LLVM 20.0.0git
HexagonNewValueJump.cpp
Go to the documentation of this file.
1//===- HexagonNewValueJump.cpp - Hexagon Backend New Value Jump -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements NewValueJump pass in Hexagon.
10// Ideally, we should merge this as a Peephole pass prior to register
11// allocation, but because we have a spill in between the feeder and new value
12// jump instructions, we are forced to write after register allocation.
13// Having said that, we should re-attempt to pull this earlier at some point
14// in future.
15
16// The basic approach looks for sequence of predicated jump, compare instruciton
17// that genereates the predicate and, the feeder to the predicate. Once it finds
18// all, it collapses compare and jump instruction into a new value jump
19// intstructions.
20//
21//===----------------------------------------------------------------------===//
22
24#include "Hexagon.h"
25#include "HexagonInstrInfo.h"
26#include "HexagonRegisterInfo.h"
27#include "HexagonSubtarget.h"
28#include "llvm/ADT/Statistic.h"
40#include "llvm/IR/DebugLoc.h"
41#include "llvm/MC/MCInstrDesc.h"
42#include "llvm/Pass.h"
45#include "llvm/Support/Debug.h"
49#include <cassert>
50#include <cstdint>
51#include <iterator>
52
53using namespace llvm;
54
55#define DEBUG_TYPE "hexagon-nvj"
56
57STATISTIC(NumNVJGenerated, "Number of New Value Jump Instructions created");
58
60 cl::desc("Maximum number of predicated jumps to be converted to "
61 "New Value Jump"));
62
64 cl::desc("Disable New Value Jumps"));
65
66namespace llvm {
67
70
71} // end namespace llvm
72
73namespace {
74
75 struct HexagonNewValueJump : public MachineFunctionPass {
76 static char ID;
77
78 HexagonNewValueJump() : MachineFunctionPass(ID) {}
79
80 void getAnalysisUsage(AnalysisUsage &AU) const override {
83 }
84
85 StringRef getPassName() const override { return "Hexagon NewValueJump"; }
86
87 bool runOnMachineFunction(MachineFunction &Fn) override;
88
91 MachineFunctionProperties::Property::NoVRegs);
92 }
93
94 private:
95 const HexagonInstrInfo *QII;
96 const HexagonRegisterInfo *QRI;
97
98 /// A handle to the branch probability pass.
100
101 bool isNewValueJumpCandidate(const MachineInstr &MI) const;
102 };
103
104} // end anonymous namespace
105
106char HexagonNewValueJump::ID = 0;
107
108INITIALIZE_PASS_BEGIN(HexagonNewValueJump, "hexagon-nvj",
109 "Hexagon NewValueJump", false, false)
111INITIALIZE_PASS_END(HexagonNewValueJump, "hexagon-nvj",
113
114// We have identified this II could be feeder to NVJ,
115// verify that it can be.
118 MachineBasicBlock::iterator II,
119 MachineBasicBlock::iterator end,
120 MachineBasicBlock::iterator skip,
121 MachineFunction &MF) {
122 // Predicated instruction can not be feeder to NVJ.
123 if (QII->isPredicated(*II))
124 return false;
125
126 // Bail out if feederReg is a paired register (double regs in
127 // our case). One would think that we can check to see if a given
128 // register cmpReg1 or cmpReg2 is a sub register of feederReg
129 // using -- if (QRI->isSubRegister(feederReg, cmpReg1) logic
130 // before the callsite of this function
131 // But we can not as it comes in the following fashion.
132 // %d0 = Hexagon_S2_lsr_r_p killed %d0, killed %r2
133 // %r0 = KILL %r0, implicit killed %d0
134 // %p0 = CMPEQri killed %r0, 0
135 // Hence, we need to check if it's a KILL instruction.
136 if (II->getOpcode() == TargetOpcode::KILL)
137 return false;
138
139 if (II->isImplicitDef())
140 return false;
141
142 if (QII->isSolo(*II))
143 return false;
144
145 if (QII->isFloat(*II))
146 return false;
147
148 // Make sure that the (unique) def operand is a register from IntRegs.
149 bool HadDef = false;
150 for (const MachineOperand &Op : II->operands()) {
151 if (!Op.isReg() || !Op.isDef())
152 continue;
153 if (HadDef)
154 return false;
155 HadDef = true;
156 if (!Hexagon::IntRegsRegClass.contains(Op.getReg()))
157 return false;
158 }
159 assert(HadDef);
160
161 // Make sure there is no 'def' or 'use' of any of the uses of
162 // feeder insn between its definition, this MI and jump, jmpInst
163 // skipping compare, cmpInst.
164 // Here's the example.
165 // r21=memub(r22+r24<<#0)
166 // p0 = cmp.eq(r21, #0)
167 // r4=memub(r3+r21<<#0)
168 // if (p0.new) jump:t .LBB29_45
169 // Without this check, it will be converted into
170 // r4=memub(r3+r21<<#0)
171 // r21=memub(r22+r24<<#0)
172 // p0 = cmp.eq(r21, #0)
173 // if (p0.new) jump:t .LBB29_45
174 // and result WAR hazards if converted to New Value Jump.
175 for (unsigned i = 0; i < II->getNumOperands(); ++i) {
176 if (II->getOperand(i).isReg() &&
177 (II->getOperand(i).isUse() || II->getOperand(i).isDef())) {
179 ++localII;
180 Register Reg = II->getOperand(i).getReg();
181 for (MachineBasicBlock::iterator localBegin = localII; localBegin != end;
182 ++localBegin) {
183 if (localBegin == skip)
184 continue;
185 // Check for Subregisters too.
186 if (localBegin->modifiesRegister(Reg, TRI) ||
187 localBegin->readsRegister(Reg, TRI))
188 return false;
189 }
190 }
191 }
192 return true;
193}
194
195// These are the common checks that need to performed
196// to determine if
197// 1. compare instruction can be moved before jump.
198// 2. feeder to the compare instruction can be moved before jump.
199static bool commonChecksToProhibitNewValueJump(bool afterRA,
201 // If store in path, bail out.
202 if (MII->mayStore())
203 return false;
204
205 // if call in path, bail out.
206 if (MII->isCall())
207 return false;
208
209 // if NVJ is running prior to RA, do the following checks.
210 if (!afterRA) {
211 // The following Target Opcode instructions are spurious
212 // to new value jump. If they are in the path, bail out.
213 // KILL sets kill flag on the opcode. It also sets up a
214 // single register, out of pair.
215 // %d0 = S2_lsr_r_p killed %d0, killed %r2
216 // %r0 = KILL %r0, implicit killed %d0
217 // %p0 = C2_cmpeqi killed %r0, 0
218 // PHI can be anything after RA.
219 // COPY can remateriaze things in between feeder, compare and nvj.
220 if (MII->getOpcode() == TargetOpcode::KILL ||
221 MII->getOpcode() == TargetOpcode::PHI ||
222 MII->getOpcode() == TargetOpcode::COPY)
223 return false;
224
225 // The following pseudo Hexagon instructions sets "use" and "def"
226 // of registers by individual passes in the backend. At this time,
227 // we don't know the scope of usage and definitions of these
228 // instructions.
229 if (MII->getOpcode() == Hexagon::LDriw_pred ||
230 MII->getOpcode() == Hexagon::STriw_pred)
231 return false;
232 }
233
234 return true;
235}
236
238 const TargetRegisterInfo *TRI,
240 unsigned pReg,
241 bool secondReg,
242 bool optLocation,
244 MachineFunction &MF) {
245 MachineInstr &MI = *II;
246
247 // If the second operand of the compare is an imm, make sure it's in the
248 // range specified by the arch.
249 if (!secondReg) {
250 const MachineOperand &Op2 = MI.getOperand(2);
251 if (!Op2.isImm())
252 return false;
253
254 int64_t v = Op2.getImm();
255 bool Valid = false;
256
257 switch (MI.getOpcode()) {
258 case Hexagon::C2_cmpeqi:
259 case Hexagon::C4_cmpneqi:
260 case Hexagon::C2_cmpgti:
261 case Hexagon::C4_cmpltei:
262 Valid = (isUInt<5>(v) || v == -1);
263 break;
264 case Hexagon::C2_cmpgtui:
265 case Hexagon::C4_cmplteui:
266 Valid = isUInt<5>(v);
267 break;
268 case Hexagon::S2_tstbit_i:
269 case Hexagon::S4_ntstbit_i:
270 Valid = (v == 0);
271 break;
272 }
273
274 if (!Valid)
275 return false;
276 }
277
278 unsigned cmpReg1, cmpOp2 = 0; // cmpOp2 assignment silences compiler warning.
279 cmpReg1 = MI.getOperand(1).getReg();
280
281 if (secondReg) {
282 cmpOp2 = MI.getOperand(2).getReg();
283
284 // If the same register appears as both operands, we cannot generate a new
285 // value compare. Only one operand may use the .new suffix.
286 if (cmpReg1 == cmpOp2)
287 return false;
288
289 // Make sure that the second register is not from COPY
290 // at machine code level, we don't need this, but if we decide
291 // to move new value jump prior to RA, we would be needing this.
293 if (!Register::isPhysicalRegister(cmpOp2)) {
294 MachineInstr *def = MRI.getVRegDef(cmpOp2);
295 if (def->getOpcode() == TargetOpcode::COPY)
296 return false;
297 }
298 }
299
300 // Walk the instructions after the compare (predicate def) to the jump,
301 // and satisfy the following conditions.
302 ++II;
303 for (MachineBasicBlock::iterator localII = II; localII != end; ++localII) {
304 if (localII->isDebugInstr())
305 continue;
306
307 // Check 1.
308 // If "common" checks fail, bail out.
309 if (!commonChecksToProhibitNewValueJump(optLocation, localII))
310 return false;
311
312 // Check 2.
313 // If there is a def or use of predicate (result of compare), bail out.
314 if (localII->modifiesRegister(pReg, TRI) ||
315 localII->readsRegister(pReg, TRI))
316 return false;
317
318 // Check 3.
319 // If there is a def of any of the use of the compare (operands of compare),
320 // bail out.
321 // Eg.
322 // p0 = cmp.eq(r2, r0)
323 // r2 = r4
324 // if (p0.new) jump:t .LBB28_3
325 if (localII->modifiesRegister(cmpReg1, TRI) ||
326 (secondReg && localII->modifiesRegister(cmpOp2, TRI)))
327 return false;
328 }
329 return true;
330}
331
332// Given a compare operator, return a matching New Value Jump compare operator.
333// Make sure that MI here is included in isNewValueJumpCandidate.
334static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg,
335 bool secondRegNewified,
336 MachineBasicBlock *jmpTarget,
338 *MBPI) {
339 bool taken = false;
340 MachineBasicBlock *Src = MI->getParent();
341 const BranchProbability Prediction =
342 MBPI->getEdgeProbability(Src, jmpTarget);
343
344 if (Prediction >= BranchProbability(1,2))
345 taken = true;
346
347 switch (MI->getOpcode()) {
348 case Hexagon::C2_cmpeq:
349 return taken ? Hexagon::J4_cmpeq_t_jumpnv_t
350 : Hexagon::J4_cmpeq_t_jumpnv_nt;
351
352 case Hexagon::C2_cmpeqi:
353 if (reg >= 0)
354 return taken ? Hexagon::J4_cmpeqi_t_jumpnv_t
355 : Hexagon::J4_cmpeqi_t_jumpnv_nt;
356 return taken ? Hexagon::J4_cmpeqn1_t_jumpnv_t
357 : Hexagon::J4_cmpeqn1_t_jumpnv_nt;
358
359 case Hexagon::C4_cmpneqi:
360 if (reg >= 0)
361 return taken ? Hexagon::J4_cmpeqi_f_jumpnv_t
362 : Hexagon::J4_cmpeqi_f_jumpnv_nt;
363 return taken ? Hexagon::J4_cmpeqn1_f_jumpnv_t :
364 Hexagon::J4_cmpeqn1_f_jumpnv_nt;
365
366 case Hexagon::C2_cmpgt:
367 if (secondRegNewified)
368 return taken ? Hexagon::J4_cmplt_t_jumpnv_t
369 : Hexagon::J4_cmplt_t_jumpnv_nt;
370 return taken ? Hexagon::J4_cmpgt_t_jumpnv_t
371 : Hexagon::J4_cmpgt_t_jumpnv_nt;
372
373 case Hexagon::C2_cmpgti:
374 if (reg >= 0)
375 return taken ? Hexagon::J4_cmpgti_t_jumpnv_t
376 : Hexagon::J4_cmpgti_t_jumpnv_nt;
377 return taken ? Hexagon::J4_cmpgtn1_t_jumpnv_t
378 : Hexagon::J4_cmpgtn1_t_jumpnv_nt;
379
380 case Hexagon::C2_cmpgtu:
381 if (secondRegNewified)
382 return taken ? Hexagon::J4_cmpltu_t_jumpnv_t
383 : Hexagon::J4_cmpltu_t_jumpnv_nt;
384 return taken ? Hexagon::J4_cmpgtu_t_jumpnv_t
385 : Hexagon::J4_cmpgtu_t_jumpnv_nt;
386
387 case Hexagon::C2_cmpgtui:
388 return taken ? Hexagon::J4_cmpgtui_t_jumpnv_t
389 : Hexagon::J4_cmpgtui_t_jumpnv_nt;
390
391 case Hexagon::C4_cmpneq:
392 return taken ? Hexagon::J4_cmpeq_f_jumpnv_t
393 : Hexagon::J4_cmpeq_f_jumpnv_nt;
394
395 case Hexagon::C4_cmplte:
396 if (secondRegNewified)
397 return taken ? Hexagon::J4_cmplt_f_jumpnv_t
398 : Hexagon::J4_cmplt_f_jumpnv_nt;
399 return taken ? Hexagon::J4_cmpgt_f_jumpnv_t
400 : Hexagon::J4_cmpgt_f_jumpnv_nt;
401
402 case Hexagon::C4_cmplteu:
403 if (secondRegNewified)
404 return taken ? Hexagon::J4_cmpltu_f_jumpnv_t
405 : Hexagon::J4_cmpltu_f_jumpnv_nt;
406 return taken ? Hexagon::J4_cmpgtu_f_jumpnv_t
407 : Hexagon::J4_cmpgtu_f_jumpnv_nt;
408
409 case Hexagon::C4_cmpltei:
410 if (reg >= 0)
411 return taken ? Hexagon::J4_cmpgti_f_jumpnv_t
412 : Hexagon::J4_cmpgti_f_jumpnv_nt;
413 return taken ? Hexagon::J4_cmpgtn1_f_jumpnv_t
414 : Hexagon::J4_cmpgtn1_f_jumpnv_nt;
415
416 case Hexagon::C4_cmplteui:
417 return taken ? Hexagon::J4_cmpgtui_f_jumpnv_t
418 : Hexagon::J4_cmpgtui_f_jumpnv_nt;
419
420 default:
421 llvm_unreachable("Could not find matching New Value Jump instruction.");
422 }
423 // return *some value* to avoid compiler warning
424 return 0;
425}
426
427bool HexagonNewValueJump::isNewValueJumpCandidate(
428 const MachineInstr &MI) const {
429 switch (MI.getOpcode()) {
430 case Hexagon::C2_cmpeq:
431 case Hexagon::C2_cmpeqi:
432 case Hexagon::C2_cmpgt:
433 case Hexagon::C2_cmpgti:
434 case Hexagon::C2_cmpgtu:
435 case Hexagon::C2_cmpgtui:
436 case Hexagon::C4_cmpneq:
437 case Hexagon::C4_cmpneqi:
438 case Hexagon::C4_cmplte:
439 case Hexagon::C4_cmplteu:
440 case Hexagon::C4_cmpltei:
441 case Hexagon::C4_cmplteui:
442 return true;
443
444 default:
445 return false;
446 }
447}
448
449bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
450 LLVM_DEBUG(dbgs() << "********** Hexagon New Value Jump **********\n"
451 << "********** Function: " << MF.getName() << "\n");
452
453 if (skipFunction(MF.getFunction()))
454 return false;
455
456 // If we move NewValueJump before register allocation we'll need live variable
457 // analysis here too.
458
459 QII = static_cast<const HexagonInstrInfo *>(MF.getSubtarget().getInstrInfo());
460 QRI = static_cast<const HexagonRegisterInfo *>(
462 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI();
463
466 return false;
467
468 int nvjCount = DbgNVJCount;
469 int nvjGenerated = 0;
470
471 // Loop through all the bb's of the function
472 for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
473 MBBb != MBBe; ++MBBb) {
474 MachineBasicBlock *MBB = &*MBBb;
475
476 LLVM_DEBUG(dbgs() << "** dumping bb ** " << MBB->getNumber() << "\n");
477 LLVM_DEBUG(MBB->dump());
478 LLVM_DEBUG(dbgs() << "\n"
479 << "********** dumping instr bottom up **********\n");
480 bool foundJump = false;
481 bool foundCompare = false;
482 bool invertPredicate = false;
483 unsigned predReg = 0; // predicate reg of the jump.
484 unsigned cmpReg1 = 0;
485 int cmpOp2 = 0;
488 MachineInstr *cmpInstr = nullptr, *jmpInstr = nullptr;
489 MachineBasicBlock *jmpTarget = nullptr;
490 bool afterRA = false;
491 bool isSecondOpReg = false;
492 bool isSecondOpNewified = false;
493 // Traverse the basic block - bottom up
494 for (MachineBasicBlock::iterator MII = MBB->end(), E = MBB->begin();
495 MII != E;) {
496 MachineInstr &MI = *--MII;
497 if (MI.isDebugInstr()) {
498 continue;
499 }
500
501 if ((nvjCount == 0) || (nvjCount > -1 && nvjCount <= nvjGenerated))
502 break;
503
504 LLVM_DEBUG(dbgs() << "Instr: "; MI.dump(); dbgs() << "\n");
505
506 if (!foundJump && (MI.getOpcode() == Hexagon::J2_jumpt ||
507 MI.getOpcode() == Hexagon::J2_jumptpt ||
508 MI.getOpcode() == Hexagon::J2_jumpf ||
509 MI.getOpcode() == Hexagon::J2_jumpfpt ||
510 MI.getOpcode() == Hexagon::J2_jumptnewpt ||
511 MI.getOpcode() == Hexagon::J2_jumptnew ||
512 MI.getOpcode() == Hexagon::J2_jumpfnewpt ||
513 MI.getOpcode() == Hexagon::J2_jumpfnew)) {
514 // This is where you would insert your compare and
515 // instr that feeds compare
516 jmpPos = MII;
517 jmpInstr = &MI;
518 predReg = MI.getOperand(0).getReg();
519 afterRA = Register::isPhysicalRegister(predReg);
520
521 // If ifconverter had not messed up with the kill flags of the
522 // operands, the following check on the kill flag would suffice.
523 // if(!jmpInstr->getOperand(0).isKill()) break;
524
525 // This predicate register is live out of BB
526 // this would only work if we can actually use Live
527 // variable analysis on phy regs - but LLVM does not
528 // provide LV analysis on phys regs.
529 //if(LVs.isLiveOut(predReg, *MBB)) break;
530
531 // Get all the successors of this block - which will always
532 // be 2. Check if the predicate register is live-in in those
533 // successor. If yes, we can not delete the predicate -
534 // I am doing this only because LLVM does not provide LiveOut
535 // at the BB level.
536 bool predLive = false;
537 for (const MachineBasicBlock *SuccMBB : MBB->successors())
538 if (SuccMBB->isLiveIn(predReg))
539 predLive = true;
540 if (predLive)
541 break;
542
543 if (!MI.getOperand(1).isMBB())
544 continue;
545 jmpTarget = MI.getOperand(1).getMBB();
546 foundJump = true;
547 if (MI.getOpcode() == Hexagon::J2_jumpf ||
548 MI.getOpcode() == Hexagon::J2_jumpfnewpt ||
549 MI.getOpcode() == Hexagon::J2_jumpfnew) {
550 invertPredicate = true;
551 }
552 continue;
553 }
554
555 // No new value jump if there is a barrier. A barrier has to be in its
556 // own packet. A barrier has zero operands. We conservatively bail out
557 // here if we see any instruction with zero operands.
558 if (foundJump && MI.getNumOperands() == 0)
559 break;
560
561 if (foundJump && !foundCompare && MI.getOperand(0).isReg() &&
562 MI.getOperand(0).getReg() == predReg) {
563 // Not all compares can be new value compare. Arch Spec: 7.6.1.1
564 if (isNewValueJumpCandidate(MI)) {
565 assert(
566 (MI.getDesc().isCompare()) &&
567 "Only compare instruction can be collapsed into New Value Jump");
568 isSecondOpReg = MI.getOperand(2).isReg();
569
570 if (!canCompareBeNewValueJump(QII, QRI, MII, predReg, isSecondOpReg,
571 afterRA, jmpPos, MF))
572 break;
573
574 cmpInstr = &MI;
575 cmpPos = MII;
576 foundCompare = true;
577
578 // We need cmpReg1 and cmpOp2(imm or reg) while building
579 // new value jump instruction.
580 cmpReg1 = MI.getOperand(1).getReg();
581
582 if (isSecondOpReg)
583 cmpOp2 = MI.getOperand(2).getReg();
584 else
585 cmpOp2 = MI.getOperand(2).getImm();
586 continue;
587 }
588 }
589
590 if (foundCompare && foundJump) {
591 // If "common" checks fail, bail out on this BB.
592 if (!commonChecksToProhibitNewValueJump(afterRA, MII))
593 break;
594
595 bool foundFeeder = false;
596 MachineBasicBlock::iterator feederPos = MII;
597 if (MI.getOperand(0).isReg() && MI.getOperand(0).isDef() &&
598 (MI.getOperand(0).getReg() == cmpReg1 ||
599 (isSecondOpReg &&
600 MI.getOperand(0).getReg() == (unsigned)cmpOp2))) {
601
602 Register feederReg = MI.getOperand(0).getReg();
603
604 // First try to see if we can get the feeder from the first operand
605 // of the compare. If we can not, and if secondOpReg is true
606 // (second operand of the compare is also register), try that one.
607 // TODO: Try to come up with some heuristic to figure out which
608 // feeder would benefit.
609
610 if (feederReg == cmpReg1) {
611 if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF)) {
612 if (!isSecondOpReg)
613 break;
614 else
615 continue;
616 } else
617 foundFeeder = true;
618 }
619
620 if (!foundFeeder && isSecondOpReg && feederReg == (unsigned)cmpOp2)
621 if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF))
622 break;
623
624 if (isSecondOpReg) {
625 // In case of CMPLT, or CMPLTU, or EQ with the second register
626 // to newify, swap the operands.
627 unsigned COp = cmpInstr->getOpcode();
628 if ((COp == Hexagon::C2_cmpeq || COp == Hexagon::C4_cmpneq) &&
629 (feederReg == (unsigned)cmpOp2)) {
630 unsigned tmp = cmpReg1;
631 cmpReg1 = cmpOp2;
632 cmpOp2 = tmp;
633 }
634
635 // Now we have swapped the operands, all we need to check is,
636 // if the second operand (after swap) is the feeder.
637 // And if it is, make a note.
638 if (feederReg == (unsigned)cmpOp2)
639 isSecondOpNewified = true;
640 }
641
642 // Now that we are moving feeder close the jump,
643 // make sure we are respecting the kill values of
644 // the operands of the feeder.
645
646 auto TransferKills = [jmpPos,cmpPos] (MachineInstr &MI) {
647 for (MachineOperand &MO : MI.operands()) {
648 if (!MO.isReg() || !MO.isUse())
649 continue;
650 Register UseR = MO.getReg();
651 for (auto I = std::next(MI.getIterator()); I != jmpPos; ++I) {
652 if (I == cmpPos)
653 continue;
654 for (MachineOperand &Op : I->operands()) {
655 if (!Op.isReg() || !Op.isUse() || !Op.isKill())
656 continue;
657 if (Op.getReg() != UseR)
658 continue;
659 // We found that there is kill of a use register
660 // Set up a kill flag on the register
661 Op.setIsKill(false);
662 MO.setIsKill(true);
663 return;
664 }
665 }
666 }
667 };
668
669 TransferKills(*feederPos);
670 TransferKills(*cmpPos);
671 bool MO1IsKill = cmpPos->killsRegister(cmpReg1, QRI);
672 bool MO2IsKill = isSecondOpReg && cmpPos->killsRegister(cmpOp2, QRI);
673
674 MBB->splice(jmpPos, MI.getParent(), MI);
675 MBB->splice(jmpPos, MI.getParent(), cmpInstr);
676 DebugLoc dl = MI.getDebugLoc();
677 MachineInstr *NewMI;
678
679 assert((isNewValueJumpCandidate(*cmpInstr)) &&
680 "This compare is not a New Value Jump candidate.");
681 unsigned opc = getNewValueJumpOpcode(cmpInstr, cmpOp2,
682 isSecondOpNewified,
683 jmpTarget, MBPI);
684 if (invertPredicate)
685 opc = QII->getInvertedPredicatedOpcode(opc);
686
687 if (isSecondOpReg)
688 NewMI = BuildMI(*MBB, jmpPos, dl, QII->get(opc))
689 .addReg(cmpReg1, getKillRegState(MO1IsKill))
690 .addReg(cmpOp2, getKillRegState(MO2IsKill))
691 .addMBB(jmpTarget);
692
693 else
694 NewMI = BuildMI(*MBB, jmpPos, dl, QII->get(opc))
695 .addReg(cmpReg1, getKillRegState(MO1IsKill))
696 .addImm(cmpOp2)
697 .addMBB(jmpTarget);
698
699 assert(NewMI && "New Value Jump Instruction Not created!");
700 (void)NewMI;
701 if (cmpInstr->getOperand(0).isReg() &&
702 cmpInstr->getOperand(0).isKill())
703 cmpInstr->getOperand(0).setIsKill(false);
704 if (cmpInstr->getOperand(1).isReg() &&
705 cmpInstr->getOperand(1).isKill())
706 cmpInstr->getOperand(1).setIsKill(false);
707 cmpInstr->eraseFromParent();
708 jmpInstr->eraseFromParent();
709 ++nvjGenerated;
710 ++NumNVJGenerated;
711 break;
712 }
713 }
714 }
715 }
716
717 return true;
718}
719
721 return new HexagonNewValueJump();
722}
unsigned const MachineRegisterInfo * MRI
aarch64 promote const
MachineBasicBlock & MBB
#define LLVM_DEBUG(X)
Definition: Debug.h:101
hexagon nvj
static cl::opt< bool > DisableNewValueJumps("disable-nvjump", cl::Hidden, cl::desc("Disable New Value Jumps"))
static bool canCompareBeNewValueJump(const HexagonInstrInfo *QII, const TargetRegisterInfo *TRI, MachineBasicBlock::iterator II, unsigned pReg, bool secondReg, bool optLocation, MachineBasicBlock::iterator end, MachineFunction &MF)
static bool commonChecksToProhibitNewValueJump(bool afterRA, MachineBasicBlock::iterator MII)
hexagon Hexagon static false bool canBeFeederToNewValueJump(const HexagonInstrInfo *QII, const TargetRegisterInfo *TRI, MachineBasicBlock::iterator II, MachineBasicBlock::iterator end, MachineBasicBlock::iterator skip, MachineFunction &MF)
static cl::opt< int > DbgNVJCount("nvj-count", cl::init(-1), cl::Hidden, cl::desc("Maximum number of predicated jumps to be converted to " "New Value Jump"))
hexagon Hexagon NewValueJump
static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg, bool secondRegNewified, MachineBasicBlock *jmpTarget, const MachineBranchProbabilityInfo *MBPI)
IRTranslator LLVM IR MI
static bool skip(DataExtractor &Data, uint64_t &Offset, bool SkippedRanges)
Skip an InlineInfo object in the specified data at the specified offset.
Definition: InlineInfo.cpp:77
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
uint64_t IntrinsicInst * II
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition: Value.cpp:469
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
iterator_range< succ_iterator > successors()
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
BranchProbability getEdgeProbability(const MachineBasicBlock *Src, const MachineBasicBlock *Dst) const
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
virtual MachineFunctionProperties getRequiredProperties() const
Properties which a MachineFunction may have at a given point in time.
MachineFunctionProperties & set(Property P)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
StringRef getName() const
getName - Return the name of the corresponding LLVM function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:569
void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:579
MachineOperand class - Representation of each machine instruction operand.
int64_t getImm() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
void setIsKill(bool Val=true)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
PassRegistry - This class manages the registration and intitialization of the pass subsystem as appli...
Definition: PassRegistry.h:37
void dump() const
Definition: Pass.cpp:136
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
static constexpr bool isPhysicalRegister(unsigned Reg)
Return true if the specified register number is in the physical register namespace.
Definition: Register.h:65
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
virtual const TargetRegisterInfo * getRegisterInfo() const
getRegisterInfo - If register information is available, return it.
virtual const TargetInstrInfo * getInstrInfo() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void initializeHexagonNewValueJumpPass(PassRegistry &)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
FunctionPass * createHexagonNewValueJump()
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
unsigned getKillRegState(bool B)