LLVM 20.0.0git
AMDGPUTargetTransformInfo.cpp
Go to the documentation of this file.
1//===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// \file
10// This file implements a TargetTransformInfo analysis pass specific to the
11// AMDGPU target machine. It uses the target's detailed information to provide
12// more precise answers to certain TTI queries, while letting the target
13// independent and default TTI implementations handle the rest.
14//
15//===----------------------------------------------------------------------===//
16
18#include "AMDGPUTargetMachine.h"
25#include "llvm/IR/IRBuilder.h"
26#include "llvm/IR/IntrinsicsAMDGPU.h"
29#include <optional>
30
31using namespace llvm;
32
33#define DEBUG_TYPE "AMDGPUtti"
34
36 "amdgpu-unroll-threshold-private",
37 cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
38 cl::init(2700), cl::Hidden);
39
41 "amdgpu-unroll-threshold-local",
42 cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
43 cl::init(1000), cl::Hidden);
44
46 "amdgpu-unroll-threshold-if",
47 cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
48 cl::init(200), cl::Hidden);
49
51 "amdgpu-unroll-runtime-local",
52 cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
53 cl::init(true), cl::Hidden);
54
56 "amdgpu-unroll-max-block-to-analyze",
57 cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"),
58 cl::init(32), cl::Hidden);
59
60static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost",
61 cl::Hidden, cl::init(4000),
62 cl::desc("Cost of alloca argument"));
63
64// If the amount of scratch memory to eliminate exceeds our ability to allocate
65// it into registers we gain nothing by aggressively inlining functions for that
66// heuristic.
68 ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden,
69 cl::init(256),
70 cl::desc("Maximum alloca size to use for inline cost"));
71
72// Inliner constraint to achieve reasonable compilation time.
74 "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100),
75 cl::desc("Maximum number of BBs allowed in a function after inlining"
76 " (compile time constraint)"));
77
78static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
79 unsigned Depth = 0) {
80 const Instruction *I = dyn_cast<Instruction>(Cond);
81 if (!I)
82 return false;
83
84 for (const Value *V : I->operand_values()) {
85 if (!L->contains(I))
86 continue;
87 if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
88 if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
89 return SubLoop->contains(PHI); }))
90 return true;
91 } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
92 return true;
93 }
94 return false;
95}
96
98 : BaseT(TM, F.getDataLayout()),
99 TargetTriple(TM->getTargetTriple()),
100 ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
101 TLI(ST->getTargetLowering()) {}
102
106 const Function &F = *L->getHeader()->getParent();
107 UP.Threshold =
108 F.getFnAttributeAsParsedInteger("amdgpu-unroll-threshold", 300);
109 UP.MaxCount = std::numeric_limits<unsigned>::max();
110 UP.Partial = true;
111
112 // Conditional branch in a loop back edge needs 3 additional exec
113 // manipulations in average.
114 UP.BEInsns += 3;
115
116 // We want to run unroll even for the loops which have been vectorized.
117 UP.UnrollVectorizedLoop = true;
118
119 // TODO: Do we want runtime unrolling?
120
121 // Maximum alloca size than can fit registers. Reserve 16 registers.
122 const unsigned MaxAlloca = (256 - 16) * 4;
123 unsigned ThresholdPrivate = UnrollThresholdPrivate;
124 unsigned ThresholdLocal = UnrollThresholdLocal;
125
126 // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the
127 // provided threshold value as the default for Threshold
128 if (MDNode *LoopUnrollThreshold =
129 findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) {
130 if (LoopUnrollThreshold->getNumOperands() == 2) {
131 ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>(
132 LoopUnrollThreshold->getOperand(1));
133 if (MetaThresholdValue) {
134 // We will also use the supplied value for PartialThreshold for now.
135 // We may introduce additional metadata if it becomes necessary in the
136 // future.
137 UP.Threshold = MetaThresholdValue->getSExtValue();
139 ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold);
140 ThresholdLocal = std::min(ThresholdLocal, UP.Threshold);
141 }
142 }
143 }
144
145 unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
146 for (const BasicBlock *BB : L->getBlocks()) {
147 const DataLayout &DL = BB->getDataLayout();
148 unsigned LocalGEPsSeen = 0;
149
150 if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
151 return SubLoop->contains(BB); }))
152 continue; // Block belongs to an inner loop.
153
154 for (const Instruction &I : *BB) {
155 // Unroll a loop which contains an "if" statement whose condition
156 // defined by a PHI belonging to the loop. This may help to eliminate
157 // if region and potentially even PHI itself, saving on both divergence
158 // and registers used for the PHI.
159 // Add a small bonus for each of such "if" statements.
160 if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
161 if (UP.Threshold < MaxBoost && Br->isConditional()) {
162 BasicBlock *Succ0 = Br->getSuccessor(0);
163 BasicBlock *Succ1 = Br->getSuccessor(1);
164 if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
165 (L->contains(Succ1) && L->isLoopExiting(Succ1)))
166 continue;
167 if (dependsOnLocalPhi(L, Br->getCondition())) {
169 LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
170 << " for loop:\n"
171 << *L << " due to " << *Br << '\n');
172 if (UP.Threshold >= MaxBoost)
173 return;
174 }
175 }
176 continue;
177 }
178
179 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
180 if (!GEP)
181 continue;
182
183 unsigned AS = GEP->getAddressSpace();
184 unsigned Threshold = 0;
186 Threshold = ThresholdPrivate;
188 Threshold = ThresholdLocal;
189 else
190 continue;
191
192 if (UP.Threshold >= Threshold)
193 continue;
194
195 if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
196 const Value *Ptr = GEP->getPointerOperand();
197 const AllocaInst *Alloca =
198 dyn_cast<AllocaInst>(getUnderlyingObject(Ptr));
199 if (!Alloca || !Alloca->isStaticAlloca())
200 continue;
201 Type *Ty = Alloca->getAllocatedType();
202 unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
203 if (AllocaSize > MaxAlloca)
204 continue;
205 } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
207 LocalGEPsSeen++;
208 // Inhibit unroll for local memory if we have seen addressing not to
209 // a variable, most likely we will be unable to combine it.
210 // Do not unroll too deep inner loops for local memory to give a chance
211 // to unroll an outer loop for a more important reason.
212 if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
213 (!isa<GlobalVariable>(GEP->getPointerOperand()) &&
214 !isa<Argument>(GEP->getPointerOperand())))
215 continue;
216 LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
217 << *L << " due to LDS use.\n");
219 }
220
221 // Check if GEP depends on a value defined by this loop itself.
222 bool HasLoopDef = false;
223 for (const Value *Op : GEP->operands()) {
224 const Instruction *Inst = dyn_cast<Instruction>(Op);
225 if (!Inst || L->isLoopInvariant(Op))
226 continue;
227
228 if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
229 return SubLoop->contains(Inst); }))
230 continue;
231 HasLoopDef = true;
232 break;
233 }
234 if (!HasLoopDef)
235 continue;
236
237 // We want to do whatever we can to limit the number of alloca
238 // instructions that make it through to the code generator. allocas
239 // require us to use indirect addressing, which is slow and prone to
240 // compiler bugs. If this loop does an address calculation on an
241 // alloca ptr, then we want to use a higher than normal loop unroll
242 // threshold. This will give SROA a better chance to eliminate these
243 // allocas.
244 //
245 // We also want to have more unrolling for local memory to let ds
246 // instructions with different offsets combine.
247 //
248 // Don't use the maximum allowed value here as it will make some
249 // programs way too big.
250 UP.Threshold = Threshold;
251 LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
252 << " for loop:\n"
253 << *L << " due to " << *GEP << '\n');
254 if (UP.Threshold >= MaxBoost)
255 return;
256 }
257
258 // If we got a GEP in a small BB from inner loop then increase max trip
259 // count to analyze for better estimation cost in unroll
260 if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze)
262 }
263}
264
268}
269
271 return 1024;
272}
273
274const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = {
275 // Codegen control options which don't matter.
276 AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler,
277 AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal,
278 AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess,
279 AMDGPU::FeatureUnalignedAccessMode,
280
281 AMDGPU::FeatureAutoWaitcntBeforeBarrier,
282
283 // Property of the kernel/environment which can't actually differ.
284 AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK,
285 AMDGPU::FeatureTrapHandler,
286
287 // The default assumption needs to be ecc is enabled, but no directly
288 // exposed operations depend on it, so it can be safely inlined.
289 AMDGPU::FeatureSRAMECC,
290
291 // Perf-tuning features
292 AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops};
293
295 : BaseT(TM, F.getDataLayout()),
296 ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))),
297 TLI(ST->getTargetLowering()), CommonTTI(TM, F),
298 IsGraphics(AMDGPU::isGraphics(F.getCallingConv())) {
299 SIModeRegisterDefaults Mode(F, *ST);
300 HasFP32Denormals = Mode.FP32Denormals != DenormalMode::getPreserveSign();
301 HasFP64FP16Denormals =
302 Mode.FP64FP16Denormals != DenormalMode::getPreserveSign();
303}
304
306 return !F || !ST->isSingleLaneExecution(*F);
307}
308
309unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const {
310 // NB: RCID is not an RCID. In fact it is 0 or 1 for scalar or vector
311 // registers. See getRegisterClassForType for the implementation.
312 // In this case vector registers are not vector in terms of
313 // VGPRs, but those which can hold multiple values.
314
315 // This is really the number of registers to fill when vectorizing /
316 // interleaving loops, so we lie to avoid trying to use all registers.
317 return 4;
318}
319
322 switch (K) {
324 return TypeSize::getFixed(32);
326 return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32);
328 return TypeSize::getScalable(0);
329 }
330 llvm_unreachable("Unsupported register kind");
331}
332
334 return 32;
335}
336
337unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
338 if (Opcode == Instruction::Load || Opcode == Instruction::Store)
339 return 32 * 4 / ElemWidth;
340 return (ElemWidth == 16 && ST->has16BitInsts()) ? 2
341 : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2
342 : 1;
343}
344
345unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
346 unsigned ChainSizeInBytes,
347 VectorType *VecTy) const {
348 unsigned VecRegBitWidth = VF * LoadSize;
349 if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
350 // TODO: Support element-size less than 32bit?
351 return 128 / LoadSize;
352
353 return VF;
354}
355
356unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
357 unsigned ChainSizeInBytes,
358 VectorType *VecTy) const {
359 unsigned VecRegBitWidth = VF * StoreSize;
360 if (VecRegBitWidth > 128)
361 return 128 / StoreSize;
362
363 return VF;
364}
365
366unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
367 if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
368 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
370 AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER ||
371 AddrSpace == AMDGPUAS::BUFFER_RESOURCE ||
373 return 512;
374 }
375
376 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
377 return 8 * ST->getMaxPrivateElementSize();
378
379 // Common to flat, global, local and region. Assume for unknown addrspace.
380 return 128;
381}
382
383bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
384 Align Alignment,
385 unsigned AddrSpace) const {
386 // We allow vectorization of flat stores, even though we may need to decompose
387 // them later if they may access private memory. We don't have enough context
388 // here, and legalization can handle it.
389 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
390 return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
391 ChainSizeInBytes <= ST->getMaxPrivateElementSize();
392 }
393 return true;
394}
395
396bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
397 Align Alignment,
398 unsigned AddrSpace) const {
399 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
400}
401
402bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
403 Align Alignment,
404 unsigned AddrSpace) const {
405 return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
406}
407
409 return 1024;
410}
411
412// FIXME: Really we would like to issue multiple 128-bit loads and stores per
413// iteration. Should we report a larger size and let it legalize?
414//
415// FIXME: Should we use narrower types for local/region, or account for when
416// unaligned access is legal?
417//
418// FIXME: This could use fine tuning and microbenchmarks.
420 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
421 unsigned DestAddrSpace, Align SrcAlign, Align DestAlign,
422 std::optional<uint32_t> AtomicElementSize) const {
423
424 if (AtomicElementSize)
425 return Type::getIntNTy(Context, *AtomicElementSize * 8);
426
427 Align MinAlign = std::min(SrcAlign, DestAlign);
428
429 // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the
430 // hardware into byte accesses. If you assume all alignments are equally
431 // probable, it's more efficient on average to use short accesses for this
432 // case.
433 if (MinAlign == Align(2))
434 return Type::getInt16Ty(Context);
435
436 // Not all subtargets have 128-bit DS instructions, and we currently don't
437 // form them by default.
438 if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
439 SrcAddrSpace == AMDGPUAS::REGION_ADDRESS ||
440 DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
441 DestAddrSpace == AMDGPUAS::REGION_ADDRESS) {
442 return FixedVectorType::get(Type::getInt32Ty(Context), 2);
443 }
444
445 // Global memory works best with 16-byte accesses. Private memory will also
446 // hit this, although they'll be decomposed.
447 return FixedVectorType::get(Type::getInt32Ty(Context), 4);
448}
449
451 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
452 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
453 Align SrcAlign, Align DestAlign,
454 std::optional<uint32_t> AtomicCpySize) const {
455 assert(RemainingBytes < 16);
456
457 if (AtomicCpySize)
459 OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign,
460 DestAlign, AtomicCpySize);
461
462 Align MinAlign = std::min(SrcAlign, DestAlign);
463
464 if (MinAlign != Align(2)) {
465 Type *I64Ty = Type::getInt64Ty(Context);
466 while (RemainingBytes >= 8) {
467 OpsOut.push_back(I64Ty);
468 RemainingBytes -= 8;
469 }
470
471 Type *I32Ty = Type::getInt32Ty(Context);
472 while (RemainingBytes >= 4) {
473 OpsOut.push_back(I32Ty);
474 RemainingBytes -= 4;
475 }
476 }
477
478 Type *I16Ty = Type::getInt16Ty(Context);
479 while (RemainingBytes >= 2) {
480 OpsOut.push_back(I16Ty);
481 RemainingBytes -= 2;
482 }
483
484 Type *I8Ty = Type::getInt8Ty(Context);
485 while (RemainingBytes) {
486 OpsOut.push_back(I8Ty);
487 --RemainingBytes;
488 }
489}
490
492 // Disable unrolling if the loop is not vectorized.
493 // TODO: Enable this again.
494 if (VF.isScalar())
495 return 1;
496
497 return 8;
498}
499
501 MemIntrinsicInfo &Info) const {
502 switch (Inst->getIntrinsicID()) {
503 case Intrinsic::amdgcn_ds_ordered_add:
504 case Intrinsic::amdgcn_ds_ordered_swap: {
505 auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
506 auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
507 if (!Ordering || !Volatile)
508 return false; // Invalid.
509
510 unsigned OrderingVal = Ordering->getZExtValue();
511 if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
512 return false;
513
514 Info.PtrVal = Inst->getArgOperand(0);
515 Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
516 Info.ReadMem = true;
517 Info.WriteMem = true;
518 Info.IsVolatile = !Volatile->isZero();
519 return true;
520 }
521 default:
522 return false;
523 }
524}
525
527 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
530 const Instruction *CxtI) {
531
532 // Legalize the type.
533 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
534 int ISD = TLI->InstructionOpcodeToISD(Opcode);
535
536 // Because we don't have any legal vector operations, but the legal types, we
537 // need to account for split vectors.
538 unsigned NElts = LT.second.isVector() ?
539 LT.second.getVectorNumElements() : 1;
540
541 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
542
543 switch (ISD) {
544 case ISD::SHL:
545 case ISD::SRL:
546 case ISD::SRA:
547 if (SLT == MVT::i64)
548 return get64BitInstrCost(CostKind) * LT.first * NElts;
549
550 if (ST->has16BitInsts() && SLT == MVT::i16)
551 NElts = (NElts + 1) / 2;
552
553 // i32
554 return getFullRateInstrCost() * LT.first * NElts;
555 case ISD::ADD:
556 case ISD::SUB:
557 case ISD::AND:
558 case ISD::OR:
559 case ISD::XOR:
560 if (SLT == MVT::i64) {
561 // and, or and xor are typically split into 2 VALU instructions.
562 return 2 * getFullRateInstrCost() * LT.first * NElts;
563 }
564
565 if (ST->has16BitInsts() && SLT == MVT::i16)
566 NElts = (NElts + 1) / 2;
567
568 return LT.first * NElts * getFullRateInstrCost();
569 case ISD::MUL: {
570 const int QuarterRateCost = getQuarterRateInstrCost(CostKind);
571 if (SLT == MVT::i64) {
572 const int FullRateCost = getFullRateInstrCost();
573 return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
574 }
575
576 if (ST->has16BitInsts() && SLT == MVT::i16)
577 NElts = (NElts + 1) / 2;
578
579 // i32
580 return QuarterRateCost * NElts * LT.first;
581 }
582 case ISD::FMUL:
583 // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for
584 // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole
585 // fused operation.
586 if (CxtI && CxtI->hasOneUse())
587 if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) {
588 const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode());
589 if (OPC == ISD::FADD || OPC == ISD::FSUB) {
590 if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals)
592 if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals)
594
595 // Estimate all types may be fused with contract/unsafe flags
597 if (Options.AllowFPOpFusion == FPOpFusion::Fast ||
598 Options.UnsafeFPMath ||
599 (FAdd->hasAllowContract() && CxtI->hasAllowContract()))
601 }
602 }
603 [[fallthrough]];
604 case ISD::FADD:
605 case ISD::FSUB:
606 if (ST->hasPackedFP32Ops() && SLT == MVT::f32)
607 NElts = (NElts + 1) / 2;
608 if (SLT == MVT::f64)
609 return LT.first * NElts * get64BitInstrCost(CostKind);
610
611 if (ST->has16BitInsts() && SLT == MVT::f16)
612 NElts = (NElts + 1) / 2;
613
614 if (SLT == MVT::f32 || SLT == MVT::f16)
615 return LT.first * NElts * getFullRateInstrCost();
616 break;
617 case ISD::FDIV:
618 case ISD::FREM:
619 // FIXME: frem should be handled separately. The fdiv in it is most of it,
620 // but the current lowering is also not entirely correct.
621 if (SLT == MVT::f64) {
622 int Cost = 7 * get64BitInstrCost(CostKind) +
623 getQuarterRateInstrCost(CostKind) +
624 3 * getHalfRateInstrCost(CostKind);
625 // Add cost of workaround.
627 Cost += 3 * getFullRateInstrCost();
628
629 return LT.first * Cost * NElts;
630 }
631
632 if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
633 // TODO: This is more complicated, unsafe flags etc.
634 if ((SLT == MVT::f32 && !HasFP32Denormals) ||
635 (SLT == MVT::f16 && ST->has16BitInsts())) {
636 return LT.first * getQuarterRateInstrCost(CostKind) * NElts;
637 }
638 }
639
640 if (SLT == MVT::f16 && ST->has16BitInsts()) {
641 // 2 x v_cvt_f32_f16
642 // f32 rcp
643 // f32 fmul
644 // v_cvt_f16_f32
645 // f16 div_fixup
646 int Cost =
647 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind);
648 return LT.first * Cost * NElts;
649 }
650
651 if (SLT == MVT::f32 && ((CxtI && CxtI->hasApproxFunc()) ||
653 // Fast unsafe fdiv lowering:
654 // f32 rcp
655 // f32 fmul
656 int Cost = getQuarterRateInstrCost(CostKind) + getFullRateInstrCost();
657 return LT.first * Cost * NElts;
658 }
659
660 if (SLT == MVT::f32 || SLT == MVT::f16) {
661 // 4 more v_cvt_* insts without f16 insts support
662 int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() +
663 1 * getQuarterRateInstrCost(CostKind);
664
665 if (!HasFP32Denormals) {
666 // FP mode switches.
667 Cost += 2 * getFullRateInstrCost();
668 }
669
670 return LT.first * NElts * Cost;
671 }
672 break;
673 case ISD::FNEG:
674 // Use the backend' estimation. If fneg is not free each element will cost
675 // one additional instruction.
676 return TLI->isFNegFree(SLT) ? 0 : NElts;
677 default:
678 break;
679 }
680
681 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
682 Args, CxtI);
683}
684
685// Return true if there's a potential benefit from using v2f16/v2i16
686// instructions for an intrinsic, even if it requires nontrivial legalization.
688 switch (ID) {
689 case Intrinsic::fma:
690 case Intrinsic::fmuladd:
691 case Intrinsic::copysign:
692 case Intrinsic::canonicalize:
693 // There's a small benefit to using vector ops in the legalized code.
694 case Intrinsic::round:
695 case Intrinsic::uadd_sat:
696 case Intrinsic::usub_sat:
697 case Intrinsic::sadd_sat:
698 case Intrinsic::ssub_sat:
699 case Intrinsic::abs:
700 return true;
701 default:
702 return false;
703 }
704}
705
709 if (ICA.getID() == Intrinsic::fabs)
710 return 0;
711
714
715 Type *RetTy = ICA.getReturnType();
716
717 // Legalize the type.
718 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(RetTy);
719
720 unsigned NElts = LT.second.isVector() ?
721 LT.second.getVectorNumElements() : 1;
722
723 MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
724
725 if (SLT == MVT::f64)
726 return LT.first * NElts * get64BitInstrCost(CostKind);
727
728 if ((ST->has16BitInsts() && (SLT == MVT::f16 || SLT == MVT::i16)) ||
729 (ST->hasPackedFP32Ops() && SLT == MVT::f32))
730 NElts = (NElts + 1) / 2;
731
732 // TODO: Get more refined intrinsic costs?
733 unsigned InstRate = getQuarterRateInstrCost(CostKind);
734
735 switch (ICA.getID()) {
736 case Intrinsic::fma:
737 case Intrinsic::fmuladd:
738 if ((SLT == MVT::f32 && ST->hasFastFMAF32()) || SLT == MVT::f16)
739 InstRate = getFullRateInstrCost();
740 else {
741 InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind)
742 : getQuarterRateInstrCost(CostKind);
743 }
744 break;
745 case Intrinsic::copysign:
746 return NElts * getFullRateInstrCost();
747 case Intrinsic::canonicalize: {
748 InstRate =
749 SLT == MVT::f64 ? get64BitInstrCost(CostKind) : getFullRateInstrCost();
750 break;
751 }
752 case Intrinsic::uadd_sat:
753 case Intrinsic::usub_sat:
754 case Intrinsic::sadd_sat:
755 case Intrinsic::ssub_sat: {
756 if (SLT == MVT::i16 || SLT == MVT::i32)
757 InstRate = getFullRateInstrCost();
758
759 static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16};
760 if (any_of(ValidSatTys, [&LT](MVT M) { return M == LT.second; }))
761 NElts = 1;
762 break;
763 }
764 case Intrinsic::abs:
765 // Expansion takes 2 instructions for VALU
766 if (SLT == MVT::i16 || SLT == MVT::i32)
767 InstRate = 2 * getFullRateInstrCost();
768 break;
769 default:
770 break;
771 }
772
773 return LT.first * NElts * InstRate;
774}
775
778 const Instruction *I) {
779 assert((I == nullptr || I->getOpcode() == Opcode) &&
780 "Opcode should reflect passed instruction.");
781 const bool SCost =
783 const int CBrCost = SCost ? 5 : 7;
784 switch (Opcode) {
785 case Instruction::Br: {
786 // Branch instruction takes about 4 slots on gfx900.
787 auto BI = dyn_cast_or_null<BranchInst>(I);
788 if (BI && BI->isUnconditional())
789 return SCost ? 1 : 4;
790 // Suppose conditional branch takes additional 3 exec manipulations
791 // instructions in average.
792 return CBrCost;
793 }
794 case Instruction::Switch: {
795 auto SI = dyn_cast_or_null<SwitchInst>(I);
796 // Each case (including default) takes 1 cmp + 1 cbr instructions in
797 // average.
798 return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1);
799 }
800 case Instruction::Ret:
801 return SCost ? 1 : 10;
802 }
803 return BaseT::getCFInstrCost(Opcode, CostKind, I);
804}
805
808 std::optional<FastMathFlags> FMF,
811 return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
812
813 EVT OrigTy = TLI->getValueType(DL, Ty);
814
815 // Computes cost on targets that have packed math instructions(which support
816 // 16-bit types only).
817 if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
818 return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
819
820 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
821 return LT.first * getFullRateInstrCost();
822}
823
826 FastMathFlags FMF,
828 EVT OrigTy = TLI->getValueType(DL, Ty);
829
830 // Computes cost on targets that have packed math instructions(which support
831 // 16-bit types only).
832 if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16)
833 return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
834
835 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
836 return LT.first * getHalfRateInstrCost(CostKind);
837}
838
841 unsigned Index, Value *Op0,
842 Value *Op1) {
843 switch (Opcode) {
844 case Instruction::ExtractElement:
845 case Instruction::InsertElement: {
846 unsigned EltSize
847 = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
848 if (EltSize < 32) {
849 if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
850 return 0;
851 return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0,
852 Op1);
853 }
854
855 // Extracts are just reads of a subregister, so are free. Inserts are
856 // considered free because we don't want to have any cost for scalarizing
857 // operations, and we don't have to copy into a different register class.
858
859 // Dynamic indexing isn't free and is best avoided.
860 return Index == ~0u ? 2 : 0;
861 }
862 default:
863 return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1);
864 }
865}
866
867/// Analyze if the results of inline asm are divergent. If \p Indices is empty,
868/// this is analyzing the collective result of all output registers. Otherwise,
869/// this is only querying a specific result index if this returns multiple
870/// registers in a struct.
872 const CallInst *CI, ArrayRef<unsigned> Indices) const {
873 // TODO: Handle complex extract indices
874 if (Indices.size() > 1)
875 return true;
876
877 const DataLayout &DL = CI->getDataLayout();
878 const SIRegisterInfo *TRI = ST->getRegisterInfo();
879 TargetLowering::AsmOperandInfoVector TargetConstraints =
880 TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI);
881
882 const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
883
884 int OutputIdx = 0;
885 for (auto &TC : TargetConstraints) {
886 if (TC.Type != InlineAsm::isOutput)
887 continue;
888
889 // Skip outputs we don't care about.
890 if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
891 continue;
892
894
896 TRI, TC.ConstraintCode, TC.ConstraintVT).second;
897
898 // For AGPR constraints null is returned on subtargets without AGPRs, so
899 // assume divergent for null.
900 if (!RC || !TRI->isSGPRClass(RC))
901 return true;
902 }
903
904 return false;
905}
906
908 const IntrinsicInst *ReadReg) const {
909 Metadata *MD =
910 cast<MetadataAsValue>(ReadReg->getArgOperand(0))->getMetadata();
912 cast<MDString>(cast<MDNode>(MD)->getOperand(0))->getString();
913
914 // Special case registers that look like VCC.
915 MVT VT = MVT::getVT(ReadReg->getType());
916 if (VT == MVT::i1)
917 return true;
918
919 // Special case scalar registers that start with 'v'.
920 if (RegName.starts_with("vcc") || RegName.empty())
921 return false;
922
923 // VGPR or AGPR is divergent. There aren't any specially named vector
924 // registers.
925 return RegName[0] == 'v' || RegName[0] == 'a';
926}
927
928/// \returns true if the result of the value could potentially be
929/// different across workitems in a wavefront.
931 if (const Argument *A = dyn_cast<Argument>(V))
933
934 // Loads from the private and flat address spaces are divergent, because
935 // threads can execute the load instruction with the same inputs and get
936 // different results.
937 //
938 // All other loads are not divergent, because if threads issue loads with the
939 // same arguments, they will always get the same result.
940 if (const LoadInst *Load = dyn_cast<LoadInst>(V))
941 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
942 Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
943
944 // Atomics are divergent because they are executed sequentially: when an
945 // atomic operation refers to the same address in each thread, then each
946 // thread after the first sees the value written by the previous thread as
947 // original value.
948 if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
949 return true;
950
951 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
952 if (Intrinsic->getIntrinsicID() == Intrinsic::read_register)
953 return isReadRegisterSourceOfDivergence(Intrinsic);
954
955 return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
956 }
957
958 // Assume all function calls are a source of divergence.
959 if (const CallInst *CI = dyn_cast<CallInst>(V)) {
960 if (CI->isInlineAsm())
962 return true;
963 }
964
965 // Assume all function calls are a source of divergence.
966 if (isa<InvokeInst>(V))
967 return true;
968
969 return false;
970}
971
972bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
973 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
974 return AMDGPU::isIntrinsicAlwaysUniform(Intrinsic->getIntrinsicID());
975
976 if (const CallInst *CI = dyn_cast<CallInst>(V)) {
977 if (CI->isInlineAsm())
979 return false;
980 }
981
982 // In most cases TID / wavefrontsize is uniform.
983 //
984 // However, if a kernel has uneven dimesions we can have a value of
985 // workitem-id-x divided by the wavefrontsize non-uniform. For example
986 // dimensions (65, 2) will have workitems with address (64, 0) and (0, 1)
987 // packed into a same wave which gives 1 and 0 after the division by 64
988 // respectively.
989 //
990 // FIXME: limit it to 1D kernels only, although that shall be possible
991 // to perform this optimization is the size of the X dimension is a power
992 // of 2, we just do not currently have infrastructure to query it.
993 using namespace llvm::PatternMatch;
994 uint64_t C;
995 if (match(V, m_LShr(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
996 m_ConstantInt(C))) ||
997 match(V, m_AShr(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
998 m_ConstantInt(C)))) {
999 const Function *F = cast<Instruction>(V)->getFunction();
1000 return C >= ST->getWavefrontSizeLog2() &&
1001 ST->getMaxWorkitemID(*F, 1) == 0 && ST->getMaxWorkitemID(*F, 2) == 0;
1002 }
1003
1004 Value *Mask;
1005 if (match(V, m_c_And(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(),
1006 m_Value(Mask)))) {
1007 const Function *F = cast<Instruction>(V)->getFunction();
1008 const DataLayout &DL = F->getDataLayout();
1009 return computeKnownBits(Mask, DL).countMinTrailingZeros() >=
1010 ST->getWavefrontSizeLog2() &&
1011 ST->getMaxWorkitemID(*F, 1) == 0 && ST->getMaxWorkitemID(*F, 2) == 0;
1012 }
1013
1014 const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
1015 if (!ExtValue)
1016 return false;
1017
1018 const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
1019 if (!CI)
1020 return false;
1021
1022 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
1023 switch (Intrinsic->getIntrinsicID()) {
1024 default:
1025 return false;
1026 case Intrinsic::amdgcn_if:
1027 case Intrinsic::amdgcn_else: {
1028 ArrayRef<unsigned> Indices = ExtValue->getIndices();
1029 return Indices.size() == 1 && Indices[0] == 1;
1030 }
1031 }
1032 }
1033
1034 // If we have inline asm returning mixed SGPR and VGPR results, we inferred
1035 // divergent for the overall struct return. We need to override it in the
1036 // case we're extracting an SGPR component here.
1037 if (CI->isInlineAsm())
1038 return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
1039
1040 return false;
1041}
1042
1044 Intrinsic::ID IID) const {
1045 switch (IID) {
1046 case Intrinsic::amdgcn_is_shared:
1047 case Intrinsic::amdgcn_is_private:
1048 case Intrinsic::amdgcn_flat_atomic_fadd:
1049 case Intrinsic::amdgcn_flat_atomic_fmax:
1050 case Intrinsic::amdgcn_flat_atomic_fmin:
1051 case Intrinsic::amdgcn_flat_atomic_fmax_num:
1052 case Intrinsic::amdgcn_flat_atomic_fmin_num:
1053 OpIndexes.push_back(0);
1054 return true;
1055 default:
1056 return false;
1057 }
1058}
1059
1061 Value *OldV,
1062 Value *NewV) const {
1063 auto IntrID = II->getIntrinsicID();
1064 switch (IntrID) {
1065 case Intrinsic::amdgcn_is_shared:
1066 case Intrinsic::amdgcn_is_private: {
1067 unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
1069 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1070 LLVMContext &Ctx = NewV->getType()->getContext();
1071 ConstantInt *NewVal = (TrueAS == NewAS) ?
1073 return NewVal;
1074 }
1075 case Intrinsic::ptrmask: {
1076 unsigned OldAS = OldV->getType()->getPointerAddressSpace();
1077 unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1078 Value *MaskOp = II->getArgOperand(1);
1079 Type *MaskTy = MaskOp->getType();
1080
1081 bool DoTruncate = false;
1082
1083 const GCNTargetMachine &TM =
1084 static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine());
1085 if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) {
1086 // All valid 64-bit to 32-bit casts work by chopping off the high
1087 // bits. Any masking only clearing the low bits will also apply in the new
1088 // address space.
1089 if (DL.getPointerSizeInBits(OldAS) != 64 ||
1090 DL.getPointerSizeInBits(NewAS) != 32)
1091 return nullptr;
1092
1093 // TODO: Do we need to thread more context in here?
1094 KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II);
1095 if (Known.countMinLeadingOnes() < 32)
1096 return nullptr;
1097
1098 DoTruncate = true;
1099 }
1100
1101 IRBuilder<> B(II);
1102 if (DoTruncate) {
1103 MaskTy = B.getInt32Ty();
1104 MaskOp = B.CreateTrunc(MaskOp, MaskTy);
1105 }
1106
1107 return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy},
1108 {NewV, MaskOp});
1109 }
1110 case Intrinsic::amdgcn_flat_atomic_fadd:
1111 case Intrinsic::amdgcn_flat_atomic_fmax:
1112 case Intrinsic::amdgcn_flat_atomic_fmin:
1113 case Intrinsic::amdgcn_flat_atomic_fmax_num:
1114 case Intrinsic::amdgcn_flat_atomic_fmin_num: {
1115 Type *DestTy = II->getType();
1116 Type *SrcTy = NewV->getType();
1117 unsigned NewAS = SrcTy->getPointerAddressSpace();
1119 return nullptr;
1120 Module *M = II->getModule();
1121 Function *NewDecl = Intrinsic::getDeclaration(M, II->getIntrinsicID(),
1122 {DestTy, SrcTy, DestTy});
1123 II->setArgOperand(0, NewV);
1124 II->setCalledFunction(NewDecl);
1125 return II;
1126 }
1127 default:
1128 return nullptr;
1129 }
1130}
1131
1133 VectorType *VT, ArrayRef<int> Mask,
1135 int Index, VectorType *SubTp,
1137 const Instruction *CxtI) {
1138 if (!isa<FixedVectorType>(VT))
1139 return BaseT::getShuffleCost(Kind, VT, Mask, CostKind, Index, SubTp);
1140
1141 Kind = improveShuffleKindFromMask(Kind, Mask, VT, Index, SubTp);
1142
1143 // Larger vector widths may require additional instructions, but are
1144 // typically cheaper than scalarized versions.
1145 unsigned NumVectorElts = cast<FixedVectorType>(VT)->getNumElements();
1147 DL.getTypeSizeInBits(VT->getElementType()) == 16) {
1148 bool HasVOP3P = ST->hasVOP3PInsts();
1149 unsigned RequestedElts =
1150 count_if(Mask, [](int MaskElt) { return MaskElt != -1; });
1151 if (RequestedElts == 0)
1152 return 0;
1153 switch (Kind) {
1154 case TTI::SK_Broadcast:
1155 case TTI::SK_Reverse:
1157 // With op_sel VOP3P instructions freely can access the low half or high
1158 // half of a register, so any swizzle of two elements is free.
1159 if (HasVOP3P && NumVectorElts == 2)
1160 return 0;
1161 unsigned NumPerms = alignTo(RequestedElts, 2) / 2;
1162 // SK_Broadcast just reuses the same mask
1163 unsigned NumPermMasks = Kind == TTI::SK_Broadcast ? 1 : NumPerms;
1164 return NumPerms + NumPermMasks;
1165 }
1168 // Even aligned accesses are free
1169 if (!(Index % 2))
1170 return 0;
1171 // Insert/extract subvectors only require shifts / extract code to get the
1172 // relevant bits
1173 return alignTo(RequestedElts, 2) / 2;
1174 }
1176 case TTI::SK_Splice:
1177 case TTI::SK_Select: {
1178 unsigned NumPerms = alignTo(RequestedElts, 2) / 2;
1179 // SK_Select just reuses the same mask
1180 unsigned NumPermMasks = Kind == TTI::SK_Select ? 1 : NumPerms;
1181 return NumPerms + NumPermMasks;
1182 }
1183
1184 default:
1185 break;
1186 }
1187 }
1188
1189 return BaseT::getShuffleCost(Kind, VT, Mask, CostKind, Index, SubTp);
1190}
1191
1193 const Function *Callee) const {
1194 const TargetMachine &TM = getTLI()->getTargetMachine();
1195 const GCNSubtarget *CallerST
1196 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
1197 const GCNSubtarget *CalleeST
1198 = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
1199
1200 const FeatureBitset &CallerBits = CallerST->getFeatureBits();
1201 const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
1202
1203 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
1204 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
1205 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
1206 return false;
1207
1208 // FIXME: dx10_clamp can just take the caller setting, but there seems to be
1209 // no way to support merge for backend defined attributes.
1210 SIModeRegisterDefaults CallerMode(*Caller, *CallerST);
1211 SIModeRegisterDefaults CalleeMode(*Callee, *CalleeST);
1212 if (!CallerMode.isInlineCompatible(CalleeMode))
1213 return false;
1214
1215 if (Callee->hasFnAttribute(Attribute::AlwaysInline) ||
1216 Callee->hasFnAttribute(Attribute::InlineHint))
1217 return true;
1218
1219 // Hack to make compile times reasonable.
1220 if (InlineMaxBB) {
1221 // Single BB does not increase total BB amount.
1222 if (Callee->size() == 1)
1223 return true;
1224 size_t BBSize = Caller->size() + Callee->size() - 1;
1225 return BBSize <= InlineMaxBB;
1226 }
1227
1228 return true;
1229}
1230
1232 const SITargetLowering *TLI,
1233 const GCNTTIImpl *TTIImpl) {
1234 const int NrOfSGPRUntilSpill = 26;
1235 const int NrOfVGPRUntilSpill = 32;
1236
1237 const DataLayout &DL = TTIImpl->getDataLayout();
1238
1239 unsigned adjustThreshold = 0;
1240 int SGPRsInUse = 0;
1241 int VGPRsInUse = 0;
1242 for (const Use &A : CB->args()) {
1243 SmallVector<EVT, 4> ValueVTs;
1244 ComputeValueVTs(*TLI, DL, A.get()->getType(), ValueVTs);
1245 for (auto ArgVT : ValueVTs) {
1246 unsigned CCRegNum = TLI->getNumRegistersForCallingConv(
1247 CB->getContext(), CB->getCallingConv(), ArgVT);
1249 SGPRsInUse += CCRegNum;
1250 else
1251 VGPRsInUse += CCRegNum;
1252 }
1253 }
1254
1255 // The cost of passing function arguments through the stack:
1256 // 1 instruction to put a function argument on the stack in the caller.
1257 // 1 instruction to take a function argument from the stack in callee.
1258 // 1 instruction is explicitly take care of data dependencies in callee
1259 // function.
1260 InstructionCost ArgStackCost(1);
1261 ArgStackCost += const_cast<GCNTTIImpl *>(TTIImpl)->getMemoryOpCost(
1262 Instruction::Store, Type::getInt32Ty(CB->getContext()), Align(4),
1264 ArgStackCost += const_cast<GCNTTIImpl *>(TTIImpl)->getMemoryOpCost(
1265 Instruction::Load, Type::getInt32Ty(CB->getContext()), Align(4),
1267
1268 // The penalty cost is computed relative to the cost of instructions and does
1269 // not model any storage costs.
1270 adjustThreshold += std::max(0, SGPRsInUse - NrOfSGPRUntilSpill) *
1271 *ArgStackCost.getValue() * InlineConstants::getInstrCost();
1272 adjustThreshold += std::max(0, VGPRsInUse - NrOfVGPRUntilSpill) *
1273 *ArgStackCost.getValue() * InlineConstants::getInstrCost();
1274 return adjustThreshold;
1275}
1276
1277static unsigned getCallArgsTotalAllocaSize(const CallBase *CB,
1278 const DataLayout &DL) {
1279 // If we have a pointer to a private array passed into a function
1280 // it will not be optimized out, leaving scratch usage.
1281 // This function calculates the total size in bytes of the memory that would
1282 // end in scratch if the call was not inlined.
1283 unsigned AllocaSize = 0;
1285 for (Value *PtrArg : CB->args()) {
1286 PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType());
1287 if (!Ty)
1288 continue;
1289
1290 unsigned AddrSpace = Ty->getAddressSpace();
1291 if (AddrSpace != AMDGPUAS::FLAT_ADDRESS &&
1292 AddrSpace != AMDGPUAS::PRIVATE_ADDRESS)
1293 continue;
1294
1295 const AllocaInst *AI = dyn_cast<AllocaInst>(getUnderlyingObject(PtrArg));
1296 if (!AI || !AI->isStaticAlloca() || !AIVisited.insert(AI).second)
1297 continue;
1298
1299 AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType());
1300 }
1301 return AllocaSize;
1302}
1303
1305 unsigned Threshold = adjustInliningThresholdUsingCallee(CB, TLI, this);
1306
1307 // Private object passed as arguments may end up in scratch usage if the call
1308 // is not inlined. Increase the inline threshold to promote inlining.
1309 unsigned AllocaSize = getCallArgsTotalAllocaSize(CB, DL);
1310 if (AllocaSize > 0)
1311 Threshold += ArgAllocaCost;
1312 return Threshold;
1313}
1314
1316 const AllocaInst *AI) const {
1317
1318 // Below the cutoff, assume that the private memory objects would be
1319 // optimized
1320 auto AllocaSize = getCallArgsTotalAllocaSize(CB, DL);
1321 if (AllocaSize <= ArgAllocaCutoff)
1322 return 0;
1323
1324 // Above the cutoff, we give a cost to each private memory object
1325 // depending its size. If the array can be optimized by SROA this cost is not
1326 // added to the total-cost in the inliner cost analysis.
1327 //
1328 // We choose the total cost of the alloca such that their sum cancels the
1329 // bonus given in the threshold (ArgAllocaCost).
1330 //
1331 // Cost_Alloca_0 + ... + Cost_Alloca_N == ArgAllocaCost
1332 //
1333 // Awkwardly, the ArgAllocaCost bonus is multiplied by threshold-multiplier,
1334 // the single-bb bonus and the vector-bonus.
1335 //
1336 // We compensate the first two multipliers, by repeating logic from the
1337 // inliner-cost in here. The vector-bonus is 0 on AMDGPU.
1338 static_assert(InlinerVectorBonusPercent == 0, "vector bonus assumed to be 0");
1339 unsigned Threshold = ArgAllocaCost * getInliningThresholdMultiplier();
1340
1341 bool SingleBB = none_of(*CB->getCalledFunction(), [](const BasicBlock &BB) {
1342 return BB.getTerminator()->getNumSuccessors() > 1;
1343 });
1344 if (SingleBB) {
1345 Threshold += Threshold / 2;
1346 }
1347
1348 auto ArgAllocaSize = DL.getTypeAllocSize(AI->getAllocatedType());
1349
1350 // Attribute the bonus proportionally to the alloca size
1351 unsigned AllocaThresholdBonus = (Threshold * ArgAllocaSize) / AllocaSize;
1352
1353 return AllocaThresholdBonus;
1354}
1355
1359 CommonTTI.getUnrollingPreferences(L, SE, UP, ORE);
1360}
1361
1364 CommonTTI.getPeelingPreferences(L, SE, PP);
1365}
1366
1367int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const {
1368 return ST->hasFullRate64Ops()
1369 ? getFullRateInstrCost()
1370 : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind)
1371 : getQuarterRateInstrCost(CostKind);
1372}
1373
1374std::pair<InstructionCost, MVT>
1375GCNTTIImpl::getTypeLegalizationCost(Type *Ty) const {
1376 std::pair<InstructionCost, MVT> Cost = BaseT::getTypeLegalizationCost(Ty);
1377 auto Size = DL.getTypeSizeInBits(Ty);
1378 // Maximum load or store can handle 8 dwords for scalar and 4 for
1379 // vector ALU. Let's assume anything above 8 dwords is expensive
1380 // even if legal.
1381 if (Size <= 256)
1382 return Cost;
1383
1384 Cost.first += (Size + 255) / 256;
1385 return Cost;
1386}
1387
1389 return ST->hasPrefetch() ? 128 : 0;
1390}
1391
1394}
aarch64 promote const
Provides AMDGPU specific target descriptions.
Rewrite undef for PHI
The AMDGPU TargetMachine interface definition for hw codegen targets.
static cl::opt< unsigned > UnrollThresholdIf("amdgpu-unroll-threshold-if", cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), cl::init(200), cl::Hidden)
static cl::opt< unsigned > ArgAllocaCost("amdgpu-inline-arg-alloca-cost", cl::Hidden, cl::init(4000), cl::desc("Cost of alloca argument"))
static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, unsigned Depth=0)
static cl::opt< bool > UnrollRuntimeLocal("amdgpu-unroll-runtime-local", cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), cl::init(true), cl::Hidden)
static unsigned adjustInliningThresholdUsingCallee(const CallBase *CB, const SITargetLowering *TLI, const GCNTTIImpl *TTIImpl)
static cl::opt< unsigned > ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden, cl::init(256), cl::desc("Maximum alloca size to use for inline cost"))
static cl::opt< size_t > InlineMaxBB("amdgpu-inline-max-bb", cl::Hidden, cl::init(1100), cl::desc("Maximum number of BBs allowed in a function after inlining" " (compile time constraint)"))
static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID)
static cl::opt< unsigned > UnrollMaxBlockToAnalyze("amdgpu-unroll-max-block-to-analyze", cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"), cl::init(32), cl::Hidden)
static unsigned getCallArgsTotalAllocaSize(const CallBase *CB, const DataLayout &DL)
static cl::opt< unsigned > UnrollThresholdPrivate("amdgpu-unroll-threshold-private", cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), cl::init(2700), cl::Hidden)
static cl::opt< unsigned > UnrollThresholdLocal("amdgpu-unroll-threshold-local", cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), cl::init(1000), cl::Hidden)
This file a TargetTransformInfo::Concept conforming object specific to the AMDGPU target machine.
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
static cl::opt< TargetTransformInfo::TargetCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(TargetTransformInfo::TCK_RecipThroughput), cl::values(clEnumValN(TargetTransformInfo::TCK_RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(TargetTransformInfo::TCK_Latency, "latency", "Instruction latency"), clEnumValN(TargetTransformInfo::TCK_CodeSize, "code-size", "Code size"), clEnumValN(TargetTransformInfo::TCK_SizeAndLatency, "size-latency", "Code size and latency")))
return RetTy
#define LLVM_DEBUG(X)
Definition: Debug.h:101
uint64_t Size
Hexagon Common GEP
#define RegName(no)
static LVOptions Options
Definition: LVOptions.cpp:25
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool hasMadMacF32Insts() const
unsigned getMaxWorkitemID(const Function &Kernel, unsigned Dimension) const
Return the maximum workitem ID value in the function, for the given (0, 1, 2) dimension.
unsigned getWavefrontSizeLog2() const
bool has16BitInsts() const
bool hasFastFMAF32() const
bool isSingleLaneExecution(const Function &Kernel) const
Return true if only a single workitem can be active in a wave.
bool hasVOP3PInsts() const
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP)
AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE)
int64_t getMaxMemIntrinsicInlineSizeThreshold() const
bool isFNegFree(EVT VT) const override
Return true if an fneg operation is free to the point where it is never worthwhile to replace it with...
an instruction to allocate memory on the stack
Definition: Instructions.h:61
bool isStaticAlloca() const
Return true if this alloca is in the entry block of the function and is a constant size.
Type * getAllocatedType() const
Return the type that is being allocated by the instruction.
Definition: Instructions.h:115
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:165
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:160
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind)
Get intrinsic cost based on arguments.
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Op0, Value *Op1)
TTI::ShuffleKind improveShuffleKindFromMask(TTI::ShuffleKind Kind, ArrayRef< int > Mask, VectorType *Ty, int &Index, VectorType *&SubTy) const
Definition: BasicTTIImpl.h:970
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind)
Try to calculate op costs for min/max reduction operations.
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args=std::nullopt, const Instruction *CxtI=nullptr)
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP)
Definition: BasicTTIImpl.h:655
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args=std::nullopt, const Instruction *CxtI=nullptr)
Definition: BasicTTIImpl.h:892
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind)
std::pair< InstructionCost, MVT > getTypeLegalizationCost(Type *Ty) const
Estimate the cost of type-legalization and the legalized type.
Definition: BasicTTIImpl.h:856
Conditional or Unconditional Branch instruction.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1236
bool isInlineAsm() const
Check if this call is an inline asm statement.
Definition: InstrTypes.h:1532
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1465
CallingConv::ID getCallingConv() const
Definition: InstrTypes.h:1523
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1410
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
Definition: InstrTypes.h:1401
unsigned getArgOperandNo(const Use *U) const
Given a use for a arg operand, get the arg operand number that corresponds to it.
Definition: InstrTypes.h:1441
This class represents a function call, abstracting a target machine's calling convention.
This is the shared class of boolean and integer constants.
Definition: Constants.h:81
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:850
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:857
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition: Constants.h:161
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
unsigned getPointerSizeInBits(unsigned AS=0) const
Layout pointer size, in bits FIXME: The defaults need to be removed once all of the backends/clients ...
Definition: DataLayout.h:367
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:461
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Definition: DataLayout.h:621
constexpr bool isScalar() const
Exactly one element.
Definition: TypeSize.h:322
This instruction extracts a struct member or array element value from an aggregate value.
ArrayRef< unsigned > getIndices() const
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
Container class for subtarget features.
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition: Type.cpp:680
bool hasPrefetch() const
Definition: GCNSubtarget.h:940
bool hasUsableDivScaleConditionOutput() const
Condition output from div_scale is usable.
Definition: GCNSubtarget.h:477
const SIRegisterInfo * getRegisterInfo() const override
Definition: GCNSubtarget.h:278
bool hasUnalignedScratchAccess() const
Definition: GCNSubtarget.h:589
bool hasPackedFP32Ops() const
bool hasFullRate64Ops() const
Definition: GCNSubtarget.h:377
unsigned getMaxPrivateElementSize(bool ForBufferRSrc=false) const
Definition: GCNSubtarget.h:344
Generation getGeneration() const
Definition: GCNSubtarget.h:317
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind Vector) const
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind)
InstructionCost getVectorInstrCost(unsigned Opcode, Type *ValTy, TTI::TargetCostKind CostKind, unsigned Index, Value *Op0, Value *Op1)
bool isAlwaysUniform(const Value *V) const
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP)
GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F)
int64_t getMaxMemIntrinsicInlineSizeThreshold() const
bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind)
bool isInlineAsmSourceOfDivergence(const CallInst *CI, ArrayRef< unsigned > Indices={}) const
Analyze if the results of inline asm are divergent.
bool isReadRegisterSourceOfDivergence(const IntrinsicInst *ReadReg) const
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args=std::nullopt, const Instruction *CxtI=nullptr)
unsigned getNumberOfRegisters(unsigned RCID) const
bool isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
bool shouldPrefetchAddressSpace(unsigned AS) const override
unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const
unsigned getMaxInterleaveFactor(ElementCount VF)
unsigned getInliningThresholdMultiplier() const
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE)
unsigned getMinVectorRegisterBitWidth() const
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const
unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const
unsigned getPrefetchDistance() const override
How much before a load we should place the prefetch instruction.
Value * rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const
bool collectFlatAddressOperands(SmallVectorImpl< int > &OpIndexes, Intrinsic::ID IID) const
unsigned adjustInliningThreshold(const CallBase *CB) const
bool areInlineCompatible(const Function *Caller, const Function *Callee) const
unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const
Type * getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicElementSize) const
void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type * > &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicCpySize) const
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const
bool isSourceOfDivergence(const Value *V) const
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args=std::nullopt, const Instruction *CxtI=nullptr)
bool hasBranchDivergence(const Function *F=nullptr) const
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind)
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:915
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2686
std::optional< CostType > getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
bool hasApproxFunc() const LLVM_READONLY
Determine whether the approximate-math-functions flag is set.
bool hasAllowContract() const LLVM_READONLY
Determine whether the allow-contract flag is set.
const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Definition: Instruction.cpp:74
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Definition: IntrinsicInst.h:55
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:174
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
Metadata node.
Definition: Metadata.h:1069
Machine Value Type.
static MVT getVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
Definition: ValueTypes.cpp:231
Root of the metadata hierarchy.
Definition: Metadata.h:62
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
The optimization diagnostic interface.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain targets require unusual breakdowns of certain types.
The main scalar evolution driver.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:367
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:502
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
const TargetMachine & getTargetMachine() const
std::vector< AsmOperandInfo > AsmOperandInfoVector
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:77
TargetOptions Options
unsigned UnsafeFPMath
UnsafeFPMath - This flag is enabled when the -enable-unsafe-fp-math flag is specified on the command ...
const DataLayout & getDataLayout() const
void getMemcpyLoopResidualLoweringType(SmallVectorImpl< Type * > &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, Align SrcAlign, Align DestAlign, std::optional< uint32_t > AtomicCpySize) const
TargetCostKind
The kind of cost model.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
static bool requiresOrderedReduction(std::optional< FastMathFlags > FMF)
A helper function to determine the type of reduction algorithm used for a given Opcode and set of Fas...
@ TCC_Free
Expected to fold away in lowering.
ShuffleKind
The various kinds of shuffle patterns for vector queries.
@ SK_InsertSubvector
InsertSubvector. Index indicates start offset.
@ SK_Select
Selects elements from the corresponding lane of either source operand.
@ SK_PermuteSingleSrc
Shuffle elements of single source vector with any shuffle mask.
@ SK_Splice
Concatenates elements from the first input vector with elements of the second input vector.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_PermuteTwoSrc
Merge elements from two source vectors into one with any shuffle mask.
@ SK_Reverse
Reverse the order of the vector.
@ SK_ExtractSubvector
ExtractSubvector Index indicates start offset.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
Definition: TypeSize.h:345
static constexpr TypeSize getScalable(ScalarTy MinimumSize)
Definition: TypeSize.h:348
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition: Type.h:298
static IntegerType * getInt16Ty(LLVMContext &C)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
static IntegerType * getInt8Ty(LLVMContext &C)
static IntegerType * getInt32Ty(LLVMContext &C)
static IntegerType * getInt64Ty(LLVMContext &C)
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
Value * getOperand(unsigned i) const
Definition: User.h:169
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
user_iterator user_begin()
Definition: Value.h:397
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1075
Base class of all SIMD vector types.
Definition: DerivedTypes.h:403
Type * getElementType() const
Definition: DerivedTypes.h:436
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ CONSTANT_ADDRESS_32BIT
Address space for 32-bit constant memory.
@ BUFFER_STRIDED_POINTER
Address space for 192-bit fat buffer pointers with an additional index.
@ REGION_ADDRESS
Address space for region memory. (GDS)
@ LOCAL_ADDRESS
Address space for local memory.
@ CONSTANT_ADDRESS
Address space for constant memory (VTX2).
@ FLAT_ADDRESS
Address space for flat memory.
@ GLOBAL_ADDRESS
Address space for global memory (RAT0, VTX0).
@ BUFFER_FAT_POINTER
Address space for 160-bit buffer fat pointers.
@ PRIVATE_ADDRESS
Address space for private memory.
@ BUFFER_RESOURCE
Address space for 128-bit buffer resources.
bool isFlatGlobalAddrSpace(unsigned AS)
Definition: AMDGPU.h:458
bool isArgPassedInSGPR(const Argument *A)
bool isIntrinsicAlwaysUniform(unsigned IntrID)
bool isIntrinsicSourceOfDivergence(unsigned IntrID)
bool isExtendedGlobalAddrSpace(unsigned AS)
Definition: AMDGPU.h:465
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ ADD
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:246
@ FADD
Simple binary floating point operators.
Definition: ISDOpcodes.h:397
@ FNEG
Perform various unary floating-point operations inspired by libm.
Definition: ISDOpcodes.h:980
@ SHL
Shift and rotation operations.
Definition: ISDOpcodes.h:734
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:708
Function * getDeclaration(Module *M, ID id, ArrayRef< Type * > Tys=std::nullopt)
Create or insert an LLVM Function declaration for an intrinsic, and return it.
Definition: Function.cpp:1539
BinaryOp_match< LHS, RHS, Instruction::AShr > m_AShr(const LHS &L, const RHS &R)
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:168
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
Definition: PatternMatch.h:921
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Length
Definition: DWP.cpp:480
const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=6)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
MDNode * findOptionMDForLoop(const Loop *TheLoop, StringRef Name)
Find string metadata for a loop.
Definition: LoopInfo.cpp:1055
constexpr T MinAlign(U A, V B)
A and B are either alignments or offsets.
Definition: MathExtras.h:366
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1736
AtomicOrdering
Atomic ordering for LLVM's memory model.
@ FAdd
Sum of floats.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
Definition: Analysis.cpp:79
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1928
InstructionCost Cost
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
static constexpr DenormalMode getPreserveSign()
Extended Value Type.
Definition: ValueTypes.h:35
uint64_t getScalarSizeInBits() const
Definition: ValueTypes.h:371
unsigned countMinLeadingOnes() const
Returns the minimum number of leading one bits.
Definition: KnownBits.h:240
Information about a load/store intrinsic defined by the target.
bool isInlineCompatible(SIModeRegisterDefaults CalleeMode) const
Parameters that control the generic loop unrolling transformation.
unsigned Threshold
The cost threshold for the unrolled loop.
bool UnrollVectorizedLoop
Don't disable runtime unroll for the loops which were vectorized.
unsigned MaxIterationsCountToAnalyze
Don't allow loop unrolling to simulate more than this number of iterations when checking full unroll ...
unsigned PartialThreshold
The cost threshold for the unrolled loop, like Threshold, but used for partial/runtime unrolling (set...
bool Runtime
Allow runtime unrolling (unrolling of loops to expand the size of the loop body even when the number ...
bool Partial
Allow partial unrolling (unrolling of loops to expand the size of the loop body, not only to eliminat...