LLVM 22.0.0git
X86CallFrameOptimization.cpp
Go to the documentation of this file.
1//===----- X86CallFrameOptimization.cpp - Optimize x86 call sequences -----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines a pass that optimizes call sequences on x86.
10// Currently, it converts movs of function parameters onto the stack into
11// pushes. This is beneficial for two main reasons:
12// 1) The push instruction encoding is much smaller than a stack-ptr-based mov.
13// 2) It is possible to push memory arguments directly. So, if the
14// the transformation is performed pre-reg-alloc, it can help relieve
15// register pressure.
16//
17//===----------------------------------------------------------------------===//
18
20#include "X86.h"
21#include "X86FrameLowering.h"
22#include "X86InstrInfo.h"
24#include "X86RegisterInfo.h"
25#include "X86Subtarget.h"
26#include "llvm/ADT/DenseSet.h"
28#include "llvm/ADT/StringRef.h"
39#include "llvm/IR/DebugLoc.h"
40#include "llvm/IR/Function.h"
41#include "llvm/MC/MCDwarf.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <iterator>
49
50using namespace llvm;
51
52#define DEBUG_TYPE "x86-cf-opt"
53
54static cl::opt<bool>
55 NoX86CFOpt("no-x86-call-frame-opt",
56 cl::desc("Avoid optimizing x86 call frames for size"),
57 cl::init(false), cl::Hidden);
58
59namespace {
60
61class X86CallFrameOptimization : public MachineFunctionPass {
62public:
63 X86CallFrameOptimization() : MachineFunctionPass(ID) { }
64
65 bool runOnMachineFunction(MachineFunction &MF) override;
66
67 static char ID;
68
69private:
70 // Information we know about a particular call site
71 struct CallContext {
72 CallContext() : FrameSetup(nullptr), ArgStoreVector(4, nullptr) {}
73
74 // Iterator referring to the frame setup instruction
76
77 // Actual call instruction
78 MachineInstr *Call = nullptr;
79
80 // A copy of the stack pointer
81 MachineInstr *SPCopy = nullptr;
82
83 // The total displacement of all passed parameters
84 int64_t ExpectedDist = 0;
85
86 // The sequence of storing instructions used to pass the parameters
87 SmallVector<MachineInstr *, 4> ArgStoreVector;
88
89 // True if this call site has no stack parameters
90 bool NoStackParams = false;
91
92 // True if this call site can use push instructions
93 bool UsePush = false;
94 };
95
96 typedef SmallVector<CallContext, 8> ContextVector;
97
98 bool isLegal(MachineFunction &MF);
99
100 bool isProfitable(MachineFunction &MF, ContextVector &CallSeqMap);
101
102 void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
104
105 void adjustCallSequence(MachineFunction &MF, const CallContext &Context);
106
107 MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
108 Register Reg);
109
110 enum InstClassification { Convert, Skip, Exit };
111
112 InstClassification classifyInstruction(MachineBasicBlock &MBB,
114 const X86RegisterInfo &RegInfo,
115 const DenseSet<MCRegister> &UsedRegs);
116
117 StringRef getPassName() const override { return "X86 Optimize Call Frame"; }
118
119 const X86InstrInfo *TII = nullptr;
120 const X86FrameLowering *TFL = nullptr;
121 const X86Subtarget *STI = nullptr;
122 MachineRegisterInfo *MRI = nullptr;
123 unsigned SlotSize = 0;
124 unsigned Log2SlotSize = 0;
125};
126
127} // end anonymous namespace
128char X86CallFrameOptimization::ID = 0;
129INITIALIZE_PASS(X86CallFrameOptimization, DEBUG_TYPE,
130 "X86 Call Frame Optimization", false, false)
131
132// This checks whether the transformation is legal.
133// Also returns false in cases where it's potentially legal, but
134// we don't even want to try.
135bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
136 if (NoX86CFOpt.getValue())
137 return false;
138
139 // We can't encode multiple DW_CFA_GNU_args_size or DW_CFA_def_cfa_offset
140 // in the compact unwind encoding that Darwin uses. So, bail if there
141 // is a danger of that being generated.
142 if (STI->isTargetDarwin() &&
143 (!MF.getLandingPads().empty() ||
144 (MF.getFunction().needsUnwindTableEntry() && !TFL->hasFP(MF))))
145 return false;
146
147 // It is not valid to change the stack pointer outside the prolog/epilog
148 // on 64-bit Windows.
149 if (STI->isTargetWin64())
150 return false;
151
152 // You would expect straight-line code between call-frame setup and
153 // call-frame destroy. You would be wrong. There are circumstances (e.g.
154 // CMOV_GR8 expansion of a select that feeds a function call!) where we can
155 // end up with the setup and the destroy in different basic blocks.
156 // This is bad, and breaks SP adjustment.
157 // So, check that all of the frames in the function are closed inside
158 // the same block, and, for good measure, that there are no nested frames.
159 //
160 // If any call allocates more argument stack memory than the stack
161 // probe size, don't do this optimization. Otherwise, this pass
162 // would need to synthesize additional stack probe calls to allocate
163 // memory for arguments.
164 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
165 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
166 bool EmitStackProbeCall = STI->getTargetLowering()->hasStackProbeSymbol(MF);
167 unsigned StackProbeSize = STI->getTargetLowering()->getStackProbeSize(MF);
168 for (MachineBasicBlock &BB : MF) {
169 bool InsideFrameSequence = false;
170 for (MachineInstr &MI : BB) {
171 if (MI.getOpcode() == FrameSetupOpcode) {
172 if (TII->getFrameSize(MI) >= StackProbeSize && EmitStackProbeCall)
173 return false;
174 if (InsideFrameSequence)
175 return false;
176 InsideFrameSequence = true;
177 } else if (MI.getOpcode() == FrameDestroyOpcode) {
178 if (!InsideFrameSequence)
179 return false;
180 InsideFrameSequence = false;
181 }
182 }
183
184 if (InsideFrameSequence)
185 return false;
186 }
187
188 return true;
189}
190
191// Check whether this transformation is profitable for a particular
192// function - in terms of code size.
193bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
194 ContextVector &CallSeqVector) {
195 // This transformation is always a win when we do not expect to have
196 // a reserved call frame. Under other circumstances, it may be either
197 // a win or a loss, and requires a heuristic.
198 bool CannotReserveFrame = MF.getFrameInfo().hasVarSizedObjects();
199 if (CannotReserveFrame)
200 return true;
201
202 Align StackAlign = TFL->getStackAlign();
203
204 int64_t Advantage = 0;
205 for (const auto &CC : CallSeqVector) {
206 // Call sites where no parameters are passed on the stack
207 // do not affect the cost, since there needs to be no
208 // stack adjustment.
209 if (CC.NoStackParams)
210 continue;
211
212 if (!CC.UsePush) {
213 // If we don't use pushes for a particular call site,
214 // we pay for not having a reserved call frame with an
215 // additional sub/add esp pair. The cost is ~3 bytes per instruction,
216 // depending on the size of the constant.
217 // TODO: Callee-pop functions should have a smaller penalty, because
218 // an add is needed even with a reserved call frame.
219 Advantage -= 6;
220 } else {
221 // We can use pushes. First, account for the fixed costs.
222 // We'll need a add after the call.
223 Advantage -= 3;
224 // If we have to realign the stack, we'll also need a sub before
225 if (!isAligned(StackAlign, CC.ExpectedDist))
226 Advantage -= 3;
227 // Now, for each push, we save ~3 bytes. For small constants, we actually,
228 // save more (up to 5 bytes), but 3 should be a good approximation.
229 Advantage += (CC.ExpectedDist >> Log2SlotSize) * 3;
230 }
231 }
232
233 return Advantage >= 0;
234}
235
236bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
237 STI = &MF.getSubtarget<X86Subtarget>();
238 TII = STI->getInstrInfo();
239 TFL = STI->getFrameLowering();
240 MRI = &MF.getRegInfo();
241
242 const X86RegisterInfo &RegInfo = *STI->getRegisterInfo();
243 SlotSize = RegInfo.getSlotSize();
244 assert(isPowerOf2_32(SlotSize) && "Expect power of 2 stack slot size");
245 Log2SlotSize = Log2_32(SlotSize);
246
247 if (skipFunction(MF.getFunction()) || !isLegal(MF))
248 return false;
249
250 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
251
252 bool Changed = false;
253
254 ContextVector CallSeqVector;
255
256 for (auto &MBB : MF)
257 for (auto &MI : MBB)
258 if (MI.getOpcode() == FrameSetupOpcode) {
259 CallContext Context;
260 collectCallInfo(MF, MBB, MI, Context);
261 CallSeqVector.push_back(Context);
262 }
263
264 if (!isProfitable(MF, CallSeqVector))
265 return false;
266
267 for (const auto &CC : CallSeqVector) {
268 if (CC.UsePush) {
269 adjustCallSequence(MF, CC);
270 Changed = true;
271 }
272 }
273
274 return Changed;
275}
276
277X86CallFrameOptimization::InstClassification
278X86CallFrameOptimization::classifyInstruction(
279 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
280 const X86RegisterInfo &RegInfo, const DenseSet<MCRegister> &UsedRegs) {
281 if (MI == MBB.end())
282 return Exit;
283
284 // The instructions we actually care about are movs onto the stack or special
285 // cases of constant-stores to stack
286 switch (MI->getOpcode()) {
287 case X86::AND16mi:
288 case X86::AND32mi:
289 case X86::AND64mi32: {
290 const MachineOperand &ImmOp = MI->getOperand(X86::AddrNumOperands);
291 return ImmOp.getImm() == 0 ? Convert : Exit;
292 }
293 case X86::OR16mi:
294 case X86::OR32mi:
295 case X86::OR64mi32: {
296 const MachineOperand &ImmOp = MI->getOperand(X86::AddrNumOperands);
297 return ImmOp.getImm() == -1 ? Convert : Exit;
298 }
299 case X86::MOV32mi:
300 case X86::MOV32mr:
301 case X86::MOV64mi32:
302 case X86::MOV64mr:
303 return Convert;
304 }
305
306 // Not all calling conventions have only stack MOVs between the stack
307 // adjust and the call.
308
309 // We want to tolerate other instructions, to cover more cases.
310 // In particular:
311 // a) PCrel calls, where we expect an additional COPY of the basereg.
312 // b) Passing frame-index addresses.
313 // c) Calling conventions that have inreg parameters. These generate
314 // both copies and movs into registers.
315 // To avoid creating lots of special cases, allow any instruction
316 // that does not write into memory, does not def or use the stack
317 // pointer, and does not def any register that was used by a preceding
318 // push.
319 // (Reading from memory is allowed, even if referenced through a
320 // frame index, since these will get adjusted properly in PEI)
321
322 // The reason for the last condition is that the pushes can't replace
323 // the movs in place, because the order must be reversed.
324 // So if we have a MOV32mr that uses EDX, then an instruction that defs
325 // EDX, and then the call, after the transformation the push will use
326 // the modified version of EDX, and not the original one.
327 // Since we are still in SSA form at this point, we only need to
328 // make sure we don't clobber any *physical* registers that were
329 // used by an earlier mov that will become a push.
330
331 if (MI->isCall() || MI->mayStore())
332 return Exit;
333
334 for (const MachineOperand &MO : MI->operands()) {
335 if (!MO.isReg())
336 continue;
337 Register Reg = MO.getReg();
338 if (!Reg.isPhysical())
339 continue;
340 if (RegInfo.regsOverlap(Reg, RegInfo.getStackRegister()))
341 return Exit;
342 if (MO.isDef()) {
343 for (MCRegister U : UsedRegs)
344 if (RegInfo.regsOverlap(Reg, U))
345 return Exit;
346 }
347 }
348
349 return Skip;
350}
351
352void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
353 MachineBasicBlock &MBB,
355 CallContext &Context) {
356 // Check that this particular call sequence is amenable to the
357 // transformation.
358 const X86RegisterInfo &RegInfo = *STI->getRegisterInfo();
359
360 // We expect to enter this at the beginning of a call sequence
361 assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
362 MachineBasicBlock::iterator FrameSetup = I++;
363 Context.FrameSetup = FrameSetup;
364
365 // How much do we adjust the stack? This puts an upper bound on
366 // the number of parameters actually passed on it.
367 unsigned int MaxAdjust = TII->getFrameSize(*FrameSetup) >> Log2SlotSize;
368
369 // A zero adjustment means no stack parameters
370 if (!MaxAdjust) {
371 Context.NoStackParams = true;
372 return;
373 }
374
375 // Skip over DEBUG_VALUE.
376 // For globals in PIC mode, we can have some LEAs here. Skip them as well.
377 // TODO: Extend this to something that covers more cases.
378 while (I->getOpcode() == X86::LEA32r || I->isDebugInstr())
379 ++I;
380
382 auto StackPtrCopyInst = MBB.end();
383 // SelectionDAG (but not FastISel) inserts a copy of ESP into a virtual
384 // register. If it's there, use that virtual register as stack pointer
385 // instead. Also, we need to locate this instruction so that we can later
386 // safely ignore it while doing the conservative processing of the call chain.
387 // The COPY can be located anywhere between the call-frame setup
388 // instruction and its first use. We use the call instruction as a boundary
389 // because it is usually cheaper to check if an instruction is a call than
390 // checking if an instruction uses a register.
391 for (auto J = I; !J->isCall(); ++J)
392 if (J->isCopy() && J->getOperand(0).isReg() && J->getOperand(1).isReg() &&
393 J->getOperand(1).getReg() == StackPtr) {
394 StackPtrCopyInst = J;
395 Context.SPCopy = &*J++;
396 StackPtr = Context.SPCopy->getOperand(0).getReg();
397 break;
398 }
399
400 // Scan the call setup sequence for the pattern we're looking for.
401 // We only handle a simple case - a sequence of store instructions that
402 // push a sequence of stack-slot-aligned values onto the stack, with
403 // no gaps between them.
404 if (MaxAdjust > 4)
405 Context.ArgStoreVector.resize(MaxAdjust, nullptr);
406
407 DenseSet<MCRegister> UsedRegs;
408
409 for (InstClassification Classification = Skip; Classification != Exit; ++I) {
410 // If this is the COPY of the stack pointer, it's ok to ignore.
411 if (I == StackPtrCopyInst)
412 continue;
413 Classification = classifyInstruction(MBB, I, RegInfo, UsedRegs);
414 if (Classification != Convert)
415 continue;
416 // We know the instruction has a supported store opcode.
417 // We only want movs of the form:
418 // mov imm/reg, k(%StackPtr)
419 // If we run into something else, bail.
420 // Note that AddrBaseReg may, counter to its name, not be a register,
421 // but rather a frame index.
422 // TODO: Support the fi case. This should probably work now that we
423 // have the infrastructure to track the stack pointer within a call
424 // sequence.
425 if (!I->getOperand(X86::AddrBaseReg).isReg() ||
426 (I->getOperand(X86::AddrBaseReg).getReg() != StackPtr) ||
427 !I->getOperand(X86::AddrScaleAmt).isImm() ||
428 (I->getOperand(X86::AddrScaleAmt).getImm() != 1) ||
429 (I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
430 (I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
431 !I->getOperand(X86::AddrDisp).isImm())
432 return;
433
434 int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
435 assert(StackDisp >= 0 &&
436 "Negative stack displacement when passing parameters");
437
438 // We really don't want to consider the unaligned case.
439 if (StackDisp & (SlotSize - 1))
440 return;
441 StackDisp >>= Log2SlotSize;
442
443 assert((size_t)StackDisp < Context.ArgStoreVector.size() &&
444 "Function call has more parameters than the stack is adjusted for.");
445
446 // If the same stack slot is being filled twice, something's fishy.
447 if (Context.ArgStoreVector[StackDisp] != nullptr)
448 return;
449 Context.ArgStoreVector[StackDisp] = &*I;
450
451 for (const MachineOperand &MO : I->uses()) {
452 if (!MO.isReg())
453 continue;
454 Register Reg = MO.getReg();
455 if (Reg.isPhysical())
456 UsedRegs.insert(Reg.asMCReg());
457 }
458 }
459
460 --I;
461
462 // We now expect the end of the sequence. If we stopped early,
463 // or reached the end of the block without finding a call, bail.
464 if (I == MBB.end() || !I->isCall())
465 return;
466
467 Context.Call = &*I;
468 if ((++I)->getOpcode() != TII->getCallFrameDestroyOpcode())
469 return;
470
471 // Now, go through the vector, and see that we don't have any gaps,
472 // but only a series of storing instructions.
473 auto MMI = Context.ArgStoreVector.begin(), MME = Context.ArgStoreVector.end();
474 for (; MMI != MME; ++MMI, Context.ExpectedDist += SlotSize)
475 if (*MMI == nullptr)
476 break;
477
478 // If the call had no parameters, do nothing
479 if (MMI == Context.ArgStoreVector.begin())
480 return;
481
482 // We are either at the last parameter, or a gap.
483 // Make sure it's not a gap
484 for (; MMI != MME; ++MMI)
485 if (*MMI != nullptr)
486 return;
487
488 Context.UsePush = true;
489}
490
491void X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
492 const CallContext &Context) {
493 // Ok, we can in fact do the transformation for this call.
494 // Do not remove the FrameSetup instruction, but adjust the parameters.
495 // PEI will end up finalizing the handling of this.
496 MachineBasicBlock::iterator FrameSetup = Context.FrameSetup;
497 MachineBasicBlock &MBB = *(FrameSetup->getParent());
498 TII->setFrameAdjustment(*FrameSetup, Context.ExpectedDist);
499
500 const DebugLoc &DL = FrameSetup->getDebugLoc();
501 bool Is64Bit = STI->is64Bit();
502 // Now, iterate through the vector in reverse order, and replace the store to
503 // stack with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
504 // replace uses.
505 for (int Idx = (Context.ExpectedDist >> Log2SlotSize) - 1; Idx >= 0; --Idx) {
506 MachineBasicBlock::iterator Store = *Context.ArgStoreVector[Idx];
507 const MachineOperand &PushOp = Store->getOperand(X86::AddrNumOperands);
508 MachineBasicBlock::iterator Push = nullptr;
509 unsigned PushOpcode;
510 switch (Store->getOpcode()) {
511 default:
512 llvm_unreachable("Unexpected Opcode!");
513 case X86::AND16mi:
514 case X86::AND32mi:
515 case X86::AND64mi32:
516 case X86::OR16mi:
517 case X86::OR32mi:
518 case X86::OR64mi32:
519 case X86::MOV32mi:
520 case X86::MOV64mi32:
521 PushOpcode = Is64Bit ? X86::PUSH64i32 : X86::PUSH32i;
522 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).add(PushOp);
523 Push->cloneMemRefs(MF, *Store);
524 break;
525 case X86::MOV32mr:
526 case X86::MOV64mr: {
527 Register Reg = PushOp.getReg();
528
529 // If storing a 32-bit vreg on 64-bit targets, extend to a 64-bit vreg
530 // in preparation for the PUSH64. The upper 32 bits can be undef.
531 if (Is64Bit && Store->getOpcode() == X86::MOV32mr) {
532 Register UndefReg = MRI->createVirtualRegister(&X86::GR64RegClass);
533 Reg = MRI->createVirtualRegister(&X86::GR64RegClass);
534 BuildMI(MBB, Context.Call, DL, TII->get(X86::IMPLICIT_DEF), UndefReg);
535 BuildMI(MBB, Context.Call, DL, TII->get(X86::INSERT_SUBREG), Reg)
536 .addReg(UndefReg)
537 .add(PushOp)
538 .addImm(X86::sub_32bit);
539 }
540
541 // If PUSHrmm is not slow on this target, try to fold the source of the
542 // push into the instruction.
543 bool SlowPUSHrmm = STI->slowTwoMemOps();
544
545 // Check that this is legal to fold. Right now, we're extremely
546 // conservative about that.
547 MachineInstr *DefMov = nullptr;
548 if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
549 PushOpcode = Is64Bit ? X86::PUSH64rmm : X86::PUSH32rmm;
550 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode));
551
552 unsigned NumOps = DefMov->getDesc().getNumOperands();
553 for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
554 Push->addOperand(DefMov->getOperand(i));
555 Push->cloneMergedMemRefs(MF, {DefMov, &*Store});
556 DefMov->eraseFromParent();
557 } else {
558 PushOpcode = Is64Bit ? X86::PUSH64r : X86::PUSH32r;
559 Push = BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode))
560 .addReg(Reg)
561 .getInstr();
562 Push->cloneMemRefs(MF, *Store);
563 }
564 break;
565 }
566 }
567
568 // For debugging, when using SP-based CFA, we need to adjust the CFA
569 // offset after each push.
570 // TODO: This is needed only if we require precise CFA.
571 if (!TFL->hasFP(MF))
572 TFL->BuildCFI(
573 MBB, std::next(Push), DL,
574 MCCFIInstruction::createAdjustCfaOffset(nullptr, SlotSize));
575
576 MBB.erase(Store);
577 }
578
579 // The stack-pointer copy is no longer used in the call sequences.
580 // There should not be any other users, but we can't commit to that, so:
581 if (Context.SPCopy && MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
582 Context.SPCopy->eraseFromParent();
583
584 // Once we've done this, we need to make sure PEI doesn't assume a reserved
585 // frame.
586 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
587 FuncInfo->setHasPushSequences(true);
588}
589
590MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
592 // Do an extremely restricted form of load folding.
593 // ISel will often create patterns like:
594 // movl 4(%edi), %eax
595 // movl 8(%edi), %ecx
596 // movl 12(%edi), %edx
597 // movl %edx, 8(%esp)
598 // movl %ecx, 4(%esp)
599 // movl %eax, (%esp)
600 // call
601 // Get rid of those with prejudice.
602 if (!Reg.isVirtual())
603 return nullptr;
604
605 // Make sure this is the only use of Reg.
606 if (!MRI->hasOneNonDBGUse(Reg))
607 return nullptr;
608
609 MachineInstr &DefMI = *MRI->getVRegDef(Reg);
610
611 // Make sure the def is a MOV from memory.
612 // If the def is in another block, give up.
613 if ((DefMI.getOpcode() != X86::MOV32rm &&
614 DefMI.getOpcode() != X86::MOV64rm) ||
615 DefMI.getParent() != FrameSetup->getParent())
616 return nullptr;
617
618 // Make sure we don't have any instructions between DefMI and the
619 // push that make folding the load illegal.
620 for (MachineBasicBlock::iterator I = DefMI; I != FrameSetup; ++I)
621 if (I->isLoadFoldBarrier())
622 return nullptr;
623
624 return &DefMI;
625}
626
628 return new X86CallFrameOptimization();
629}
unsigned const MachineRegisterInfo * MRI
for(const MachineOperand &MO :llvm::drop_begin(OldMI.operands(), Desc.getNumOperands()))
MachineInstrBuilder MachineInstrBuilder & DefMI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file defines the DenseSet and SmallDenseSet classes.
#define DEBUG_TYPE
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
const size_t AbstractManglingParser< Derived, Alloc >::NumOps
#define I(x, y, z)
Definition MD5.cpp:58
Register Reg
Promote Memory to Register
Definition Mem2Reg.cpp:110
if(PassOpts->AAPipeline)
#define INITIALIZE_PASS(passName, arg, name, cfg, analysis)
Definition PassSupport.h:56
This file defines the SmallVector class.
static bool isProfitable(const StableFunctionMap::StableFunctionEntries &SFS)
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition VPlanSLP.cpp:247
static cl::opt< bool > NoX86CFOpt("no-x86-call-frame-opt", cl::desc("Avoid optimizing x86 call frames for size"), cl::init(false), cl::Hidden)
FunctionPass class - This class is used to implement most global optimizations.
Definition Pass.h:314
static MCCFIInstruction createAdjustCfaOffset(MCSymbol *L, int64_t Adjustment, SMLoc Loc={})
.cfi_adjust_cfa_offset Same as .cfi_def_cfa_offset, but Offset is a relative value that is added/subt...
Definition MCDwarf.h:608
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
LLVM_ABI instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
MachineInstrBundleIterator< MachineInstr > iterator
bool hasVarSizedObjects() const
This method may be called any time after instruction selection is complete to determine if the stack ...
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
Representation of each machine instruction.
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
const MachineOperand & getOperand(unsigned i) const
int64_t getImm() const
Register getReg() const
getReg - Returns the register number.
MCRegister asMCReg() const
Utility to check-convert this value to a MCRegister.
Definition Register.h:102
constexpr bool isVirtual() const
Return true if the specified register number is in the virtual register namespace.
Definition Register.h:74
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition Register.h:78
bool hasFP(const MachineFunction &MF) const
hasFP - Return true if the specified function should have a dedicated frame pointer register.
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
void BuildCFI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, const MCCFIInstruction &CFIInst, MachineInstr::MIFlag Flag=MachineInstr::NoFlags) const
Wraps up getting a CFI index and building a MachineInstr for it.
Register getStackRegister() const
unsigned getSlotSize() const
const X86InstrInfo * getInstrInfo() const override
const X86RegisterInfo * getRegisterInfo() const override
const X86FrameLowering * getFrameLowering() const override
std::pair< iterator, bool > insert(const ValueT &V)
Definition DenseSet.h:194
Changed
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ AddrNumOperands
Definition X86BaseInfo.h:36
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
Definition Alignment.h:145
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition MathExtras.h:336
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition MathExtras.h:288
FunctionPass * createX86CallFrameOptimization()
Return a pass that optimizes the code-size of x86 call sequences.