixups, const MCSubtargetInfo &STI) const =0
Encode the given Inst to bytes and append to CB.
MCCodeEmitter & operator=(const MCCodeEmitter &)=delete
static const MCConstantExpr * create(int64_t Value, MCContext &Ctx, bool PrintInHex=false, unsigned SizeInBytes=0)
Definition: MCExpr.cpp:222
Context object for machine code objects.
Definition: MCContext.h:83
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:34
@ SymbolRef
References to labels and assigned expressions.
Definition: MCExpr.h:39
@ Binary
Binary expressions.
Definition: MCExpr.h:37
ExprKind getKind() const
Definition: MCExpr.h:78
static MCFixupKind getKindForSize(unsigned Size, bool IsPCRel)
Return the generic fixup kind for a value with the given size.
Definition: MCFixup.h:109
static MCFixup create(uint32_t Offset, const MCExpr *Value, MCFixupKind Kind, SMLoc Loc=SMLoc())
Definition: MCFixup.h:87
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:185
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
Interface to description of machine instruction set.
Definition: MCInstrInfo.h:26
const MCInstrDesc & get(unsigned Opcode) const
Return the machine instruction descriptor that corresponds to the specified instruction opcode.
Definition: MCInstrInfo.h:63
Instances of this class represent operands of the MCInst class.
Definition: MCInst.h:37
int64_t getImm() const
Definition: MCInst.h:81
static MCOperand createImm(int64_t Val)
Definition: MCInst.h:142
bool isImm() const
Definition: MCInst.h:63
bool isReg() const
Definition: MCInst.h:62
MCRegister getReg() const
Returns the register number.
Definition: MCInst.h:70
const MCExpr * getExpr() const
Definition: MCInst.h:115
bool isExpr() const
Definition: MCInst.h:66
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
Generic base class for all target subtargets.
bool hasFeature(unsigned Feature) const
const Triple & getTargetTriple() const
Represent a reference to a symbol from inside an expression.
Definition: MCExpr.h:192
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
StringRef getName() const
getName - Get the symbol name.
Definition: MCSymbol.h:205
void dump() const
Definition: Pass.cpp:136
Represents a location in source code.
Definition: SMLoc.h:23
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void push_back(const T &Elt)
Definition: SmallVector.h:413
bool isX32() const
Tests whether the target is X32.
Definition: Triple.h:1060
LLVM Value Representation.
Definition: Value.h:74
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ SS
Definition: X86.h:212
Reg
All possible values of the reg field in the ModR/M byte.
@ MRM0X
MRM0X-MRM7X - Instructions that operate that have mod=11 and an opcode but ignore r/m.
Definition: X86BaseInfo.h:618
@ RawFrm
Raw - This form is for instructions that don't have any operands, so they are just a fixed opcode val...
Definition: X86BaseInfo.h:502
@ RawFrmDstSrc
RawFrmDstSrc - This form is for instructions that use the source index register SI/ESI/RSI with a pos...
Definition: X86BaseInfo.h:518
@ EVEX
EVEX - Specifies that this instruction use EVEX form which provides syntax support up to 32 512-bit r...
Definition: X86BaseInfo.h:825
@ ExplicitREX2Prefix
For instructions that require REX2 prefix even if EGPR is not used.
Definition: X86BaseInfo.h:863
@ MRMSrcMemCC
MRMSrcMemCC - This form is used for instructions that use the Mod/RM byte to specify the operands and...
Definition: X86BaseInfo.h:566
@ MRM_C0
MRM_XX (XX: C0-FF)- A mod/rm byte of exactly 0xXX.
Definition: X86BaseInfo.h:627
@ RawFrmDst
RawFrmDst - This form is for instructions that use the destination index register DI/EDI/RDI.
Definition: X86BaseInfo.h:514
@ MRMDestMem4VOp3CC
MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM byte to specify a destinat...
Definition: X86BaseInfo.h:545
@ AddCCFrm
AddCCFrm - This form is used for Jcc that encode the condition code in the lower 4 bits of the opcode...
Definition: X86BaseInfo.h:530
@ T_MAP4
MAP4, MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix.
Definition: X86BaseInfo.h:753
@ PrefixByte
PrefixByte - This form is used for instructions that represent a prefix byte like data16 or rep.
Definition: X86BaseInfo.h:533
@ MRMr0
Instructions operate on a register Reg/Opcode operand not the r/m field.
Definition: X86BaseInfo.h:547
@ MRMXm
MRMXm - This form is used for instructions that use the Mod/RM byte to specify a memory source,...
Definition: X86BaseInfo.h:573
@ MRM0r
MRM0r-MRM7r - Instructions that operate on a register r/m operand and use reg field to hold extended ...
Definition: X86BaseInfo.h:608
@ MRMDestMemFSIB
MRMDestMem - But force to use the SIB field.
Definition: X86BaseInfo.h:551
@ AddRegFrm
AddRegFrm - This form is used for instructions like 'push r32' that have their one register operand a...
Definition: X86BaseInfo.h:505
@ VEX
VEX - encoding using 0xC4/0xC5.
Definition: X86BaseInfo.h:818
@ RawFrmImm8
RawFrmImm8 - This is used for the ENTER instruction, which has two immediates, the first of which is ...
Definition: X86BaseInfo.h:522
@ TB
TB - TwoByte - Set if this instruction has a two byte opcode, which starts with a 0x0F byte before th...
Definition: X86BaseInfo.h:735
@ XOP
XOP - Opcode prefix used by XOP instructions.
Definition: X86BaseInfo.h:820
@ MRMXr
MRMXr - This form is used for instructions that use the Mod/RM byte to specify a register source,...
Definition: X86BaseInfo.h:605
@ MRMSrcMem4VOp3
MRMSrcMem4VOp3 - This form is used for instructions that encode operand 3 with VEX....
Definition: X86BaseInfo.h:560
@ XOP8
XOP8 - Prefix to include use of imm byte.
Definition: X86BaseInfo.h:740
@ MRMDestRegCC
MRMDestRegCC - This form is used for the cfcmov instructions, which use the Mod/RM byte to specify th...
Definition: X86BaseInfo.h:537
@ PD
PD - Prefix code for packed double precision vector floating point operations performed in the SSE re...
Definition: X86BaseInfo.h:721
@ MRMDestMem
MRMDestMem - This form is used for instructions that use the Mod/RM byte to specify a destination,...
Definition: X86BaseInfo.h:554
@ MRMSrcMemFSIB
MRMSrcMem - But force to use the SIB field.
Definition: X86BaseInfo.h:549
@ MRMSrcRegOp4
MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM byte to specify the fourth sour...
Definition: X86BaseInfo.h:595
@ MRMXrCC
MRMXCCr - This form is used for instructions that use the Mod/RM byte to specify a register source,...
Definition: X86BaseInfo.h:602
@ T8
T8, TA - Prefix after the 0x0F prefix.
Definition: X86BaseInfo.h:737
@ MRMDestMemCC
MRMDestMemCC - This form is used for the cfcmov instructions, which use the Mod/RM byte to specify th...
Definition: X86BaseInfo.h:541
@ XOP9
XOP9 - Prefix to exclude use of imm byte.
Definition: X86BaseInfo.h:742
@ MRMXmCC
MRMXm - This form is used for instructions that use the Mod/RM byte to specify a memory source,...
Definition: X86BaseInfo.h:570
@ RawFrmImm16
RawFrmImm16 - This is used for CALL FAR instructions, which have two immediates, the first of which i...
Definition: X86BaseInfo.h:527
@ MRMSrcReg
MRMSrcReg - This form is used for instructions that use the Mod/RM byte to specify a source,...
Definition: X86BaseInfo.h:589
@ RawFrmSrc
RawFrmSrc - This form is for instructions that use the source index register SI/ESI/RSI with a possib...
Definition: X86BaseInfo.h:511
@ MRMDestReg
MRMDestReg - This form is used for instructions that use the Mod/RM byte to specify a destination,...
Definition: X86BaseInfo.h:586
@ MRMSrcMem
MRMSrcMem - This form is used for instructions that use the Mod/RM byte to specify a source,...
Definition: X86BaseInfo.h:557
@ MRMSrcMemOp4
MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM byte to specify the fourth sour...
Definition: X86BaseInfo.h:563
@ Pseudo
PseudoFrm - This represents an instruction that is a pseudo instruction or one that has not been impl...
Definition: X86BaseInfo.h:499
@ CD8_Scale_Shift
The scaling factor for the AVX512's 8-bit compressed displacement.
Definition: X86BaseInfo.h:852
@ MRMSrcRegCC
MRMSrcRegCC - This form is used for instructions that use the Mod/RM byte to specify the operands and...
Definition: X86BaseInfo.h:598
@ MRM0m
MRM0m-MRM7m - Instructions that operate on a memory r/m operand and use reg field to hold extended op...
Definition: X86BaseInfo.h:576
@ ThreeDNow
ThreeDNow - This indicates that the instruction uses the wacky 0x0F 0x0F prefix for 3DNow!...
Definition: X86BaseInfo.h:751
@ XS
XS, XD - These prefix codes are for single and double precision scalar floating point operations perf...
Definition: X86BaseInfo.h:724
@ ExplicitOpPrefixMask
Definition: X86BaseInfo.h:869
@ XOPA
XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
Definition: X86BaseInfo.h:744
@ MRMSrcReg4VOp3
MRMSrcReg4VOp3 - This form is used for instructions that encode operand 3 with VEX....
Definition: X86BaseInfo.h:592
@ RawFrmMemOffs
RawFrmMemOffs - This form is for instructions that store an absolute memory offset as an immediate wi...
Definition: X86BaseInfo.h:508
bool hasImm(uint64_t TSFlags)
Definition: X86BaseInfo.h:897
bool hasNewDataDest(uint64_t TSFlags)
Definition: X86BaseInfo.h:1001
bool isX86_64NonExtLowByteReg(MCRegister Reg)
Definition: X86BaseInfo.h:1308
bool isPseudo(uint64_t TSFlags)
Definition: X86BaseInfo.h:887
bool isImmPCRel(uint64_t TSFlags)
Definition: X86BaseInfo.h:923
unsigned getSizeOfImm(uint64_t TSFlags)
Decode the "size of immediate" field from the TSFlags field of the specified instruction.
Definition: X86BaseInfo.h:901
bool needSIB(MCRegister BaseReg, MCRegister IndexReg, bool In64BitMode)
Definition: X86BaseInfo.h:1324
uint8_t getBaseOpcodeFor(uint64_t TSFlags)
Definition: X86BaseInfo.h:893
int getMemoryOperandNo(uint64_t TSFlags)
Definition: X86BaseInfo.h:1011
bool isApxExtendedReg(MCRegister Reg)
Definition: X86BaseInfo.h:1186
unsigned getOperandBias(const MCInstrDesc &Desc)
Compute whether all of the def operands are repeated in the uses and therefore should be skipped.
Definition: X86BaseInfo.h:968
bool isImmSigned(uint64_t TSFlags)
Definition: X86BaseInfo.h:943
bool is16BitMemOperand(const MCInst &MI, unsigned Op, const MCSubtargetInfo &STI)
bool needsAddressSizeOverride(const MCInst &MI, const MCSubtargetInfo &STI, int MemoryOperand, uint64_t TSFlags)
Returns true if this instruction needs an Address-Size override prefix.
void emitPrefix(MCCodeEmitter &MCE, const MCInst &MI, SmallVectorImpl< char > &CB, const MCSubtargetInfo &STI)
@ AddrScaleAmt
Definition: X86BaseInfo.h:30
@ AddrSegmentReg
Definition: X86BaseInfo.h:34
@ AddrIndexReg
Definition: X86BaseInfo.h:31
@ AddrNumOperands
Definition: X86BaseInfo.h:36
EncodingOfSegmentOverridePrefix getSegmentOverridePrefixForReg(MCRegister Reg)
Given a segment register, return the encoding of the segment override prefix for it.
Definition: X86BaseInfo.h:332
@ IP_HAS_NOTRACK
Definition: X86BaseInfo.h:58
@ IP_USE_DISP8
Definition: X86BaseInfo.h:65
@ IP_HAS_AD_SIZE
Definition: X86BaseInfo.h:54
@ IP_HAS_REPEAT
Definition: X86BaseInfo.h:56
@ IP_USE_DISP32
Definition: X86BaseInfo.h:66
@ IP_HAS_REPEAT_NE
Definition: X86BaseInfo.h:55
@ reloc_global_offset_table8
Definition: X86FixupKinds.h:38
@ reloc_riprel_4byte_movq_load_rex2
Definition: X86FixupKinds.h:19
@ reloc_signed_4byte_relax
Definition: X86FixupKinds.h:33
@ reloc_branch_4byte_pcrel
Definition: X86FixupKinds.h:39
@ reloc_riprel_4byte_relax
Definition: X86FixupKinds.h:21
@ reloc_riprel_4byte_relax_evex
Definition: X86FixupKinds.h:27
@ reloc_signed_4byte
Definition: X86FixupKinds.h:30
@ reloc_riprel_4byte_relax_rex
Definition: X86FixupKinds.h:23
@ reloc_global_offset_table
Definition: X86FixupKinds.h:35
@ reloc_riprel_4byte_movq_load
Definition: X86FixupKinds.h:18
@ reloc_riprel_4byte
Definition: X86FixupKinds.h:17
@ reloc_riprel_4byte_relax_rex2
Definition: X86FixupKinds.h:25
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
MCCodeEmitter * createX86MCCodeEmitter(const MCInstrInfo &MCII, MCContext &Ctx)
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:291
@ None
Definition: CodeGenData.h:106
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
MCFixupKind
Extensible enumeration to represent the type of a fixup.
Definition: MCFixup.h:21
@ FK_PCRel_4
A four-byte pc relative fixup.
Definition: MCFixup.h:30
@ FK_PCRel_2
A two-byte pc relative fixup.
Definition: MCFixup.h:29
@ FK_Data_8
A eight-byte fixup.
Definition: MCFixup.h:26
@ FK_Data_1
A one-byte fixup.
Definition: MCFixup.h:23
@ FK_Data_4
A four-byte fixup.
Definition: MCFixup.h:25
@ FK_NONE
A no-op fixup.
Definition: MCFixup.h:22
@ FK_SecRel_4
A four-byte section relative fixup.
Definition: MCFixup.h:42
@ FK_PCRel_1
A one-byte pc relative fixup.
Definition: MCFixup.h:28
@ FK_Data_2
A two-byte fixup.
Definition: MCFixup.h:24
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Ref
The access may reference the value stored in memory.
Description of the encoding of one expression Op.