LLVM 19.0.0git
AMDGPUTargetTransformInfo.cpp
Go to the documentation of this file.
1//===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// \file
10// This file implements a TargetTransformInfo analysis pass specific to the
11// AMDGPU target machine. It uses the target's detailed information to provide
12// more precise answers to certain TTI queries, while letting the target
13// independent and default TTI implementations handle the rest.
14//
15//===----------------------------------------------------------------------===//
16
18#include "AMDGPUTargetMachine.h"
25#include "llvm/IR/IRBuilder.h"
26#include "llvm/IR/IntrinsicsAMDGPU.h"
29#include <optional>
30
31using namespace llvm;
32
33#define DEBUG_TYPE "AMDGPUtti"
34
36 "amdgpu-unroll-threshold-private",
37 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
38 cl::init(2700), cl::Hidden);
39
41 "amdgpu-unroll-threshold-local",
42 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
43 cl::init(1000), cl::Hidden);
44
46 "amdgpu-unroll-threshold-if",
47 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
48 cl::init(200), cl::Hidden);
49
51 "amdgpu-unroll-runtime-local",
52 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
53 cl::init(true), cl::Hidden);
54
56 "amdgpu-unroll-max-block-to-analyze",
57 cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
58 cl::init(32), cl::Hidden);
59
60static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
61 cl::Hidden, cl::init(4000),
62 cl::desc("Cost of alloca argument"));
63
64// If the amount of scratch memory to eliminate exceeds our ability to allocate
65// it into registers we gain nothing by aggressively inlining functions for that
66// heuristic.
68 ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
69 cl::init(256),
70 cl::desc("Maximum alloca size to use for inline cost"));
71
72// Inliner constraint to achieve reasonable compilation time.
74 "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
75 cl::desc("Maximum number of BBs allowed in a function after inlining"
76 " (compile time constraint)"));
77
78static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
79 unsigned Depth = 0) {
80 const Instruction *I = dyn_cast<Instruction>(Cond);
81 if (!I)
82 return false;
83
84 for (const Value *V : I->operand_values()) {
85 if (!L->contains(I))
86 continue;
87 if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
88 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
89 return SubLoop->contains(PHI); }))
90 return true;
91 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
92 return true;
93 }
94 return false;
95}
96
98 : BaseT(TM, F.getDataLayout()),
99 TargetTriple(TM->getTargetTriple()),
100 ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
101 TLI(ST->getTargetLowering()) {}
102
106 const Function &F = *L->getHeader()->getParent();
107 UP.Threshold =
108 F.getFnAttributeAsParsedInteger("amdgpu-unroll-threshold", 300);
109 UP.MaxCount = std::numeric_limits<unsigned>::max();
110 UP.Partial = true;
111
112 // Conditional branch in a loop back edge needs 3 additional exec
113 // manipulations in average.
114 UP.BEInsns += 3;
115
116 // We want to run unroll even for the loops which have been vectorized.
117 UP.UnrollVectorizedLoop = true;
118
119 // TODO: Do we want runtime unrolling?
120
121 // Maximum alloca size than can fit registers. Reserve 16 registers.
122 const unsigned MaxAlloca = (256 - 16) * 4;
123 unsigned ThresholdPrivate = UnrollThresholdPrivate;
124 unsigned ThresholdLocal = UnrollThresholdLocal;
125
126 // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
127 // provided threshold value as the default for Threshold
128 if (MDNode *LoopUnrollThreshold =
129 findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
130 if (LoopUnrollThreshold->getNumOperands() == 2) {
131 ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
132 LoopUnrollThreshold->getOperand(1));
133 if (MetaThresholdValue) {
134 // We will also use the supplied value for PartialThreshold for now.
135 // We may introduce additional metadata if it becomes necessary in the
136 // future.
137 UP.Threshold = MetaThresholdValue->getSExtValue();
139 ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
140 ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
141 }
142 }
143 }
144
145 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
146 for (const BasicBlock *BB : L->getBlocks()) {
147 const DataLayout &DL = BB->getDataLayout();
148 unsigned LocalGEPsSeen = 0;
149
150 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
151 return SubLoop->contains(BB); }))
152 continue; // Block belongs to an inner loop.
153
154 for (const Instruction &I : *BB) {
155 // Unroll a loop which contains an "if" statement whose condition
156 // defined by a PHI belonging to the loop. This may help to eliminate
157 // if region and potentially even PHI itself, saving on both divergence
158 // and registers used for the PHI.
159 // Add a small bonus for each of such "if" statements.
160 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
161 if (UP.Threshold < MaxBoost && Br->isConditional()) {
162 BasicBlock *Succ0 = Br->getSuccessor(0);
163 BasicBlock *Succ1 = Br->getSuccessor(1);
164 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
165 (L->contains(Succ1) && L->isLoopExiting(Succ1)))
166 continue;
167 if (dependsOnLocalPhi(L, Br->getCondition())) {
169 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
170 << " for loop:\n"
171 << *L << " due to " << *Br << '\n');
172 if (UP.Threshold >= MaxBoost)
173 return;
174 }
175 }
176 continue;
177 }
178
179 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
180 if (!GEP)
181 continue;
182
183 unsigned AS = GEP->getAddressSpace();
184 unsigned Threshold = 0;
186 Threshold = ThresholdPrivate;
188 Threshold = ThresholdLocal;
189 else
190 continue;
191
192 if (UP.Threshold >= Threshold)
193 continue;
194
195 if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
196 const Value *Ptr = GEP->getPointerOperand();
197 const AllocaInst *Alloca =
198 dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
199 if (!Alloca || !Alloca->isStaticAlloca())
200 continue;
201 Type *Ty = Alloca->getAllocatedType();
202 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
203 if (AllocaSize > MaxAlloca)
204 continue;
205 } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
207 LocalGEPsSeen++;
208 // Inhibit unroll for local memory if we have seen addressing not to
209 // a variable, most likely we will be unable to combine it.
210 // Do not unroll too deep inner loops for local memory to give a chance
211 // to unroll an outer loop for a more important reason.
212 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
213 (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
214 !isa<Argument>(GEP->getPointerOperand())))
215 continue;
216 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
217 << *L << " due to LDS use.\n");
219 }
220
221 // Check if GEP depends on a value defined by this loop itself.
222 bool HasLoopDef = false;
223 for (const Value *Op : GEP->operands()) {
224 const Instruction *Inst = dyn_cast<Instruction>(Op);
225 if (!Inst || L->isLoopInvariant(Op))
226 continue;
227
228 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
229 return SubLoop->contains(Inst); }))
230 continue;
231 HasLoopDef = true;
232 break;
233 }
234 if (!HasLoopDef)
235 continue;
236
237 // We want to do whatever we can to limit the number of alloca
238 // instructions that make it through to the code generator. allocas
239 // require us to use indirect addressing, which is slow and prone to
240 // compiler bugs. If this loop does an address calculation on an
241 // alloca ptr, then we want to use a higher than normal loop unroll
242 // threshold. This will give SROA a better chance to eliminate these
243 // allocas.
244 //
245 // We also want to have more unrolling for local memory to let ds
246 // instructions with different offsets combine.
247 //
248 // Don't use the maximum allowed value here as it will make some
249 // programs way too big.
250 UP.Threshold = Threshold;
251 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
252 << " for loop:\n"
253 << *L << " due to " << *GEP << '\n');
254 if (UP.Threshold >= MaxBoost)
255 return;
256 }
257
258 // If we got a GEP in a small BB from inner loop then increase max trip
259 // count to analyze for better estimation cost in unroll
260 if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
262 }
263}
264
268}
269
271 return 1024;
272}
273
274const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
275 // Codegen control options which don't matter.
276 AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
277 AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
278 AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
279 AMDGPU::FeatureUnalignedAccessMode,
280
281 AMDGPU::FeatureAutoWaitcntBeforeBarrier,
282
283 // Property of the kernel/environment which can't actually differ.
284 AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
285 AMDGPU::FeatureTrapHandler,
286
287 // The default assumption needs to be ecc is enabled, but no directly
288 // exposed operations depend on it, so it can be safely inlined.
289 AMDGPU::FeatureSRAMECC,
290
291 // Perf-tuning features
292 AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
293
295 : BaseT(TM, F.getDataLayout()),
296 ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
297 TLI(ST->getTargetLowering()), CommonTTI(TM, F),
298 IsGraphics(AMDGPU::isGraphics(F.getCallingConv())) {
299 SIModeRegisterDefaults Mode(F, *ST);
300 HasFP32Denormals = Mode.FP32Denormals != DenormalMode::getPreserveSign();
301 HasFP64FP16Denormals =
302 Mode.FP64FP16Denormals != DenormalMode::getPreserveSign();
303}
304
306 return !F || !ST->isSingleLaneExecution(*F);
307}
308
309unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
310 // NB: RCID is not an RCID. In fact it is 0 or 1 for scalar or vector
311 // registers. See getRegisterClassForType for the implementation.
312 // In this case vector registers are not vector in terms of
313 // VGPRs, but those which can hold multiple values.
314
315 // This is really the number of registers to fill when vectorizing /
316 // interleaving loops, so we lie to avoid trying to use all registers.
317 return 4;
318}
319
322 switch (K) {
324 return TypeSize::getFixed(32);
326 return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32);
328 return TypeSize::getScalable(0);
329 }
330 llvm_unreachable("Unsupported register kind");
331}
332
334 return 32;
335}
336
337unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
338 if (Opcode == Instruction::Load || Opcode == Instruction::Store)
339 return 32 * 4 / ElemWidth;
340 return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
341 : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
342 : 1;
343}
344
345unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
346 unsigned ChainSizeInBytes,
347 VectorType *VecTy) const {
348 unsigned VecRegBitWidth = VF * LoadSize;
349 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
350 // TODO: Support element-size less than 32bit?
351 return 128 / LoadSize;
352
353 return VF;
354}
355
356unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
357 unsigned ChainSizeInBytes,
358 VectorType *VecTy) const {
359 unsigned VecRegBitWidth = VF * StoreSize;
360 if (VecRegBitWidth > 128)
361 return 128 / StoreSize;
362
363 return VF;
364}
365
366unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
367 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
368 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
370 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER ||
371 AddrSpace == AMDGPUAS::BUFFER_RESOURCE ||
373 return 512;
374 }
375
376 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
377 return 8 * ST->getMaxPrivateElementSize();
378
379 // Common to flat, global, local and region. Assume for unknown addrspace.
380 return 128;
381}
382
383bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
384 Align Alignment,
385 unsigned AddrSpace) const {
386 // We allow vectorization of flat stores, even though we may need to decompose
387 // them later if they may access private memory. We don't have enough context
388 // here, and legalization can handle it.
389 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
390 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
391 ChainSizeInBytes <= ST->getMaxPrivateElementSize();
392 }
393 return true;
394}
395
396bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
397 Align Alignment,
398 unsigned AddrSpace) const {
399 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
400}
401
402bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
403 Align Alignment,
404 unsigned AddrSpace) const {
405 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
406}
407
409 return 1024;
410}
411
412// FIXME: Really we would like to issue multiple 128-bit loads and stores per
413// iteration. Should we report a larger size and let it legalize?
414//
415// FIXME: Should we use narrower types for local/region, or account for when
416// unaligned access is legal?
417//
418// FIXME: This could use fine tuning and microbenchmarks.
420 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
421 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign,
422 std::optional<uint32_t> AtomicElementSize) const {
423
424 if (AtomicElementSize)
425 return Type::getIntNTy(Context, *AtomicElementSize * 8);
426
427 unsigned MinAlign = std::min(SrcAlign, DestAlign);
428
429 // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
430 // hardware into byte accesses. If you assume all alignments are equally
431 // probable, it's more efficient on average to use short accesses for this
432 // case.
433 if (MinAlign == 2)
434 return Type::getInt16Ty(Context);
435
436 // Not all subtargets have 128-bit DS instructions, and we currently don't
437 // form them by default.
438 if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
439 SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
440 DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
441 DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
442 return FixedVectorType::get(Type::getInt32Ty(Context), 2);
443 }
444
445 // Global memory works best with 16-byte accesses. Private memory will also
446 // hit this, although they'll be decomposed.
447 return FixedVectorType::get(Type::getInt32Ty(Context), 4);
448}
449
451 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
452 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
453 unsigned SrcAlign, unsigned DestAlign,
454 std::optional<uint32_t> AtomicCpySize) const {
455 assert(RemainingBytes < 16);
456
457 if (AtomicCpySize)
459 OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
460 DestAlign, AtomicCpySize);
461
462 unsigned MinAlign = std::min(SrcAlign, DestAlign);
463
464 if (MinAlign != 2) {
465 Type *I64Ty = Type::getInt64Ty(Context);
466 while (RemainingBytes >= 8) {
467 OpsOut.push_back(I64Ty);
468 RemainingBytes -= 8;
469 }
470
471 Type *I32Ty = Type::getInt32Ty(Context);
472 while (RemainingBytes >= 4) {
473 OpsOut.push_back(I32Ty);
474 RemainingBytes -= 4;
475 }
476 }
477
478 Type *I16Ty = Type::getInt16Ty(Context);
479 while (RemainingBytes >= 2) {
480 OpsOut.push_back(I16Ty);
481 RemainingBytes -= 2;
482 }
483
484 Type *I8Ty = Type::getInt8Ty(Context);
485 while (RemainingBytes) {
486 OpsOut.push_back(I8Ty);
487 --RemainingBytes;
488 }
489}
490
492 // Disable unrolling if the loop is not vectorized.
493 // TODO: Enable this again.
494 if (VF.isScalar())
495 return 1;
496
497 return 8;
498}
499
501 MemIntrinsicInfo &Info) const {
502 switch (Inst->getIntrinsicID()) {
503 case Intrinsic::amdgcn_ds_ordered_add:
504 case Intrinsic::amdgcn_ds_ordered_swap: {
505 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
506 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
507 if (!Ordering || !Volatile)
508 return false; // Invalid.
509
510 unsigned OrderingVal = Ordering->getZExtValue();
511 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
512 return false;
513
514 Info.PtrVal = Inst->getArgOperand(0);
515 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
516 Info.ReadMem = true;
517 Info.WriteMem = true;
518 Info.IsVolatile = !Volatile->isZero();
519 return true;
520 }
521 default:
522 return false;
523 }
524}
525
527 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
530 const Instruction *CxtI) {
531
532 // Legalize the type.
533 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
534 int ISD = TLI->InstructionOpcodeToISD(Opcode);
535
536 // Because we don't have any legal vector operations, but the legal types, we
537 // need to account for split vectors.
538 unsigned NElts = LT.second.isVector() ?
539 LT.second.getVectorNumElements() : 1;
540
541 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
542
543 switch (ISD) {
544 case ISD::SHL:
545 case ISD::SRL:
546 case ISD::SRA:
547 if (SLT == MVT::i64)
548 return get64BitInstrCost(CostKind) * LT.first * NElts;
549
550 if (ST->has16BitInsts() && SLT == MVT::i16)
551 NElts = (NElts + 1) / 2;
552
553 // i32
554 return getFullRateInstrCost() * LT.first * NElts;
555 case ISD::ADD:
556 case ISD::SUB:
557 case ISD::AND:
558 case ISD::OR:
559 case ISD::XOR:
560 if (SLT == MVT::i64) {
561 // and, or and xor are typically split into 2 VALU instructions.
562 return 2 * getFullRateInstrCost() * LT.first * NElts;
563 }
564
565 if (ST->has16BitInsts() && SLT == MVT::i16)
566 NElts = (NElts + 1) / 2;
567
568 return LT.first * NElts * getFullRateInstrCost();
569 case ISD::MUL: {
570 const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
571 if (SLT == MVT::i64) {
572 const int FullRateCost = getFullRateInstrCost();
573 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
574 }
575
576 if (ST->has16BitInsts() && SLT == MVT::i16)
577 NElts = (NElts + 1) / 2;
578
579 // i32
580 return QuarterRateCost * NElts * LT.first;
581 }
582 case ISD::FMUL:
583 // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
584 // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
585 // fused operation.
586 if (CxtI && CxtI->hasOneUse())
587 if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
588 const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
589 if (OPC == ISD::FADD || OPC == ISD::FSUB) {
590 if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
592 if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
594
595 // Estimate all types may be fused with contract/unsafe flags
597 if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
598 Options.UnsafeFPMath ||
599 (FAdd->hasAllowContract() && CxtI->hasAllowContract()))
601 }
602 }
603 [[fallthrough]];
604 case ISD::FADD:
605 case ISD::FSUB:
606 if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
607 NElts = (NElts + 1) / 2;
608 if (SLT == MVT::f64)
609 return LT.first * NElts * get64BitInstrCost(CostKind);
610
611 if (ST->has16BitInsts() && SLT == MVT::f16)
612 NElts = (NElts + 1) / 2;
613
614 if (SLT == MVT::f32 || SLT == MVT::f16)
615 return LT.first * NElts * getFullRateInstrCost();
616 break;
617 case ISD::FDIV:
618 case ISD::FREM:
619 // FIXME: frem should be handled separately. The fdiv in it is most of it,
620 // but the current lowering is also not entirely correct.
621 if (SLT == MVT::f64) {
622 int Cost = 7 * get64BitInstrCost(CostKind) +
623 getQuarterRateInstrCost(CostKind) +
624 3 * getHalfRateInstrCost(CostKind);
625 // Add cost of workaround.
627 Cost += 3 * getFullRateInstrCost();
628
629 return LT.first * Cost * NElts;
630 }
631
632 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
633 // TODO: This is more complicated, unsafe flags etc.
634 if ((SLT == MVT::f32 && !HasFP32Denormals) ||
635 (SLT == MVT::f16 && ST->has16BitInsts())) {
636 return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
637 }
638 }
639
640 if (SLT == MVT::f16 && ST->has16BitInsts()) {
641 // 2 x v_cvt_f32_f16
642 // f32 rcp
643 // f32 fmul
644 // v_cvt_f16_f32
645 // f16 div_fixup
646 int Cost =
647 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
648 return LT.first * Cost * NElts;
649 }
650
651 if (SLT == MVT::f32 && ((CxtI && CxtI->hasApproxFunc()) ||
653 // Fast unsafe fdiv lowering:
654 // f32 rcp
655 // f32 fmul
656 int Cost = getQuarterRateInstrCost(CostKind) + getFullRateInstrCost();
657 return LT.first * Cost * NElts;
658 }
659
660 if (SLT == MVT::f32 || SLT == MVT::f16) {
661 // 4 more v_cvt_* insts without f16 insts support
662 int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
663 1 * getQuarterRateInstrCost(CostKind);
664
665 if (!HasFP32Denormals) {
666 // FP mode switches.
667 Cost += 2 * getFullRateInstrCost();
668 }
669
670 return LT.first * NElts * Cost;
671 }
672 break;
673 case ISD::FNEG:
674 // Use the backend' estimation. If fneg is not free each element will cost
675 // one additional instruction.
676 return TLI->isFNegFree(SLT) ? 0 : NElts;
677 default:
678 break;
679 }
680
681 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
682 Args, CxtI);
683}
684
685// Return true if there's a potential benefit from using v2f16/v2i16
686// instructions for an intrinsic, even if it requires nontrivial legalization.
688 switch (ID) {
689 case Intrinsic::fma: // TODO: fmuladd
690 // There's a small benefit to using vector ops in the legalized code.
691 case Intrinsic::round:
692 case Intrinsic::uadd_sat:
693 case Intrinsic::usub_sat:
694 case Intrinsic::sadd_sat:
695 case Intrinsic::ssub_sat:
696 return true;
697 default:
698 return false;
699 }
700}
701
705 if (ICA.getID() == Intrinsic::fabs)
706 return 0;
707
710
711 Type *RetTy = ICA.getReturnType();
712
713 // Legalize the type.
714 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(RetTy);
715
716 unsigned NElts = LT.second.isVector() ?
717 LT.second.getVectorNumElements() : 1;
718
719 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
720
721 if (SLT == MVT::f64)
722 return LT.first * NElts * get64BitInstrCost(CostKind);
723
724 if ((ST->has16BitInsts() && SLT == MVT::f16) ||
725 (ST->hasPackedFP32Ops() && SLT == MVT::f32))
726 NElts = (NElts + 1) / 2;
727
728 // TODO: Get more refined intrinsic costs?
729 unsigned InstRate = getQuarterRateInstrCost(CostKind);
730
731 switch (ICA.getID()) {
732 case Intrinsic::fma:
733 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
734 : getQuarterRateInstrCost(CostKind);
735 break;
736 case Intrinsic::uadd_sat:
737 case Intrinsic::usub_sat:
738 case Intrinsic::sadd_sat:
739 case Intrinsic::ssub_sat:
740 static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
741 if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
742 NElts = 1;
743 break;
744 }
745
746 return LT.first * NElts * InstRate;
747}
748
751 const Instruction *I) {
752 assert((I == nullptr || I->getOpcode() == Opcode) &&
753 "Opcode should reflect passed instruction.");
754 const bool SCost =
756 const int CBrCost = SCost ? 5 : 7;
757 switch (Opcode) {
758 case Instruction::Br: {
759 // Branch instruction takes about 4 slots on gfx900.
760 auto BI = dyn_cast_or_null<BranchInst>(I);
761 if (BI && BI->isUnconditional())
762 return SCost ? 1 : 4;
763 // Suppose conditional branch takes additional 3 exec manipulations
764 // instructions in average.
765 return CBrCost;
766 }
767 case Instruction::Switch: {
768 auto SI = dyn_cast_or_null<SwitchInst>(I);
769 // Each case (including default) takes 1 cmp + 1 cbr instructions in
770 // average.
771 return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1);
772 }
773 case Instruction::Ret:
774 return SCost ? 1 : 10;
775 }
776 return BaseT::getCFInstrCost(Opcode, CostKind, I);
777}
778
781 std::optional<FastMathFlags> FMF,
784 return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
785
786 EVT OrigTy = TLI->getValueType(DL, Ty);
787
788 // Computes cost on targets that have packed math instructions(which support
789 // 16-bit types only).
790 if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
791 return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
792
793 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
794 return LT.first * getFullRateInstrCost();
795}
796
799 FastMathFlags FMF,
801 EVT OrigTy = TLI->getValueType(DL, Ty);
802
803 // Computes cost on targets that have packed math instructions(which support
804 // 16-bit types only).
805 if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
806 return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
807
808 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
809 return LT.first * getHalfRateInstrCost(CostKind);
810}
811
814 unsigned Index, Value *Op0,
815 Value *Op1) {
816 switch (Opcode) {
817 case Instruction::ExtractElement:
818 case Instruction::InsertElement: {
819 unsigned EltSize
820 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
821 if (EltSize < 32) {
822 if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
823 return 0;
824 return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0,
825 Op1);
826 }
827
828 // Extracts are just reads of a subregister, so are free. Inserts are
829 // considered free because we don't want to have any cost for scalarizing
830 // operations, and we don't have to copy into a different register class.
831
832 // Dynamic indexing isn't free and is best avoided.
833 return Index == ~0u ? 2 : 0;
834 }
835 default:
836 return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1);
837 }
838}
839
840/// Analyze if the results of inline asm are divergent. If \p Indices is empty,
841/// this is analyzing the collective result of all output registers. Otherwise,
842/// this is only querying a specific result index if this returns multiple
843/// registers in a struct.
845 const CallInst *CI, ArrayRef<unsigned> Indices) const {
846 // TODO: Handle complex extract indices
847 if (Indices.size() > 1)
848 return true;
849
850 const DataLayout &DL = CI->getDataLayout();
851 const SIRegisterInfo *TRI = ST->getRegisterInfo();
852 TargetLowering::AsmOperandInfoVector TargetConstraints =
853 TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
854
855 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
856
857 int OutputIdx = 0;
858 for (auto &TC : TargetConstraints) {
859 if (TC.Type != InlineAsm::isOutput)
860 continue;
861
862 // Skip outputs we don't care about.
863 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
864 continue;
865
867
869 TRI, TC.ConstraintCode, TC.ConstraintVT).second;
870
871 // For AGPR constraints null is returned on subtargets without AGPRs, so
872 // assume divergent for null.
873 if (!RC || !TRI->isSGPRClass(RC))
874 return true;
875 }
876
877 return false;
878}
879
881 const IntrinsicInst *ReadReg) const {
882 Metadata *MD =
883 cast<MetadataAsValue>(ReadReg->getArgOperand(0))->getMetadata();
885 cast<MDString>(cast<MDNode>(MD)->getOperand(0))->getString();
886
887 // Special case registers that look like VCC.
888 MVT VT = MVT::getVT(ReadReg->getType());
889 if (VT == MVT::i1)
890 return true;
891
892 // Special case scalar registers that start with 'v'.
893 if (RegName.starts_with("vcc") || RegName.empty())
894 return false;
895
896 // VGPR or AGPR is divergent. There aren't any specially named vector
897 // registers.
898 return RegName[0] == 'v' || RegName[0] == 'a';
899}
900
901/// \returns true if the result of the value could potentially be
902/// different across workitems in a wavefront.
904 if (const Argument *A = dyn_cast<Argument>(V))
906
907 // Loads from the private and flat address spaces are divergent, because
908 // threads can execute the load instruction with the same inputs and get
909 // different results.
910 //
911 // All other loads are not divergent, because if threads issue loads with the
912 // same arguments, they will always get the same result.
913 if (const LoadInst *Load = dyn_cast<LoadInst>(V))
914 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
915 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
916
917 // Atomics are divergent because they are executed sequentially: when an
918 // atomic operation refers to the same address in each thread, then each
919 // thread after the first sees the value written by the previous thread as
920 // original value.
921 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
922 return true;
923
924 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
925 if (Intrinsic->getIntrinsicID() == Intrinsic::read_register)
926 return isReadRegisterSourceOfDivergence(Intrinsic);
927
928 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
929 }
930
931 // Assume all function calls are a source of divergence.
932 if (const CallInst *CI = dyn_cast<CallInst>(V)) {
933 if (CI->isInlineAsm())
935 return true;
936 }
937
938 // Assume all function calls are a source of divergence.
939 if (isa<InvokeInst>(V))
940 return true;
941
942 return false;
943}
944
945bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
946 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
947 return AMDGPU::isIntrinsicAlwaysUniform(Intrinsic->getIntrinsicID());
948
949 if (const CallInst *CI = dyn_cast<CallInst>(V)) {
950 if (CI->isInlineAsm())
952 return false;
953 }
954
955 // In most cases TID / wavefrontsize is uniform.
956 //
957 // However, if a kernel has uneven dimesions we can have a value of
958 // workitem-id-x divided by the wavefrontsize non-uniform. For example
959 // dimensions (65, 2) will have workitems with address (64, 0) and (0, 1)
960 // packed into a same wave which gives 1 and 0 after the division by 64
961 // respectively.
962 //
963 // FIXME: limit it to 1D kernels only, although that shall be possible
964 // to perform this optimization is the size of the X dimension is a power
965 // of 2, we just do not currently have infrastructure to query it.
966 using namespace llvm::PatternMatch;
967 uint64_t C;
968 if (match(V, m_LShr(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
969 m_ConstantInt(C))) ||
970 match(V, m_AShr(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
971 m_ConstantInt(C)))) {
972 const Function *F = cast<Instruction>(V)->getFunction();
973 return C >= ST->getWavefrontSizeLog2() &&
974 ST->getMaxWorkitemID(*F, 1) == 0 && ST->getMaxWorkitemID(*F, 2) == 0;
975 }
976
977 Value *Mask;
978 if (match(V, m_c_And(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
979 m_Value(Mask)))) {
980 const Function *F = cast<Instruction>(V)->getFunction();
981 const DataLayout &DL = F->getDataLayout();
982 return computeKnownBits(Mask, DL).countMinTrailingZeros() >=
983 ST->getWavefrontSizeLog2() &&
984 ST->getMaxWorkitemID(*F, 1) == 0 && ST->getMaxWorkitemID(*F, 2) == 0;
985 }
986
987 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
988 if (!ExtValue)
989 return false;
990
991 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
992 if (!CI)
993 return false;
994
995 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
996 switch (Intrinsic->getIntrinsicID()) {
997 default:
998 return false;
999 case Intrinsic::amdgcn_if:
1000 case Intrinsic::amdgcn_else: {
1001 ArrayRef<unsigned> Indices = ExtValue->getIndices();
1002 return Indices.size() == 1 && Indices[0] == 1;
1003 }
1004 }
1005 }
1006
1007 // If we have inline asm returning mixed SGPR and VGPR results, we inferred
1008 // divergent for the overall struct return. We need to override it in the
1009 // case we're extracting an SGPR component here.
1010 if (CI->isInlineAsm())
1011 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
1012
1013 return false;
1014}
1015
1017 Intrinsic::ID IID) const {
1018 switch (IID) {
1019 case Intrinsic::amdgcn_is_shared:
1020 case Intrinsic::amdgcn_is_private:
1021 case Intrinsic::amdgcn_flat_atomic_fadd:
1022 case Intrinsic::amdgcn_flat_atomic_fmax:
1023 case Intrinsic::amdgcn_flat_atomic_fmin:
1024 case Intrinsic::amdgcn_flat_atomic_fmax_num:
1025 case Intrinsic::amdgcn_flat_atomic_fmin_num:
1026 OpIndexes.push_back(0);
1027 return true;
1028 default:
1029 return false;
1030 }
1031}
1032
1034 Value *OldV,
1035 Value *NewV) const {
1036 auto IntrID = II->getIntrinsicID();
1037 switch (IntrID) {
1038 case Intrinsic::amdgcn_is_shared:
1039 case Intrinsic::amdgcn_is_private: {
1040 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
1042 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1043 LLVMContext &Ctx = NewV->getType()->getContext();
1044 ConstantInt *NewVal = (TrueAS == NewAS) ?
1046 return NewVal;
1047 }
1048 case Intrinsic::ptrmask: {
1049 unsigned OldAS = OldV->getType()->getPointerAddressSpace();
1050 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1051 Value *MaskOp = II->getArgOperand(1);
1052 Type *MaskTy = MaskOp->getType();
1053
1054 bool DoTruncate = false;
1055
1056 const GCNTargetMachine &TM =
1057 static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
1058 if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
1059 // All valid 64-bit to 32-bit casts work by chopping off the high
1060 // bits. Any masking only clearing the low bits will also apply in the new
1061 // address space.
1062 if (DL.getPointerSizeInBits(OldAS) != 64 ||
1063 DL.getPointerSizeInBits(NewAS) != 32)
1064 return nullptr;
1065
1066 // TODO: Do we need to thread more context in here?
1067 KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
1068 if (Known.countMinLeadingOnes() < 32)
1069 return nullptr;
1070
1071 DoTruncate = true;
1072 }
1073
1074 IRBuilder<> B(II);
1075 if (DoTruncate) {
1076 MaskTy = B.getInt32Ty();
1077 MaskOp = B.CreateTrunc(MaskOp, MaskTy);
1078 }
1079
1080 return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
1081 {NewV, MaskOp});
1082 }
1083 case Intrinsic::amdgcn_flat_atomic_fadd:
1084 case Intrinsic::amdgcn_flat_atomic_fmax:
1085 case Intrinsic::amdgcn_flat_atomic_fmin:
1086 case Intrinsic::amdgcn_flat_atomic_fmax_num:
1087 case Intrinsic::amdgcn_flat_atomic_fmin_num: {
1088 Type *DestTy = II->getType();
1089 Type *SrcTy = NewV->getType();
1090 unsigned NewAS = SrcTy->getPointerAddressSpace();
1092 return nullptr;
1093 Module *M = II->getModule();
1094 Function *NewDecl = Intrinsic::getDeclaration(M, II->getIntrinsicID(),
1095 {DestTy, SrcTy, DestTy});
1096 II->setArgOperand(0, NewV);
1097 II->setCalledFunction(NewDecl);
1098 return II;
1099 }
1100 default:
1101 return nullptr;
1102 }
1103}
1104
1106 VectorType *VT, ArrayRef<int> Mask,
1108 int Index, VectorType *SubTp,
1110 const Instruction *CxtI) {
1111 if (!isa<FixedVectorType>(VT))
1112 return BaseT::getShuffleCost(Kind, VT, Mask, CostKind, Index, SubTp);
1113
1114 Kind = improveShuffleKindFromMask(Kind, Mask, VT, Index, SubTp);
1115
1116 // Larger vector widths may require additional instructions, but are
1117 // typically cheaper than scalarized versions.
1118 unsigned NumVectorElts = cast<FixedVectorType>(VT)->getNumElements();
1120 DL.getTypeSizeInBits(VT->getElementType()) == 16) {
1121 bool HasVOP3P = ST->hasVOP3PInsts();
1122 unsigned RequestedElts =
1123 count_if(Mask, [](int MaskElt) { return MaskElt != -1; });
1124 if (RequestedElts == 0)
1125 return 0;
1126 switch (Kind) {
1127 case TTI::SK_Broadcast:
1128 case TTI::SK_Reverse:
1130 // With op_sel VOP3P instructions freely can access the low half or high
1131 // half of a register, so any swizzle of two elements is free.
1132 if (HasVOP3P && NumVectorElts == 2)
1133 return 0;
1134 unsigned NumPerms = alignTo(RequestedElts, 2) / 2;
1135 // SK_Broadcast just reuses the same mask
1136 unsigned NumPermMasks = Kind == TTI::SK_Broadcast ? 1 : NumPerms;
1137 return NumPerms + NumPermMasks;
1138 }
1141 // Even aligned accesses are free
1142 if (!(Index % 2))
1143 return 0;
1144 // Insert/extract subvectors only require shifts / extract code to get the
1145 // relevant bits
1146 return alignTo(RequestedElts, 2) / 2;
1147 }
1149 case TTI::SK_Splice:
1150 case TTI::SK_Select: {
1151 unsigned NumPerms = alignTo(RequestedElts, 2) / 2;
1152 // SK_Select just reuses the same mask
1153 unsigned NumPermMasks = Kind == TTI::SK_Select ? 1 : NumPerms;
1154 return NumPerms + NumPermMasks;
1155 }
1156
1157 default:
1158 break;
1159 }
1160 }
1161
1162 return BaseT::getShuffleCost(Kind, VT, Mask, CostKind, Index, SubTp);
1163}
1164
1166 const Function *Callee) const {
1167 const TargetMachine &TM = getTLI()->getTargetMachine();
1168 const GCNSubtarget *CallerST
1169 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
1170 const GCNSubtarget *CalleeST
1171 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
1172
1173 const FeatureBitset &CallerBits = CallerST->getFeatureBits();
1174 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
1175
1176 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
1177 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
1178 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
1179 return false;
1180
1181 // FIXME: dx10_clamp can just take the caller setting, but there seems to be
1182 // no way to support merge for backend defined attributes.
1183 SIModeRegisterDefaults CallerMode(*Caller, *CallerST);
1184 SIModeRegisterDefaults CalleeMode(*Callee, *CalleeST);
1185 if (!CallerMode.isInlineCompatible(CalleeMode))
1186 return false;
1187
1188 if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
1189 Callee->hasFnAttribute(Attribute::InlineHint))
1190 return true;
1191
1192 // Hack to make compile times reasonable.
1193 if (InlineMaxBB) {
1194 // Single BB does not increase total BB amount.
1195 if (Callee->size() == 1)
1196 return true;
1197 size_t BBSize = Caller->size() + Callee->size() - 1;
1198 return BBSize <= InlineMaxBB;
1199 }
1200
1201 return true;
1202}
1203
1205 const SITargetLowering *TLI,
1206 const GCNTTIImpl *TTIImpl) {
1207 const int NrOfSGPRUntilSpill = 26;
1208 const int NrOfVGPRUntilSpill = 32;
1209
1210 const DataLayout &DL = TTIImpl->getDataLayout();
1211
1212 unsigned adjustThreshold = 0;
1213 int SGPRsInUse = 0;
1214 int VGPRsInUse = 0;
1215 for (const Use &A : CB->args()) {
1216 SmallVector<EVT, 4> ValueVTs;
1217 ComputeValueVTs(*TLI, DL, A.get()->getType(), ValueVTs);
1218 for (auto ArgVT : ValueVTs) {
1219 unsigned CCRegNum = TLI->getNumRegistersForCallingConv(
1220 CB->getContext(), CB->getCallingConv(), ArgVT);
1222 SGPRsInUse += CCRegNum;
1223 else
1224 VGPRsInUse += CCRegNum;
1225 }
1226 }
1227
1228 // The cost of passing function arguments through the stack:
1229 // 1 instruction to put a function argument on the stack in the caller.
1230 // 1 instruction to take a function argument from the stack in callee.
1231 // 1 instruction is explicitly take care of data dependencies in callee
1232 // function.
1233 InstructionCost ArgStackCost(1);
1234 ArgStackCost += const_cast<GCNTTIImpl *>(TTIImpl)->getMemoryOpCost(
1235 Instruction::Store, Type::getInt32Ty(CB->getContext()), Align(4),
1237 ArgStackCost += const_cast<GCNTTIImpl *>(TTIImpl)->getMemoryOpCost(
1238 Instruction::Load, Type::getInt32Ty(CB->getContext()), Align(4),
1240
1241 // The penalty cost is computed relative to the cost of instructions and does
1242 // not model any storage costs.
1243 adjustThreshold += std::max(0, SGPRsInUse - NrOfSGPRUntilSpill) *
1244 *ArgStackCost.getValue() * InlineConstants::getInstrCost();
1245 adjustThreshold += std::max(0, VGPRsInUse - NrOfVGPRUntilSpill) *
1246 *ArgStackCost.getValue() * InlineConstants::getInstrCost();
1247 return adjustThreshold;
1248}
1249
1250static unsigned getCallArgsTotalAllocaSize(const CallBase *CB,
1251 const DataLayout &DL) {
1252 // If we have a pointer to a private array passed into a function
1253 // it will not be optimized out, leaving scratch usage.
1254 // This function calculates the total size in bytes of the memory that would
1255 // end in scratch if the call was not inlined.
1256 unsigned AllocaSize = 0;
1258 for (Value *PtrArg : CB->args()) {
1259 PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
1260 if (!Ty)
1261 continue;
1262
1263 unsigned AddrSpace = Ty->getAddressSpace();
1264 if (AddrSpace != AMDGPUAS::FLAT_ADDRESS &&
1265 AddrSpace != AMDGPUAS::PRIVATE_ADDRESS)
1266 continue;
1267
1268 const AllocaInst *AI = dyn_cast<AllocaInst>(getUnderlyingObject(PtrArg));
1269 if (!AI || !AI->isStaticAlloca() || !AIVisited.insert(AI).second)
1270 continue;
1271
1272 AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
1273 }
1274 return AllocaSize;
1275}
1276
1278 unsigned Threshold = adjustInliningThresholdUsingCallee(CB, TLI, this);
1279
1280 // Private object passed as arguments may end up in scratch usage if the call
1281 // is not inlined. Increase the inline threshold to promote inlining.
1282 unsigned AllocaSize = getCallArgsTotalAllocaSize(CB, DL);
1283 if (AllocaSize > 0)
1284 Threshold += ArgAllocaCost;
1285 return Threshold;
1286}
1287
1289 const AllocaInst *AI) const {
1290
1291 // Below the cutoff, assume that the private memory objects would be
1292 // optimized
1293 auto AllocaSize = getCallArgsTotalAllocaSize(CB, DL);
1294 if (AllocaSize <= ArgAllocaCutoff)
1295 return 0;
1296
1297 // Above the cutoff, we give a cost to each private memory object
1298 // depending its size. If the array can be optimized by SROA this cost is not
1299 // added to the total-cost in the inliner cost analysis.
1300 //
1301 // We choose the total cost of the alloca such that their sum cancels the
1302 // bonus given in the threshold (ArgAllocaCost).
1303 //
1304 // Cost_Alloca_0 + ... + Cost_Alloca_N == ArgAllocaCost
1305 //
1306 // Awkwardly, the ArgAllocaCost bonus is multiplied by threshold-multiplier,
1307 // the single-bb bonus and the vector-bonus.
1308 //
1309 // We compensate the first two multipliers, by repeating logic from the
1310 // inliner-cost in here. The vector-bonus is 0 on AMDGPU.
1311 static_assert(InlinerVectorBonusPercent == 0, "vector bonus assumed to be 0");
1312 unsigned Threshold = ArgAllocaCost * getInliningThresholdMultiplier();
1313
1314 bool SingleBB = none_of(*CB->getCalledFunction(), [](const BasicBlock &BB) {
1315 return BB.getTerminator()->getNumSuccessors() > 1;
1316 });
1317 if (SingleBB) {
1318 Threshold += Threshold / 2;
1319 }
1320
1321 auto ArgAllocaSize = DL.getTypeAllocSize(AI->getAllocatedType());
1322
1323 // Attribute the bonus proportionally to the alloca size
1324 unsigned AllocaThresholdBonus = (Threshold * ArgAllocaSize) / AllocaSize;
1325
1326 return AllocaThresholdBonus;
1327}
1328
1332 CommonTTI.getUnrollingPreferences(L, SE, UP, ORE);
1333}
1334
1337 CommonTTI.getPeelingPreferences(L, SE, PP);
1338}
1339
1340int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
1341 return ST->hasFullRate64Ops()
1342 ? getFullRateInstrCost()
1343 : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
1344 : getQuarterRateInstrCost(CostKind);
1345}
1346
1347std::pair<InstructionCost, MVT>
1348GCNTTIImpl::getTypeLegalizationCost(Type *Ty) const {
1349 std::pair<InstructionCost, MVT> Cost = BaseT::getTypeLegalizationCost(Ty);
1350 auto Size = DL.getTypeSizeInBits(Ty);
1351 // Maximum load or store can handle 8 dwords for scalar and 4 for
1352 // vector ALU. Let's assume anything above 8 dwords is expensive
1353 // even if legal.
1354 if (Size <= 256)
1355 return Cost;
1356
1357 Cost.first += (Size + 255) / 256;
1358 return Cost;
1359}
1360
1362 return ST->hasPrefetch() ? 128 : 0;
1363}
1364
1367}
aarch64 promote const
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Provides AMDGPU specific target descriptions.
Rewrite undef for PHI
The AMDGPU TargetMachine interface definition for hw codegen targets.
static cl::opt< unsigned > UnrollThresholdIf("amdgpu-unroll-threshold-if", cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), cl::init(200), cl::Hidden)
static cl::opt< unsigned > ArgAllocaCost("amdgpu-inline-arg-alloca-cost", cl::Hidden, cl::init(4000), cl::desc("Cost of alloca argument"))
static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, unsigned Depth=0)
static cl::opt< bool > UnrollRuntimeLocal("amdgpu-unroll-runtime-local", cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), cl::init(true), cl::Hidden)
static unsigned adjustInliningThresholdUsingCallee(const CallBase *CB, const SITargetLowering *TLI, const GCNTTIImpl *TTIImpl)
static cl::opt< unsigned > ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden, cl::init(256), cl::desc("Maximum alloca size to use for inline cost"))
static cl::opt< size_t > InlineMaxBB("amdgpu-inline-max-bb", cl::Hidden, cl::init(1100), cl::desc("Maximum number of BBs allowed in a function after inlining" " (compile time constraint)"))
static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID)
static cl::opt< unsigned > UnrollMaxBlockToAnalyze("amdgpu-unroll-max-block-to-analyze", cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"), cl::init(32), cl::Hidden)
static unsigned getCallArgsTotalAllocaSize(const CallBase *CB, const DataLayout &DL)
static cl::opt< unsigned > UnrollThresholdPrivate("amdgpu-unroll-threshold-private", cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), cl::init(2700), cl::Hidden)
static cl::opt< unsigned > UnrollThresholdLocal("amdgpu-unroll-threshold-local", cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), cl::init(1000), cl::Hidden)
This file a TargetTransformInfo::Concept conforming object specific to the AMDGPU target machine.
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
static cl::opt< TargetTransformInfo::TargetCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(TargetTransformInfo::TCK_RecipThroughput), cl::values(clEnumValN(TargetTransformInfo::TCK_RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(TargetTransformInfo::TCK_Latency, "latency", "Instruction latency"), clEnumValN(TargetTransformInfo::TCK_CodeSize, "code-size", "Code size"), clEnumValN(TargetTransformInfo::TCK_SizeAndLatency, "size-latency", "Code size and latency")))
return RetTy
#define LLVM_DEBUG(X)
Definition: Debug.h:101
uint64_t Size
Hexagon Common GEP
#define RegName(no)
static LVOptions Options
Definition: LVOptions.cpp:25
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
uint64_t IntrinsicInst * II
const char LLVMTargetMachineRef TM
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool hasMadMacF32Insts() const
unsigned getMaxWorkitemID(const Function &Kernel, unsigned Dimension) const
Return the maximum workitem ID value in the function, for the given (0, 1, 2) dimension.
unsigned getWavefrontSizeLog2() const
bool has16BitInsts() const
bool hasFastFMAF32() const
bool isSingleLaneExecution(const Function &Kernel) const
Return true if only a single workitem can be active in a wave.
bool hasVOP3PInsts() const
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP)
AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE)
int64_t getMaxMemIntrinsicInlineSizeThreshold() const
bool isFNegFree(EVT VT) const override
Return true if an fneg operation is free to the point where it is never worthwhile to replace it with...
an instruction to allocate memory on the stack
Definition: Instructions.h:60
bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
Definition: Instructions.h:114
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:160
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind)
Get intrinsic cost based on arguments.
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Op0, Value *Op1)
TTI::ShuffleKind improveShuffleKindFromMask(TTI::ShuffleKind Kind, ArrayRef< int > Mask, VectorType *Ty, int &Index, VectorType *&SubTy) const
Definition: BasicTTIImpl.h:975
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind)
Try to calculate op costs for min/max reduction operations.
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args=std::nullopt, const Instruction *CxtI=nullptr)
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP)
Definition: BasicTTIImpl.h:660
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args=std::nullopt, const Instruction *CxtI=nullptr)
Definition: BasicTTIImpl.h:897
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind)
std::pair< InstructionCost, MVT > getTypeLegalizationCost(Type *Ty) const
Estimate the cost of type-legalization and the legalized type.
Definition: BasicTTIImpl.h:861
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1236
bool isInlineAsm() const
Check if this call is an inline asm statement.
Definition: InstrTypes.h:1532
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1465
CallingConv::ID getCallingConv() const
Definition: InstrTypes.h:1523
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1410
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
Definition: InstrTypes.h:1401
unsigned getArgOperandNo(const Use *U) const
Given a use for a arg operand, get the arg operand number that corresponds to it.
Definition: InstrTypes.h:1441
This class represents a function call, abstracting a target machine's calling convention.
This is the shared class of boolean and integer constants.
Definition: Constants.h:81
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:850
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:857
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition: Constants.h:161
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
unsigned getPointerSizeInBits(unsigned AS=0) const
Layout pointer size, in bits FIXME: The defaults need to be removed once all of the backends/clients ...
Definition: DataLayout.h:410
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:504
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Definition: DataLayout.h:672
constexpr bool isScalar() const
Exactly one element.
Definition: TypeSize.h:319
This instruction extracts a struct member or array element value from an aggregate value.
ArrayRef< unsigned > getIndices() const
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
Container class for subtarget features.
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition: Type.cpp:692
bool hasPrefetch() const
Definition: GCNSubtarget.h:920
bool hasUsableDivScaleConditionOutput() const
Condition output from div_scale is usable.
Definition: GCNSubtarget.h:473
const SIRegisterInfo * getRegisterInfo() const override
Definition: GCNSubtarget.h:274
bool hasUnalignedScratchAccess() const
Definition: GCNSubtarget.h:585
bool hasPackedFP32Ops() const
bool hasFullRate64Ops() const
Definition: GCNSubtarget.h:373
unsigned getMaxPrivateElementSize(bool ForBufferRSrc=false) const
Definition: GCNSubtarget.h:340
Generation getGeneration() const
Definition: GCNSubtarget.h:313
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind Vector) const
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind)
InstructionCost getVectorInstrCost(unsigned Opcode, Type *ValTy, TTI::TargetCostKind CostKind, unsigned Index, Value *Op0, Value *Op1)
bool isAlwaysUniform(const Value *V) const
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP)
GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
int64_t getMaxMemIntrinsicInlineSizeThreshold() const
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind)
bool isInlineAsmSourceOfDivergence(const CallInst *CI, ArrayRef< unsigned > Indices={}) const
Analyze if the results of inline asm are divergent.
bool isReadRegisterSourceOfDivergence(const IntrinsicInst *ReadReg) const
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args=std::nullopt, const Instruction *CxtI=nullptr)
unsigned getNumberOfRegisters(unsigned RCID) const
bool isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
bool shouldPrefetchAddressSpace(unsigned AS) const override
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
unsigned getMaxInterleaveFactor(ElementCount VF)
unsigned getInliningThresholdMultiplier() const
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE)
unsigned getMinVectorRegisterBitWidth() const
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
unsigned getPrefetchDistance() const override
How much before a load we should place the prefetch instruction.
Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const
void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type * > &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, std::optional< uint32_t > AtomicCpySize) const
bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const
unsigned adjustInliningThreshold(const CallBase *CB) const
bool areInlineCompatible(const Function *Caller, const Function *Callee) const
unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const
bool isSourceOfDivergence(const Value *V) const
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args=std::nullopt, const Instruction *CxtI=nullptr)
bool hasBranchDivergence(const Function *F=nullptr) const
Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, std::optional< uint32_t > AtomicElementSize) const
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind)
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:914
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2664
std::optional< CostType > getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
bool hasApproxFunc() const LLVM_READONLY
Determine whether the approximate-math-functions flag is set.
bool hasAllowContract() const LLVM_READONLY
Determine whether the allow-contract flag is set.
const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Definition: Instruction.cpp:74
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Definition: IntrinsicInst.h:55
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:173
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
Metadata node.
Definition: Metadata.h:1067
Machine Value Type.
static MVT getVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
Definition: ValueTypes.cpp:230
Root of the metadata hierarchy.
Definition: Metadata.h:62
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
The optimization diagnostic interface.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain targets require unusual breakdowns of certain types.
The main scalar evolution driver.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:344
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:479
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
const TargetMachine & getTargetMachine() const
std::vector< AsmOperandInfo > AsmOperandInfoVector
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:77
TargetOptions Options
unsigned UnsafeFPMath
UnsafeFPMath - This flag is enabled when the -enable-unsafe-fp-math flag is specified on the command ...
const DataLayout & getDataLayout() const
void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type * > &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, std::optional< uint32_t > AtomicCpySize) const
TargetCostKind
The kind of cost model.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
static bool requiresOrderedReduction(std::optional< FastMathFlags > FMF)
A helper function to determine the type of reduction algorithm used for a given Opcode and set of Fas...
@ TCC_Free
Expected to fold away in lowering.
ShuffleKind
The various kinds of shuffle patterns for vector queries.
@ SK_InsertSubvector
InsertSubvector. Index indicates start offset.
@ SK_Select
Selects elements from the corresponding lane of either source operand.
@ SK_PermuteSingleSrc
Shuffle elements of single source vector with any shuffle mask.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_PermuteTwoSrc
Merge elements from two source vectors into one with any shuffle mask.
@ SK_Reverse
Reverse the order of the vector.
@ SK_ExtractSubvector
ExtractSubvector Index indicates start offset.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition: TypeSize.h:342
static constexpr TypeSize getScalable(ScalarTy MinimumSize)
Definition: TypeSize.h:345
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:302
static IntegerType * getInt16Ty(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:129
static IntegerType * getInt8Ty(LLVMContext &C)
static IntegerType * getInt32Ty(LLVMContext &C)
static IntegerType * getInt64Ty(LLVMContext &C)
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
Value * getOperand(unsigned i) const
Definition: User.h:169
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
user_iterator user_begin()
Definition: Value.h:397
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1074
Base class of all SIMD vector types.
Definition: DerivedTypes.h:403
Type * getElementType() const
Definition: DerivedTypes.h:436
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ CONSTANT_ADDRESS_32BIT
Address space for 32-bit constant memory.
@ BUFFER_STRIDED_POINTER
Address space for 192-bit fat buffer pointers with an additional index.
@ REGION_ADDRESS
Address space for region memory. (GDS)
@ LOCAL_ADDRESS
Address space for local memory.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ BUFFER_FAT_POINTER
Address space for 160-bit buffer fat pointers.
@ PRIVATE_ADDRESS
Address space for private memory.
@ BUFFER_RESOURCE
Address space for 128-bit buffer resources.
bool isFlatGlobalAddrSpace(unsigned AS)
Definition: AMDGPU.h:415
bool isArgPassedInSGPR(const Argument *A)
bool isIntrinsicAlwaysUniform(unsigned IntrID)
bool isIntrinsicSourceOfDivergence(unsigned IntrID)
bool isExtendedGlobalAddrSpace(unsigned AS)
Definition: AMDGPU.h:422
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ ADD
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:246
@ FADD
Simple binary floating point operators.
Definition: ISDOpcodes.h:397
@ FNEG
Perform various unary floating-point operations inspired by libm.
Definition: ISDOpcodes.h:944
@ SHL
Shift and rotation operations.
Definition: ISDOpcodes.h:719
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:694
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=std::nullopt)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1484
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:168
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
Definition: PatternMatch.h:921
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Length
Definition: DWP.cpp:480
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
MDNode * findOptionMDForLoop(const Loop *TheLoop, StringRef Name)
Find string metadata for a loop.
Definition: LoopInfo.cpp:1055
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1736
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ FAdd
Sum of floats.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
constexpr uint64_t MinAlign(uint64_t A, uint64_t B)
A and B are either alignments or offsets.
Definition: MathExtras.h:349
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
Definition: Analysis.cpp:79
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1921
InstructionCost Cost
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
static constexpr DenormalMode getPreserveSign()
Extended Value Type.
Definition: ValueTypes.h:34
uint64_t getScalarSizeInBits() const
Definition: ValueTypes.h:370
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
Definition: KnownBits.h:240
Information about a load/store intrinsic defined by the target.
bool isInlineCompatible(SIModeRegisterDefaults CalleeMode) const
Parameters that control the generic loop unrolling transformation.
unsigned Threshold
The cost threshold for the unrolled loop.
bool UnrollVectorizedLoop
Don't disable runtime unroll for the loops which were vectorized.
unsigned MaxIterationsCountToAnalyze
Don't allow loop unrolling to simulate more than this number of iterations when checking full unroll ...
unsigned PartialThreshold
The cost threshold for the unrolled loop, like Threshold, but used for partial/runtime unrolling (set...
bool Runtime
Allow runtime unrolling (unrolling of loops to expand the size of the loop body even when the number ...
bool Partial
Allow partial unrolling (unrolling of loops to expand the size of the loop body, not only to eliminat...