LLVM 23.0.0git
X86FixupVectorConstants.cpp
Go to the documentation of this file.
1//===-- X86FixupVectorConstants.cpp - optimize constant generation -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file examines all full size vector constant pool loads and attempts to
10// replace them with smaller constant pool entries, including:
11// * Converting AVX512 memory-fold instructions to their broadcast-fold form.
12// * Using vzload scalar loads.
13// * Broadcasting of full width loads.
14// * Sign/Zero extension of full width loads.
15//
16//===----------------------------------------------------------------------===//
17
18#include "X86.h"
19#include "X86InstrFoldTables.h"
20#include "X86InstrInfo.h"
21#include "X86Subtarget.h"
22#include "llvm/ADT/Statistic.h"
24
25using namespace llvm;
26
27#define DEBUG_TYPE "x86-fixup-vector-constants"
28
29STATISTIC(NumInstChanges, "Number of instructions changes");
30
31namespace {
32class X86FixupVectorConstantsImpl {
33public:
34 bool runOnMachineFunction(MachineFunction &MF);
35
36private:
37 bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB,
39
40 const X86InstrInfo *TII = nullptr;
41 const X86Subtarget *ST = nullptr;
42 const MCSchedModel *SM = nullptr;
43};
44
45class X86FixupVectorConstantsLegacy : public MachineFunctionPass {
46public:
47 static char ID;
48
49 X86FixupVectorConstantsLegacy() : MachineFunctionPass(ID) {}
50
51 StringRef getPassName() const override {
52 return "X86 Fixup Vector Constants";
53 }
54
55 bool runOnMachineFunction(MachineFunction &MF) override;
56
57 // This pass runs after regalloc and doesn't support VReg operands.
58 MachineFunctionProperties getRequiredProperties() const override {
59 return MachineFunctionProperties().setNoVRegs();
60 }
61};
62} // end anonymous namespace
63
64char X86FixupVectorConstantsLegacy::ID = 0;
65
66INITIALIZE_PASS(X86FixupVectorConstantsLegacy, DEBUG_TYPE, DEBUG_TYPE, false,
67 false)
68
70 return new X86FixupVectorConstantsLegacy();
71}
72
73/// Normally, we only allow poison in vector splats. However, as this is part
74/// of the backend, and working with the DAG representation, which currently
75/// only natively represents undef values, we need to accept undefs here.
77 Constant *Res = nullptr;
78 for (Value *Op : C->operands()) {
80 if (isa<UndefValue>(OpC))
81 continue;
82 if (!Res)
83 Res = OpC;
84 else if (Res != OpC)
85 return nullptr;
86 }
87 return Res;
88}
89
90// Attempt to extract the full width of bits data from the constant.
91static std::optional<APInt> extractConstantBits(const Constant *C) {
92 unsigned NumBits = C->getType()->getPrimitiveSizeInBits();
93
94 if (isa<UndefValue>(C))
95 return APInt::getZero(NumBits);
96
97 if (auto *CInt = dyn_cast<ConstantInt>(C)) {
98 if (isa<VectorType>(CInt->getType()))
99 return APInt::getSplat(NumBits, CInt->getValue());
100
101 return CInt->getValue();
102 }
103
104 if (auto *CFP = dyn_cast<ConstantFP>(C)) {
105 if (isa<VectorType>(CFP->getType()))
106 return APInt::getSplat(NumBits, CFP->getValue().bitcastToAPInt());
107
108 return CFP->getValue().bitcastToAPInt();
109 }
110
111 if (auto *CV = dyn_cast<ConstantVector>(C)) {
112 if (auto *CVSplat = getSplatValueAllowUndef(CV)) {
113 if (std::optional<APInt> Bits = extractConstantBits(CVSplat)) {
114 assert((NumBits % Bits->getBitWidth()) == 0 && "Illegal splat");
115 return APInt::getSplat(NumBits, *Bits);
116 }
117 }
118
119 APInt Bits = APInt::getZero(NumBits);
120 for (unsigned I = 0, E = CV->getNumOperands(); I != E; ++I) {
121 Constant *Elt = CV->getOperand(I);
122 std::optional<APInt> SubBits = extractConstantBits(Elt);
123 if (!SubBits)
124 return std::nullopt;
125 assert(NumBits == (E * SubBits->getBitWidth()) &&
126 "Illegal vector element size");
127 Bits.insertBits(*SubBits, I * SubBits->getBitWidth());
128 }
129 return Bits;
130 }
131
132 if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
133 bool IsInteger = CDS->getElementType()->isIntegerTy();
134 bool IsFloat = CDS->getElementType()->isHalfTy() ||
135 CDS->getElementType()->isBFloatTy() ||
136 CDS->getElementType()->isFloatTy() ||
137 CDS->getElementType()->isDoubleTy();
138 if (IsInteger || IsFloat) {
139 APInt Bits = APInt::getZero(NumBits);
140 unsigned EltBits = CDS->getElementType()->getPrimitiveSizeInBits();
141 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
142 if (IsInteger)
143 Bits.insertBits(CDS->getElementAsAPInt(I), I * EltBits);
144 else
145 Bits.insertBits(CDS->getElementAsAPFloat(I).bitcastToAPInt(),
146 I * EltBits);
147 }
148 return Bits;
149 }
150 }
151
152 return std::nullopt;
153}
154
155static std::optional<APInt> extractConstantBits(const Constant *C,
156 unsigned NumBits) {
157 if (std::optional<APInt> Bits = extractConstantBits(C))
158 return Bits->zextOrTrunc(NumBits);
159 return std::nullopt;
160}
161
162// Attempt to compute the splat width of bits data by normalizing the splat to
163// remove undefs.
164static std::optional<APInt> getSplatableConstant(const Constant *C,
165 unsigned SplatBitWidth) {
166 const Type *Ty = C->getType();
167 assert((Ty->getPrimitiveSizeInBits() % SplatBitWidth) == 0 &&
168 "Illegal splat width");
169
170 if (std::optional<APInt> Bits = extractConstantBits(C))
171 if (Bits->isSplat(SplatBitWidth))
172 return Bits->trunc(SplatBitWidth);
173
174 // Detect general splats with undefs.
175 // TODO: Do we need to handle NumEltsBits > SplatBitWidth splitting?
176 if (auto *CV = dyn_cast<ConstantVector>(C)) {
177 unsigned NumOps = CV->getNumOperands();
178 unsigned NumEltsBits = Ty->getScalarSizeInBits();
179 unsigned NumScaleOps = SplatBitWidth / NumEltsBits;
180 if ((SplatBitWidth % NumEltsBits) == 0) {
181 // Collect the elements and ensure that within the repeated splat sequence
182 // they either match or are undef.
183 SmallVector<Constant *, 16> Sequence(NumScaleOps, nullptr);
184 for (unsigned Idx = 0; Idx != NumOps; ++Idx) {
185 if (Constant *Elt = CV->getAggregateElement(Idx)) {
186 if (isa<UndefValue>(Elt))
187 continue;
188 unsigned SplatIdx = Idx % NumScaleOps;
189 if (!Sequence[SplatIdx] || Sequence[SplatIdx] == Elt) {
190 Sequence[SplatIdx] = Elt;
191 continue;
192 }
193 }
194 return std::nullopt;
195 }
196 // Extract the constant bits forming the splat and insert into the bits
197 // data, leave undef as zero.
198 APInt SplatBits = APInt::getZero(SplatBitWidth);
199 for (unsigned I = 0; I != NumScaleOps; ++I) {
200 if (!Sequence[I])
201 continue;
202 if (std::optional<APInt> Bits = extractConstantBits(Sequence[I])) {
203 SplatBits.insertBits(*Bits, I * Bits->getBitWidth());
204 continue;
205 }
206 return std::nullopt;
207 }
208 return SplatBits;
209 }
210 }
211
212 return std::nullopt;
213}
214
215// Split raw bits into a constant vector of elements of a specific bit width.
216// NOTE: We don't always bother converting to scalars if the vector length is 1.
218 const APInt &Bits, unsigned NumSclBits) {
219 unsigned BitWidth = Bits.getBitWidth();
220
221 if (NumSclBits == 8) {
222 SmallVector<uint8_t> RawBits;
223 for (unsigned I = 0; I != BitWidth; I += 8)
224 RawBits.push_back(Bits.extractBits(8, I).getZExtValue());
225 return ConstantDataVector::get(Ctx, RawBits);
226 }
227
228 if (NumSclBits == 16) {
229 SmallVector<uint16_t> RawBits;
230 for (unsigned I = 0; I != BitWidth; I += 16)
231 RawBits.push_back(Bits.extractBits(16, I).getZExtValue());
232 if (SclTy->is16bitFPTy())
233 return ConstantDataVector::getFP(SclTy, RawBits);
234 return ConstantDataVector::get(Ctx, RawBits);
235 }
236
237 if (NumSclBits == 32) {
238 SmallVector<uint32_t> RawBits;
239 for (unsigned I = 0; I != BitWidth; I += 32)
240 RawBits.push_back(Bits.extractBits(32, I).getZExtValue());
241 if (SclTy->isFloatTy())
242 return ConstantDataVector::getFP(SclTy, RawBits);
243 return ConstantDataVector::get(Ctx, RawBits);
244 }
245
246 assert(NumSclBits == 64 && "Unhandled vector element width");
247
248 SmallVector<uint64_t> RawBits;
249 for (unsigned I = 0; I != BitWidth; I += 64)
250 RawBits.push_back(Bits.extractBits(64, I).getZExtValue());
251 if (SclTy->isDoubleTy())
252 return ConstantDataVector::getFP(SclTy, RawBits);
253 return ConstantDataVector::get(Ctx, RawBits);
254}
255
256// Attempt to rebuild a normalized splat vector constant of the requested splat
257// width, built up of potentially smaller scalar values.
258static Constant *rebuildSplatCst(const Constant *C, unsigned /*NumBits*/,
259 unsigned /*NumElts*/, unsigned SplatBitWidth) {
260 // TODO: Truncate to NumBits once ConvertToBroadcastAVX512 support this.
261 std::optional<APInt> Splat = getSplatableConstant(C, SplatBitWidth);
262 if (!Splat)
263 return nullptr;
264
265 // Determine scalar size to use for the constant splat vector, clamping as we
266 // might have found a splat smaller than the original constant data.
267 Type *SclTy = C->getType()->getScalarType();
268 unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();
269 NumSclBits = std::min<unsigned>(NumSclBits, SplatBitWidth);
270
271 // Fallback to i64 / double.
272 NumSclBits = (NumSclBits == 8 || NumSclBits == 16 || NumSclBits == 32)
273 ? NumSclBits
274 : 64;
275
276 // Extract per-element bits.
277 return rebuildConstant(C->getContext(), SclTy, *Splat, NumSclBits);
278}
279
280static Constant *rebuildZeroUpperCst(const Constant *C, unsigned NumBits,
281 unsigned /*NumElts*/,
282 unsigned ScalarBitWidth) {
283 Type *SclTy = C->getType()->getScalarType();
284 unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();
285 LLVMContext &Ctx = C->getContext();
286
287 if (NumBits > ScalarBitWidth) {
288 // Determine if the upper bits are all zero.
289 if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) {
290 if (Bits->countLeadingZeros() >= (NumBits - ScalarBitWidth)) {
291 // If the original constant was made of smaller elements, try to retain
292 // those types.
293 if (ScalarBitWidth > NumSclBits && (ScalarBitWidth % NumSclBits) == 0)
294 return rebuildConstant(Ctx, SclTy, *Bits, NumSclBits);
295
296 // Fallback to raw integer bits.
297 APInt RawBits = Bits->zextOrTrunc(ScalarBitWidth);
298 return ConstantInt::get(Ctx, RawBits);
299 }
300 }
301 }
302
303 return nullptr;
304}
305
306static Constant *rebuildExtCst(const Constant *C, bool IsSExt,
307 unsigned NumBits, unsigned NumElts,
308 unsigned SrcEltBitWidth) {
309 unsigned DstEltBitWidth = NumBits / NumElts;
310 assert((NumBits % NumElts) == 0 && (NumBits % SrcEltBitWidth) == 0 &&
311 (DstEltBitWidth % SrcEltBitWidth) == 0 &&
312 (DstEltBitWidth > SrcEltBitWidth) && "Illegal extension width");
313
314 if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) {
315 assert((Bits->getBitWidth() / DstEltBitWidth) == NumElts &&
316 (Bits->getBitWidth() % DstEltBitWidth) == 0 &&
317 "Unexpected constant extension");
318
319 // Ensure every vector element can be represented by the src bitwidth.
320 APInt TruncBits = APInt::getZero(NumElts * SrcEltBitWidth);
321 for (unsigned I = 0; I != NumElts; ++I) {
322 APInt Elt = Bits->extractBits(DstEltBitWidth, I * DstEltBitWidth);
323 if ((IsSExt && Elt.getSignificantBits() > SrcEltBitWidth) ||
324 (!IsSExt && Elt.getActiveBits() > SrcEltBitWidth))
325 return nullptr;
326 TruncBits.insertBits(Elt.trunc(SrcEltBitWidth), I * SrcEltBitWidth);
327 }
328
329 Type *Ty = C->getType();
330 return rebuildConstant(Ty->getContext(), Ty->getScalarType(), TruncBits,
331 SrcEltBitWidth);
332 }
333
334 return nullptr;
335}
336static Constant *rebuildSExtCst(const Constant *C, unsigned NumBits,
337 unsigned NumElts, unsigned SrcEltBitWidth) {
338 return rebuildExtCst(C, true, NumBits, NumElts, SrcEltBitWidth);
339}
340static Constant *rebuildZExtCst(const Constant *C, unsigned NumBits,
341 unsigned NumElts, unsigned SrcEltBitWidth) {
342 return rebuildExtCst(C, false, NumBits, NumElts, SrcEltBitWidth);
343}
344
345bool X86FixupVectorConstantsImpl::processInstruction(MachineFunction &MF,
347 MachineInstr &MI) {
348 unsigned Opc = MI.getOpcode();
349 MachineConstantPool *CP = MI.getParent()->getParent()->getConstantPool();
350 bool HasSSE2 = ST->hasSSE2();
351 bool HasSSE41 = ST->hasSSE41();
352 bool HasAVX2 = ST->hasAVX2();
353 bool HasDQI = ST->hasDQI();
354 bool HasBWI = ST->hasBWI();
355 bool HasVLX = ST->hasVLX();
356 bool MultiDomain = ST->hasAVX512() || ST->hasNoDomainDelayMov();
357 bool OptSize = MF.getFunction().hasOptSize();
358
359 struct FixupEntry {
360 int Op;
361 int NumCstElts;
362 int MemBitWidth;
363 std::function<Constant *(const Constant *, unsigned, unsigned, unsigned)>
364 RebuildConstant;
365 };
366
367 auto NewOpcPreferable = [&](const FixupEntry &Fixup,
368 unsigned RegBitWidth) -> bool {
369 if (SM->hasInstrSchedModel()) {
370 unsigned NewOpc = Fixup.Op;
371 auto *OldDesc = SM->getSchedClassDesc(TII->get(Opc).getSchedClass());
372 auto *NewDesc = SM->getSchedClassDesc(TII->get(NewOpc).getSchedClass());
373 unsigned BitsSaved = RegBitWidth - (Fixup.NumCstElts * Fixup.MemBitWidth);
374
375 // Compare tput/lat - avoid any regressions, but allow extra cycle of
376 // latency in exchange for each 128-bit (or less) constant pool reduction
377 // (this is a very simple cost:benefit estimate - there will probably be
378 // better ways to calculate this).
379 double OldTput = MCSchedModel::getReciprocalThroughput(*ST, *OldDesc);
380 double NewTput = MCSchedModel::getReciprocalThroughput(*ST, *NewDesc);
381 if (OldTput != NewTput)
382 return NewTput < OldTput;
383
384 int LatTol = (BitsSaved + 127) / 128;
385 int OldLat = MCSchedModel::computeInstrLatency(*ST, *OldDesc);
386 int NewLat = MCSchedModel::computeInstrLatency(*ST, *NewDesc);
387 if (OldLat != NewLat)
388 return NewLat < (OldLat + LatTol);
389 }
390
391 // We either were unable to get tput/lat or all values were equal.
392 // Prefer the new opcode for reduced constant pool size.
393 return true;
394 };
395
396 auto FixupConstant = [&](ArrayRef<FixupEntry> Fixups, unsigned RegBitWidth,
397 unsigned OperandNo) {
398#ifdef EXPENSIVE_CHECKS
399 assert(llvm::is_sorted(Fixups,
400 [](const FixupEntry &A, const FixupEntry &B) {
401 return (A.NumCstElts * A.MemBitWidth) <
402 (B.NumCstElts * B.MemBitWidth);
403 }) &&
404 "Constant fixup table not sorted in ascending constant size");
405#endif
406 assert(MI.getNumOperands() >= (OperandNo + X86::AddrNumOperands) &&
407 "Unexpected number of operands!");
408 if (auto *C = X86::getConstantFromPool(MI, OperandNo)) {
409 unsigned CstBitWidth = C->getType()->getPrimitiveSizeInBits();
410 RegBitWidth = RegBitWidth ? RegBitWidth : CstBitWidth;
411 for (const FixupEntry &Fixup : Fixups) {
412 // Always uses the smallest possible constant load with opt/minsize,
413 // otherwise use the smallest instruction that doesn't affect
414 // performance.
415 // TODO: If constant has been hoisted from loop, use smallest constant.
416 if (Fixup.Op && (OptSize || NewOpcPreferable(Fixup, RegBitWidth))) {
417 // Construct a suitable constant and adjust the MI to use the new
418 // constant pool entry.
419 if (Constant *NewCst = Fixup.RebuildConstant(
420 C, RegBitWidth, Fixup.NumCstElts, Fixup.MemBitWidth)) {
421 unsigned NewCPI =
422 CP->getConstantPoolIndex(NewCst, Align(Fixup.MemBitWidth / 8));
423 MI.setDesc(TII->get(Fixup.Op));
424 MI.getOperand(OperandNo + X86::AddrDisp).setIndex(NewCPI);
425 return true;
426 }
427 }
428 }
429 }
430 return false;
431 };
432
433 // Attempt to detect a suitable vzload/broadcast/vextload from increasing
434 // constant bitwidths. Prefer vzload/broadcast/vextload for same bitwidth:
435 // - vzload shouldn't ever need a shuffle port to zero the upper elements and
436 // the fp/int domain versions are equally available so we don't introduce a
437 // domain crossing penalty.
438 // - broadcast sometimes need a shuffle port (especially for 8/16-bit
439 // variants), AVX1 only has fp domain broadcasts but AVX2+ have good fp/int
440 // domain equivalents.
441 // - vextload always needs a shuffle port and is only ever int domain.
442 switch (Opc) {
443 /* FP Loads */
444 case X86::MOVAPDrm:
445 case X86::MOVAPSrm:
446 case X86::MOVUPDrm:
447 case X86::MOVUPSrm: {
448 // TODO: SSE3 MOVDDUP Handling
449 FixupEntry Fixups[] = {
450 {X86::MOVSSrm, 1, 32, rebuildZeroUpperCst},
451 {HasSSE2 ? X86::MOVSDrm : 0, 1, 64, rebuildZeroUpperCst}};
452 return FixupConstant(Fixups, 128, 1);
453 }
454 case X86::VMOVAPDrm:
455 case X86::VMOVAPSrm:
456 case X86::VMOVUPDrm:
457 case X86::VMOVUPSrm: {
458 FixupEntry Fixups[] = {
459 {MultiDomain ? X86::VPMOVSXBQrm : 0, 2, 8, rebuildSExtCst},
460 {MultiDomain ? X86::VPMOVZXBQrm : 0, 2, 8, rebuildZExtCst},
461 {X86::VMOVSSrm, 1, 32, rebuildZeroUpperCst},
462 {X86::VBROADCASTSSrm, 1, 32, rebuildSplatCst},
463 {MultiDomain ? X86::VPMOVSXBDrm : 0, 4, 8, rebuildSExtCst},
464 {MultiDomain ? X86::VPMOVZXBDrm : 0, 4, 8, rebuildZExtCst},
465 {MultiDomain ? X86::VPMOVSXWQrm : 0, 2, 16, rebuildSExtCst},
466 {MultiDomain ? X86::VPMOVZXWQrm : 0, 2, 16, rebuildZExtCst},
467 {X86::VMOVSDrm, 1, 64, rebuildZeroUpperCst},
468 {X86::VMOVDDUPrm, 1, 64, rebuildSplatCst},
469 {MultiDomain ? X86::VPMOVSXWDrm : 0, 4, 16, rebuildSExtCst},
470 {MultiDomain ? X86::VPMOVZXWDrm : 0, 4, 16, rebuildZExtCst},
471 {MultiDomain ? X86::VPMOVSXDQrm : 0, 2, 32, rebuildSExtCst},
472 {MultiDomain ? X86::VPMOVZXDQrm : 0, 2, 32, rebuildZExtCst}};
473 return FixupConstant(Fixups, 128, 1);
474 }
475 case X86::VMOVAPDYrm:
476 case X86::VMOVAPSYrm:
477 case X86::VMOVUPDYrm:
478 case X86::VMOVUPSYrm: {
479 FixupEntry Fixups[] = {
480 {X86::VBROADCASTSSYrm, 1, 32, rebuildSplatCst},
481 {HasAVX2 && MultiDomain ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst},
482 {HasAVX2 && MultiDomain ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst},
483 {X86::VBROADCASTSDYrm, 1, 64, rebuildSplatCst},
484 {HasAVX2 && MultiDomain ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst},
485 {HasAVX2 && MultiDomain ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst},
486 {HasAVX2 && MultiDomain ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst},
487 {HasAVX2 && MultiDomain ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst},
488 {X86::VBROADCASTF128rm, 1, 128, rebuildSplatCst},
489 {HasAVX2 && MultiDomain ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst},
490 {HasAVX2 && MultiDomain ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst},
491 {HasAVX2 && MultiDomain ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst},
492 {HasAVX2 && MultiDomain ? X86::VPMOVZXDQYrm : 0, 4, 32,
494 return FixupConstant(Fixups, 256, 1);
495 }
496 case X86::VMOVAPDZ128rm:
497 case X86::VMOVAPSZ128rm:
498 case X86::VMOVUPDZ128rm:
499 case X86::VMOVUPSZ128rm: {
500 FixupEntry Fixups[] = {
501 {MultiDomain ? X86::VPMOVSXBQZ128rm : 0, 2, 8, rebuildSExtCst},
502 {MultiDomain ? X86::VPMOVZXBQZ128rm : 0, 2, 8, rebuildZExtCst},
503 {X86::VMOVSSZrm, 1, 32, rebuildZeroUpperCst},
504 {X86::VBROADCASTSSZ128rm, 1, 32, rebuildSplatCst},
505 {MultiDomain ? X86::VPMOVSXBDZ128rm : 0, 4, 8, rebuildSExtCst},
506 {MultiDomain ? X86::VPMOVZXBDZ128rm : 0, 4, 8, rebuildZExtCst},
507 {MultiDomain ? X86::VPMOVSXWQZ128rm : 0, 2, 16, rebuildSExtCst},
508 {MultiDomain ? X86::VPMOVZXWQZ128rm : 0, 2, 16, rebuildZExtCst},
509 {X86::VMOVSDZrm, 1, 64, rebuildZeroUpperCst},
510 {X86::VMOVDDUPZ128rm, 1, 64, rebuildSplatCst},
511 {MultiDomain ? X86::VPMOVSXWDZ128rm : 0, 4, 16, rebuildSExtCst},
512 {MultiDomain ? X86::VPMOVZXWDZ128rm : 0, 4, 16, rebuildZExtCst},
513 {MultiDomain ? X86::VPMOVSXDQZ128rm : 0, 2, 32, rebuildSExtCst},
514 {MultiDomain ? X86::VPMOVZXDQZ128rm : 0, 2, 32, rebuildZExtCst}};
515 return FixupConstant(Fixups, 128, 1);
516 }
517 case X86::VMOVAPDZ256rm:
518 case X86::VMOVAPSZ256rm:
519 case X86::VMOVUPDZ256rm:
520 case X86::VMOVUPSZ256rm: {
521 FixupEntry Fixups[] = {
522 {X86::VBROADCASTSSZ256rm, 1, 32, rebuildSplatCst},
523 {MultiDomain ? X86::VPMOVSXBQZ256rm : 0, 4, 8, rebuildSExtCst},
524 {MultiDomain ? X86::VPMOVZXBQZ256rm : 0, 4, 8, rebuildZExtCst},
525 {X86::VBROADCASTSDZ256rm, 1, 64, rebuildSplatCst},
526 {MultiDomain ? X86::VPMOVSXBDZ256rm : 0, 8, 8, rebuildSExtCst},
527 {MultiDomain ? X86::VPMOVZXBDZ256rm : 0, 8, 8, rebuildZExtCst},
528 {MultiDomain ? X86::VPMOVSXWQZ256rm : 0, 4, 16, rebuildSExtCst},
529 {MultiDomain ? X86::VPMOVZXWQZ256rm : 0, 4, 16, rebuildZExtCst},
530 {X86::VBROADCASTF32X4Z256rm, 1, 128, rebuildSplatCst},
531 {MultiDomain ? X86::VPMOVSXWDZ256rm : 0, 8, 16, rebuildSExtCst},
532 {MultiDomain ? X86::VPMOVZXWDZ256rm : 0, 8, 16, rebuildZExtCst},
533 {MultiDomain ? X86::VPMOVSXDQZ256rm : 0, 4, 32, rebuildSExtCst},
534 {MultiDomain ? X86::VPMOVZXDQZ256rm : 0, 4, 32, rebuildZExtCst}};
535 return FixupConstant(Fixups, 256, 1);
536 }
537 case X86::VMOVAPDZrm:
538 case X86::VMOVAPSZrm:
539 case X86::VMOVUPDZrm:
540 case X86::VMOVUPSZrm: {
541 FixupEntry Fixups[] = {
542 {X86::VBROADCASTSSZrm, 1, 32, rebuildSplatCst},
543 {X86::VBROADCASTSDZrm, 1, 64, rebuildSplatCst},
544 {MultiDomain ? X86::VPMOVSXBQZrm : 0, 8, 8, rebuildSExtCst},
545 {MultiDomain ? X86::VPMOVZXBQZrm : 0, 8, 8, rebuildZExtCst},
546 {X86::VBROADCASTF32X4Zrm, 1, 128, rebuildSplatCst},
547 {MultiDomain ? X86::VPMOVSXBDZrm : 0, 16, 8, rebuildSExtCst},
548 {MultiDomain ? X86::VPMOVZXBDZrm : 0, 16, 8, rebuildZExtCst},
549 {MultiDomain ? X86::VPMOVSXWQZrm : 0, 8, 16, rebuildSExtCst},
550 {MultiDomain ? X86::VPMOVZXWQZrm : 0, 8, 16, rebuildZExtCst},
551 {X86::VBROADCASTF64X4Zrm, 1, 256, rebuildSplatCst},
552 {MultiDomain ? X86::VPMOVSXWDZrm : 0, 16, 16, rebuildSExtCst},
553 {MultiDomain ? X86::VPMOVZXWDZrm : 0, 16, 16, rebuildZExtCst},
554 {MultiDomain ? X86::VPMOVSXDQZrm : 0, 8, 32, rebuildSExtCst},
555 {MultiDomain ? X86::VPMOVZXDQZrm : 0, 8, 32, rebuildZExtCst}};
556 return FixupConstant(Fixups, 512, 1);
557 }
558 /* Integer Loads */
559 case X86::MOVDQArm:
560 case X86::MOVDQUrm: {
561 FixupEntry Fixups[] = {
562 {HasSSE41 ? X86::PMOVSXBQrm : 0, 2, 8, rebuildSExtCst},
563 {HasSSE41 ? X86::PMOVZXBQrm : 0, 2, 8, rebuildZExtCst},
564 {X86::MOVDI2PDIrm, 1, 32, rebuildZeroUpperCst},
565 {HasSSE41 ? X86::PMOVSXBDrm : 0, 4, 8, rebuildSExtCst},
566 {HasSSE41 ? X86::PMOVZXBDrm : 0, 4, 8, rebuildZExtCst},
567 {HasSSE41 ? X86::PMOVSXWQrm : 0, 2, 16, rebuildSExtCst},
568 {HasSSE41 ? X86::PMOVZXWQrm : 0, 2, 16, rebuildZExtCst},
569 {X86::MOVQI2PQIrm, 1, 64, rebuildZeroUpperCst},
570 {HasSSE41 ? X86::PMOVSXBWrm : 0, 8, 8, rebuildSExtCst},
571 {HasSSE41 ? X86::PMOVZXBWrm : 0, 8, 8, rebuildZExtCst},
572 {HasSSE41 ? X86::PMOVSXWDrm : 0, 4, 16, rebuildSExtCst},
573 {HasSSE41 ? X86::PMOVZXWDrm : 0, 4, 16, rebuildZExtCst},
574 {HasSSE41 ? X86::PMOVSXDQrm : 0, 2, 32, rebuildSExtCst},
575 {HasSSE41 ? X86::PMOVZXDQrm : 0, 2, 32, rebuildZExtCst}};
576 return FixupConstant(Fixups, 128, 1);
577 }
578 case X86::VMOVDQArm:
579 case X86::VMOVDQUrm: {
580 FixupEntry Fixups[] = {
581 {HasAVX2 ? X86::VPBROADCASTBrm : 0, 1, 8, rebuildSplatCst},
582 {HasAVX2 ? X86::VPBROADCASTWrm : 0, 1, 16, rebuildSplatCst},
583 {X86::VPMOVSXBQrm, 2, 8, rebuildSExtCst},
584 {X86::VPMOVZXBQrm, 2, 8, rebuildZExtCst},
585 {X86::VMOVDI2PDIrm, 1, 32, rebuildZeroUpperCst},
586 {HasAVX2 ? X86::VPBROADCASTDrm : X86::VBROADCASTSSrm, 1, 32,
588 {X86::VPMOVSXBDrm, 4, 8, rebuildSExtCst},
589 {X86::VPMOVZXBDrm, 4, 8, rebuildZExtCst},
590 {X86::VPMOVSXWQrm, 2, 16, rebuildSExtCst},
591 {X86::VPMOVZXWQrm, 2, 16, rebuildZExtCst},
592 {X86::VMOVQI2PQIrm, 1, 64, rebuildZeroUpperCst},
593 {HasAVX2 ? X86::VPBROADCASTQrm : X86::VMOVDDUPrm, 1, 64,
595 {X86::VPMOVSXBWrm, 8, 8, rebuildSExtCst},
596 {X86::VPMOVZXBWrm, 8, 8, rebuildZExtCst},
597 {X86::VPMOVSXWDrm, 4, 16, rebuildSExtCst},
598 {X86::VPMOVZXWDrm, 4, 16, rebuildZExtCst},
599 {X86::VPMOVSXDQrm, 2, 32, rebuildSExtCst},
600 {X86::VPMOVZXDQrm, 2, 32, rebuildZExtCst}};
601 return FixupConstant(Fixups, 128, 1);
602 }
603 case X86::VMOVDQAYrm:
604 case X86::VMOVDQUYrm: {
605 FixupEntry Fixups[] = {
606 {HasAVX2 ? X86::VPBROADCASTBYrm : 0, 1, 8, rebuildSplatCst},
607 {HasAVX2 ? X86::VPBROADCASTWYrm : 0, 1, 16, rebuildSplatCst},
608 {HasAVX2 ? X86::VPBROADCASTDYrm : X86::VBROADCASTSSYrm, 1, 32,
610 {HasAVX2 ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst},
611 {HasAVX2 ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst},
612 {HasAVX2 ? X86::VPBROADCASTQYrm : X86::VBROADCASTSDYrm, 1, 64,
614 {HasAVX2 ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst},
615 {HasAVX2 ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst},
616 {HasAVX2 ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst},
617 {HasAVX2 ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst},
618 {HasAVX2 ? X86::VBROADCASTI128rm : X86::VBROADCASTF128rm, 1, 128,
620 {HasAVX2 ? X86::VPMOVSXBWYrm : 0, 16, 8, rebuildSExtCst},
621 {HasAVX2 ? X86::VPMOVZXBWYrm : 0, 16, 8, rebuildZExtCst},
622 {HasAVX2 ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst},
623 {HasAVX2 ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst},
624 {HasAVX2 ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst},
625 {HasAVX2 ? X86::VPMOVZXDQYrm : 0, 4, 32, rebuildZExtCst}};
626 return FixupConstant(Fixups, 256, 1);
627 }
628 case X86::VMOVDQA32Z128rm:
629 case X86::VMOVDQA64Z128rm:
630 case X86::VMOVDQU32Z128rm:
631 case X86::VMOVDQU64Z128rm: {
632 FixupEntry Fixups[] = {
633 {HasBWI ? X86::VPBROADCASTBZ128rm : 0, 1, 8, rebuildSplatCst},
634 {HasBWI ? X86::VPBROADCASTWZ128rm : 0, 1, 16, rebuildSplatCst},
635 {X86::VPMOVSXBQZ128rm, 2, 8, rebuildSExtCst},
636 {X86::VPMOVZXBQZ128rm, 2, 8, rebuildZExtCst},
637 {X86::VMOVDI2PDIZrm, 1, 32, rebuildZeroUpperCst},
638 {X86::VPBROADCASTDZ128rm, 1, 32, rebuildSplatCst},
639 {X86::VPMOVSXBDZ128rm, 4, 8, rebuildSExtCst},
640 {X86::VPMOVZXBDZ128rm, 4, 8, rebuildZExtCst},
641 {X86::VPMOVSXWQZ128rm, 2, 16, rebuildSExtCst},
642 {X86::VPMOVZXWQZ128rm, 2, 16, rebuildZExtCst},
643 {X86::VMOVQI2PQIZrm, 1, 64, rebuildZeroUpperCst},
644 {X86::VPBROADCASTQZ128rm, 1, 64, rebuildSplatCst},
645 {HasBWI ? X86::VPMOVSXBWZ128rm : 0, 8, 8, rebuildSExtCst},
646 {HasBWI ? X86::VPMOVZXBWZ128rm : 0, 8, 8, rebuildZExtCst},
647 {X86::VPMOVSXWDZ128rm, 4, 16, rebuildSExtCst},
648 {X86::VPMOVZXWDZ128rm, 4, 16, rebuildZExtCst},
649 {X86::VPMOVSXDQZ128rm, 2, 32, rebuildSExtCst},
650 {X86::VPMOVZXDQZ128rm, 2, 32, rebuildZExtCst}};
651 return FixupConstant(Fixups, 128, 1);
652 }
653 case X86::VMOVDQA32Z256rm:
654 case X86::VMOVDQA64Z256rm:
655 case X86::VMOVDQU32Z256rm:
656 case X86::VMOVDQU64Z256rm: {
657 FixupEntry Fixups[] = {
658 {HasBWI ? X86::VPBROADCASTBZ256rm : 0, 1, 8, rebuildSplatCst},
659 {HasBWI ? X86::VPBROADCASTWZ256rm : 0, 1, 16, rebuildSplatCst},
660 {X86::VPBROADCASTDZ256rm, 1, 32, rebuildSplatCst},
661 {X86::VPMOVSXBQZ256rm, 4, 8, rebuildSExtCst},
662 {X86::VPMOVZXBQZ256rm, 4, 8, rebuildZExtCst},
663 {X86::VPBROADCASTQZ256rm, 1, 64, rebuildSplatCst},
664 {X86::VPMOVSXBDZ256rm, 8, 8, rebuildSExtCst},
665 {X86::VPMOVZXBDZ256rm, 8, 8, rebuildZExtCst},
666 {X86::VPMOVSXWQZ256rm, 4, 16, rebuildSExtCst},
667 {X86::VPMOVZXWQZ256rm, 4, 16, rebuildZExtCst},
668 {X86::VBROADCASTI32X4Z256rm, 1, 128, rebuildSplatCst},
669 {HasBWI ? X86::VPMOVSXBWZ256rm : 0, 16, 8, rebuildSExtCst},
670 {HasBWI ? X86::VPMOVZXBWZ256rm : 0, 16, 8, rebuildZExtCst},
671 {X86::VPMOVSXWDZ256rm, 8, 16, rebuildSExtCst},
672 {X86::VPMOVZXWDZ256rm, 8, 16, rebuildZExtCst},
673 {X86::VPMOVSXDQZ256rm, 4, 32, rebuildSExtCst},
674 {X86::VPMOVZXDQZ256rm, 4, 32, rebuildZExtCst}};
675 return FixupConstant(Fixups, 256, 1);
676 }
677 case X86::VMOVDQA32Zrm:
678 case X86::VMOVDQA64Zrm:
679 case X86::VMOVDQU32Zrm:
680 case X86::VMOVDQU64Zrm: {
681 FixupEntry Fixups[] = {
682 {HasBWI ? X86::VPBROADCASTBZrm : 0, 1, 8, rebuildSplatCst},
683 {HasBWI ? X86::VPBROADCASTWZrm : 0, 1, 16, rebuildSplatCst},
684 {X86::VPBROADCASTDZrm, 1, 32, rebuildSplatCst},
685 {X86::VPBROADCASTQZrm, 1, 64, rebuildSplatCst},
686 {X86::VPMOVSXBQZrm, 8, 8, rebuildSExtCst},
687 {X86::VPMOVZXBQZrm, 8, 8, rebuildZExtCst},
688 {X86::VBROADCASTI32X4Zrm, 1, 128, rebuildSplatCst},
689 {X86::VPMOVSXBDZrm, 16, 8, rebuildSExtCst},
690 {X86::VPMOVZXBDZrm, 16, 8, rebuildZExtCst},
691 {X86::VPMOVSXWQZrm, 8, 16, rebuildSExtCst},
692 {X86::VPMOVZXWQZrm, 8, 16, rebuildZExtCst},
693 {X86::VBROADCASTI64X4Zrm, 1, 256, rebuildSplatCst},
694 {HasBWI ? X86::VPMOVSXBWZrm : 0, 32, 8, rebuildSExtCst},
695 {HasBWI ? X86::VPMOVZXBWZrm : 0, 32, 8, rebuildZExtCst},
696 {X86::VPMOVSXWDZrm, 16, 16, rebuildSExtCst},
697 {X86::VPMOVZXWDZrm, 16, 16, rebuildZExtCst},
698 {X86::VPMOVSXDQZrm, 8, 32, rebuildSExtCst},
699 {X86::VPMOVZXDQZrm, 8, 32, rebuildZExtCst}};
700 return FixupConstant(Fixups, 512, 1);
701 }
702 }
703
704 auto ConvertToBroadcast = [&](unsigned OpSrc, int BW) {
705 if (OpSrc) {
706 if (const X86FoldTableEntry *Mem2Bcst =
708 unsigned OpBcst = Mem2Bcst->DstOp;
709 unsigned OpNoBcst = Mem2Bcst->Flags & TB_INDEX_MASK;
710 FixupEntry Fixups[] = {{(int)OpBcst, 1, BW, rebuildSplatCst}};
711 // TODO: Add support for RegBitWidth, but currently rebuildSplatCst
712 // doesn't require it (defaults to Constant::getPrimitiveSizeInBits).
713 return FixupConstant(Fixups, 0, OpNoBcst);
714 }
715 }
716 return false;
717 };
718
719 // Attempt to find a AVX512 mapping from a full width memory-fold instruction
720 // to a broadcast-fold instruction variant.
721 if ((MI.getDesc().TSFlags & X86II::EncodingMask) == X86II::EVEX)
722 return ConvertToBroadcast(Opc, 32) || ConvertToBroadcast(Opc, 64);
723
724 // Reverse the X86InstrInfo::setExecutionDomainCustom EVEX->VEX logic
725 // conversion to see if we can convert to a broadcasted (integer) logic op.
726 if (HasVLX && !HasDQI) {
727 unsigned OpSrc32 = 0, OpSrc64 = 0;
728 switch (Opc) {
729 case X86::VANDPDrm:
730 case X86::VANDPSrm:
731 case X86::VPANDrm:
732 OpSrc32 = X86 ::VPANDDZ128rm;
733 OpSrc64 = X86 ::VPANDQZ128rm;
734 break;
735 case X86::VANDPDYrm:
736 case X86::VANDPSYrm:
737 case X86::VPANDYrm:
738 OpSrc32 = X86 ::VPANDDZ256rm;
739 OpSrc64 = X86 ::VPANDQZ256rm;
740 break;
741 case X86::VANDNPDrm:
742 case X86::VANDNPSrm:
743 case X86::VPANDNrm:
744 OpSrc32 = X86 ::VPANDNDZ128rm;
745 OpSrc64 = X86 ::VPANDNQZ128rm;
746 break;
747 case X86::VANDNPDYrm:
748 case X86::VANDNPSYrm:
749 case X86::VPANDNYrm:
750 OpSrc32 = X86 ::VPANDNDZ256rm;
751 OpSrc64 = X86 ::VPANDNQZ256rm;
752 break;
753 case X86::VORPDrm:
754 case X86::VORPSrm:
755 case X86::VPORrm:
756 OpSrc32 = X86 ::VPORDZ128rm;
757 OpSrc64 = X86 ::VPORQZ128rm;
758 break;
759 case X86::VORPDYrm:
760 case X86::VORPSYrm:
761 case X86::VPORYrm:
762 OpSrc32 = X86 ::VPORDZ256rm;
763 OpSrc64 = X86 ::VPORQZ256rm;
764 break;
765 case X86::VXORPDrm:
766 case X86::VXORPSrm:
767 case X86::VPXORrm:
768 OpSrc32 = X86 ::VPXORDZ128rm;
769 OpSrc64 = X86 ::VPXORQZ128rm;
770 break;
771 case X86::VXORPDYrm:
772 case X86::VXORPSYrm:
773 case X86::VPXORYrm:
774 OpSrc32 = X86 ::VPXORDZ256rm;
775 OpSrc64 = X86 ::VPXORQZ256rm;
776 break;
777 }
778 if (OpSrc32 || OpSrc64)
779 return ConvertToBroadcast(OpSrc32, 32) || ConvertToBroadcast(OpSrc64, 64);
780 }
781
782 return false;
783}
784
785bool X86FixupVectorConstantsImpl::runOnMachineFunction(MachineFunction &MF) {
786 LLVM_DEBUG(dbgs() << "Start X86FixupVectorConstants\n";);
787 bool Changed = false;
788 ST = &MF.getSubtarget<X86Subtarget>();
789 TII = ST->getInstrInfo();
790 SM = &ST->getSchedModel();
791
792 for (MachineBasicBlock &MBB : MF) {
793 for (MachineInstr &MI : MBB) {
794 if (processInstruction(MF, MBB, MI)) {
795 ++NumInstChanges;
796 Changed = true;
797 }
798 }
799 }
800 LLVM_DEBUG(dbgs() << "End X86FixupVectorConstants\n";);
801 return Changed;
802}
803
804bool X86FixupVectorConstantsLegacy::runOnMachineFunction(MachineFunction &MF) {
805 X86FixupVectorConstantsImpl Impl;
806 return Impl.runOnMachineFunction(MF);
807}
808
809PreservedAnalyses
812 X86FixupVectorConstantsImpl Impl;
813 return Impl.runOnMachineFunction(MF)
817}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define DEBUG_TYPE
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
#define I(x, y, z)
Definition MD5.cpp:57
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
PowerPC TLS Dynamic Call Fixup
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition PassSupport.h:56
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
#define LLVM_DEBUG(...)
Definition Debug.h:114
static Constant * rebuildSplatCst(const Constant *C, unsigned, unsigned, unsigned SplatBitWidth)
static std::optional< APInt > getSplatableConstant(const Constant *C, unsigned SplatBitWidth)
static Constant * rebuildZExtCst(const Constant *C, unsigned NumBits, unsigned NumElts, unsigned SrcEltBitWidth)
static std::optional< APInt > extractConstantBits(const Constant *C)
static Constant * getSplatValueAllowUndef(const ConstantVector *C)
Normally, we only allow poison in vector splats.
static Constant * rebuildExtCst(const Constant *C, bool IsSExt, unsigned NumBits, unsigned NumElts, unsigned SrcEltBitWidth)
static Constant * rebuildZeroUpperCst(const Constant *C, unsigned NumBits, unsigned, unsigned ScalarBitWidth)
static Constant * rebuildSExtCst(const Constant *C, unsigned NumBits, unsigned NumElts, unsigned SrcEltBitWidth)
static Constant * rebuildConstant(LLVMContext &Ctx, Type *SclTy, const APInt &Bits, unsigned NumSclBits)
Class for arbitrary precision integers.
Definition APInt.h:78
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition APInt.h:1521
LLVM_ABI APInt trunc(unsigned width) const
Truncate to new width.
Definition APInt.cpp:936
static LLVM_ABI APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition APInt.cpp:651
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
Definition APInt.h:1540
LLVM_ABI void insertBits(const APInt &SubBits, unsigned bitPosition)
Insert the bits from a smaller APInt starting at bitPosition.
Definition APInt.cpp:397
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition APInt.h:201
Represents analyses that only rely on functions' control flow.
Definition Analysis.h:73
static LLVM_ABI Constant * get(LLVMContext &Context, ArrayRef< uint8_t > Elts)
get() constructors - Return a constant with vector type with an element count and element type matchi...
static LLVM_ABI Constant * getFP(Type *ElementType, ArrayRef< uint16_t > Elts)
getFP() constructors - Return a constant of vector type with a float element type taken from argument...
Constant Vector Declarations.
Definition Constants.h:522
This is an important base class in LLVM.
Definition Constant.h:43
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
FunctionPass class - This class is used to implement most global optimizations.
Definition Pass.h:314
bool hasOptSize() const
Optimize this function for size (-Os) or minimum size (-Oz).
Definition Function.h:706
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
unsigned getConstantPoolIndex(const Constant *C, Align Alignment)
getConstantPoolIndex - Create a new entry in the constant pool or return an existing one.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
Function & getFunction()
Return the LLVM function that this machine code represents.
Representation of each machine instruction.
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition Analysis.h:118
PreservedAnalyses & preserveSet()
Mark an analysis set as preserved.
Definition Analysis.h:151
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition Type.h:153
bool is16bitFPTy() const
Return true if this is a 16-bit float type.
Definition Type.h:148
LLVM_ABI TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Definition Type.cpp:197
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
Definition Type.h:156
Value * getOperand(unsigned i) const
Definition User.h:233
LLVM Value Representation.
Definition Value.h:75
PreservedAnalyses run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM)
const X86InstrInfo * getInstrInfo() const override
bool hasAVX512() const
bool hasSSE41() const
bool hasSSE2() const
bool hasNoDomainDelayMov() const
bool hasAVX2() const
Changed
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ EVEX
EVEX - Specifies that this instruction use EVEX form which provides syntax support up to 32 512-bit r...
@ AddrNumOperands
Definition X86BaseInfo.h:36
const Constant * getConstantFromPool(const MachineInstr &MI, unsigned OpNo)
Find any constant pool entry associated with a specific instruction operand.
This is an optimization pass for GlobalISel generic memory operations.
Definition Types.h:26
const X86FoldTableEntry * lookupBroadcastFoldTableBySize(unsigned MemOp, unsigned BroadcastBits)
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
AnalysisManager< MachineFunction > MachineFunctionAnalysisManager
LLVM_ABI PreservedAnalyses getMachineFunctionPassPreservedAnalyses()
Returns the minimum set of Analyses that all machine function passes must preserve.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool is_sorted(R &&Range, Compare C)
Wrapper function around std::is_sorted to check if elements in a range R are sorted with respect to a...
Definition STLExtras.h:1968
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
FunctionPass * createX86FixupVectorConstantsLegacyPass()
Machine model for scheduling, bundling, and heuristics.
Definition MCSchedule.h:258
const MCSchedClassDesc * getSchedClassDesc(unsigned SchedClassIdx) const
Definition MCSchedule.h:366
bool hasInstrSchedModel() const
Does this machine model include instruction-level scheduling.
Definition MCSchedule.h:340
static LLVM_ABI int computeInstrLatency(const MCSubtargetInfo &STI, const MCSchedClassDesc &SCDesc)
Returns the latency value for the scheduling class.
static LLVM_ABI double getReciprocalThroughput(const MCSubtargetInfo &STI, const MCSchedClassDesc &SCDesc)