28#define DEBUG_TYPE "call-lowering"
32void CallLowering::anchor() {}
39 if (AttrFn(Attribute::SExt))
41 if (AttrFn(Attribute::ZExt))
43 if (AttrFn(Attribute::InReg))
45 if (AttrFn(Attribute::StructRet))
47 if (AttrFn(Attribute::Nest))
49 if (AttrFn(Attribute::ByVal))
51 if (AttrFn(Attribute::ByRef))
53 if (AttrFn(Attribute::Preallocated))
54 Flags.setPreallocated();
55 if (AttrFn(Attribute::InAlloca))
57 if (AttrFn(Attribute::Returned))
59 if (AttrFn(Attribute::SwiftSelf))
61 if (AttrFn(Attribute::SwiftAsync))
62 Flags.setSwiftAsync();
63 if (AttrFn(Attribute::SwiftError))
64 Flags.setSwiftError();
68 unsigned ArgIdx)
const {
71 return Call.paramHasAttr(ArgIdx, Attr);
80 return Call.hasRetAttr(Attr);
86 const AttributeList &Attrs,
87 unsigned OpIdx)
const {
89 return Attrs.hasAttributeAtIndex(
OpIdx, Attr);
97 std::optional<PtrAuthInfo> PAI,
99 std::function<
Register()> GetCalleeReg)
const {
107 .getFnAttribute(
"disable-tail-calls")
108 .getValueAsString() !=
"true");
116 Info.CanLowerReturn =
canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
120 if (!Info.CanLowerReturn) {
126 CanBeTailCalled =
false;
134 for (
const auto &Arg : CB.
args()) {
136 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex,
DL, CB);
137 if (i >= NumFixedArgs)
138 OrigArg.
Flags[0].setVarArg();
143 CanBeTailCalled =
false;
145 Info.OrigArgs.push_back(OrigArg);
161 if (
F->hasFnAttribute(Attribute::NonLazyBind)) {
177 Align ReturnHintAlign;
181 if (!Info.OrigRet.Ty->isVoidTy()) {
182 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex,
DL, CB);
185 if (*Alignment >
Align(1)) {
186 ReturnHintAlignReg =
MRI.cloneVirtualRegister(ResRegs[0]);
187 Info.OrigRet.Regs[0] = ReturnHintAlignReg;
188 ReturnHintAlign = *Alignment;
196 assert(Info.CFIType->getType()->isIntegerTy(32) &&
"Invalid CFI type");
200 Info.KnownCallees = CB.
getMetadata(LLVMContext::MD_callees);
201 Info.CallConv = CallConv;
202 Info.SwiftErrorVReg = SwiftErrorVReg;
204 Info.ConvergenceCtrlToken = ConvergenceCtrlToken;
206 Info.IsTailCall = CanBeTailCalled;
207 Info.IsVarArg = IsVarArg;
211 if (ReturnHintAlignReg && !Info.LoweredTailCall) {
219template <
typename FuncInfoTy>
222 const FuncInfoTy &FuncInfo)
const {
223 auto &Flags = Arg.
Flags[0];
224 const AttributeList &Attrs = FuncInfo.getAttributes();
233 Align MemAlign =
DL.getABITypeAlign(Arg.
Ty);
234 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
237 unsigned ParamIdx =
OpIdx - AttributeList::FirstArgIndex;
239 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
241 ElementTy = FuncInfo.getParamByRefType(ParamIdx);
243 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
245 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
247 assert(ElementTy &&
"Must have byval, inalloca or preallocated type");
249 uint64_t MemSize =
DL.getTypeAllocSize(ElementTy);
251 Flags.setByRefSize(MemSize);
253 Flags.setByValSize(MemSize);
257 if (
auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
258 MemAlign = *ParamAlign;
259 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
260 MemAlign = *ParamAlign;
263 }
else if (
OpIdx >= AttributeList::FirstArgIndex) {
264 if (
auto ParamAlign =
265 FuncInfo.getParamStackAlign(
OpIdx - AttributeList::FirstArgIndex))
266 MemAlign = *ParamAlign;
268 Flags.setMemAlign(MemAlign);
269 Flags.setOrigAlign(
DL.getABITypeAlign(Arg.
Ty));
273 if (Flags.isSwiftSelf())
274 Flags.setReturned(
false);
297 if (SplitVTs.
size() == 0)
300 if (SplitVTs.
size() == 1) {
310 assert(OrigArg.
Regs.size() == SplitVTs.
size() &&
"Regs / types mismatch");
312 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
313 OrigArg.
Ty, CallConv,
false,
DL);
314 for (
unsigned i = 0, e = SplitVTs.
size(); i < e; ++i) {
315 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
319 SplitArgs.
back().Flags[0].setInConsecutiveRegs();
322 SplitArgs.
back().Flags[0].setInConsecutiveRegsLast();
330 LLT LLTy =
MRI.getType(DstRegs[0]);
331 LLT PartLLT =
MRI.getType(SrcRegs[0]);
338 return B.buildConcatVectors(DstRegs[0], SrcRegs);
344 if (LCMTy != PartLLT) {
346 return B.buildDeleteTrailingVectorElements(
347 DstRegs[0],
B.buildMergeLikeInstr(LCMTy, SrcRegs));
352 UnmergeSrcReg = SrcRegs[0];
361 for (
int I = DstRegs.
size();
I != NumDst; ++
I)
362 PadDstRegs[
I] =
MRI.createGenericVirtualRegister(LLTy);
364 if (PadDstRegs.
size() == 1)
365 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
366 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
378 if (PartLLT == LLTy) {
381 assert(OrigRegs[0] == Regs[0]);
387 B.buildBitcast(OrigRegs[0], Regs[0]);
397 OrigRegs.
size() == 1 && Regs.
size() == 1) {
400 LLT LocTy =
MRI.getType(SrcReg);
402 if (Flags.isSExt()) {
405 }
else if (Flags.isZExt()) {
411 LLT OrigTy =
MRI.getType(OrigRegs[0]);
414 B.buildIntToPtr(OrigRegs[0],
B.buildTrunc(IntPtrTy, SrcReg));
418 B.buildTrunc(OrigRegs[0], SrcReg);
424 LLT OrigTy =
MRI.getType(OrigRegs[0]);
428 B.buildMergeValues(OrigRegs[0], Regs);
430 auto Widened =
B.buildMergeLikeInstr(
LLT::scalar(SrcSize), Regs);
431 B.buildTrunc(OrigRegs[0], Widened);
450 CastRegs[0] =
B.buildBitcast(NewTy, Regs[0]).getReg(0);
464 CastRegs[
I++] =
B.buildBitcast(GCDTy, SrcReg).getReg(0);
477 LLT RealDstEltTy =
MRI.getType(OrigRegs[0]).getElementType();
481 if (DstEltTy == PartLLT) {
486 MRI.setType(
Reg, RealDstEltTy);
489 B.buildBuildVector(OrigRegs[0], Regs);
500 B.buildMergeLikeInstr(ExtendedPartTy, Regs.
take_front(PartsPerElt));
504 MRI.setType(
Merge.getReg(0), RealDstEltTy);
509 B.buildBuildVector(OrigRegs[0], EltMerges);
517 if (NumElts == Regs.
size())
518 BuildVec =
B.buildBuildVector(BVType, Regs).getReg(0);
523 LLT SrcEltTy =
MRI.getType(Regs[0]);
525 LLT OriginalEltTy =
MRI.getType(OrigRegs[0]).getElementType();
536 auto Unmerge =
B.buildUnmerge(OriginalEltTy, R);
537 for (
unsigned K = 0; K < EltPerReg; ++K)
538 BVRegs.
push_back(
B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0));
543 if (BVRegs.
size() > NumElts) {
544 assert((BVRegs.
size() - NumElts) < EltPerReg);
547 BuildVec =
B.buildBuildVector(BVType, BVRegs).getReg(0);
549 B.buildTrunc(OrigRegs[0], BuildVec);
560 unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
562 assert(SrcTy != PartTy &&
"identical part types shouldn't reach here");
566 if (PartTy.
isVector() == SrcTy.isVector() &&
569 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
573 if (SrcTy.isVector() && !PartTy.
isVector() &&
576 auto UnmergeToEltTy =
B.buildUnmerge(SrcTy.getElementType(), SrcReg);
577 for (
int i = 0, e = DstRegs.
size(); i != e; ++i)
578 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
582 if (SrcTy.isVector() && PartTy.
isVector() &&
588 B.buildPadVectorWithUndefElements(DstReg, SrcReg);
593 if (GCDTy == PartTy) {
595 B.buildUnmerge(DstRegs, SrcReg);
599 if (SrcTy.isVector() && !PartTy.
isVector() &&
604 SrcTy.getNumElements()));
605 auto Ext =
B.buildAnyExt(ExtTy, SrcReg);
606 B.buildUnmerge(DstRegs, Ext);
611 LLT DstTy =
MRI.getType(DstRegs[0]);
614 if (PartTy.
isVector() && LCMTy == PartTy) {
616 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
621 const unsigned SrcSize = SrcTy.getSizeInBits();
626 if (!LCMTy.
isVector() && CoveringSize != SrcSize) {
628 if (SrcTy.isScalar() && DstTy.
isScalar()) {
629 CoveringSize =
alignTo(SrcSize, DstSize);
631 UnmergeSrc =
B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).
getReg(0);
635 Register Undef =
B.buildUndef(SrcTy).getReg(0);
637 for (
unsigned Size = SrcSize;
Size != CoveringSize;
Size += SrcSize)
639 UnmergeSrc =
B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
643 if (LCMTy.
isVector() && CoveringSize != SrcSize)
644 UnmergeSrc =
B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
646 B.buildUnmerge(DstRegs, UnmergeSrc);
658 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
F.getContext());
668 return TargetOpcode::G_SEXT;
670 return TargetOpcode::G_ZEXT;
671 return TargetOpcode::G_ANYEXT;
680 unsigned NumArgs = Args.size();
681 for (
unsigned i = 0; i != NumArgs; ++i) {
684 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
689 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
694 Args[i].Flags[0], CCInfo))
711 Args[i].Flags.clear();
713 for (
unsigned Part = 0; Part < NumParts; ++Part) {
718 Flags.setOrigAlign(
Align(1));
719 if (Part == NumParts - 1)
723 Args[i].Flags.push_back(Flags);
725 Args[i].Flags[Part], CCInfo)) {
746 const unsigned NumArgs = Args.size();
760 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
762 for (
unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
763 assert(j < ArgLocs.
size() &&
"Skipped too many arg locs");
765 assert(VA.
getValNo() == i &&
"Location doesn't correspond to current arg");
768 std::function<void()> Thunk;
770 Args[i],
ArrayRef(ArgLocs).slice(j), &Thunk);
772 DelayedOutgoingRegAssignments.emplace_back(Thunk);
775 j += (NumArgRegs - 1);
784 const LLT LocTy(LocVT);
785 const LLT ValTy(ValVT);
790 AllocaAddressSpace,
DL.getPointerSizeInBits(AllocaAddressSpace));
795 const unsigned NumParts = Args[i].Flags.size();
798 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
800 if (NumParts != 1 || NewLLT != OrigTy) {
803 Args[i].Regs.resize(NumParts);
809 Args[i].Regs[0] =
MRI.createGenericVirtualRegister(
PointerTy);
814 for (
unsigned Part = 0; Part < NumParts; ++Part)
815 Args[i].Regs[Part] =
MRI.createGenericVirtualRegister(NewLLT);
819 assert((j + (NumParts - 1)) < ArgLocs.
size() &&
820 "Too many regs for number of args");
825 assert(Args[i].OrigRegs.size() == 1);
830 bool IndirectParameterPassingHandled =
false;
831 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT,
DL);
832 for (
unsigned Part = 0; Part < NumParts; ++Part) {
834 "Only the first parameter should be processed when "
835 "handling indirect passing!");
836 Register ArgReg = Args[i].Regs[Part];
838 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
856 Align AlignmentForStored =
DL.getPrefTypeAlign(Args[i].Ty);
861 AlignmentForStored,
false);
867 MIRBuilder.
buildStore(Args[i].OrigRegs[Part], PointerToStackReg,
871 ArgReg = PointerToStackReg;
872 IndirectParameterPassingHandled =
true;
875 if (VA.
isMemLoc() && !Flags.isByVal()) {
899 }
else if (VA.
isMemLoc() && Flags.isByVal()) {
900 assert(Args[i].Regs.size() == 1 &&
"didn't expect split byval pointer");
907 MIRBuilder.
buildCopy(Args[i].Regs[0], StackAddr);
912 uint64_t MemSize = Flags.getByValSize();
920 if (!Args[i].OrigValue) {
923 const LLT PtrTy =
MRI.getType(StackAddr);
927 Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
930 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
934 DstMPO, DstAlign, SrcMPO, SrcAlign,
937 }
else if (i == 0 && !ThisReturnRegs.
empty() &&
944 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
954 Align Alignment =
DL.getABITypeAlign(Args[i].Ty);
961 MIRBuilder.
buildLoad(Args[i].OrigRegs[0], Args[i].Regs[0], MPO,
964 IndirectParameterPassingHandled =
true;
967 if (IndirectParameterPassingHandled)
975 !IndirectParameterPassingHandled) {
979 LocTy, Args[i].Flags[0]);
984 for (
auto &Fn : DelayedOutgoingRegAssignments)
1003 unsigned NumValues = SplitVTs.
size();
1004 Align BaseAlign =
DL.getPrefTypeAlign(RetTy);
1011 for (
unsigned I = 0;
I < NumValues; ++
I) {
1016 MRI.getType(VRegs[
I]),
1035 unsigned NumValues = SplitVTs.
size();
1036 Align BaseAlign =
DL.getPrefTypeAlign(RetTy);
1037 unsigned AS =
DL.getAllocaAddrSpace();
1042 for (
unsigned I = 0;
I < NumValues; ++
I) {
1047 MRI.getType(VRegs[
I]),
1056 unsigned AS =
DL.getAllocaAddrSpace();
1057 DemoteReg =
MRI.createGenericVirtualRegister(
1071 DemoteArg.
Flags[0].setSRet();
1080 unsigned AS =
DL.getAllocaAddrSpace();
1084 DL.getTypeAllocSize(RetTy),
DL.getPrefTypeAlign(RetTy),
false);
1090 DemoteArg.
Flags[0].setSRet();
1092 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
1093 Info.DemoteStackIndex = FI;
1094 Info.DemoteRegister = DemoteReg;
1100 for (
unsigned I = 0, E = Outs.
size();
I < E; ++
I) {
1109 AttributeList Attrs,
1119 for (
EVT VT : SplitVTs) {
1121 TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
1122 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
1125 for (
unsigned I = 0;
I < NumParts; ++
I) {
1133 Type *ReturnType =
F.getReturnType();
1137 getReturnInfo(CallConv, ReturnType,
F.getAttributes(), SplitArgs,
1146 for (
unsigned i = 0; i < OutLocs.
size(); ++i) {
1147 const auto &ArgLoc = OutLocs[i];
1149 if (!ArgLoc.isRegLoc())
1160 <<
"... Call has an argument passed in a callee-saved register.\n");
1163 const ArgInfo &OutInfo = OutArgs[i];
1165 if (OutInfo.
Regs.size() > 1) {
1167 dbgs() <<
"... Cannot handle arguments in multiple registers.\n");
1175 if (!RegDef || RegDef->
getOpcode() != TargetOpcode::COPY) {
1178 <<
"... Parameter was not copied into a VReg, cannot tail call.\n");
1184 if (CopyRHS != PhysReg) {
1185 LLVM_DEBUG(
dbgs() <<
"... Callee-saved register was not copied into "
1186 "VReg, cannot tail call.\n");
1203 if (CallerCC == CalleeCC)
1207 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1,
F.getContext());
1212 CCState CCInfo2(CallerCC,
F.isVarArg(), MF, ArgLocs2,
F.getContext());
1218 if (ArgLocs1.
size() != ArgLocs2.
size())
1222 for (
unsigned i = 0, e = ArgLocs1.
size(); i < e; ++i) {
1251 if (ValVT != MVT::iPTR) {
1256 if (Flags.isPointer()) {
1258 ValTy.getScalarSizeInBits());
1260 return LLT::vector(ValTy.getElementCount(), PtrTy);
1267 unsigned AddrSpace = Flags.getPointerAddrSpace();
1287 const LLT PtrTy =
MRI.getType(DstPtr);
1290 auto SizeConst =
MIRBuilder.buildConstant(SizeTy, MemSize);
1291 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1296 unsigned MaxSizeBits) {
1304 if (MaxSizeBits <= ValTy.getSizeInBits())
1309 const LLT ValRegTy =
MRI.getType(ValReg);
1314 ValReg =
MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1326 auto MIB =
MIRBuilder.buildAnyExt(LocTy, ValReg);
1327 return MIB.getReg(0);
1330 Register NewReg =
MRI.createGenericVirtualRegister(LocTy);
1335 Register NewReg =
MRI.createGenericVirtualRegister(LocTy);
1343void CallLowering::ValueAssigner::anchor() {}
1350 .buildAssertZExt(
MRI.cloneVirtualRegister(SrcReg), SrcReg,
1356 .buildAssertSExt(
MRI.cloneVirtualRegister(SrcReg), SrcReg,
1379 SrcTy = SrcTy.getScalarType();
1382 return (SrcTy.isPointer() && DstTy.
isScalar()) ||
1383 (DstTy.
isPointer() && SrcTy.isScalar());
1389 const LLT LocTy(LocVT);
1390 const LLT RegTy =
MRI.getType(ValVReg);
1397 auto Copy =
MIRBuilder.buildCopy(LocTy, PhysReg);
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static void addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, const std::function< bool(Attribute::AttrKind)> &AttrFn)
Helper function which updates Flags when AttrFn returns true.
static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef< Register > DstRegs, Register SrcReg, LLT SrcTy, LLT PartTy, unsigned ExtendOp=TargetOpcode::G_ANYEXT)
Create a sequence of instructions to expand the value in SrcReg (of type SrcTy) to the types in DstRe...
static MachineInstrBuilder mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef< Register > DstRegs, ArrayRef< Register > SrcRegs)
Pack values SrcRegs to cover the vector type result DstRegs.
static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef< Register > OrigRegs, ArrayRef< Register > Regs, LLT LLTy, LLT PartLLT, const ISD::ArgFlagsTy Flags)
Create a sequence of instructions to combine pieces split into register typed values to the original ...
static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy)
Check if we can use a basic COPY instruction between the two types.
static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags)
This file describes how to lower LLVM calls to machine code calls.
Module.h This file contains the declarations for the Module class.
This file declares the MachineIRBuilder class.
Promote Memory to Register
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
MachineInstr unsigned OpIdx
This file describes how to lower LLVM code to machine code.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
ArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
const T & front() const
front - Get the first element.
size_t size() const
size - Get the array size.
bool empty() const
empty - Check if the array is empty.
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
CCState - This class holds information needed while lowering arguments and return values.
CallingConv::ID getCallingConv() const
LLVMContext & getContext() const
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
LocInfo getLocInfo() const
int64_t getLocMemOffset() const
unsigned getValNo() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
MaybeAlign getRetAlign() const
Extract the alignment of the return value.
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
CallingConv::ID getCallingConv() const
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
Value * getCalledOperand() const
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
void insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, const CallBase &CB, CallLoweringInfo &Info) const
For the call-base described by CB, insert the hidden sret ArgInfo to the OrigArgs field of Info.
void insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, ArrayRef< Register > VRegs, Register DemoteReg, int FI) const
Load the returned value from the stack into virtual registers in VRegs.
bool checkReturnTypeForCallConv(MachineFunction &MF) const
Toplevel function to check the return type based on the target calling convention.
bool handleAssignments(ValueHandler &Handler, SmallVectorImpl< ArgInfo > &Args, CCState &CCState, SmallVectorImpl< CCValAssign > &ArgLocs, MachineIRBuilder &MIRBuilder, ArrayRef< Register > ThisReturnRegs={}) const
Use Handler to insert code to handle the argument/return values represented by Args.
bool resultsCompatible(CallLoweringInfo &Info, MachineFunction &MF, SmallVectorImpl< ArgInfo > &InArgs, ValueAssigner &CalleeAssigner, ValueAssigner &CallerAssigner) const
void splitToValueTypes(const ArgInfo &OrigArgInfo, SmallVectorImpl< ArgInfo > &SplitArgs, const DataLayout &DL, CallingConv::ID CallConv, SmallVectorImpl< uint64_t > *Offsets=nullptr) const
Break OrigArgInfo into one or more pieces the calling convention can process, returned in SplitArgs.
virtual bool canLowerReturn(MachineFunction &MF, CallingConv::ID CallConv, SmallVectorImpl< BaseArgInfo > &Outs, bool IsVarArg) const
This hook must be implemented to check whether the return values described by Outs can fit into the r...
virtual bool isTypeIsValidForThisReturn(EVT Ty) const
For targets which support the "returned" parameter attribute, returns true if the given type is a val...
void insertSRetIncomingArgument(const Function &F, SmallVectorImpl< ArgInfo > &SplitArgs, Register &DemoteReg, MachineRegisterInfo &MRI, const DataLayout &DL) const
Insert the hidden sret ArgInfo to the beginning of SplitArgs.
ISD::ArgFlagsTy getAttributesForArgIdx(const CallBase &Call, unsigned ArgIdx) const
bool determineAndHandleAssignments(ValueHandler &Handler, ValueAssigner &Assigner, SmallVectorImpl< ArgInfo > &Args, MachineIRBuilder &MIRBuilder, CallingConv::ID CallConv, bool IsVarArg, ArrayRef< Register > ThisReturnRegs={}) const
Invoke ValueAssigner::assignArg on each of the given Args and then use Handler to move them to the as...
void insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, ArrayRef< Register > VRegs, Register DemoteReg) const
Store the return value given by VRegs into stack starting at the offset specified in DemoteReg.
void addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, const AttributeList &Attrs, unsigned OpIdx) const
Adds flags to Flags based off of the attributes in Attrs.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< ArgInfo > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
void getReturnInfo(CallingConv::ID CallConv, Type *RetTy, AttributeList Attrs, SmallVectorImpl< BaseArgInfo > &Outs, const DataLayout &DL) const
Get the type and the ArgFlags for the split components of RetTy as returned by ComputeValueVTs.
bool determineAssignments(ValueAssigner &Assigner, SmallVectorImpl< ArgInfo > &Args, CCState &CCInfo) const
Analyze the argument list in Args, using Assigner to populate CCInfo.
bool checkReturn(CCState &CCInfo, SmallVectorImpl< BaseArgInfo > &Outs, CCAssignFn *Fn) const
const TargetLowering * getTLI() const
Getter for generic TargetLowering class.
virtual bool lowerCall(MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info) const
This hook must be implemented to lower the given call instruction, including argument and return valu...
void setArgFlags(ArgInfo &Arg, unsigned OpIdx, const DataLayout &DL, const FuncInfoTy &FuncInfo) const
ISD::ArgFlagsTy getAttributesForReturn(const CallBase &Call) const
A parsed version of the target data layout string in and methods for querying it.
unsigned getAllocaAddrSpace() const
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
constexpr unsigned getScalarSizeInBits() const
constexpr bool isScalar() const
constexpr LLT changeElementType(LLT NewEltTy) const
If this type is a vector, return a vector with the same number of elements but the new element type.
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr bool isPointer() const
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
constexpr ElementCount getElementCount() const
constexpr unsigned getAddressSpace() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
constexpr LLT changeElementCount(ElementCount EC) const
Return a vector or scalar with the same element type and the new element count.
constexpr LLT getScalarType() const
constexpr TypeSize getSizeInBytes() const
Returns the total size of the type in bytes, i.e.
This is an important class for using LLVM in a threaded context.
Wrapper class representing physical registers. Should be passed by value.
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
static LLVM_ABI MVT getVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Helper class to build MachineInstr.
MachineInstrBuilder buildGlobalValue(const DstOp &Res, const GlobalValue *GV)
Build and insert Res = G_GLOBAL_VALUE GV.
std::optional< MachineInstrBuilder > materializeObjectPtrOffset(Register &Res, Register Op0, const LLT ValueTy, uint64_t Value)
Materialize and insert an instruction with appropriate flags for addressing some offset of an object,...
MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert Res = G_LOAD Addr, MMO.
MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert G_STORE Val, Addr, MMO.
MachineInstrBuilder buildFrameIndex(const DstOp &Res, int Idx)
Build and insert Res = G_FRAME_INDEX Idx.
MachineFunction & getMF()
Getter for the function we currently build.
MachineInstrBuilder buildAssertAlign(const DstOp &Res, const SrcOp &Op, Align AlignVal)
Build and insert Res = G_ASSERT_ALIGN Op, AlignVal.
MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op)
Build and insert Res = COPY Op.
const DataLayout & getDataLayout() const
Register getReg(unsigned Idx) const
Get the register for the operand index.
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateGA(const GlobalValue *GV, int64_t Offset, unsigned TargetFlags=0)
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Class to represent pointers.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class representing virtual and physical registers.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator insert(iterator I, T &&Elt)
void truncate(size_type N)
Like resize, but requires that N is less than size().
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
The instances of the Type class are immutable: once they are created, they are never changed.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
This is an optimization pass for GlobalISel generic memory operations.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
LLVM_ABI MachineInstr * getDefIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI)
Find the def instruction for Reg, folding away any trivial copies.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
LLVM_ABI LLVM_READNONE LLT getCoverTy(LLT OrigTy, LLT TargetTy)
Return smallest type that covers both OrigTy and TargetTy and is multiple of TargetTy.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
ArrayRef(const T &OneElt) -> ArrayRef< T >
OutputIt copy(R &&Range, OutputIt Out)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
LLVM_ABI LLVM_READNONE LLT getGCDType(LLT OrigTy, LLT TargetTy)
Return a type where the total size is the greatest common divisor of OrigTy and TargetTy.
LLVM_ABI LLT getLLTForType(Type &Ty, const DataLayout &DL)
Construct a low-level type based on an LLVM type.
LLVM_ABI Align inferAlignFromPtrInfo(MachineFunction &MF, const MachinePointerInfo &MPO)
This struct is a compact representation of a valid (non-zero power of two) alignment.
const Value * OrigValue
Optionally track the original IR value for the argument.
SmallVector< Register, 4 > Regs
unsigned OrigArgIndex
Index original Function's argument.
static const unsigned NoArgIndex
Sentinel value for implicit machine-level input arguments.
SmallVector< ISD::ArgFlagsTy, 4 > Flags
void assignValueToReg(Register ValVReg, Register PhysReg, const CCValAssign &VA) override
Provides a default implementation for argument handling.
Register buildExtensionHint(const CCValAssign &VA, Register SrcReg, LLT NarrowTy)
Insert G_ASSERT_ZEXT/G_ASSERT_SEXT or other hint instruction based on VA, returning the new register ...
Argument handling is mostly uniform between the four places that make these decisions: function forma...
virtual bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, const ArgInfo &Info, ISD::ArgFlagsTy Flags, CCState &State)
Wrap call to (typically tablegenerated CCAssignFn).
MachineIRBuilder & MIRBuilder
void copyArgumentMemory(const ArgInfo &Arg, Register DstPtr, Register SrcPtr, const MachinePointerInfo &DstPtrInfo, Align DstAlign, const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, CCValAssign &VA) const
Do a memory copy of MemSize bytes from SrcPtr to DstPtr.
MachineRegisterInfo & MRI
virtual Register getStackAddress(uint64_t MemSize, int64_t Offset, MachinePointerInfo &MPO, ISD::ArgFlagsTy Flags)=0
Materialize a VReg containing the address of the specified stack-based object.
virtual LLT getStackValueStoreType(const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const
Return the in-memory size to write for the argument at VA.
bool isIncomingArgumentHandler() const
Returns true if the handler is dealing with incoming arguments, i.e.
virtual void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, const MachinePointerInfo &MPO, const CCValAssign &VA)=0
The specified value has been assigned to a stack location.
Register extendRegister(Register ValReg, const CCValAssign &VA, unsigned MaxSizeBits=0)
Extend a register to the location type given in VA, capped at extending to at most MaxSize bits.
virtual unsigned assignCustomValue(ArgInfo &Arg, ArrayRef< CCValAssign > VAs, std::function< void()> *Thunk=nullptr)
Handle custom values, which may be passed into one or more of VAs.
virtual void assignValueToReg(Register ValVReg, Register PhysReg, const CCValAssign &VA)=0
The specified value has been assigned to a physical register, handle the appropriate COPY (either to ...
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.