LLVM 20.0.0git
CodeExtractor.cpp
Go to the documentation of this file.
1//===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the interface to tear out a code region, such as an
10// individual loop or a parallel section, into a new function, replacing it with
11// a call to the new function.
12//
13//===----------------------------------------------------------------------===//
14
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SetVector.h"
26#include "llvm/IR/Argument.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/BasicBlock.h"
29#include "llvm/IR/CFG.h"
30#include "llvm/IR/Constant.h"
31#include "llvm/IR/Constants.h"
32#include "llvm/IR/DIBuilder.h"
33#include "llvm/IR/DataLayout.h"
34#include "llvm/IR/DebugInfo.h"
37#include "llvm/IR/Dominators.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/GlobalValue.h"
41#include "llvm/IR/InstrTypes.h"
42#include "llvm/IR/Instruction.h"
45#include "llvm/IR/Intrinsics.h"
46#include "llvm/IR/LLVMContext.h"
47#include "llvm/IR/MDBuilder.h"
48#include "llvm/IR/Module.h"
50#include "llvm/IR/Type.h"
51#include "llvm/IR/User.h"
52#include "llvm/IR/Value.h"
53#include "llvm/IR/Verifier.h"
58#include "llvm/Support/Debug.h"
62#include <cassert>
63#include <cstdint>
64#include <iterator>
65#include <map>
66#include <utility>
67#include <vector>
68
69using namespace llvm;
70using namespace llvm::PatternMatch;
72
73#define DEBUG_TYPE "code-extractor"
74
75// Provide a command-line option to aggregate function arguments into a struct
76// for functions produced by the code extractor. This is useful when converting
77// extracted functions to pthread-based code, as only one argument (void*) can
78// be passed in to pthread_create().
79static cl::opt<bool>
80AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
81 cl::desc("Aggregate arguments to code-extracted functions"));
82
83/// Test whether a block is valid for extraction.
85 const SetVector<BasicBlock *> &Result,
86 bool AllowVarArgs, bool AllowAlloca) {
87 // taking the address of a basic block moved to another function is illegal
88 if (BB.hasAddressTaken())
89 return false;
90
91 // don't hoist code that uses another basicblock address, as it's likely to
92 // lead to unexpected behavior, like cross-function jumps
95
96 for (Instruction const &Inst : BB)
97 ToVisit.push_back(&Inst);
98
99 while (!ToVisit.empty()) {
100 User const *Curr = ToVisit.pop_back_val();
101 if (!Visited.insert(Curr).second)
102 continue;
103 if (isa<BlockAddress const>(Curr))
104 return false; // even a reference to self is likely to be not compatible
105
106 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
107 continue;
108
109 for (auto const &U : Curr->operands()) {
110 if (auto *UU = dyn_cast<User>(U))
111 ToVisit.push_back(UU);
112 }
113 }
114
115 // If explicitly requested, allow vastart and alloca. For invoke instructions
116 // verify that extraction is valid.
117 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
118 if (isa<AllocaInst>(I)) {
119 if (!AllowAlloca)
120 return false;
121 continue;
122 }
123
124 if (const auto *II = dyn_cast<InvokeInst>(I)) {
125 // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
126 // must be a part of the subgraph which is being extracted.
127 if (auto *UBB = II->getUnwindDest())
128 if (!Result.count(UBB))
129 return false;
130 continue;
131 }
132
133 // All catch handlers of a catchswitch instruction as well as the unwind
134 // destination must be in the subgraph.
135 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
136 if (auto *UBB = CSI->getUnwindDest())
137 if (!Result.count(UBB))
138 return false;
139 for (const auto *HBB : CSI->handlers())
140 if (!Result.count(const_cast<BasicBlock*>(HBB)))
141 return false;
142 continue;
143 }
144
145 // Make sure that entire catch handler is within subgraph. It is sufficient
146 // to check that catch return's block is in the list.
147 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
148 for (const auto *U : CPI->users())
149 if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
150 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
151 return false;
152 continue;
153 }
154
155 // And do similar checks for cleanup handler - the entire handler must be
156 // in subgraph which is going to be extracted. For cleanup return should
157 // additionally check that the unwind destination is also in the subgraph.
158 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
159 for (const auto *U : CPI->users())
160 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
161 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
162 return false;
163 continue;
164 }
165 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
166 if (auto *UBB = CRI->getUnwindDest())
167 if (!Result.count(UBB))
168 return false;
169 continue;
170 }
171
172 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
173 if (const Function *F = CI->getCalledFunction()) {
174 auto IID = F->getIntrinsicID();
175 if (IID == Intrinsic::vastart) {
176 if (AllowVarArgs)
177 continue;
178 else
179 return false;
180 }
181
182 // Currently, we miscompile outlined copies of eh_typid_for. There are
183 // proposals for fixing this in llvm.org/PR39545.
184 if (IID == Intrinsic::eh_typeid_for)
185 return false;
186 }
187 }
188 }
189
190 return true;
191}
192
193/// Build a set of blocks to extract if the input blocks are viable.
196 bool AllowVarArgs, bool AllowAlloca) {
197 assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199
200 // Loop over the blocks, adding them to our set-vector, and aborting with an
201 // empty set if we encounter invalid blocks.
202 for (BasicBlock *BB : BBs) {
203 // If this block is dead, don't process it.
204 if (DT && !DT->isReachableFromEntry(BB))
205 continue;
206
207 if (!Result.insert(BB))
208 llvm_unreachable("Repeated basic blocks in extraction input");
209 }
210
211 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
212 << '\n');
213
214 for (auto *BB : Result) {
215 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
216 return {};
217
218 // Make sure that the first block is not a landing pad.
219 if (BB == Result.front()) {
220 if (BB->isEHPad()) {
221 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
222 return {};
223 }
224 continue;
225 }
226
227 // All blocks other than the first must not have predecessors outside of
228 // the subgraph which is being extracted.
229 for (auto *PBB : predecessors(BB))
230 if (!Result.count(PBB)) {
231 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
232 "outside the region except for the first block!\n"
233 << "Problematic source BB: " << BB->getName() << "\n"
234 << "Problematic destination BB: " << PBB->getName()
235 << "\n");
236 return {};
237 }
238 }
239
240 return Result;
241}
242
244 bool AggregateArgs, BlockFrequencyInfo *BFI,
246 bool AllowVarArgs, bool AllowAlloca,
247 BasicBlock *AllocationBlock, std::string Suffix,
248 bool ArgsInZeroAddressSpace)
249 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
250 BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
251 AllowVarArgs(AllowVarArgs),
252 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
253 Suffix(Suffix), ArgsInZeroAddressSpace(ArgsInZeroAddressSpace) {}
254
255/// definedInRegion - Return true if the specified value is defined in the
256/// extracted region.
258 if (Instruction *I = dyn_cast<Instruction>(V))
259 if (Blocks.count(I->getParent()))
260 return true;
261 return false;
262}
263
264/// definedInCaller - Return true if the specified value is defined in the
265/// function being code extracted, but not in the region being extracted.
266/// These values must be passed in as live-ins to the function.
268 if (isa<Argument>(V)) return true;
269 if (Instruction *I = dyn_cast<Instruction>(V))
270 if (!Blocks.count(I->getParent()))
271 return true;
272 return false;
273}
274
276 BasicBlock *CommonExitBlock = nullptr;
277 auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
278 for (auto *Succ : successors(Block)) {
279 // Internal edges, ok.
280 if (Blocks.count(Succ))
281 continue;
282 if (!CommonExitBlock) {
283 CommonExitBlock = Succ;
284 continue;
285 }
286 if (CommonExitBlock != Succ)
287 return true;
288 }
289 return false;
290 };
291
292 if (any_of(Blocks, hasNonCommonExitSucc))
293 return nullptr;
294
295 return CommonExitBlock;
296}
297
299 for (BasicBlock &BB : F) {
300 for (Instruction &II : BB.instructionsWithoutDebug())
301 if (auto *AI = dyn_cast<AllocaInst>(&II))
302 Allocas.push_back(AI);
303
304 findSideEffectInfoForBlock(BB);
305 }
306}
307
308void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
310 unsigned Opcode = II.getOpcode();
311 Value *MemAddr = nullptr;
312 switch (Opcode) {
313 case Instruction::Store:
314 case Instruction::Load: {
315 if (Opcode == Instruction::Store) {
316 StoreInst *SI = cast<StoreInst>(&II);
317 MemAddr = SI->getPointerOperand();
318 } else {
319 LoadInst *LI = cast<LoadInst>(&II);
320 MemAddr = LI->getPointerOperand();
321 }
322 // Global variable can not be aliased with locals.
323 if (isa<Constant>(MemAddr))
324 break;
326 if (!isa<AllocaInst>(Base)) {
327 SideEffectingBlocks.insert(&BB);
328 return;
329 }
330 BaseMemAddrs[&BB].insert(Base);
331 break;
332 }
333 default: {
334 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
335 if (IntrInst) {
336 if (IntrInst->isLifetimeStartOrEnd())
337 break;
338 SideEffectingBlocks.insert(&BB);
339 return;
340 }
341 // Treat all the other cases conservatively if it has side effects.
342 if (II.mayHaveSideEffects()) {
343 SideEffectingBlocks.insert(&BB);
344 return;
345 }
346 }
347 }
348 }
349}
350
352 BasicBlock &BB, AllocaInst *Addr) const {
353 if (SideEffectingBlocks.count(&BB))
354 return true;
355 auto It = BaseMemAddrs.find(&BB);
356 if (It != BaseMemAddrs.end())
357 return It->second.count(Addr);
358 return false;
359}
360
362 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
363 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
364 Function *Func = (*Blocks.begin())->getParent();
365 for (BasicBlock &BB : *Func) {
366 if (Blocks.count(&BB))
367 continue;
368 if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
369 return false;
370 }
371 return true;
372}
373
376 BasicBlock *SinglePredFromOutlineRegion = nullptr;
377 assert(!Blocks.count(CommonExitBlock) &&
378 "Expect a block outside the region!");
379 for (auto *Pred : predecessors(CommonExitBlock)) {
380 if (!Blocks.count(Pred))
381 continue;
382 if (!SinglePredFromOutlineRegion) {
383 SinglePredFromOutlineRegion = Pred;
384 } else if (SinglePredFromOutlineRegion != Pred) {
385 SinglePredFromOutlineRegion = nullptr;
386 break;
387 }
388 }
389
390 if (SinglePredFromOutlineRegion)
391 return SinglePredFromOutlineRegion;
392
393#ifndef NDEBUG
394 auto getFirstPHI = [](BasicBlock *BB) {
396 PHINode *FirstPhi = nullptr;
397 while (I != BB->end()) {
398 PHINode *Phi = dyn_cast<PHINode>(I);
399 if (!Phi)
400 break;
401 if (!FirstPhi) {
402 FirstPhi = Phi;
403 break;
404 }
405 }
406 return FirstPhi;
407 };
408 // If there are any phi nodes, the single pred either exists or has already
409 // be created before code extraction.
410 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
411#endif
412
413 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
414 CommonExitBlock->getFirstNonPHI()->getIterator());
415
416 for (BasicBlock *Pred :
417 llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
418 if (Blocks.count(Pred))
419 continue;
420 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
421 }
422 // Now add the old exit block to the outline region.
423 Blocks.insert(CommonExitBlock);
424 return CommonExitBlock;
425}
426
427// Find the pair of life time markers for address 'Addr' that are either
428// defined inside the outline region or can legally be shrinkwrapped into the
429// outline region. If there are not other untracked uses of the address, return
430// the pair of markers if found; otherwise return a pair of nullptr.
431CodeExtractor::LifetimeMarkerInfo
432CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
434 BasicBlock *ExitBlock) const {
435 LifetimeMarkerInfo Info;
436
437 for (User *U : Addr->users()) {
438 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
439 if (IntrInst) {
440 // We don't model addresses with multiple start/end markers, but the
441 // markers do not need to be in the region.
442 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
443 if (Info.LifeStart)
444 return {};
445 Info.LifeStart = IntrInst;
446 continue;
447 }
448 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
449 if (Info.LifeEnd)
450 return {};
451 Info.LifeEnd = IntrInst;
452 continue;
453 }
454 // At this point, permit debug uses outside of the region.
455 // This is fixed in a later call to fixupDebugInfoPostExtraction().
456 if (isa<DbgInfoIntrinsic>(IntrInst))
457 continue;
458 }
459 // Find untracked uses of the address, bail.
460 if (!definedInRegion(Blocks, U))
461 return {};
462 }
463
464 if (!Info.LifeStart || !Info.LifeEnd)
465 return {};
466
467 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
468 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
469 // Do legality check.
470 if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
472 return {};
473
474 // Check to see if we have a place to do hoisting, if not, bail.
475 if (Info.HoistLifeEnd && !ExitBlock)
476 return {};
477
478 return Info;
479}
480
482 ValueSet &SinkCands, ValueSet &HoistCands,
483 BasicBlock *&ExitBlock) const {
484 Function *Func = (*Blocks.begin())->getParent();
485 ExitBlock = getCommonExitBlock(Blocks);
486
487 auto moveOrIgnoreLifetimeMarkers =
488 [&](const LifetimeMarkerInfo &LMI) -> bool {
489 if (!LMI.LifeStart)
490 return false;
491 if (LMI.SinkLifeStart) {
492 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
493 << "\n");
494 SinkCands.insert(LMI.LifeStart);
495 }
496 if (LMI.HoistLifeEnd) {
497 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
498 HoistCands.insert(LMI.LifeEnd);
499 }
500 return true;
501 };
502
503 // Look up allocas in the original function in CodeExtractorAnalysisCache, as
504 // this is much faster than walking all the instructions.
505 for (AllocaInst *AI : CEAC.getAllocas()) {
506 BasicBlock *BB = AI->getParent();
507 if (Blocks.count(BB))
508 continue;
509
510 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
511 // check whether it is actually still in the original function.
512 Function *AIFunc = BB->getParent();
513 if (AIFunc != Func)
514 continue;
515
516 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
517 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
518 if (Moved) {
519 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
520 SinkCands.insert(AI);
521 continue;
522 }
523
524 // Find bitcasts in the outlined region that have lifetime marker users
525 // outside that region. Replace the lifetime marker use with an
526 // outside region bitcast to avoid unnecessary alloca/reload instructions
527 // and extra lifetime markers.
528 SmallVector<Instruction *, 2> LifetimeBitcastUsers;
529 for (User *U : AI->users()) {
530 if (!definedInRegion(Blocks, U))
531 continue;
532
533 if (U->stripInBoundsConstantOffsets() != AI)
534 continue;
535
536 Instruction *Bitcast = cast<Instruction>(U);
537 for (User *BU : Bitcast->users()) {
538 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
539 if (!IntrInst)
540 continue;
541
542 if (!IntrInst->isLifetimeStartOrEnd())
543 continue;
544
545 if (definedInRegion(Blocks, IntrInst))
546 continue;
547
548 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
549 << *Bitcast << " in out-of-region lifetime marker "
550 << *IntrInst << "\n");
551 LifetimeBitcastUsers.push_back(IntrInst);
552 }
553 }
554
555 for (Instruction *I : LifetimeBitcastUsers) {
556 Module *M = AIFunc->getParent();
557 LLVMContext &Ctx = M->getContext();
558 auto *Int8PtrTy = PointerType::getUnqual(Ctx);
559 CastInst *CastI =
560 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I->getIterator());
561 I->replaceUsesOfWith(I->getOperand(1), CastI);
562 }
563
564 // Follow any bitcasts.
566 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
567 for (User *U : AI->users()) {
568 if (U->stripInBoundsConstantOffsets() == AI) {
569 Instruction *Bitcast = cast<Instruction>(U);
570 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
571 if (LMI.LifeStart) {
572 Bitcasts.push_back(Bitcast);
573 BitcastLifetimeInfo.push_back(LMI);
574 continue;
575 }
576 }
577
578 // Found unknown use of AI.
579 if (!definedInRegion(Blocks, U)) {
580 Bitcasts.clear();
581 break;
582 }
583 }
584
585 // Either no bitcasts reference the alloca or there are unknown uses.
586 if (Bitcasts.empty())
587 continue;
588
589 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
590 SinkCands.insert(AI);
591 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
592 Instruction *BitcastAddr = Bitcasts[I];
593 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
594 assert(LMI.LifeStart &&
595 "Unsafe to sink bitcast without lifetime markers");
596 moveOrIgnoreLifetimeMarkers(LMI);
597 if (!definedInRegion(Blocks, BitcastAddr)) {
598 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
599 << "\n");
600 SinkCands.insert(BitcastAddr);
601 }
602 }
603 }
604}
605
607 if (Blocks.empty())
608 return false;
609 BasicBlock *Header = *Blocks.begin();
610 Function *F = Header->getParent();
611
612 // For functions with varargs, check that varargs handling is only done in the
613 // outlined function, i.e vastart and vaend are only used in outlined blocks.
614 if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
615 auto containsVarArgIntrinsic = [](const Instruction &I) {
616 if (const CallInst *CI = dyn_cast<CallInst>(&I))
617 if (const Function *Callee = CI->getCalledFunction())
618 return Callee->getIntrinsicID() == Intrinsic::vastart ||
619 Callee->getIntrinsicID() == Intrinsic::vaend;
620 return false;
621 };
622
623 for (auto &BB : *F) {
624 if (Blocks.count(&BB))
625 continue;
626 if (llvm::any_of(BB, containsVarArgIntrinsic))
627 return false;
628 }
629 }
630 // stacksave as input implies stackrestore in the outlined function.
631 // This can confuse prolog epilog insertion phase.
632 // stacksave's uses must not cross outlined function.
633 for (BasicBlock *BB : Blocks) {
634 for (Instruction &I : *BB) {
635 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
636 if (!II)
637 continue;
638 bool IsSave = II->getIntrinsicID() == Intrinsic::stacksave;
639 bool IsRestore = II->getIntrinsicID() == Intrinsic::stackrestore;
640 if (IsSave && any_of(II->users(), [&Blks = this->Blocks](User *U) {
641 return !definedInRegion(Blks, U);
642 }))
643 return false;
644 if (IsRestore && !definedInRegion(Blocks, II->getArgOperand(0)))
645 return false;
646 }
647 }
648 return true;
649}
650
652 const ValueSet &SinkCands,
653 bool CollectGlobalInputs) const {
654 for (BasicBlock *BB : Blocks) {
655 // If a used value is defined outside the region, it's an input. If an
656 // instruction is used outside the region, it's an output.
657 for (Instruction &II : *BB) {
658 for (auto &OI : II.operands()) {
659 Value *V = OI;
660 if (!SinkCands.count(V) &&
661 (definedInCaller(Blocks, V) ||
662 (CollectGlobalInputs && llvm::isa<llvm::GlobalVariable>(V))))
663 Inputs.insert(V);
664 }
665
666 for (User *U : II.users())
667 if (!definedInRegion(Blocks, U)) {
668 Outputs.insert(&II);
669 break;
670 }
671 }
672 }
673}
674
675/// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
676/// of the region, we need to split the entry block of the region so that the
677/// PHI node is easier to deal with.
678void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
679 unsigned NumPredsFromRegion = 0;
680 unsigned NumPredsOutsideRegion = 0;
681
682 if (Header != &Header->getParent()->getEntryBlock()) {
683 PHINode *PN = dyn_cast<PHINode>(Header->begin());
684 if (!PN) return; // No PHI nodes.
685
686 // If the header node contains any PHI nodes, check to see if there is more
687 // than one entry from outside the region. If so, we need to sever the
688 // header block into two.
689 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
690 if (Blocks.count(PN->getIncomingBlock(i)))
691 ++NumPredsFromRegion;
692 else
693 ++NumPredsOutsideRegion;
694
695 // If there is one (or fewer) predecessor from outside the region, we don't
696 // need to do anything special.
697 if (NumPredsOutsideRegion <= 1) return;
698 }
699
700 // Otherwise, we need to split the header block into two pieces: one
701 // containing PHI nodes merging values from outside of the region, and a
702 // second that contains all of the code for the block and merges back any
703 // incoming values from inside of the region.
704 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
705
706 // We only want to code extract the second block now, and it becomes the new
707 // header of the region.
708 BasicBlock *OldPred = Header;
709 Blocks.remove(OldPred);
710 Blocks.insert(NewBB);
711 Header = NewBB;
712
713 // Okay, now we need to adjust the PHI nodes and any branches from within the
714 // region to go to the new header block instead of the old header block.
715 if (NumPredsFromRegion) {
716 PHINode *PN = cast<PHINode>(OldPred->begin());
717 // Loop over all of the predecessors of OldPred that are in the region,
718 // changing them to branch to NewBB instead.
719 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
720 if (Blocks.count(PN->getIncomingBlock(i))) {
722 TI->replaceUsesOfWith(OldPred, NewBB);
723 }
724
725 // Okay, everything within the region is now branching to the right block, we
726 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
727 BasicBlock::iterator AfterPHIs;
728 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
729 PHINode *PN = cast<PHINode>(AfterPHIs);
730 // Create a new PHI node in the new region, which has an incoming value
731 // from OldPred of PN.
732 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
733 PN->getName() + ".ce");
734 NewPN->insertBefore(NewBB->begin());
735 PN->replaceAllUsesWith(NewPN);
736 NewPN->addIncoming(PN, OldPred);
737
738 // Loop over all of the incoming value in PN, moving them to NewPN if they
739 // are from the extracted region.
740 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
741 if (Blocks.count(PN->getIncomingBlock(i))) {
742 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
743 PN->removeIncomingValue(i);
744 --i;
745 }
746 }
747 }
748 }
749}
750
751/// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
752/// outlined region, we split these PHIs on two: one with inputs from region
753/// and other with remaining incoming blocks; then first PHIs are placed in
754/// outlined region.
755void CodeExtractor::severSplitPHINodesOfExits() {
756 for (BasicBlock *ExitBB : ExtractedFuncRetVals) {
757 BasicBlock *NewBB = nullptr;
758
759 for (PHINode &PN : ExitBB->phis()) {
760 // Find all incoming values from the outlining region.
761 SmallVector<unsigned, 2> IncomingVals;
762 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
763 if (Blocks.count(PN.getIncomingBlock(i)))
764 IncomingVals.push_back(i);
765
766 // Do not process PHI if there is one (or fewer) predecessor from region.
767 // If PHI has exactly one predecessor from region, only this one incoming
768 // will be replaced on codeRepl block, so it should be safe to skip PHI.
769 if (IncomingVals.size() <= 1)
770 continue;
771
772 // Create block for new PHIs and add it to the list of outlined if it
773 // wasn't done before.
774 if (!NewBB) {
775 NewBB = BasicBlock::Create(ExitBB->getContext(),
776 ExitBB->getName() + ".split",
777 ExitBB->getParent(), ExitBB);
778 NewBB->IsNewDbgInfoFormat = ExitBB->IsNewDbgInfoFormat;
780 for (BasicBlock *PredBB : Preds)
781 if (Blocks.count(PredBB))
782 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
783 BranchInst::Create(ExitBB, NewBB);
784 Blocks.insert(NewBB);
785 }
786
787 // Split this PHI.
788 PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(),
789 PN.getName() + ".ce");
790 NewPN->insertBefore(NewBB->getFirstNonPHIIt());
791 for (unsigned i : IncomingVals)
792 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
793 for (unsigned i : reverse(IncomingVals))
794 PN.removeIncomingValue(i, false);
795 PN.addIncoming(NewPN, NewBB);
796 }
797 }
798}
799
800void CodeExtractor::splitReturnBlocks() {
801 for (BasicBlock *Block : Blocks)
802 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
803 BasicBlock *New =
804 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
805 if (DT) {
806 // Old dominates New. New node dominates all other nodes dominated
807 // by Old.
808 DomTreeNode *OldNode = DT->getNode(Block);
810 OldNode->end());
811
812 DomTreeNode *NewNode = DT->addNewBlock(New, Block);
813
814 for (DomTreeNode *I : Children)
815 DT->changeImmediateDominator(I, NewNode);
816 }
817 }
818}
819
820Function *CodeExtractor::constructFunctionDeclaration(
821 const ValueSet &inputs, const ValueSet &outputs, BlockFrequency EntryFreq,
822 const Twine &Name, ValueSet &StructValues, StructType *&StructTy) {
823 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
824 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
825
826 Function *oldFunction = Blocks.front()->getParent();
827 Module *M = Blocks.front()->getModule();
828
829 // Assemble the function's parameter lists.
830 std::vector<Type *> ParamTy;
831 std::vector<Type *> AggParamTy;
832 const DataLayout &DL = M->getDataLayout();
833
834 // Add the types of the input values to the function's argument list
835 for (Value *value : inputs) {
836 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
837 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
838 AggParamTy.push_back(value->getType());
839 StructValues.insert(value);
840 } else
841 ParamTy.push_back(value->getType());
842 }
843
844 // Add the types of the output values to the function's argument list.
845 for (Value *output : outputs) {
846 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
847 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
848 AggParamTy.push_back(output->getType());
849 StructValues.insert(output);
850 } else
851 ParamTy.push_back(
852 PointerType::get(output->getType(), DL.getAllocaAddrSpace()));
853 }
854
855 assert(
856 (ParamTy.size() + AggParamTy.size()) ==
857 (inputs.size() + outputs.size()) &&
858 "Number of scalar and aggregate params does not match inputs, outputs");
859 assert((StructValues.empty() || AggregateArgs) &&
860 "Expeced StructValues only with AggregateArgs set");
861
862 // Concatenate scalar and aggregate params in ParamTy.
863 if (!AggParamTy.empty()) {
864 StructTy = StructType::get(M->getContext(), AggParamTy);
865 ParamTy.push_back(PointerType::get(
866 StructTy, ArgsInZeroAddressSpace ? 0 : DL.getAllocaAddrSpace()));
867 }
868
869 Type *RetTy = getSwitchType();
870 LLVM_DEBUG({
871 dbgs() << "Function type: " << *RetTy << " f(";
872 for (Type *i : ParamTy)
873 dbgs() << *i << ", ";
874 dbgs() << ")\n";
875 });
876
878 RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
879
880 // Create the new function
881 Function *newFunction =
883 oldFunction->getAddressSpace(), Name, M);
884
885 // Propagate personality info to the new function if there is one.
886 if (oldFunction->hasPersonalityFn())
887 newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
888
889 // Inherit all of the target dependent attributes and white-listed
890 // target independent attributes.
891 // (e.g. If the extracted region contains a call to an x86.sse
892 // instruction we need to make sure that the extracted region has the
893 // "target-features" attribute allowing it to be lowered.
894 // FIXME: This should be changed to check to see if a specific
895 // attribute can not be inherited.
896 for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
897 if (Attr.isStringAttribute()) {
898 if (Attr.getKindAsString() == "thunk")
899 continue;
900 } else
901 switch (Attr.getKindAsEnum()) {
902 // Those attributes cannot be propagated safely. Explicitly list them
903 // here so we get a warning if new attributes are added.
904 case Attribute::AllocSize:
905 case Attribute::Builtin:
906 case Attribute::Convergent:
907 case Attribute::JumpTable:
908 case Attribute::Naked:
909 case Attribute::NoBuiltin:
910 case Attribute::NoMerge:
911 case Attribute::NoReturn:
912 case Attribute::NoSync:
913 case Attribute::ReturnsTwice:
914 case Attribute::Speculatable:
915 case Attribute::StackAlignment:
916 case Attribute::WillReturn:
917 case Attribute::AllocKind:
918 case Attribute::PresplitCoroutine:
919 case Attribute::Memory:
920 case Attribute::NoFPClass:
921 case Attribute::CoroDestroyOnlyWhenComplete:
922 case Attribute::CoroElideSafe:
923 case Attribute::NoDivergenceSource:
924 continue;
925 // Those attributes should be safe to propagate to the extracted function.
926 case Attribute::AlwaysInline:
927 case Attribute::Cold:
928 case Attribute::DisableSanitizerInstrumentation:
929 case Attribute::FnRetThunkExtern:
930 case Attribute::Hot:
931 case Attribute::HybridPatchable:
932 case Attribute::NoRecurse:
933 case Attribute::InlineHint:
934 case Attribute::MinSize:
935 case Attribute::NoCallback:
936 case Attribute::NoDuplicate:
937 case Attribute::NoFree:
938 case Attribute::NoImplicitFloat:
939 case Attribute::NoInline:
940 case Attribute::NonLazyBind:
941 case Attribute::NoRedZone:
942 case Attribute::NoUnwind:
943 case Attribute::NoSanitizeBounds:
944 case Attribute::NoSanitizeCoverage:
945 case Attribute::NullPointerIsValid:
946 case Attribute::OptimizeForDebugging:
947 case Attribute::OptForFuzzing:
948 case Attribute::OptimizeNone:
949 case Attribute::OptimizeForSize:
950 case Attribute::SafeStack:
951 case Attribute::ShadowCallStack:
952 case Attribute::SanitizeAddress:
953 case Attribute::SanitizeMemory:
954 case Attribute::SanitizeNumericalStability:
955 case Attribute::SanitizeThread:
956 case Attribute::SanitizeType:
957 case Attribute::SanitizeHWAddress:
958 case Attribute::SanitizeMemTag:
959 case Attribute::SanitizeRealtime:
960 case Attribute::SanitizeRealtimeBlocking:
961 case Attribute::SpeculativeLoadHardening:
962 case Attribute::StackProtect:
963 case Attribute::StackProtectReq:
964 case Attribute::StackProtectStrong:
965 case Attribute::StrictFP:
966 case Attribute::UWTable:
967 case Attribute::VScaleRange:
968 case Attribute::NoCfCheck:
969 case Attribute::MustProgress:
970 case Attribute::NoProfile:
971 case Attribute::SkipProfile:
972 break;
973 // These attributes cannot be applied to functions.
974 case Attribute::Alignment:
975 case Attribute::AllocatedPointer:
976 case Attribute::AllocAlign:
977 case Attribute::ByVal:
978 case Attribute::Dereferenceable:
979 case Attribute::DereferenceableOrNull:
980 case Attribute::ElementType:
981 case Attribute::InAlloca:
982 case Attribute::InReg:
983 case Attribute::Nest:
984 case Attribute::NoAlias:
985 case Attribute::NoCapture:
986 case Attribute::NoUndef:
987 case Attribute::NonNull:
988 case Attribute::Preallocated:
989 case Attribute::ReadNone:
990 case Attribute::ReadOnly:
991 case Attribute::Returned:
992 case Attribute::SExt:
993 case Attribute::StructRet:
994 case Attribute::SwiftError:
995 case Attribute::SwiftSelf:
996 case Attribute::SwiftAsync:
997 case Attribute::ZExt:
998 case Attribute::ImmArg:
999 case Attribute::ByRef:
1000 case Attribute::WriteOnly:
1001 case Attribute::Writable:
1002 case Attribute::DeadOnUnwind:
1003 case Attribute::Range:
1004 case Attribute::Initializes:
1005 case Attribute::NoExt:
1006 // These are not really attributes.
1007 case Attribute::None:
1011 llvm_unreachable("Not a function attribute");
1012 }
1013
1014 newFunction->addFnAttr(Attr);
1015 }
1016
1017 // Create scalar and aggregate iterators to name all of the arguments we
1018 // inserted.
1019 Function::arg_iterator ScalarAI = newFunction->arg_begin();
1020
1021 // Set names and attributes for input and output arguments.
1022 ScalarAI = newFunction->arg_begin();
1023 for (Value *input : inputs) {
1024 if (StructValues.contains(input))
1025 continue;
1026
1027 ScalarAI->setName(input->getName());
1028 if (input->isSwiftError())
1029 newFunction->addParamAttr(ScalarAI - newFunction->arg_begin(),
1030 Attribute::SwiftError);
1031 ++ScalarAI;
1032 }
1033 for (Value *output : outputs) {
1034 if (StructValues.contains(output))
1035 continue;
1036
1037 ScalarAI->setName(output->getName() + ".out");
1038 ++ScalarAI;
1039 }
1040
1041 // Update the entry count of the function.
1042 if (BFI) {
1043 auto Count = BFI->getProfileCountFromFreq(EntryFreq);
1044 if (Count.has_value())
1045 newFunction->setEntryCount(
1046 ProfileCount(*Count, Function::PCT_Real)); // FIXME
1047 }
1048
1049 return newFunction;
1050}
1051
1052/// If the original function has debug info, we have to add a debug location
1053/// to the new branch instruction from the artificial entry block.
1054/// We use the debug location of the first instruction in the extracted
1055/// blocks, as there is no other equivalent line in the source code.
1056static void applyFirstDebugLoc(Function *oldFunction,
1058 Instruction *BranchI) {
1059 if (oldFunction->getSubprogram()) {
1060 any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1061 return any_of(*BB, [&BranchI](const Instruction &I) {
1062 if (!I.getDebugLoc())
1063 return false;
1064 // Don't use source locations attached to debug-intrinsics: they could
1065 // be from completely unrelated scopes.
1066 if (isa<DbgInfoIntrinsic>(I))
1067 return false;
1068 BranchI->setDebugLoc(I.getDebugLoc());
1069 return true;
1070 });
1071 });
1072 }
1073}
1074
1075/// Erase lifetime.start markers which reference inputs to the extraction
1076/// region, and insert the referenced memory into \p LifetimesStart.
1077///
1078/// The extraction region is defined by a set of blocks (\p Blocks), and a set
1079/// of allocas which will be moved from the caller function into the extracted
1080/// function (\p SunkAllocas).
1082 const SetVector<Value *> &SunkAllocas,
1083 SetVector<Value *> &LifetimesStart) {
1084 for (BasicBlock *BB : Blocks) {
1086 auto *II = dyn_cast<IntrinsicInst>(&I);
1087 if (!II || !II->isLifetimeStartOrEnd())
1088 continue;
1089
1090 // Get the memory operand of the lifetime marker. If the underlying
1091 // object is a sunk alloca, or is otherwise defined in the extraction
1092 // region, the lifetime marker must not be erased.
1093 Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1094 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1095 continue;
1096
1097 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1098 LifetimesStart.insert(Mem);
1099 II->eraseFromParent();
1100 }
1101 }
1102}
1103
1104/// Insert lifetime start/end markers surrounding the call to the new function
1105/// for objects defined in the caller.
1107 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1108 CallInst *TheCall) {
1109 LLVMContext &Ctx = M->getContext();
1110 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1111 Instruction *Term = TheCall->getParent()->getTerminator();
1112
1113 // Emit lifetime markers for the pointers given in \p Objects. Insert the
1114 // markers before the call if \p InsertBefore, and after the call otherwise.
1115 auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects,
1116 bool InsertBefore) {
1117 for (Value *Mem : Objects) {
1118 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1119 TheCall->getFunction()) &&
1120 "Input memory not defined in original function");
1121
1122 Function *Func =
1123 Intrinsic::getOrInsertDeclaration(M, MarkerFunc, Mem->getType());
1124 auto Marker = CallInst::Create(Func, {NegativeOne, Mem});
1125 if (InsertBefore)
1126 Marker->insertBefore(TheCall);
1127 else
1128 Marker->insertBefore(Term);
1129 }
1130 };
1131
1132 if (!LifetimesStart.empty()) {
1133 insertMarkers(Intrinsic::lifetime_start, LifetimesStart,
1134 /*InsertBefore=*/true);
1135 }
1136
1137 if (!LifetimesEnd.empty()) {
1138 insertMarkers(Intrinsic::lifetime_end, LifetimesEnd,
1139 /*InsertBefore=*/false);
1140 }
1141}
1142
1143void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1144 auto newFuncIt = newFunction->begin();
1145 for (BasicBlock *Block : Blocks) {
1146 // Delete the basic block from the old function, and the list of blocks
1147 Block->removeFromParent();
1148
1149 // Insert this basic block into the new function
1150 // Insert the original blocks after the entry block created
1151 // for the new function. The entry block may be followed
1152 // by a set of exit blocks at this point, but these exit
1153 // blocks better be placed at the end of the new function.
1154 newFuncIt = newFunction->insert(std::next(newFuncIt), Block);
1155 }
1156}
1157
1158void CodeExtractor::calculateNewCallTerminatorWeights(
1159 BasicBlock *CodeReplacer,
1160 const DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1161 BranchProbabilityInfo *BPI) {
1162 using Distribution = BlockFrequencyInfoImplBase::Distribution;
1163 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1164
1165 // Update the branch weights for the exit block.
1166 Instruction *TI = CodeReplacer->getTerminator();
1167 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1168
1169 // Block Frequency distribution with dummy node.
1170 Distribution BranchDist;
1171
1172 SmallVector<BranchProbability, 4> EdgeProbabilities(
1174
1175 // Add each of the frequencies of the successors.
1176 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1177 BlockNode ExitNode(i);
1178 uint64_t ExitFreq = ExitWeights.lookup(TI->getSuccessor(i)).getFrequency();
1179 if (ExitFreq != 0)
1180 BranchDist.addExit(ExitNode, ExitFreq);
1181 else
1182 EdgeProbabilities[i] = BranchProbability::getZero();
1183 }
1184
1185 // Check for no total weight.
1186 if (BranchDist.Total == 0) {
1187 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1188 return;
1189 }
1190
1191 // Normalize the distribution so that they can fit in unsigned.
1192 BranchDist.normalize();
1193
1194 // Create normalized branch weights and set the metadata.
1195 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1196 const auto &Weight = BranchDist.Weights[I];
1197
1198 // Get the weight and update the current BFI.
1199 BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1200 BranchProbability BP(Weight.Amount, BranchDist.Total);
1201 EdgeProbabilities[Weight.TargetNode.Index] = BP;
1202 }
1203 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1204 TI->setMetadata(
1205 LLVMContext::MD_prof,
1206 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1207}
1208
1209/// Erase debug info intrinsics which refer to values in \p F but aren't in
1210/// \p F.
1212 for (Instruction &I : instructions(F)) {
1214 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1215 findDbgUsers(DbgUsers, &I, &DbgVariableRecords);
1216 for (DbgVariableIntrinsic *DVI : DbgUsers)
1217 if (DVI->getFunction() != &F)
1218 DVI->eraseFromParent();
1219 for (DbgVariableRecord *DVR : DbgVariableRecords)
1220 if (DVR->getFunction() != &F)
1221 DVR->eraseFromParent();
1222 }
1223}
1224
1225/// Fix up the debug info in the old and new functions by pointing line
1226/// locations and debug intrinsics to the new subprogram scope, and by deleting
1227/// intrinsics which point to values outside of the new function.
1228static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1229 CallInst &TheCall) {
1230 DISubprogram *OldSP = OldFunc.getSubprogram();
1231 LLVMContext &Ctx = OldFunc.getContext();
1232
1233 if (!OldSP) {
1234 // Erase any debug info the new function contains.
1235 stripDebugInfo(NewFunc);
1236 // Make sure the old function doesn't contain any non-local metadata refs.
1238 return;
1239 }
1240
1241 // Create a subprogram for the new function. Leave out a description of the
1242 // function arguments, as the parameters don't correspond to anything at the
1243 // source level.
1244 assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1245 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1246 OldSP->getUnit());
1247 auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray({}));
1248 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1249 DISubprogram::SPFlagOptimized |
1250 DISubprogram::SPFlagLocalToUnit;
1251 auto NewSP = DIB.createFunction(
1252 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1253 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1254 NewFunc.setSubprogram(NewSP);
1255
1256 auto IsInvalidLocation = [&NewFunc](Value *Location) {
1257 // Location is invalid if it isn't a constant or an instruction, or is an
1258 // instruction but isn't in the new function.
1259 if (!Location ||
1260 (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1261 return true;
1262 Instruction *LocationInst = dyn_cast<Instruction>(Location);
1263 return LocationInst && LocationInst->getFunction() != &NewFunc;
1264 };
1265
1266 // Debug intrinsics in the new function need to be updated in one of two
1267 // ways:
1268 // 1) They need to be deleted, because they describe a value in the old
1269 // function.
1270 // 2) They need to point to fresh metadata, e.g. because they currently
1271 // point to a variable in the wrong scope.
1272 SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1273 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1276
1277 auto GetUpdatedDIVariable = [&](DILocalVariable *OldVar) {
1278 DINode *&NewVar = RemappedMetadata[OldVar];
1279 if (!NewVar) {
1281 *OldVar->getScope(), *NewSP, Ctx, Cache);
1282 NewVar = DIB.createAutoVariable(
1283 NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1284 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1285 OldVar->getAlignInBits());
1286 }
1287 return cast<DILocalVariable>(NewVar);
1288 };
1289
1290 auto UpdateDbgLabel = [&](auto *LabelRecord) {
1291 // Point the label record to a fresh label within the new function if
1292 // the record was not inlined from some other function.
1293 if (LabelRecord->getDebugLoc().getInlinedAt())
1294 return;
1295 DILabel *OldLabel = LabelRecord->getLabel();
1296 DINode *&NewLabel = RemappedMetadata[OldLabel];
1297 if (!NewLabel) {
1299 *OldLabel->getScope(), *NewSP, Ctx, Cache);
1300 NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(),
1301 OldLabel->getFile(), OldLabel->getLine());
1302 }
1303 LabelRecord->setLabel(cast<DILabel>(NewLabel));
1304 };
1305
1306 auto UpdateDbgRecordsOnInst = [&](Instruction &I) -> void {
1307 for (DbgRecord &DR : I.getDbgRecordRange()) {
1308 if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(&DR)) {
1309 UpdateDbgLabel(DLR);
1310 continue;
1311 }
1312
1313 DbgVariableRecord &DVR = cast<DbgVariableRecord>(DR);
1314 // Apply the two updates that dbg.values get: invalid operands, and
1315 // variable metadata fixup.
1316 if (any_of(DVR.location_ops(), IsInvalidLocation)) {
1317 DVRsToDelete.push_back(&DVR);
1318 continue;
1319 }
1320 if (DVR.isDbgAssign() && IsInvalidLocation(DVR.getAddress())) {
1321 DVRsToDelete.push_back(&DVR);
1322 continue;
1323 }
1324 if (!DVR.getDebugLoc().getInlinedAt())
1325 DVR.setVariable(GetUpdatedDIVariable(DVR.getVariable()));
1326 }
1327 };
1328
1329 for (Instruction &I : instructions(NewFunc)) {
1330 UpdateDbgRecordsOnInst(I);
1331
1332 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1333 if (!DII)
1334 continue;
1335
1336 // Point the intrinsic to a fresh label within the new function if the
1337 // intrinsic was not inlined from some other function.
1338 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1339 UpdateDbgLabel(DLI);
1340 continue;
1341 }
1342
1343 auto *DVI = cast<DbgVariableIntrinsic>(DII);
1344 // If any of the used locations are invalid, delete the intrinsic.
1345 if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1346 DebugIntrinsicsToDelete.push_back(DVI);
1347 continue;
1348 }
1349 // DbgAssign intrinsics have an extra Value argument:
1350 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI);
1351 DAI && IsInvalidLocation(DAI->getAddress())) {
1352 DebugIntrinsicsToDelete.push_back(DVI);
1353 continue;
1354 }
1355 // If the variable was in the scope of the old function, i.e. it was not
1356 // inlined, point the intrinsic to a fresh variable within the new function.
1357 if (!DVI->getDebugLoc().getInlinedAt())
1358 DVI->setVariable(GetUpdatedDIVariable(DVI->getVariable()));
1359 }
1360
1361 for (auto *DII : DebugIntrinsicsToDelete)
1362 DII->eraseFromParent();
1363 for (auto *DVR : DVRsToDelete)
1364 DVR->getMarker()->MarkedInstr->dropOneDbgRecord(DVR);
1365 DIB.finalizeSubprogram(NewSP);
1366
1367 // Fix up the scope information attached to the line locations and the
1368 // debug assignment metadata in the new function.
1370 for (Instruction &I : instructions(NewFunc)) {
1371 if (const DebugLoc &DL = I.getDebugLoc())
1372 I.setDebugLoc(
1373 DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache));
1374 for (DbgRecord &DR : I.getDbgRecordRange())
1375 DR.setDebugLoc(DebugLoc::replaceInlinedAtSubprogram(DR.getDebugLoc(),
1376 *NewSP, Ctx, Cache));
1377
1378 // Loop info metadata may contain line locations. Fix them up.
1379 auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * {
1380 if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1381 return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache);
1382 return MD;
1383 };
1384 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1385 at::remapAssignID(AssignmentIDMap, I);
1386 }
1387 if (!TheCall.getDebugLoc())
1388 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1389
1391}
1392
1393Function *
1395 ValueSet Inputs, Outputs;
1396 return extractCodeRegion(CEAC, Inputs, Outputs);
1397}
1398
1399Function *
1401 ValueSet &inputs, ValueSet &outputs) {
1402 if (!isEligible())
1403 return nullptr;
1404
1405 // Assumption: this is a single-entry code region, and the header is the first
1406 // block in the region.
1407 BasicBlock *header = *Blocks.begin();
1408 Function *oldFunction = header->getParent();
1409
1410 normalizeCFGForExtraction(header);
1411
1412 // Remove @llvm.assume calls that will be moved to the new function from the
1413 // old function's assumption cache.
1414 for (BasicBlock *Block : Blocks) {
1416 if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1417 if (AC)
1418 AC->unregisterAssumption(AI);
1419 AI->eraseFromParent();
1420 }
1421 }
1422 }
1423
1424 ValueSet SinkingCands, HoistingCands;
1425 BasicBlock *CommonExit = nullptr;
1426 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1427 assert(HoistingCands.empty() || CommonExit);
1428
1429 // Find inputs to, outputs from the code region.
1430 findInputsOutputs(inputs, outputs, SinkingCands);
1431
1432 // Collect objects which are inputs to the extraction region and also
1433 // referenced by lifetime start markers within it. The effects of these
1434 // markers must be replicated in the calling function to prevent the stack
1435 // coloring pass from merging slots which store input objects.
1436 ValueSet LifetimesStart;
1437 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1438
1439 if (!HoistingCands.empty()) {
1440 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1441 Instruction *TI = HoistToBlock->getTerminator();
1442 for (auto *II : HoistingCands)
1443 cast<Instruction>(II)->moveBefore(TI);
1444 computeExtractedFuncRetVals();
1445 }
1446
1447 // CFG/ExitBlocks must not change hereafter
1448
1449 // Calculate the entry frequency of the new function before we change the root
1450 // block.
1451 BlockFrequency EntryFreq;
1453 if (BFI) {
1454 assert(BPI && "Both BPI and BFI are required to preserve profile info");
1455 for (BasicBlock *Pred : predecessors(header)) {
1456 if (Blocks.count(Pred))
1457 continue;
1458 EntryFreq +=
1459 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1460 }
1461
1462 for (BasicBlock *Succ : ExtractedFuncRetVals) {
1463 for (BasicBlock *Block : predecessors(Succ)) {
1464 if (!Blocks.count(Block))
1465 continue;
1466
1467 // Update the branch weight for this successor.
1468 BlockFrequency &BF = ExitWeights[Succ];
1469 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1470 }
1471 }
1472 }
1473
1474 // Determine position for the replacement code. Do so before header is moved
1475 // to the new function.
1476 BasicBlock *ReplIP = header;
1477 while (ReplIP && Blocks.count(ReplIP))
1478 ReplIP = ReplIP->getNextNode();
1479
1480 // Construct new function based on inputs/outputs & add allocas for all defs.
1481 std::string SuffixToUse =
1482 Suffix.empty()
1483 ? (header->getName().empty() ? "extracted" : header->getName().str())
1484 : Suffix;
1485
1486 ValueSet StructValues;
1487 StructType *StructTy = nullptr;
1488 Function *newFunction = constructFunctionDeclaration(
1489 inputs, outputs, EntryFreq, oldFunction->getName() + "." + SuffixToUse,
1490 StructValues, StructTy);
1491 newFunction->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1492
1493 emitFunctionBody(inputs, outputs, StructValues, newFunction, StructTy, header,
1494 SinkingCands);
1495
1496 std::vector<Value *> Reloads;
1497 CallInst *TheCall = emitReplacerCall(
1498 inputs, outputs, StructValues, newFunction, StructTy, oldFunction, ReplIP,
1499 EntryFreq, LifetimesStart.getArrayRef(), Reloads);
1500
1501 insertReplacerCall(oldFunction, header, TheCall->getParent(), outputs,
1502 Reloads, ExitWeights);
1503
1504 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1505
1506 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1507 newFunction->dump();
1508 report_fatal_error("verification of newFunction failed!");
1509 });
1510 LLVM_DEBUG(if (verifyFunction(*oldFunction))
1511 report_fatal_error("verification of oldFunction failed!"));
1512 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1513 report_fatal_error("Stale Asumption cache for old Function!"));
1514 return newFunction;
1515}
1516
1517void CodeExtractor::normalizeCFGForExtraction(BasicBlock *&header) {
1518 // If we have any return instructions in the region, split those blocks so
1519 // that the return is not in the region.
1520 splitReturnBlocks();
1521
1522 // If we have to split PHI nodes of the entry or exit blocks, do so now.
1523 severSplitPHINodesOfEntry(header);
1524
1525 // If a PHI in an exit block has multiple incoming values from the outlined
1526 // region, create a new PHI for those values within the region such that only
1527 // PHI itself becomes an output value, not each of its incoming values
1528 // individually.
1529 computeExtractedFuncRetVals();
1530 severSplitPHINodesOfExits();
1531}
1532
1533void CodeExtractor::computeExtractedFuncRetVals() {
1534 ExtractedFuncRetVals.clear();
1535
1537 for (BasicBlock *Block : Blocks) {
1538 for (BasicBlock *Succ : successors(Block)) {
1539 if (Blocks.count(Succ))
1540 continue;
1541
1542 bool IsNew = ExitBlocks.insert(Succ).second;
1543 if (IsNew)
1544 ExtractedFuncRetVals.push_back(Succ);
1545 }
1546 }
1547}
1548
1549Type *CodeExtractor::getSwitchType() {
1550 LLVMContext &Context = Blocks.front()->getContext();
1551
1552 assert(ExtractedFuncRetVals.size() < 0xffff &&
1553 "too many exit blocks for switch");
1554 switch (ExtractedFuncRetVals.size()) {
1555 case 0:
1556 case 1:
1557 return Type::getVoidTy(Context);
1558 case 2:
1559 // Conditional branch, return a bool
1560 return Type::getInt1Ty(Context);
1561 default:
1562 return Type::getInt16Ty(Context);
1563 }
1564}
1565
1566void CodeExtractor::emitFunctionBody(
1567 const ValueSet &inputs, const ValueSet &outputs,
1568 const ValueSet &StructValues, Function *newFunction,
1569 StructType *StructArgTy, BasicBlock *header, const ValueSet &SinkingCands) {
1570 Function *oldFunction = header->getParent();
1571 LLVMContext &Context = oldFunction->getContext();
1572
1573 // The new function needs a root node because other nodes can branch to the
1574 // head of the region, but the entry node of a function cannot have preds.
1575 BasicBlock *newFuncRoot =
1576 BasicBlock::Create(Context, "newFuncRoot", newFunction);
1577 newFuncRoot->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1578
1579 // Now sink all instructions which only have non-phi uses inside the region.
1580 // Group the allocas at the start of the block, so that any bitcast uses of
1581 // the allocas are well-defined.
1582 for (auto *II : SinkingCands) {
1583 if (!isa<AllocaInst>(II)) {
1584 cast<Instruction>(II)->moveBefore(*newFuncRoot,
1585 newFuncRoot->getFirstInsertionPt());
1586 }
1587 }
1588 for (auto *II : SinkingCands) {
1589 if (auto *AI = dyn_cast<AllocaInst>(II)) {
1590 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1591 }
1592 }
1593
1594 Function::arg_iterator ScalarAI = newFunction->arg_begin();
1595 Argument *AggArg = StructValues.empty()
1596 ? nullptr
1597 : newFunction->getArg(newFunction->arg_size() - 1);
1598
1599 // Rewrite all users of the inputs in the extracted region to use the
1600 // arguments (or appropriate addressing into struct) instead.
1601 SmallVector<Value *> NewValues;
1602 for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1603 Value *RewriteVal;
1604 if (StructValues.contains(inputs[i])) {
1605 Value *Idx[2];
1607 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1609 StructArgTy, AggArg, Idx, "gep_" + inputs[i]->getName(), newFuncRoot);
1610 RewriteVal = new LoadInst(StructArgTy->getElementType(aggIdx), GEP,
1611 "loadgep_" + inputs[i]->getName(), newFuncRoot);
1612 ++aggIdx;
1613 } else
1614 RewriteVal = &*ScalarAI++;
1615
1616 NewValues.push_back(RewriteVal);
1617 }
1618
1619 moveCodeToFunction(newFunction);
1620
1621 for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1622 Value *RewriteVal = NewValues[i];
1623
1624 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1625 for (User *use : Users)
1626 if (Instruction *inst = dyn_cast<Instruction>(use))
1627 if (Blocks.count(inst->getParent()))
1628 inst->replaceUsesOfWith(inputs[i], RewriteVal);
1629 }
1630
1631 // Since there may be multiple exits from the original region, make the new
1632 // function return an unsigned, switch on that number. This loop iterates
1633 // over all of the blocks in the extracted region, updating any terminator
1634 // instructions in the to-be-extracted region that branch to blocks that are
1635 // not in the region to be extracted.
1636 std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1637
1638 // Iterate over the previously collected targets, and create new blocks inside
1639 // the function to branch to.
1640 for (auto P : enumerate(ExtractedFuncRetVals)) {
1641 BasicBlock *OldTarget = P.value();
1642 size_t SuccNum = P.index();
1643
1644 BasicBlock *NewTarget = BasicBlock::Create(
1645 Context, OldTarget->getName() + ".exitStub", newFunction);
1646 ExitBlockMap[OldTarget] = NewTarget;
1647
1648 Value *brVal = nullptr;
1649 Type *RetTy = getSwitchType();
1650 assert(ExtractedFuncRetVals.size() < 0xffff &&
1651 "too many exit blocks for switch");
1652 switch (ExtractedFuncRetVals.size()) {
1653 case 0:
1654 case 1:
1655 // No value needed.
1656 break;
1657 case 2: // Conditional branch, return a bool
1658 brVal = ConstantInt::get(RetTy, !SuccNum);
1659 break;
1660 default:
1661 brVal = ConstantInt::get(RetTy, SuccNum);
1662 break;
1663 }
1664
1665 ReturnInst::Create(Context, brVal, NewTarget);
1666 }
1667
1668 for (BasicBlock *Block : Blocks) {
1669 Instruction *TI = Block->getTerminator();
1670 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1671 if (Blocks.count(TI->getSuccessor(i)))
1672 continue;
1673 BasicBlock *OldTarget = TI->getSuccessor(i);
1674 // add a new basic block which returns the appropriate value
1675 BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1676 assert(NewTarget && "Unknown target block!");
1677
1678 // rewrite the original branch instruction with this new target
1679 TI->setSuccessor(i, NewTarget);
1680 }
1681 }
1682
1683 // Loop over all of the PHI nodes in the header and exit blocks, and change
1684 // any references to the old incoming edge to be the new incoming edge.
1685 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1686 PHINode *PN = cast<PHINode>(I);
1687 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1688 if (!Blocks.count(PN->getIncomingBlock(i)))
1689 PN->setIncomingBlock(i, newFuncRoot);
1690 }
1691
1692 // Connect newFunction entry block to new header.
1693 BranchInst *BranchI = BranchInst::Create(header, newFuncRoot);
1694 applyFirstDebugLoc(oldFunction, Blocks.getArrayRef(), BranchI);
1695
1696 // Store the arguments right after the definition of output value.
1697 // This should be proceeded after creating exit stubs to be ensure that invoke
1698 // result restore will be placed in the outlined function.
1699 ScalarAI = newFunction->arg_begin();
1700 unsigned AggIdx = 0;
1701
1702 for (Value *Input : inputs) {
1703 if (StructValues.contains(Input))
1704 ++AggIdx;
1705 else
1706 ++ScalarAI;
1707 }
1708
1709 for (Value *Output : outputs) {
1710 // Find proper insertion point.
1711 // In case Output is an invoke, we insert the store at the beginning in the
1712 // 'normal destination' BB. Otherwise we insert the store right after
1713 // Output.
1714 BasicBlock::iterator InsertPt;
1715 if (auto *InvokeI = dyn_cast<InvokeInst>(Output))
1716 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1717 else if (auto *Phi = dyn_cast<PHINode>(Output))
1718 InsertPt = Phi->getParent()->getFirstInsertionPt();
1719 else if (auto *OutI = dyn_cast<Instruction>(Output))
1720 InsertPt = std::next(OutI->getIterator());
1721 else {
1722 // Globals don't need to be updated, just advance to the next argument.
1723 if (StructValues.contains(Output))
1724 ++AggIdx;
1725 else
1726 ++ScalarAI;
1727 continue;
1728 }
1729
1730 assert((InsertPt->getFunction() == newFunction ||
1731 Blocks.count(InsertPt->getParent())) &&
1732 "InsertPt should be in new function");
1733
1734 if (StructValues.contains(Output)) {
1735 assert(AggArg && "Number of aggregate output arguments should match "
1736 "the number of defined values");
1737 Value *Idx[2];
1739 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), AggIdx);
1741 StructArgTy, AggArg, Idx, "gep_" + Output->getName(), InsertPt);
1742 new StoreInst(Output, GEP, InsertPt);
1743 ++AggIdx;
1744 } else {
1745 assert(ScalarAI != newFunction->arg_end() &&
1746 "Number of scalar output arguments should match "
1747 "the number of defined values");
1748 new StoreInst(Output, &*ScalarAI, InsertPt);
1749 ++ScalarAI;
1750 }
1751 }
1752
1753 if (ExtractedFuncRetVals.empty()) {
1754 // Mark the new function `noreturn` if applicable. Terminators which resume
1755 // exception propagation are treated as returning instructions. This is to
1756 // avoid inserting traps after calls to outlined functions which unwind.
1757 if (none_of(Blocks, [](const BasicBlock *BB) {
1758 const Instruction *Term = BB->getTerminator();
1759 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1760 }))
1761 newFunction->setDoesNotReturn();
1762 }
1763}
1764
1765CallInst *CodeExtractor::emitReplacerCall(
1766 const ValueSet &inputs, const ValueSet &outputs,
1767 const ValueSet &StructValues, Function *newFunction,
1768 StructType *StructArgTy, Function *oldFunction, BasicBlock *ReplIP,
1769 BlockFrequency EntryFreq, ArrayRef<Value *> LifetimesStart,
1770 std::vector<Value *> &Reloads) {
1771 LLVMContext &Context = oldFunction->getContext();
1772 Module *M = oldFunction->getParent();
1773 const DataLayout &DL = M->getDataLayout();
1774
1775 // This takes place of the original loop
1776 BasicBlock *codeReplacer =
1777 BasicBlock::Create(Context, "codeRepl", oldFunction, ReplIP);
1778 codeReplacer->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1779 BasicBlock *AllocaBlock =
1780 AllocationBlock ? AllocationBlock : &oldFunction->getEntryBlock();
1781 AllocaBlock->IsNewDbgInfoFormat = oldFunction->IsNewDbgInfoFormat;
1782
1783 // Update the entry count of the function.
1784 if (BFI)
1785 BFI->setBlockFreq(codeReplacer, EntryFreq);
1786
1787 std::vector<Value *> params;
1788
1789 // Add inputs as params, or to be filled into the struct
1790 for (Value *input : inputs) {
1791 if (StructValues.contains(input))
1792 continue;
1793
1794 params.push_back(input);
1795 }
1796
1797 // Create allocas for the outputs
1798 std::vector<Value *> ReloadOutputs;
1799 for (Value *output : outputs) {
1800 if (StructValues.contains(output))
1801 continue;
1802
1803 AllocaInst *alloca = new AllocaInst(
1804 output->getType(), DL.getAllocaAddrSpace(), nullptr,
1805 output->getName() + ".loc", AllocaBlock->getFirstInsertionPt());
1806 params.push_back(alloca);
1807 ReloadOutputs.push_back(alloca);
1808 }
1809
1810 AllocaInst *Struct = nullptr;
1811 if (!StructValues.empty()) {
1812 Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1813 "structArg", AllocaBlock->getFirstInsertionPt());
1814 if (ArgsInZeroAddressSpace && DL.getAllocaAddrSpace() != 0) {
1815 auto *StructSpaceCast = new AddrSpaceCastInst(
1816 Struct, PointerType ::get(Context, 0), "structArg.ascast");
1817 StructSpaceCast->insertAfter(Struct);
1818 params.push_back(StructSpaceCast);
1819 } else {
1820 params.push_back(Struct);
1821 }
1822
1823 unsigned AggIdx = 0;
1824 for (Value *input : inputs) {
1825 if (!StructValues.contains(input))
1826 continue;
1827
1828 Value *Idx[2];
1830 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), AggIdx);
1832 StructArgTy, Struct, Idx, "gep_" + input->getName());
1833 GEP->insertInto(codeReplacer, codeReplacer->end());
1834 new StoreInst(input, GEP, codeReplacer);
1835
1836 ++AggIdx;
1837 }
1838 }
1839
1840 // Emit the call to the function
1841 CallInst *call = CallInst::Create(
1842 newFunction, params, ExtractedFuncRetVals.size() > 1 ? "targetBlock" : "",
1843 codeReplacer);
1844
1845 // Set swifterror parameter attributes.
1846 unsigned ParamIdx = 0;
1847 unsigned AggIdx = 0;
1848 for (auto input : inputs) {
1849 if (StructValues.contains(input)) {
1850 ++AggIdx;
1851 } else {
1852 if (input->isSwiftError())
1853 call->addParamAttr(ParamIdx, Attribute::SwiftError);
1854 ++ParamIdx;
1855 }
1856 }
1857
1858 // Add debug location to the new call, if the original function has debug
1859 // info. In that case, the terminator of the entry block of the extracted
1860 // function contains the first debug location of the extracted function,
1861 // set in extractCodeRegion.
1862 if (codeReplacer->getParent()->getSubprogram()) {
1863 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1864 call->setDebugLoc(DL);
1865 }
1866
1867 // Reload the outputs passed in by reference, use the struct if output is in
1868 // the aggregate or reload from the scalar argument.
1869 for (unsigned i = 0, e = outputs.size(), scalarIdx = 0; i != e; ++i) {
1870 Value *Output = nullptr;
1871 if (StructValues.contains(outputs[i])) {
1872 Value *Idx[2];
1874 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), AggIdx);
1876 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1877 GEP->insertInto(codeReplacer, codeReplacer->end());
1878 Output = GEP;
1879 ++AggIdx;
1880 } else {
1881 Output = ReloadOutputs[scalarIdx];
1882 ++scalarIdx;
1883 }
1884 LoadInst *load =
1885 new LoadInst(outputs[i]->getType(), Output,
1886 outputs[i]->getName() + ".reload", codeReplacer);
1887 Reloads.push_back(load);
1888 }
1889
1890 // Now we can emit a switch statement using the call as a value.
1891 SwitchInst *TheSwitch =
1893 codeReplacer, 0, codeReplacer);
1894 for (auto P : enumerate(ExtractedFuncRetVals)) {
1895 BasicBlock *OldTarget = P.value();
1896 size_t SuccNum = P.index();
1897
1898 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), SuccNum),
1899 OldTarget);
1900 }
1901
1902 // Now that we've done the deed, simplify the switch instruction.
1903 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1904 switch (ExtractedFuncRetVals.size()) {
1905 case 0:
1906 // There are no successors (the block containing the switch itself), which
1907 // means that previously this was the last part of the function, and hence
1908 // this should be rewritten as a `ret` or `unreachable`.
1909 if (newFunction->doesNotReturn()) {
1910 // If fn is no return, end with an unreachable terminator.
1911 (void)new UnreachableInst(Context, TheSwitch->getIterator());
1912 } else if (OldFnRetTy->isVoidTy()) {
1913 // We have no return value.
1914 ReturnInst::Create(Context, nullptr,
1915 TheSwitch->getIterator()); // Return void
1916 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1917 // return what we have
1918 ReturnInst::Create(Context, TheSwitch->getCondition(),
1919 TheSwitch->getIterator());
1920 } else {
1921 // Otherwise we must have code extracted an unwind or something, just
1922 // return whatever we want.
1923 ReturnInst::Create(Context, Constant::getNullValue(OldFnRetTy),
1924 TheSwitch->getIterator());
1925 }
1926
1927 TheSwitch->eraseFromParent();
1928 break;
1929 case 1:
1930 // Only a single destination, change the switch into an unconditional
1931 // branch.
1932 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getIterator());
1933 TheSwitch->eraseFromParent();
1934 break;
1935 case 2:
1936 // Only two destinations, convert to a condition branch.
1937 // Remark: This also swaps the target branches:
1938 // 0 -> false -> getSuccessor(2); 1 -> true -> getSuccessor(1)
1939 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1940 call, TheSwitch->getIterator());
1941 TheSwitch->eraseFromParent();
1942 break;
1943 default:
1944 // Otherwise, make the default destination of the switch instruction be one
1945 // of the other successors.
1946 TheSwitch->setCondition(call);
1947 TheSwitch->setDefaultDest(
1948 TheSwitch->getSuccessor(ExtractedFuncRetVals.size()));
1949 // Remove redundant case
1950 TheSwitch->removeCase(
1951 SwitchInst::CaseIt(TheSwitch, ExtractedFuncRetVals.size() - 1));
1952 break;
1953 }
1954
1955 // Insert lifetime markers around the reloads of any output values. The
1956 // allocas output values are stored in are only in-use in the codeRepl block.
1957 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1958
1959 // Replicate the effects of any lifetime start/end markers which referenced
1960 // input objects in the extraction region by placing markers around the call.
1961 insertLifetimeMarkersSurroundingCall(oldFunction->getParent(), LifetimesStart,
1962 {}, call);
1963
1964 return call;
1965}
1966
1967void CodeExtractor::insertReplacerCall(
1968 Function *oldFunction, BasicBlock *header, BasicBlock *codeReplacer,
1969 const ValueSet &outputs, ArrayRef<Value *> Reloads,
1970 const DenseMap<BasicBlock *, BlockFrequency> &ExitWeights) {
1971
1972 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1973 // within the new function. This must be done before we lose track of which
1974 // blocks were originally in the code region.
1975 std::vector<User *> Users(header->user_begin(), header->user_end());
1976 for (auto &U : Users)
1977 // The BasicBlock which contains the branch is not in the region
1978 // modify the branch target to a new block
1979 if (Instruction *I = dyn_cast<Instruction>(U))
1980 if (I->isTerminator() && I->getFunction() == oldFunction &&
1981 !Blocks.count(I->getParent()))
1982 I->replaceUsesOfWith(header, codeReplacer);
1983
1984 // When moving the code region it is sufficient to replace all uses to the
1985 // extracted function values. Since the original definition's block
1986 // dominated its use, it will also be dominated by codeReplacer's switch
1987 // which joined multiple exit blocks.
1988 for (BasicBlock *ExitBB : ExtractedFuncRetVals)
1989 for (PHINode &PN : ExitBB->phis()) {
1990 Value *IncomingCodeReplacerVal = nullptr;
1991 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1992 // Ignore incoming values from outside of the extracted region.
1993 if (!Blocks.count(PN.getIncomingBlock(i)))
1994 continue;
1995
1996 // Ensure that there is only one incoming value from codeReplacer.
1997 if (!IncomingCodeReplacerVal) {
1998 PN.setIncomingBlock(i, codeReplacer);
1999 IncomingCodeReplacerVal = PN.getIncomingValue(i);
2000 } else
2001 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
2002 "PHI has two incompatbile incoming values from codeRepl");
2003 }
2004 }
2005
2006 for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
2007 Value *load = Reloads[i];
2008 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
2009 for (User *U : Users) {
2010 Instruction *inst = cast<Instruction>(U);
2011 if (inst->getParent()->getParent() == oldFunction)
2012 inst->replaceUsesOfWith(outputs[i], load);
2013 }
2014 }
2015
2016 // Update the branch weights for the exit block.
2017 if (BFI && ExtractedFuncRetVals.size() > 1)
2018 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
2019}
2020
2022 const Function &NewFunc,
2023 AssumptionCache *AC) {
2024 for (auto AssumeVH : AC->assumptions()) {
2025 auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
2026 if (!I)
2027 continue;
2028
2029 // There shouldn't be any llvm.assume intrinsics in the new function.
2030 if (I->getFunction() != &OldFunc)
2031 return true;
2032
2033 // There shouldn't be any stale affected values in the assumption cache
2034 // that were previously in the old function, but that have now been moved
2035 // to the new function.
2036 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
2037 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
2038 if (!AffectedCI)
2039 continue;
2040 if (AffectedCI->getFunction() != &OldFunc)
2041 return true;
2042 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
2043 if (AssumedInst->getFunction() != &OldFunc)
2044 return true;
2045 }
2046 }
2047 return false;
2048}
2049
2051 ExcludeArgsFromAggregate.insert(Arg);
2052}
AMDGPU Mark last scratch load
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Expand Atomic instructions
This file contains the simple types necessary to represent the attributes associated with functions a...
static const Function * getParent(const Value *V)
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F)
Erase debug info intrinsics which refer to values in F but aren't in F.
static SetVector< BasicBlock * > buildExtractionBlockSet(ArrayRef< BasicBlock * > BBs, DominatorTree *DT, bool AllowVarArgs, bool AllowAlloca)
Build a set of blocks to extract if the input blocks are viable.
static void applyFirstDebugLoc(Function *oldFunction, ArrayRef< BasicBlock * > Blocks, Instruction *BranchI)
If the original function has debug info, we have to add a debug location to the new branch instructio...
static bool definedInRegion(const SetVector< BasicBlock * > &Blocks, Value *V)
definedInRegion - Return true if the specified value is defined in the extracted region.
static bool definedInCaller(const SetVector< BasicBlock * > &Blocks, Value *V)
definedInCaller - Return true if the specified value is defined in the function being code extracted,...
static bool isBlockValidForExtraction(const BasicBlock &BB, const SetVector< BasicBlock * > &Result, bool AllowVarArgs, bool AllowAlloca)
Test whether a block is valid for extraction.
static BasicBlock * getCommonExitBlock(const SetVector< BasicBlock * > &Blocks)
static void eraseLifetimeMarkersOnInputs(const SetVector< BasicBlock * > &Blocks, const SetVector< Value * > &SunkAllocas, SetVector< Value * > &LifetimesStart)
Erase lifetime.start markers which reference inputs to the extraction region, and insert the referenc...
static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc, CallInst &TheCall)
Fix up the debug info in the old and new functions by pointing line locations and debug intrinsics to...
static cl::opt< bool > AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, cl::desc("Aggregate arguments to code-extracted functions"))
static void insertLifetimeMarkersSurroundingCall(Module *M, ArrayRef< Value * > LifetimesStart, ArrayRef< Value * > LifetimesEnd, CallInst *TheCall)
Insert lifetime start/end markers surrounding the call to the new function for objects defined in the...
This file contains the declarations for the subclasses of Constant, which represent the different fla...
return RetTy
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
Given that RA is a live value
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines the DenseMap class.
uint64_t Addr
std::string Name
DenseMap< Block *, BlockRelaxAux > Blocks
Definition: ELF_riscv.cpp:507
static Function * getFunction(Constant *C)
Definition: Evaluator.cpp:235
Hexagon Common GEP
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
iv Induction Variable Users
Definition: IVUsers.cpp:48
Move duplicate certain instructions close to their use
Definition: Localizer.cpp:33
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t IntrinsicInst * II
#define P(N)
if(PassOpts->AAPipeline)
static StringRef getName(Value *V)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
This file implements a set that has insertion order iteration characteristics.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:39
@ Struct
This class represents a conversion between pointers from one address space to another.
an instruction to allocate memory on the stack
Definition: Instructions.h:63
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
bool empty() const
empty - Check if the array is empty.
Definition: ArrayRef.h:163
A cache of @llvm.assume calls within a function.
MutableArrayRef< ResultElem > assumptions()
Access the list of assumption handles currently tracked for this function.
void unregisterAssumption(AssumeInst *CI)
Remove an @llvm.assume intrinsic from this function's cache if it has been added to the cache earlier...
MutableArrayRef< ResultElem > assumptionsFor(const Value *V)
Access the list of assumptions which affect this value.
AttributeSet getFnAttrs() const
The function attributes are returned.
@ TombstoneKey
Use as Tombstone key for DenseMap of AttrKind.
Definition: Attributes.h:93
@ None
No attributes have been set.
Definition: Attributes.h:88
@ EmptyKey
Use as Empty key for DenseMap of AttrKind.
Definition: Attributes.h:92
@ EndAttrKinds
Sentinel value useful for loops.
Definition: Attributes.h:91
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
iterator end()
Definition: BasicBlock.h:461
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:448
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:416
iterator_range< filter_iterator< BasicBlock::const_iterator, std::function< bool(const Instruction &)> > > instructionsWithoutDebug(bool SkipPseudoOp=true) const
Return a const iterator range over the instructions in the block, skipping any debug instructions.
Definition: BasicBlock.cpp:250
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches,...
Definition: BasicBlock.h:658
InstListType::const_iterator getFirstNonPHIIt() const
Iterator returning form of getFirstNonPHI.
Definition: BasicBlock.cpp:374
InstListType::const_iterator const_iterator
Definition: BasicBlock.h:178
const Instruction * getFirstNonPHI() const
Returns a pointer to the first instruction in this block that is not a PHINode instruction.
Definition: BasicBlock.cpp:367
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:212
BasicBlock * splitBasicBlock(iterator I, const Twine &BBName="", bool Before=false)
Split the basic block into two basic blocks at the specified instruction.
Definition: BasicBlock.cpp:577
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:219
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:168
bool IsNewDbgInfoFormat
Flag recording whether or not this block stores debug-info in the form of intrinsic instructions (fal...
Definition: BasicBlock.h:67
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
std::optional< uint64_t > getProfileCountFromFreq(BlockFrequency Freq) const
Returns the estimated profile count of Freq.
void setBlockFreq(const BasicBlock *BB, BlockFrequency Freq)
BlockFrequency getBlockFreq(const BasicBlock *BB) const
getblockFreq - Return block frequency.
Conditional or Unconditional Branch instruction.
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
Analysis providing branch probability information.
void setEdgeProbability(const BasicBlock *Src, const SmallVectorImpl< BranchProbability > &Probs)
Set the raw probabilities for all edges from the given block.
BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const
Get an edge's probability, relative to other out-edges of the Src.
static BranchProbability getUnknown()
static BranchProbability getZero()
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
Adds the attribute to the indicated argument.
Definition: InstrTypes.h:1502
This class represents a function call, abstracting a target machine's calling convention.
static CallInst * Create(FunctionType *Ty, Value *F, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:444
static CastInst * CreatePointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
A cache for the CodeExtractor analysis.
Definition: CodeExtractor.h:46
ArrayRef< AllocaInst * > getAllocas() const
Get the allocas in the function at the time the analysis was created.
Definition: CodeExtractor.h:65
bool doesBlockContainClobberOfAddr(BasicBlock &BB, AllocaInst *Addr) const
Check whether BB contains an instruction thought to load from, store to, or otherwise clobber the all...
CodeExtractor(ArrayRef< BasicBlock * > BBs, DominatorTree *DT=nullptr, bool AggregateArgs=false, BlockFrequencyInfo *BFI=nullptr, BranchProbabilityInfo *BPI=nullptr, AssumptionCache *AC=nullptr, bool AllowVarArgs=false, bool AllowAlloca=false, BasicBlock *AllocationBlock=nullptr, std::string Suffix="", bool ArgsInZeroAddressSpace=false)
Create a code extractor for a sequence of blocks.
BasicBlock * findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock)
Find or create a block within the outline region for placing hoisted code.
void findAllocas(const CodeExtractorAnalysisCache &CEAC, ValueSet &SinkCands, ValueSet &HoistCands, BasicBlock *&ExitBlock) const
Find the set of allocas whose life ranges are contained within the outlined region.
Function * extractCodeRegion(const CodeExtractorAnalysisCache &CEAC)
Perform the extraction, returning the new function.
static bool verifyAssumptionCache(const Function &OldFunc, const Function &NewFunc, AssumptionCache *AC)
Verify that assumption cache isn't stale after a region is extracted.
void findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs, const ValueSet &Allocas, bool CollectGlobalInputs=false) const
Compute the set of input values and output values for the code.
bool isEligible() const
Test whether this code extractor is eligible.
void excludeArgFromAggregate(Value *Arg)
Exclude a value from aggregate argument passing when extracting a code region, passing it instead as ...
bool isLegalToShrinkwrapLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC, Instruction *AllocaAddr) const
Check if life time marker nodes can be hoisted/sunk into the outline region.
static ConstantInt * getSigned(IntegerType *Ty, int64_t V)
Return a ConstantInt with the specified value for the specified type.
Definition: Constants.h:126
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:373
DISubroutineType * createSubroutineType(DITypeRefArray ParameterTypes, DINode::DIFlags Flags=DINode::FlagZero, unsigned CC=0)
Create subroutine type.
Definition: DIBuilder.cpp:562
void finalizeSubprogram(DISubprogram *SP)
Finalize a specific subprogram - no new variables may be added to this subprogram afterwards.
Definition: DIBuilder.cpp:55
DISubprogram * createFunction(DIScope *Scope, StringRef Name, StringRef LinkageName, DIFile *File, unsigned LineNo, DISubroutineType *Ty, unsigned ScopeLine, DINode::DIFlags Flags=DINode::FlagZero, DISubprogram::DISPFlags SPFlags=DISubprogram::SPFlagZero, DITemplateParameterArray TParams=nullptr, DISubprogram *Decl=nullptr, DITypeArray ThrownTypes=nullptr, DINodeArray Annotations=nullptr, StringRef TargetFuncName="")
Create a new descriptor for the specified subprogram.
Definition: DIBuilder.cpp:858
DITypeRefArray getOrCreateTypeArray(ArrayRef< Metadata * > Elements)
Get a DITypeRefArray, create one if required.
Definition: DIBuilder.cpp:705
DILocalVariable * createAutoVariable(DIScope *Scope, StringRef Name, DIFile *File, unsigned LineNo, DIType *Ty, bool AlwaysPreserve=false, DINode::DIFlags Flags=DINode::FlagZero, uint32_t AlignInBits=0)
Create a new descriptor for an auto variable.
Definition: DIBuilder.cpp:809
DIFile * getFile() const
StringRef getName() const
unsigned getLine() const
DILocalScope * getScope() const
Get the local scope for this label.
A scope for locals.
static DILocalScope * cloneScopeForSubprogram(DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx, DenseMap< const MDNode *, MDNode * > &Cache)
Traverses the scope chain rooted at RootScope until it hits a Subprogram, recreating the chain with "...
Tagged DWARF-like metadata node.
StringRef getName() const
DIFile * getFile() const
Subprogram description.
DISPFlags
Debug info subprogram flags.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Records a position in IR for a source label (DILabel).
Base class for non-instruction debug metadata records that have positions within IR.
DebugLoc getDebugLoc() const
This is the common base class for debug info intrinsics for variables.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
void setVariable(DILocalVariable *NewVar)
DILocalVariable * getVariable() const
iterator_range< location_op_iterator > location_ops() const
Get the locations corresponding to the variable referenced by the debug info intrinsic.
A debug info location.
Definition: DebugLoc.h:33
static DebugLoc replaceInlinedAtSubprogram(const DebugLoc &DL, DISubprogram &NewSP, LLVMContext &Ctx, DenseMap< const MDNode *, MDNode * > &Cache)
Rebuild the entire inline-at chain by replacing the subprogram at the end of the chain with NewSP.
Definition: DebugLoc.cpp:70
DILocation * getInlinedAt() const
Definition: DebugLoc.cpp:39
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:194
void changeImmediateDominator(DomTreeNodeBase< NodeT > *N, DomTreeNodeBase< NodeT > *NewIDom)
changeImmediateDominator - This method is used to update the dominator tree information when a node's...
DomTreeNodeBase< NodeT > * addNewBlock(NodeT *BB, NodeT *DomBB)
Add a new node to the dominator tree information.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:321
static FunctionType * get(Type *Result, ArrayRef< Type * > Params, bool isVarArg)
This static method is the primary way of constructing a FunctionType.
Class to represent profile counts.
Definition: Function.h:292
void addFnAttr(Attribute::AttrKind Kind)
Add function attributes to this function.
Definition: Function.cpp:641
void setSubprogram(DISubprogram *SP)
Set the attached subprogram.
Definition: Metadata.cpp:1870
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N="", Module *M=nullptr)
Definition: Function.h:173
const BasicBlock & getEntryBlock() const
Definition: Function.h:809
DISubprogram * getSubprogram() const
Get the attached subprogram.
Definition: Metadata.cpp:1874
void setDoesNotReturn()
Definition: Function.h:587
bool IsNewDbgInfoFormat
Is this function using intrinsics to record the position of debugging information,...
Definition: Function.h:116
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition: Function.h:905
Constant * getPersonalityFn() const
Get the personality function associated with this function.
Definition: Function.cpp:1048
void setPersonalityFn(Constant *Fn)
Definition: Function.cpp:1053
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition: Function.h:353
arg_iterator arg_end()
Definition: Function.h:877
iterator begin()
Definition: Function.h:853
arg_iterator arg_begin()
Definition: Function.h:868
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition: Function.cpp:369
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind)
adds the attribute to the list of attributes for the given arg.
Definition: Function.cpp:669
Function::iterator insert(Function::iterator Position, BasicBlock *BB)
Insert BB in the basic block list at Position.
Definition: Function.h:754
bool doesNotReturn() const
Determine if the function cannot return.
Definition: Function.h:584
size_t arg_size() const
Definition: Function.h:901
Argument * getArg(unsigned i) const
Definition: Function.h:886
void setEntryCount(ProfileCount Count, const DenseSet< GlobalValue::GUID > *Imports=nullptr)
Set the entry count for this function.
Definition: Function.cpp:1111
bool isVarArg() const
isVarArg - Return true if this function takes a variable number of arguments.
Definition: Function.h:234
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:933
static GetElementPtrInst * Create(Type *PointeeType, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Definition: Instructions.h:956
unsigned getAddressSpace() const
Definition: GlobalValue.h:205
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:656
@ InternalLinkage
Rename collisions when linking (static functions).
Definition: GlobalValue.h:59
bool isLifetimeStartOrEnd() const LLVM_READONLY
Return true if the instruction is a llvm.lifetime.start or llvm.lifetime.end marker.
unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction.
Definition: Instruction.cpp:99
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:475
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:94
const Function * getFunction() const
Return the function this instruction belongs to.
Definition: Instruction.cpp:72
BasicBlock * getSuccessor(unsigned Idx) const LLVM_READONLY
Return the specified successor. This instruction must be a terminator.
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1679
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:472
void setSuccessor(unsigned Idx, BasicBlock *BB)
Update the specified successor to point at the provided block.
void moveBefore(Instruction *MovePos)
Unlink this instruction from its current basic block and insert it into the basic block that MovePos ...
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Definition: IntrinsicInst.h:55
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:176
Value * getPointerOperand()
Definition: Instructions.h:255
MDNode * createBranchWeights(uint32_t TrueWeight, uint32_t FalseWeight, bool IsExpected=false)
Return metadata containing two branch weights.
Definition: MDBuilder.cpp:37
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1543
StringRef getName() const
Return the name of the corresponding LLVM basic block, or an empty string.
Root of the metadata hierarchy.
Definition: Metadata.h:62
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
void setIncomingBlock(unsigned i, BasicBlock *BB)
Value * removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty=true)
Remove an incoming value.
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Definition: DerivedTypes.h:686
Return a value (possibly void), from a function.
static ReturnInst * Create(LLVMContext &C, Value *retVal=nullptr, InsertPosition InsertBefore=nullptr)
A vector that has set insertion semantics.
Definition: SetVector.h:57
ArrayRef< value_type > getArrayRef() const
Definition: SetVector.h:84
size_type count(const key_type &key) const
Count the number of elements of a given key in the SetVector.
Definition: SetVector.h:264
bool empty() const
Determine if the SetVector is empty or not.
Definition: SetVector.h:93
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition: SetVector.h:162
bool contains(const key_type &key) const
Check if the SetVector contains the given key.
Definition: SetVector.h:254
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
An instruction for storing to memory.
Definition: Instructions.h:292
std::string str() const
str - Get the contents as an std::string.
Definition: StringRef.h:229
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:147
Class to represent struct types.
Definition: DerivedTypes.h:218
static StructType * get(LLVMContext &Context, ArrayRef< Type * > Elements, bool isPacked=false)
This static method is the primary way to create a literal StructType.
Definition: Type.cpp:406
Type * getElementType(unsigned N) const
Definition: DerivedTypes.h:366
Multiway switch.
BasicBlock * getSuccessor(unsigned idx) const
static SwitchInst * Create(Value *Value, BasicBlock *Default, unsigned NumCases, InsertPosition InsertBefore=nullptr)
void setCondition(Value *V)
void addCase(ConstantInt *OnVal, BasicBlock *Dest)
Add an entry to the switch instruction.
void setDefaultDest(BasicBlock *DefaultCase)
Value * getCondition() const
CaseIt removeCase(CaseIt I)
This method removes the specified case and its successor from the switch instruction.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
static IntegerType * getInt1Ty(LLVMContext &C)
static Type * getVoidTy(LLVMContext &C)
static IntegerType * getInt16Ty(LLVMContext &C)
static IntegerType * getInt32Ty(LLVMContext &C)
static IntegerType * getInt64Ty(LLVMContext &C)
bool isVoidTy() const
Return true if this is 'void'.
Definition: Type.h:139
This function has undefined behavior.
op_range operands()
Definition: User.h:288
bool replaceUsesOfWith(Value *From, Value *To)
Replace uses of one Value with another.
Definition: User.cpp:21
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
user_iterator user_begin()
Definition: Value.h:397
void setName(const Twine &Name)
Change the name of the value.
Definition: Value.cpp:377
const Value * stripInBoundsConstantOffsets() const
Strip off pointer casts and all-constant inbounds GEPs.
Definition: Value.cpp:706
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
user_iterator user_end()
Definition: Value.h:405
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1075
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void dump() const
Support for debugging, callable in GDB: V->dump()
Definition: AsmWriter.cpp:5304
const ParentTy * getParent() const
Definition: ilist_node.h:32
self_iterator getIterator()
Definition: ilist_node.h:132
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:353
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
Definition: Intrinsics.cpp:731
void remapAssignID(DenseMap< DIAssignID *, DIAssignID * > &Map, Instruction &I)
Replace DIAssignID uses and attachments with IDs from Map.
Definition: DebugInfo.cpp:1982
NodeAddr< PhiNode * > Phi
Definition: RDFGraph.h:390
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition: STLExtras.h:2448
bool stripDebugInfo(Function &F)
Definition: DebugInfo.cpp:569
Function::ProfileCount ProfileCount
bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
Definition: Verifier.cpp:7293
void findDbgUsers(SmallVectorImpl< DbgVariableIntrinsic * > &DbgInsts, Value *V, SmallVectorImpl< DbgVariableRecord * > *DbgVariableRecords=nullptr)
Finds the debug info intrinsics describing a value.
Definition: DebugInfo.cpp:162
auto successors(const MachineBasicBlock *BB)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:657
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:420
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1753
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
BasicBlock * SplitBlock(BasicBlock *Old, BasicBlock::iterator SplitPt, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="", bool Before=false)
Split the specified block at the specified instruction.
auto predecessors(const MachineBasicBlock *BB)
void updateLoopMetadataDebugLocations(Instruction &I, function_ref< Metadata *(Metadata *)> Updater)
Update the debug locations contained within the MD_loop metadata attached to the instruction I,...
Definition: DebugInfo.cpp:439
Distribution of unscaled probability weight.