LLVM 20.0.0git
StackColoring.cpp
Go to the documentation of this file.
1//===- StackColoring.cpp --------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements the stack-coloring optimization that looks for
10// lifetime markers machine instructions (LIFETIME_START and LIFETIME_END),
11// which represent the possible lifetime of stack slots. It attempts to
12// merge disjoint stack slots and reduce the used stack space.
13// NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
14//
15// TODO: In the future we plan to improve stack coloring in the following ways:
16// 1. Allow merging multiple small slots into a single larger slot at different
17// offsets.
18// 2. Merge this pass with StackSlotColoring and allow merging of allocas with
19// spill slots.
20//
21//===----------------------------------------------------------------------===//
22
24#include "llvm/ADT/BitVector.h"
25#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/Statistic.h"
39#include "llvm/CodeGen/Passes.h"
44#include "llvm/Config/llvm-config.h"
45#include "llvm/IR/Constants.h"
48#include "llvm/IR/Metadata.h"
49#include "llvm/IR/Use.h"
50#include "llvm/IR/Value.h"
52#include "llvm/Pass.h"
56#include "llvm/Support/Debug.h"
58#include <algorithm>
59#include <cassert>
60#include <limits>
61#include <memory>
62#include <utility>
63
64using namespace llvm;
65
66#define DEBUG_TYPE "stack-coloring"
67
68static cl::opt<bool>
69DisableColoring("no-stack-coloring",
70 cl::init(false), cl::Hidden,
71 cl::desc("Disable stack coloring"));
72
73/// The user may write code that uses allocas outside of the declared lifetime
74/// zone. This can happen when the user returns a reference to a local
75/// data-structure. We can detect these cases and decide not to optimize the
76/// code. If this flag is enabled, we try to save the user. This option
77/// is treated as overriding LifetimeStartOnFirstUse below.
78static cl::opt<bool>
79ProtectFromEscapedAllocas("protect-from-escaped-allocas",
80 cl::init(false), cl::Hidden,
81 cl::desc("Do not optimize lifetime zones that "
82 "are broken"));
83
84/// Enable enhanced dataflow scheme for lifetime analysis (treat first
85/// use of stack slot as start of slot lifetime, as opposed to looking
86/// for LIFETIME_START marker). See "Implementation notes" below for
87/// more info.
88static cl::opt<bool>
89LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
90 cl::init(true), cl::Hidden,
91 cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
92
93
94STATISTIC(NumMarkerSeen, "Number of lifetime markers found.");
95STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
96STATISTIC(StackSlotMerged, "Number of stack slot merged.");
97STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
98
99//===----------------------------------------------------------------------===//
100// StackColoring Pass
101//===----------------------------------------------------------------------===//
102//
103// Stack Coloring reduces stack usage by merging stack slots when they
104// can't be used together. For example, consider the following C program:
105//
106// void bar(char *, int);
107// void foo(bool var) {
108// A: {
109// char z[4096];
110// bar(z, 0);
111// }
112//
113// char *p;
114// char x[4096];
115// char y[4096];
116// if (var) {
117// p = x;
118// } else {
119// bar(y, 1);
120// p = y + 1024;
121// }
122// B:
123// bar(p, 2);
124// }
125//
126// Naively-compiled, this program would use 12k of stack space. However, the
127// stack slot corresponding to `z` is always destroyed before either of the
128// stack slots for `x` or `y` are used, and then `x` is only used if `var`
129// is true, while `y` is only used if `var` is false. So in no time are 2
130// of the stack slots used together, and therefore we can merge them,
131// compiling the function using only a single 4k alloca:
132//
133// void foo(bool var) { // equivalent
134// char x[4096];
135// char *p;
136// bar(x, 0);
137// if (var) {
138// p = x;
139// } else {
140// bar(x, 1);
141// p = x + 1024;
142// }
143// bar(p, 2);
144// }
145//
146// This is an important optimization if we want stack space to be under
147// control in large functions, both open-coded ones and ones created by
148// inlining.
149//
150// Implementation Notes:
151// ---------------------
152//
153// An important part of the above reasoning is that `z` can't be accessed
154// while the latter 2 calls to `bar` are running. This is justified because
155// `z`'s lifetime is over after we exit from block `A:`, so any further
156// accesses to it would be UB. The way we represent this information
157// in LLVM is by having frontends delimit blocks with `lifetime.start`
158// and `lifetime.end` intrinsics.
159//
160// The effect of these intrinsics seems to be as follows (maybe I should
161// specify this in the reference?):
162//
163// L1) at start, each stack-slot is marked as *out-of-scope*, unless no
164// lifetime intrinsic refers to that stack slot, in which case
165// it is marked as *in-scope*.
166// L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
167// the stack slot is overwritten with `undef`.
168// L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
169// L4) on function exit, all stack slots are marked as *out-of-scope*.
170// L5) `lifetime.end` is a no-op when called on a slot that is already
171// *out-of-scope*.
172// L6) memory accesses to *out-of-scope* stack slots are UB.
173// L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
174// are invalidated, unless the slot is "degenerate". This is used to
175// justify not marking slots as in-use until the pointer to them is
176// used, but feels a bit hacky in the presence of things like LICM. See
177// the "Degenerate Slots" section for more details.
178//
179// Now, let's ground stack coloring on these rules. We'll define a slot
180// as *in-use* at a (dynamic) point in execution if it either can be
181// written to at that point, or if it has a live and non-undef content
182// at that point.
183//
184// Obviously, slots that are never *in-use* together can be merged, and
185// in our example `foo`, the slots for `x`, `y` and `z` are never
186// in-use together (of course, sometimes slots that *are* in-use together
187// might still be mergable, but we don't care about that here).
188//
189// In this implementation, we successively merge pairs of slots that are
190// not *in-use* together. We could be smarter - for example, we could merge
191// a single large slot with 2 small slots, or we could construct the
192// interference graph and run a "smart" graph coloring algorithm, but with
193// that aside, how do we find out whether a pair of slots might be *in-use*
194// together?
195//
196// From our rules, we see that *out-of-scope* slots are never *in-use*,
197// and from (L7) we see that "non-degenerate" slots remain non-*in-use*
198// until their address is taken. Therefore, we can approximate slot activity
199// using dataflow.
200//
201// A subtle point: naively, we might try to figure out which pairs of
202// stack-slots interfere by propagating `S in-use` through the CFG for every
203// stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
204// which they are both *in-use*.
205//
206// That is sound, but overly conservative in some cases: in our (artificial)
207// example `foo`, either `x` or `y` might be in use at the label `B:`, but
208// as `x` is only in use if we came in from the `var` edge and `y` only
209// if we came from the `!var` edge, they still can't be in use together.
210// See PR32488 for an important real-life case.
211//
212// If we wanted to find all points of interference precisely, we could
213// propagate `S in-use` and `S&T in-use` predicates through the CFG. That
214// would be precise, but requires propagating `O(n^2)` dataflow facts.
215//
216// However, we aren't interested in the *set* of points of interference
217// between 2 stack slots, only *whether* there *is* such a point. So we
218// can rely on a little trick: for `S` and `T` to be in-use together,
219// one of them needs to become in-use while the other is in-use (or
220// they might both become in use simultaneously). We can check this
221// by also keeping track of the points at which a stack slot might *start*
222// being in-use.
223//
224// Exact first use:
225// ----------------
226//
227// Consider the following motivating example:
228//
229// int foo() {
230// char b1[1024], b2[1024];
231// if (...) {
232// char b3[1024];
233// <uses of b1, b3>;
234// return x;
235// } else {
236// char b4[1024], b5[1024];
237// <uses of b2, b4, b5>;
238// return y;
239// }
240// }
241//
242// In the code above, "b3" and "b4" are declared in distinct lexical
243// scopes, meaning that it is easy to prove that they can share the
244// same stack slot. Variables "b1" and "b2" are declared in the same
245// scope, meaning that from a lexical point of view, their lifetimes
246// overlap. From a control flow pointer of view, however, the two
247// variables are accessed in disjoint regions of the CFG, thus it
248// should be possible for them to share the same stack slot. An ideal
249// stack allocation for the function above would look like:
250//
251// slot 0: b1, b2
252// slot 1: b3, b4
253// slot 2: b5
254//
255// Achieving this allocation is tricky, however, due to the way
256// lifetime markers are inserted. Here is a simplified view of the
257// control flow graph for the code above:
258//
259// +------ block 0 -------+
260// 0| LIFETIME_START b1, b2 |
261// 1| <test 'if' condition> |
262// +-----------------------+
263// ./ \.
264// +------ block 1 -------+ +------ block 2 -------+
265// 2| LIFETIME_START b3 | 5| LIFETIME_START b4, b5 |
266// 3| <uses of b1, b3> | 6| <uses of b2, b4, b5> |
267// 4| LIFETIME_END b3 | 7| LIFETIME_END b4, b5 |
268// +-----------------------+ +-----------------------+
269// \. /.
270// +------ block 3 -------+
271// 8| <cleanupcode> |
272// 9| LIFETIME_END b1, b2 |
273// 10| return |
274// +-----------------------+
275//
276// If we create live intervals for the variables above strictly based
277// on the lifetime markers, we'll get the set of intervals on the
278// left. If we ignore the lifetime start markers and instead treat a
279// variable's lifetime as beginning with the first reference to the
280// var, then we get the intervals on the right.
281//
282// LIFETIME_START First Use
283// b1: [0,9] [3,4] [8,9]
284// b2: [0,9] [6,9]
285// b3: [2,4] [3,4]
286// b4: [5,7] [6,7]
287// b5: [5,7] [6,7]
288//
289// For the intervals on the left, the best we can do is overlap two
290// variables (b3 and b4, for example); this gives us a stack size of
291// 4*1024 bytes, not ideal. When treating first-use as the start of a
292// lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
293// byte stack (better).
294//
295// Degenerate Slots:
296// -----------------
297//
298// Relying entirely on first-use of stack slots is problematic,
299// however, due to the fact that optimizations can sometimes migrate
300// uses of a variable outside of its lifetime start/end region. Here
301// is an example:
302//
303// int bar() {
304// char b1[1024], b2[1024];
305// if (...) {
306// <uses of b2>
307// return y;
308// } else {
309// <uses of b1>
310// while (...) {
311// char b3[1024];
312// <uses of b3>
313// }
314// }
315// }
316//
317// Before optimization, the control flow graph for the code above
318// might look like the following:
319//
320// +------ block 0 -------+
321// 0| LIFETIME_START b1, b2 |
322// 1| <test 'if' condition> |
323// +-----------------------+
324// ./ \.
325// +------ block 1 -------+ +------- block 2 -------+
326// 2| <uses of b2> | 3| <uses of b1> |
327// +-----------------------+ +-----------------------+
328// | |
329// | +------- block 3 -------+ <-\.
330// | 4| <while condition> | |
331// | +-----------------------+ |
332// | / | |
333// | / +------- block 4 -------+
334// \ / 5| LIFETIME_START b3 | |
335// \ / 6| <uses of b3> | |
336// \ / 7| LIFETIME_END b3 | |
337// \ | +------------------------+ |
338// \ | \ /
339// +------ block 5 -----+ \---------------
340// 8| <cleanupcode> |
341// 9| LIFETIME_END b1, b2 |
342// 10| return |
343// +---------------------+
344//
345// During optimization, however, it can happen that an instruction
346// computing an address in "b3" (for example, a loop-invariant GEP) is
347// hoisted up out of the loop from block 4 to block 2. [Note that
348// this is not an actual load from the stack, only an instruction that
349// computes the address to be loaded]. If this happens, there is now a
350// path leading from the first use of b3 to the return instruction
351// that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
352// now larger than if we were computing live intervals strictly based
353// on lifetime markers. In the example above, this lengthened lifetime
354// would mean that it would appear illegal to overlap b3 with b2.
355//
356// To deal with this such cases, the code in ::collectMarkers() below
357// tries to identify "degenerate" slots -- those slots where on a single
358// forward pass through the CFG we encounter a first reference to slot
359// K before we hit the slot K lifetime start marker. For such slots,
360// we fall back on using the lifetime start marker as the beginning of
361// the variable's lifetime. NB: with this implementation, slots can
362// appear degenerate in cases where there is unstructured control flow:
363//
364// if (q) goto mid;
365// if (x > 9) {
366// int b[100];
367// memcpy(&b[0], ...);
368// mid: b[k] = ...;
369// abc(&b);
370// }
371//
372// If in RPO ordering chosen to walk the CFG we happen to visit the b[k]
373// before visiting the memcpy block (which will contain the lifetime start
374// for "b" then it will appear that 'b' has a degenerate lifetime.
375
376namespace {
377
378/// StackColoring - A machine pass for merging disjoint stack allocations,
379/// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
380class StackColoring {
381 MachineFrameInfo *MFI = nullptr;
382 MachineFunction *MF = nullptr;
383
384 /// A class representing liveness information for a single basic block.
385 /// Each bit in the BitVector represents the liveness property
386 /// for a different stack slot.
387 struct BlockLifetimeInfo {
388 /// Which slots BEGINs in each basic block.
389 BitVector Begin;
390
391 /// Which slots ENDs in each basic block.
393
394 /// Which slots are marked as LIVE_IN, coming into each basic block.
395 BitVector LiveIn;
396
397 /// Which slots are marked as LIVE_OUT, coming out of each basic block.
398 BitVector LiveOut;
399 };
400
401 /// Maps active slots (per bit) for each basic block.
403 LivenessMap BlockLiveness;
404
405 /// Maps serial numbers to basic blocks.
407
408 /// Maps basic blocks to a serial number.
410
411 /// Maps slots to their use interval. Outside of this interval, slots
412 /// values are either dead or `undef` and they will not be written to.
414
415 /// Maps slots to the points where they can become in-use.
417
418 /// VNInfo is used for the construction of LiveIntervals.
419 VNInfo::Allocator VNInfoAllocator;
420
421 /// SlotIndex analysis object.
422 SlotIndexes *Indexes = nullptr;
423
424 /// The list of lifetime markers found. These markers are to be removed
425 /// once the coloring is done.
427
428 /// Record the FI slots for which we have seen some sort of
429 /// lifetime marker (either start or end).
430 BitVector InterestingSlots;
431
432 /// FI slots that need to be handled conservatively (for these
433 /// slots lifetime-start-on-first-use is disabled).
434 BitVector ConservativeSlots;
435
436 /// Number of iterations taken during data flow analysis.
437 unsigned NumIterations;
438
439public:
440 StackColoring(SlotIndexes *Indexes) : Indexes(Indexes) {}
441 bool run(MachineFunction &Func);
442
443private:
444 /// Used in collectMarkers
446
447 /// Debug.
448 void dump() const;
449 void dumpIntervals() const;
450 void dumpBB(MachineBasicBlock *MBB) const;
451 void dumpBV(const char *tag, const BitVector &BV) const;
452
453 /// Removes all of the lifetime marker instructions from the function.
454 /// \returns true if any markers were removed.
455 bool removeAllMarkers();
456
457 /// Scan the machine function and find all of the lifetime markers.
458 /// Record the findings in the BEGIN and END vectors.
459 /// \returns the number of markers found.
460 unsigned collectMarkers(unsigned NumSlot);
461
462 /// Perform the dataflow calculation and calculate the lifetime for each of
463 /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
464 /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
465 /// in and out blocks.
466 void calculateLocalLiveness();
467
468 /// Returns TRUE if we're using the first-use-begins-lifetime method for
469 /// this slot (if FALSE, then the start marker is treated as start of lifetime).
470 bool applyFirstUse(int Slot) {
472 return false;
473 if (ConservativeSlots.test(Slot))
474 return false;
475 return true;
476 }
477
478 /// Examines the specified instruction and returns TRUE if the instruction
479 /// represents the start or end of an interesting lifetime. The slot or slots
480 /// starting or ending are added to the vector "slots" and "isStart" is set
481 /// accordingly.
482 /// \returns True if inst contains a lifetime start or end
483 bool isLifetimeStartOrEnd(const MachineInstr &MI,
485 bool &isStart);
486
487 /// Construct the LiveIntervals for the slots.
488 void calculateLiveIntervals(unsigned NumSlots);
489
490 /// Go over the machine function and change instructions which use stack
491 /// slots to use the joint slots.
492 void remapInstructions(DenseMap<int, int> &SlotRemap);
493
494 /// The input program may contain instructions which are not inside lifetime
495 /// markers. This can happen due to a bug in the compiler or due to a bug in
496 /// user code (for example, returning a reference to a local variable).
497 /// This procedure checks all of the instructions in the function and
498 /// invalidates lifetime ranges which do not contain all of the instructions
499 /// which access that frame slot.
500 void removeInvalidSlotRanges();
501
502 /// Map entries which point to other entries to their destination.
503 /// A->B->C becomes A->C.
504 void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
505};
506
507class StackColoringLegacy : public MachineFunctionPass {
508public:
509 static char ID;
510
511 StackColoringLegacy() : MachineFunctionPass(ID) {}
512
513 void getAnalysisUsage(AnalysisUsage &AU) const override;
514 bool runOnMachineFunction(MachineFunction &Func) override;
515};
516
517} // end anonymous namespace
518
519char StackColoringLegacy::ID = 0;
520
521char &llvm::StackColoringLegacyID = StackColoringLegacy::ID;
522
524 "Merge disjoint stack slots", false, false)
526INITIALIZE_PASS_END(StackColoringLegacy, DEBUG_TYPE,
527 "Merge disjoint stack slots", false, false)
528
529void StackColoringLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
530 AU.addRequired<SlotIndexesWrapperPass>();
532}
533
534#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
535LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
536 const BitVector &BV) const {
537 dbgs() << tag << " : { ";
538 for (unsigned I = 0, E = BV.size(); I != E; ++I)
539 dbgs() << BV.test(I) << " ";
540 dbgs() << "}\n";
541}
542
543LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
544 LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
545 assert(BI != BlockLiveness.end() && "Block not found");
546 const BlockLifetimeInfo &BlockInfo = BI->second;
547
548 dumpBV("BEGIN", BlockInfo.Begin);
549 dumpBV("END", BlockInfo.End);
550 dumpBV("LIVE_IN", BlockInfo.LiveIn);
551 dumpBV("LIVE_OUT", BlockInfo.LiveOut);
552}
553
554LLVM_DUMP_METHOD void StackColoring::dump() const {
555 for (MachineBasicBlock *MBB : depth_first(MF)) {
556 dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
557 << MBB->getName() << "]\n";
558 dumpBB(MBB);
559 }
560}
561
562LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
563 for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
564 dbgs() << "Interval[" << I << "]:\n";
565 Intervals[I]->dump();
566 }
567}
568#endif
569
570static inline int getStartOrEndSlot(const MachineInstr &MI)
571{
572 assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
573 MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
574 "Expected LIFETIME_START or LIFETIME_END op");
575 const MachineOperand &MO = MI.getOperand(0);
576 int Slot = MO.getIndex();
577 if (Slot >= 0)
578 return Slot;
579 return -1;
580}
581
582// At the moment the only way to end a variable lifetime is with
583// a VARIABLE_LIFETIME op (which can't contain a start). If things
584// change and the IR allows for a single inst that both begins
585// and ends lifetime(s), this interface will need to be reworked.
586bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
588 bool &isStart) {
589 if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
590 MI.getOpcode() == TargetOpcode::LIFETIME_END) {
592 if (Slot < 0)
593 return false;
594 if (!InterestingSlots.test(Slot))
595 return false;
596 slots.push_back(Slot);
597 if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
598 isStart = false;
599 return true;
600 }
601 if (!applyFirstUse(Slot)) {
602 isStart = true;
603 return true;
604 }
606 if (!MI.isDebugInstr()) {
607 bool found = false;
608 for (const MachineOperand &MO : MI.operands()) {
609 if (!MO.isFI())
610 continue;
611 int Slot = MO.getIndex();
612 if (Slot<0)
613 continue;
614 if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
615 slots.push_back(Slot);
616 found = true;
617 }
618 }
619 if (found) {
620 isStart = true;
621 return true;
622 }
623 }
624 }
625 return false;
626}
627
628unsigned StackColoring::collectMarkers(unsigned NumSlot) {
629 unsigned MarkersFound = 0;
630 BlockBitVecMap SeenStartMap;
631 InterestingSlots.clear();
632 InterestingSlots.resize(NumSlot);
633 ConservativeSlots.clear();
634 ConservativeSlots.resize(NumSlot);
635
636 // number of start and end lifetime ops for each slot
637 SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
638 SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
639
640 // Step 1: collect markers and populate the "InterestingSlots"
641 // and "ConservativeSlots" sets.
642 for (MachineBasicBlock *MBB : depth_first(MF)) {
643 // Compute the set of slots for which we've seen a START marker but have
644 // not yet seen an END marker at this point in the walk (e.g. on entry
645 // to this bb).
646 BitVector BetweenStartEnd;
647 BetweenStartEnd.resize(NumSlot);
648 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
649 BlockBitVecMap::const_iterator I = SeenStartMap.find(Pred);
650 if (I != SeenStartMap.end()) {
651 BetweenStartEnd |= I->second;
652 }
653 }
654
655 // Walk the instructions in the block to look for start/end ops.
656 for (MachineInstr &MI : *MBB) {
657 if (MI.isDebugInstr())
658 continue;
659 if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
660 MI.getOpcode() == TargetOpcode::LIFETIME_END) {
662 if (Slot < 0)
663 continue;
664 InterestingSlots.set(Slot);
665 if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
666 BetweenStartEnd.set(Slot);
667 NumStartLifetimes[Slot] += 1;
668 } else {
669 BetweenStartEnd.reset(Slot);
670 NumEndLifetimes[Slot] += 1;
671 }
672 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
673 if (Allocation) {
674 LLVM_DEBUG(dbgs() << "Found a lifetime ");
675 LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
676 ? "start"
677 : "end"));
678 LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
680 << " with allocation: " << Allocation->getName() << "\n");
681 }
682 Markers.push_back(&MI);
683 MarkersFound += 1;
684 } else {
685 for (const MachineOperand &MO : MI.operands()) {
686 if (!MO.isFI())
687 continue;
688 int Slot = MO.getIndex();
689 if (Slot < 0)
690 continue;
691 if (! BetweenStartEnd.test(Slot)) {
692 ConservativeSlots.set(Slot);
693 }
694 }
695 }
696 }
697 BitVector &SeenStart = SeenStartMap[MBB];
698 SeenStart |= BetweenStartEnd;
699 }
700 if (!MarkersFound) {
701 return 0;
702 }
703
704 // PR27903: slots with multiple start or end lifetime ops are not
705 // safe to enable for "lifetime-start-on-first-use".
706 for (unsigned slot = 0; slot < NumSlot; ++slot) {
707 if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1)
708 ConservativeSlots.set(slot);
709 }
710
711 // The write to the catch object by the personality function is not propely
712 // modeled in IR: It happens before any cleanuppads are executed, even if the
713 // first mention of the catch object is in a catchpad. As such, mark catch
714 // object slots as conservative, so they are excluded from first-use analysis.
715 if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
716 for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
717 for (WinEHHandlerType &H : TBME.HandlerArray)
718 if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
719 H.CatchObj.FrameIndex >= 0)
720 ConservativeSlots.set(H.CatchObj.FrameIndex);
721
722 LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));
723
724 // Step 2: compute begin/end sets for each block
725
726 // NOTE: We use a depth-first iteration to ensure that we obtain a
727 // deterministic numbering.
728 for (MachineBasicBlock *MBB : depth_first(MF)) {
729 // Assign a serial number to this basic block.
730 BasicBlocks[MBB] = BasicBlockNumbering.size();
731 BasicBlockNumbering.push_back(MBB);
732
733 // Keep a reference to avoid repeated lookups.
734 BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
735
736 BlockInfo.Begin.resize(NumSlot);
737 BlockInfo.End.resize(NumSlot);
738
740 for (MachineInstr &MI : *MBB) {
741 bool isStart = false;
742 slots.clear();
743 if (isLifetimeStartOrEnd(MI, slots, isStart)) {
744 if (!isStart) {
745 assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
746 int Slot = slots[0];
747 if (BlockInfo.Begin.test(Slot)) {
748 BlockInfo.Begin.reset(Slot);
749 }
750 BlockInfo.End.set(Slot);
751 } else {
752 for (auto Slot : slots) {
753 LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
755 << " at " << printMBBReference(*MBB) << " index ");
757 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
758 if (Allocation) {
760 << " with allocation: " << Allocation->getName());
761 }
762 LLVM_DEBUG(dbgs() << "\n");
763 if (BlockInfo.End.test(Slot)) {
764 BlockInfo.End.reset(Slot);
765 }
766 BlockInfo.Begin.set(Slot);
767 }
768 }
769 }
770 }
771 }
772
773 // Update statistics.
774 NumMarkerSeen += MarkersFound;
775 return MarkersFound;
776}
777
778void StackColoring::calculateLocalLiveness() {
779 unsigned NumIters = 0;
780 bool changed = true;
781 // Create BitVector outside the loop and reuse them to avoid repeated heap
782 // allocations.
783 BitVector LocalLiveIn;
784 BitVector LocalLiveOut;
785 while (changed) {
786 changed = false;
787 ++NumIters;
788
789 for (const MachineBasicBlock *BB : BasicBlockNumbering) {
790 // Use an iterator to avoid repeated lookups.
791 LivenessMap::iterator BI = BlockLiveness.find(BB);
792 assert(BI != BlockLiveness.end() && "Block not found");
793 BlockLifetimeInfo &BlockInfo = BI->second;
794
795 // Compute LiveIn by unioning together the LiveOut sets of all preds.
796 LocalLiveIn.clear();
797 for (MachineBasicBlock *Pred : BB->predecessors()) {
798 LivenessMap::const_iterator I = BlockLiveness.find(Pred);
799 // PR37130: transformations prior to stack coloring can
800 // sometimes leave behind statically unreachable blocks; these
801 // can be safely skipped here.
802 if (I != BlockLiveness.end())
803 LocalLiveIn |= I->second.LiveOut;
804 }
805
806 // Compute LiveOut by subtracting out lifetimes that end in this
807 // block, then adding in lifetimes that begin in this block. If
808 // we have both BEGIN and END markers in the same basic block
809 // then we know that the BEGIN marker comes after the END,
810 // because we already handle the case where the BEGIN comes
811 // before the END when collecting the markers (and building the
812 // BEGIN/END vectors).
813 LocalLiveOut = LocalLiveIn;
814 LocalLiveOut.reset(BlockInfo.End);
815 LocalLiveOut |= BlockInfo.Begin;
816
817 // Update block LiveIn set, noting whether it has changed.
818 if (LocalLiveIn.test(BlockInfo.LiveIn)) {
819 changed = true;
820 BlockInfo.LiveIn |= LocalLiveIn;
821 }
822
823 // Update block LiveOut set, noting whether it has changed.
824 if (LocalLiveOut.test(BlockInfo.LiveOut)) {
825 changed = true;
826 BlockInfo.LiveOut |= LocalLiveOut;
827 }
828 }
829 } // while changed.
830
831 NumIterations = NumIters;
832}
833
834void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
836 SmallVector<bool, 16> DefinitelyInUse;
837
838 // For each block, find which slots are active within this block
839 // and update the live intervals.
840 for (const MachineBasicBlock &MBB : *MF) {
841 Starts.clear();
842 Starts.resize(NumSlots);
843 DefinitelyInUse.clear();
844 DefinitelyInUse.resize(NumSlots);
845
846 // Start the interval of the slots that we previously found to be 'in-use'.
847 BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
848 for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
849 pos = MBBLiveness.LiveIn.find_next(pos)) {
850 Starts[pos] = Indexes->getMBBStartIdx(&MBB);
851 }
852
853 // Create the interval for the basic blocks containing lifetime begin/end.
854 for (const MachineInstr &MI : MBB) {
856 bool IsStart = false;
857 if (!isLifetimeStartOrEnd(MI, slots, IsStart))
858 continue;
859 SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
860 for (auto Slot : slots) {
861 if (IsStart) {
862 // If a slot is already definitely in use, we don't have to emit
863 // a new start marker because there is already a pre-existing
864 // one.
865 if (!DefinitelyInUse[Slot]) {
866 LiveStarts[Slot].push_back(ThisIndex);
867 DefinitelyInUse[Slot] = true;
868 }
869 if (!Starts[Slot].isValid())
870 Starts[Slot] = ThisIndex;
871 } else {
872 if (Starts[Slot].isValid()) {
873 VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
874 Intervals[Slot]->addSegment(
875 LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
876 Starts[Slot] = SlotIndex(); // Invalidate the start index
877 DefinitelyInUse[Slot] = false;
878 }
879 }
880 }
881 }
882
883 // Finish up started segments
884 for (unsigned i = 0; i < NumSlots; ++i) {
885 if (!Starts[i].isValid())
886 continue;
887
888 SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
889 VNInfo *VNI = Intervals[i]->getValNumInfo(0);
890 Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
891 }
892 }
893}
894
895bool StackColoring::removeAllMarkers() {
896 unsigned Count = 0;
897 for (MachineInstr *MI : Markers) {
898 MI->eraseFromParent();
899 Count++;
900 }
901 Markers.clear();
902
903 LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
904 return Count;
905}
906
907void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
908 unsigned FixedInstr = 0;
909 unsigned FixedMemOp = 0;
910 unsigned FixedDbg = 0;
911
912 // Remap debug information that refers to stack slots.
913 for (auto &VI : MF->getVariableDbgInfo()) {
914 if (!VI.Var || !VI.inStackSlot())
915 continue;
916 int Slot = VI.getStackSlot();
917 if (SlotRemap.count(Slot)) {
918 LLVM_DEBUG(dbgs() << "Remapping debug info for ["
919 << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
920 VI.updateStackSlot(SlotRemap[Slot]);
921 FixedDbg++;
922 }
923 }
924
925 // Keep a list of *allocas* which need to be remapped.
927
928 // Keep a list of allocas which has been affected by the remap.
930
931 for (const std::pair<int, int> &SI : SlotRemap) {
932 const AllocaInst *From = MFI->getObjectAllocation(SI.first);
933 const AllocaInst *To = MFI->getObjectAllocation(SI.second);
934 assert(To && From && "Invalid allocation object");
935 Allocas[From] = To;
936
937 // If From is before wo, its possible that there is a use of From between
938 // them.
939 if (From->comesBefore(To))
940 const_cast<AllocaInst*>(To)->moveBefore(const_cast<AllocaInst*>(From));
941
942 // AA might be used later for instruction scheduling, and we need it to be
943 // able to deduce the correct aliasing releationships between pointers
944 // derived from the alloca being remapped and the target of that remapping.
945 // The only safe way, without directly informing AA about the remapping
946 // somehow, is to directly update the IR to reflect the change being made
947 // here.
948 Instruction *Inst = const_cast<AllocaInst *>(To);
949 if (From->getType() != To->getType()) {
950 BitCastInst *Cast = new BitCastInst(Inst, From->getType());
951 Cast->insertAfter(Inst);
952 Inst = Cast;
953 }
954
955 // We keep both slots to maintain AliasAnalysis metadata later.
956 MergedAllocas.insert(From);
957 MergedAllocas.insert(To);
958
959 // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
960 // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
961 // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
963 = MFI->getObjectSSPLayout(SI.first);
965 if (FromKind != MachineFrameInfo::SSPLK_None &&
966 (ToKind == MachineFrameInfo::SSPLK_None ||
968 FromKind != MachineFrameInfo::SSPLK_AddrOf)))
969 MFI->setObjectSSPLayout(SI.second, FromKind);
970
971 // The new alloca might not be valid in a llvm.dbg.declare for this
972 // variable, so poison out the use to make the verifier happy.
973 AllocaInst *FromAI = const_cast<AllocaInst *>(From);
974 if (FromAI->isUsedByMetadata())
976 for (auto &Use : FromAI->uses()) {
977 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
978 if (BCI->isUsedByMetadata())
979 ValueAsMetadata::handleRAUW(BCI, PoisonValue::get(BCI->getType()));
980 }
981
982 // Note that this will not replace uses in MMOs (which we'll update below),
983 // or anywhere else (which is why we won't delete the original
984 // instruction).
985 FromAI->replaceAllUsesWith(Inst);
986 }
987
988 // Remap all instructions to the new stack slots.
989 std::vector<std::vector<MachineMemOperand *>> SSRefs(
990 MFI->getObjectIndexEnd());
991 for (MachineBasicBlock &BB : *MF)
992 for (MachineInstr &I : BB) {
993 // Skip lifetime markers. We'll remove them soon.
994 if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
995 I.getOpcode() == TargetOpcode::LIFETIME_END)
996 continue;
997
998 // Update the MachineMemOperand to use the new alloca.
999 for (MachineMemOperand *MMO : I.memoperands()) {
1000 // We've replaced IR-level uses of the remapped allocas, so we only
1001 // need to replace direct uses here.
1002 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
1003 if (!AI)
1004 continue;
1005
1006 if (!Allocas.count(AI))
1007 continue;
1008
1009 MMO->setValue(Allocas[AI]);
1010 FixedMemOp++;
1011 }
1012
1013 // Update all of the machine instruction operands.
1014 for (MachineOperand &MO : I.operands()) {
1015 if (!MO.isFI())
1016 continue;
1017 int FromSlot = MO.getIndex();
1018
1019 // Don't touch arguments.
1020 if (FromSlot<0)
1021 continue;
1022
1023 // Only look at mapped slots.
1024 if (!SlotRemap.count(FromSlot))
1025 continue;
1026
1027 // In a debug build, check that the instruction that we are modifying is
1028 // inside the expected live range. If the instruction is not inside
1029 // the calculated range then it means that the alloca usage moved
1030 // outside of the lifetime markers, or that the user has a bug.
1031 // NOTE: Alloca address calculations which happen outside the lifetime
1032 // zone are okay, despite the fact that we don't have a good way
1033 // for validating all of the usages of the calculation.
1034#ifndef NDEBUG
1035 bool TouchesMemory = I.mayLoadOrStore();
1036 // If we *don't* protect the user from escaped allocas, don't bother
1037 // validating the instructions.
1038 if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
1040 const LiveInterval *Interval = &*Intervals[FromSlot];
1041 assert(Interval->find(Index) != Interval->end() &&
1042 "Found instruction usage outside of live range.");
1043 }
1044#endif
1045
1046 // Fix the machine instructions.
1047 int ToSlot = SlotRemap[FromSlot];
1048 MO.setIndex(ToSlot);
1049 FixedInstr++;
1050 }
1051
1052 // We adjust AliasAnalysis information for merged stack slots.
1054 bool ReplaceMemOps = false;
1055 for (MachineMemOperand *MMO : I.memoperands()) {
1056 // Collect MachineMemOperands which reference
1057 // FixedStackPseudoSourceValues with old frame indices.
1058 if (const auto *FSV = dyn_cast_or_null<FixedStackPseudoSourceValue>(
1059 MMO->getPseudoValue())) {
1060 int FI = FSV->getFrameIndex();
1061 auto To = SlotRemap.find(FI);
1062 if (To != SlotRemap.end())
1063 SSRefs[FI].push_back(MMO);
1064 }
1065
1066 // If this memory location can be a slot remapped here,
1067 // we remove AA information.
1068 bool MayHaveConflictingAAMD = false;
1069 if (MMO->getAAInfo()) {
1070 if (const Value *MMOV = MMO->getValue()) {
1073
1074 if (Objs.empty())
1075 MayHaveConflictingAAMD = true;
1076 else
1077 for (Value *V : Objs) {
1078 // If this memory location comes from a known stack slot
1079 // that is not remapped, we continue checking.
1080 // Otherwise, we need to invalidate AA infomation.
1081 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
1082 if (AI && MergedAllocas.count(AI)) {
1083 MayHaveConflictingAAMD = true;
1084 break;
1085 }
1086 }
1087 }
1088 }
1089 if (MayHaveConflictingAAMD) {
1090 NewMMOs.push_back(MF->getMachineMemOperand(MMO, AAMDNodes()));
1091 ReplaceMemOps = true;
1092 } else {
1093 NewMMOs.push_back(MMO);
1094 }
1095 }
1096
1097 // If any memory operand is updated, set memory references of
1098 // this instruction.
1099 if (ReplaceMemOps)
1100 I.setMemRefs(*MF, NewMMOs);
1101 }
1102
1103 // Rewrite MachineMemOperands that reference old frame indices.
1104 for (auto E : enumerate(SSRefs))
1105 if (!E.value().empty()) {
1106 const PseudoSourceValue *NewSV =
1107 MF->getPSVManager().getFixedStack(SlotRemap.find(E.index())->second);
1108 for (MachineMemOperand *Ref : E.value())
1109 Ref->setValue(NewSV);
1110 }
1111
1112 // Update the location of C++ catch objects for the MSVC personality routine.
1113 if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
1114 for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
1115 for (WinEHHandlerType &H : TBME.HandlerArray)
1116 if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
1117 SlotRemap.count(H.CatchObj.FrameIndex))
1118 H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
1119
1120 LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
1121 LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
1122 LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
1123 (void) FixedMemOp;
1124 (void) FixedDbg;
1125 (void) FixedInstr;
1126}
1127
1128void StackColoring::removeInvalidSlotRanges() {
1129 for (MachineBasicBlock &BB : *MF)
1130 for (MachineInstr &I : BB) {
1131 if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
1132 I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
1133 continue;
1134
1135 // Some intervals are suspicious! In some cases we find address
1136 // calculations outside of the lifetime zone, but not actual memory
1137 // read or write. Memory accesses outside of the lifetime zone are a clear
1138 // violation, but address calculations are okay. This can happen when
1139 // GEPs are hoisted outside of the lifetime zone.
1140 // So, in here we only check instructions which can read or write memory.
1141 if (!I.mayLoad() && !I.mayStore())
1142 continue;
1143
1144 // Check all of the machine operands.
1145 for (const MachineOperand &MO : I.operands()) {
1146 if (!MO.isFI())
1147 continue;
1148
1149 int Slot = MO.getIndex();
1150
1151 if (Slot<0)
1152 continue;
1153
1154 if (Intervals[Slot]->empty())
1155 continue;
1156
1157 // Check that the used slot is inside the calculated lifetime range.
1158 // If it is not, warn about it and invalidate the range.
1159 LiveInterval *Interval = &*Intervals[Slot];
1161 if (Interval->find(Index) == Interval->end()) {
1162 Interval->clear();
1163 LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
1164 EscapedAllocas++;
1165 }
1166 }
1167 }
1168}
1169
1170void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
1171 unsigned NumSlots) {
1172 // Expunge slot remap map.
1173 for (unsigned i=0; i < NumSlots; ++i) {
1174 // If we are remapping i
1175 if (SlotRemap.count(i)) {
1176 int Target = SlotRemap[i];
1177 // As long as our target is mapped to something else, follow it.
1178 while (SlotRemap.count(Target)) {
1179 Target = SlotRemap[Target];
1180 SlotRemap[i] = Target;
1181 }
1182 }
1183 }
1184}
1185
1186bool StackColoringLegacy::runOnMachineFunction(MachineFunction &MF) {
1187 if (skipFunction(MF.getFunction()))
1188 return false;
1189
1190 StackColoring SC(&getAnalysis<SlotIndexesWrapperPass>().getSI());
1191 return SC.run(MF);
1192}
1193
1196 StackColoring SC(&MFAM.getResult<SlotIndexesAnalysis>(MF));
1197 if (SC.run(MF))
1198 return PreservedAnalyses::none();
1199 return PreservedAnalyses::all();
1200}
1201
1202bool StackColoring::run(MachineFunction &Func) {
1203 LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
1204 << "********** Function: " << Func.getName() << '\n');
1205 MF = &Func;
1206 MFI = &MF->getFrameInfo();
1207 BlockLiveness.clear();
1208 BasicBlocks.clear();
1209 BasicBlockNumbering.clear();
1210 Markers.clear();
1211 Intervals.clear();
1212 LiveStarts.clear();
1213 VNInfoAllocator.Reset();
1214
1215 unsigned NumSlots = MFI->getObjectIndexEnd();
1216
1217 // If there are no stack slots then there are no markers to remove.
1218 if (!NumSlots)
1219 return false;
1220
1221 SmallVector<int, 8> SortedSlots;
1222 SortedSlots.reserve(NumSlots);
1223 Intervals.reserve(NumSlots);
1224 LiveStarts.resize(NumSlots);
1225
1226 unsigned NumMarkers = collectMarkers(NumSlots);
1227
1228 unsigned TotalSize = 0;
1229 LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
1230 << " slots\n");
1231 LLVM_DEBUG(dbgs() << "Slot structure:\n");
1232
1233 for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
1234 LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
1235 << " bytes.\n");
1236 TotalSize += MFI->getObjectSize(i);
1237 }
1238
1239 LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");
1240
1241 // Don't continue because there are not enough lifetime markers, or the
1242 // stack is too small, or we are told not to optimize the slots.
1243 if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) {
1244 LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
1245 return removeAllMarkers();
1246 }
1247
1248 for (unsigned i=0; i < NumSlots; ++i) {
1249 std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
1250 LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
1251 Intervals.push_back(std::move(LI));
1252 SortedSlots.push_back(i);
1253 }
1254
1255 // Calculate the liveness of each block.
1256 calculateLocalLiveness();
1257 LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
1258 LLVM_DEBUG(dump());
1259
1260 // Propagate the liveness information.
1261 calculateLiveIntervals(NumSlots);
1262 LLVM_DEBUG(dumpIntervals());
1263
1264 // Search for allocas which are used outside of the declared lifetime
1265 // markers.
1267 removeInvalidSlotRanges();
1268
1269 // Maps old slots to new slots.
1270 DenseMap<int, int> SlotRemap;
1271 unsigned RemovedSlots = 0;
1272 unsigned ReducedSize = 0;
1273
1274 // Do not bother looking at empty intervals.
1275 for (unsigned I = 0; I < NumSlots; ++I) {
1276 if (Intervals[SortedSlots[I]]->empty())
1277 SortedSlots[I] = -1;
1278 }
1279
1280 // This is a simple greedy algorithm for merging allocas. First, sort the
1281 // slots, placing the largest slots first. Next, perform an n^2 scan and look
1282 // for disjoint slots. When you find disjoint slots, merge the smaller one
1283 // into the bigger one and update the live interval. Remove the small alloca
1284 // and continue.
1285
1286 // Sort the slots according to their size. Place unused slots at the end.
1287 // Use stable sort to guarantee deterministic code generation.
1288 llvm::stable_sort(SortedSlots, [this](int LHS, int RHS) {
1289 // We use -1 to denote a uninteresting slot. Place these slots at the end.
1290 if (LHS == -1)
1291 return false;
1292 if (RHS == -1)
1293 return true;
1294 // Sort according to size.
1295 return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
1296 });
1297
1298 for (auto &s : LiveStarts)
1299 llvm::sort(s);
1300
1301 bool Changed = true;
1302 while (Changed) {
1303 Changed = false;
1304 for (unsigned I = 0; I < NumSlots; ++I) {
1305 if (SortedSlots[I] == -1)
1306 continue;
1307
1308 for (unsigned J=I+1; J < NumSlots; ++J) {
1309 if (SortedSlots[J] == -1)
1310 continue;
1311
1312 int FirstSlot = SortedSlots[I];
1313 int SecondSlot = SortedSlots[J];
1314
1315 // Objects with different stack IDs cannot be merged.
1316 if (MFI->getStackID(FirstSlot) != MFI->getStackID(SecondSlot))
1317 continue;
1318
1319 LiveInterval *First = &*Intervals[FirstSlot];
1320 LiveInterval *Second = &*Intervals[SecondSlot];
1321 auto &FirstS = LiveStarts[FirstSlot];
1322 auto &SecondS = LiveStarts[SecondSlot];
1323 assert(!First->empty() && !Second->empty() && "Found an empty range");
1324
1325 // Merge disjoint slots. This is a little bit tricky - see the
1326 // Implementation Notes section for an explanation.
1327 if (!First->isLiveAtIndexes(SecondS) &&
1328 !Second->isLiveAtIndexes(FirstS)) {
1329 Changed = true;
1330 First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
1331
1332 int OldSize = FirstS.size();
1333 FirstS.append(SecondS.begin(), SecondS.end());
1334 auto Mid = FirstS.begin() + OldSize;
1335 std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
1336
1337 SlotRemap[SecondSlot] = FirstSlot;
1338 SortedSlots[J] = -1;
1339 LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
1340 << SecondSlot << " together.\n");
1341 Align MaxAlignment = std::max(MFI->getObjectAlign(FirstSlot),
1342 MFI->getObjectAlign(SecondSlot));
1343
1344 assert(MFI->getObjectSize(FirstSlot) >=
1345 MFI->getObjectSize(SecondSlot) &&
1346 "Merging a small object into a larger one");
1347
1348 RemovedSlots+=1;
1349 ReducedSize += MFI->getObjectSize(SecondSlot);
1350 MFI->setObjectAlignment(FirstSlot, MaxAlignment);
1351 MFI->RemoveStackObject(SecondSlot);
1352 }
1353 }
1354 }
1355 }// While changed.
1356
1357 // Record statistics.
1358 StackSpaceSaved += ReducedSize;
1359 StackSlotMerged += RemovedSlots;
1360 LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
1361 << ReducedSize << " bytes\n");
1362
1363 // Scan the entire function and update all machine operands that use frame
1364 // indices to use the remapped frame index.
1365 if (!SlotRemap.empty()) {
1366 expungeSlotMap(SlotRemap, NumSlots);
1367 remapInstructions(SlotRemap);
1368 }
1369
1370 return removeAllMarkers();
1371}
MachineBasicBlock & MBB
This file implements the BitVector class.
BlockVerifier::State From
#define LLVM_DUMP_METHOD
Mark debug helper function definitions like dump() that should not be stripped from debug builds.
Definition: Compiler.h:622
This file contains the declarations for the subclasses of Constant, which represent the different fla...
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines the DenseMap class.
This file builds on the ADT/GraphTraits.h file to build generic depth first graph iterator.
bool End
Definition: ELF_riscv.cpp:480
IRTranslator LLVM IR MI
This defines the Use class.
#define I(x, y, z)
Definition: MD5.cpp:58
#define H(x, y, z)
Definition: MD5.cpp:57
std::pair< uint64_t, uint64_t > Interval
This file contains the declarations for metadata subclasses.
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
R600 Clause Merge
R600 Emit Clause Markers
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static int getStartOrEndSlot(const MachineInstr &MI)
static cl::opt< bool > DisableColoring("no-stack-coloring", cl::init(false), cl::Hidden, cl::desc("Disable stack coloring"))
static cl::opt< bool > ProtectFromEscapedAllocas("protect-from-escaped-allocas", cl::init(false), cl::Hidden, cl::desc("Do not optimize lifetime zones that " "are broken"))
The user may write code that uses allocas outside of the declared lifetime zone.
static cl::opt< bool > LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use", cl::init(true), cl::Hidden, cl::desc("Treat stack lifetimes as starting on first use, not on START marker."))
Enable enhanced dataflow scheme for lifetime analysis (treat first use of stack slot as start of slot...
#define DEBUG_TYPE
Merge disjoint stack slots
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
an instruction to allocate memory on the stack
Definition: Instructions.h:63
PointerType * getType() const
Overload to return most specific pointer type.
Definition: Instructions.h:99
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:410
Represent the analysis usage information of a pass.
This class represents a no-op cast from one type to another.
bool test(unsigned Idx) const
Definition: BitVector.h:461
BitVector & reset()
Definition: BitVector.h:392
void resize(unsigned N, bool t=false)
resize - Grow or shrink the bitvector.
Definition: BitVector.h:341
void clear()
clear - Removes all bits from the bitvector.
Definition: BitVector.h:335
BitVector & set()
Definition: BitVector.h:351
size_type size() const
size - Returns the number of bits in this bitvector.
Definition: BitVector.h:159
Allocate memory in an ever growing pool, as if by bump-pointer.
Definition: Allocator.h:66
void Reset()
Deallocate all but the current slab and reset the current pointer to the beginning of it,...
Definition: Allocator.h:123
bool empty() const
Definition: DenseMap.h:98
size_type count(const_arg_type_t< KeyT > Val) const
Return 1 if the specified key is in the map, 0 otherwise.
Definition: DenseMap.h:152
void insertAfter(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately after the specified instruction.
LiveInterval - This class represents the liveness of a register, or stack slot.
Definition: LiveInterval.h:687
bool isLiveAtIndexes(ArrayRef< SlotIndex > Slots) const
bool empty() const
Definition: LiveInterval.h:382
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
iterator_range< pred_iterator > predecessors()
StringRef getName() const
Return the name of the corresponding LLVM basic block, or an empty string.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
SSPLayoutKind getObjectSSPLayout(int ObjectIdx) const
const AllocaInst * getObjectAllocation(int ObjectIdx) const
Return the underlying Alloca of the specified stack object if it exists.
SSPLayoutKind
Stack Smashing Protection (SSP) rules require that vulnerable stack allocations are located close the...
@ SSPLK_LargeArray
Array or nested array >= SSP-buffer-size.
@ SSPLK_AddrOf
The address of this allocation is exposed and triggered protection.
@ SSPLK_None
Did not trigger a stack protector.
void setObjectSSPLayout(int ObjectIdx, SSPLayoutKind Kind)
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
void RemoveStackObject(int ObjectIdx)
Remove or mark dead a statically sized stack object.
int getObjectIndexEnd() const
Return one past the maximum frame object index.
uint8_t getStackID(int ObjectIdx) const
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
const WinEHFuncInfo * getWinEHFuncInfo() const
getWinEHFuncInfo - Return information about how the current function uses Windows exception handling.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
Representation of each machine instruction.
Definition: MachineInstr.h:69
A description of a memory reference used in the backend.
MachineOperand class - Representation of each machine instruction operand.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1878
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses none()
Convenience factory function for the empty preserved set.
Definition: Analysis.h:114
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
Special value supplied for machine level alias analysis.
SlotIndex - An opaque wrapper around machine indexes.
Definition: SlotIndexes.h:65
void print(raw_ostream &os) const
Print this index to the given raw_ostream.
SlotIndexes pass.
Definition: SlotIndexes.h:297
SlotIndex getMBBEndIdx(unsigned Num) const
Returns the last index in the given basic block number.
Definition: SlotIndexes.h:470
SlotIndex getInstructionIndex(const MachineInstr &MI, bool IgnoreBundle=false) const
Returns the base index for the given instruction.
Definition: SlotIndexes.h:379
SlotIndex getMBBStartIdx(unsigned Num) const
Returns the first index in the given basic block number.
Definition: SlotIndexes.h:460
SlotIndex getZeroIndex()
Returns the zero index for this analysis.
Definition: SlotIndexes.h:362
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:452
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
void reserve(size_type N)
Definition: SmallVector.h:663
void resize(size_type N)
Definition: SmallVector.h:638
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
PreservedAnalyses run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM)
Target - Wrapper for Target specific information.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
Value * get() const
Definition: Use.h:66
VNInfo - Value Number Information.
Definition: LiveInterval.h:53
static void handleRAUW(Value *From, Value *To)
Definition: Metadata.cpp:544
LLVM Value Representation.
Definition: Value.h:74
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
bool isUsedByMetadata() const
Return true if there is metadata referencing this value.
Definition: Value.h:557
iterator_range< use_iterator > uses()
Definition: Value.h:376
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ SC
CHAIN = SC CHAIN, Imm128 - System call.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
void stable_sort(R &&Range)
Definition: STLExtras.h:2037
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition: STLExtras.h:2448
bool getUnderlyingObjectsForCodeGen(const Value *V, SmallVectorImpl< Value * > &Objects)
This is a wrapper around getUnderlyingObjects and adds support for basic ptrtoint+arithmetic+inttoptr...
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1664
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
@ Ref
The access may reference the value stored in memory.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
char & StackColoringLegacyID
StackSlotColoring - This pass performs stack coloring and merging.
iterator_range< df_iterator< T > > depth_first(const T &G)
Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:760
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
This represents a simple continuous liveness interval for a value.
Definition: LiveInterval.h:162
SmallVector< WinEHHandlerType, 1 > HandlerArray
Definition: WinEHFuncInfo.h:76