LLVM 22.0.0git
CallLowering.cpp
Go to the documentation of this file.
1//===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements some simple delegations needed for call lowering.
11///
12//===----------------------------------------------------------------------===//
13
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/LLVMContext.h"
25#include "llvm/IR/Module.h"
27
28#define DEBUG_TYPE "call-lowering"
29
30using namespace llvm;
31
32void CallLowering::anchor() {}
33
34/// Helper function which updates \p Flags when \p AttrFn returns true.
35static void
37 const std::function<bool(Attribute::AttrKind)> &AttrFn) {
38 // TODO: There are missing flags. Add them here.
39 if (AttrFn(Attribute::SExt))
40 Flags.setSExt();
41 if (AttrFn(Attribute::ZExt))
42 Flags.setZExt();
43 if (AttrFn(Attribute::InReg))
44 Flags.setInReg();
45 if (AttrFn(Attribute::StructRet))
46 Flags.setSRet();
47 if (AttrFn(Attribute::Nest))
48 Flags.setNest();
49 if (AttrFn(Attribute::ByVal))
50 Flags.setByVal();
51 if (AttrFn(Attribute::ByRef))
52 Flags.setByRef();
53 if (AttrFn(Attribute::Preallocated))
54 Flags.setPreallocated();
55 if (AttrFn(Attribute::InAlloca))
56 Flags.setInAlloca();
57 if (AttrFn(Attribute::Returned))
58 Flags.setReturned();
59 if (AttrFn(Attribute::SwiftSelf))
60 Flags.setSwiftSelf();
61 if (AttrFn(Attribute::SwiftAsync))
62 Flags.setSwiftAsync();
63 if (AttrFn(Attribute::SwiftError))
64 Flags.setSwiftError();
65}
66
68 unsigned ArgIdx) const {
69 ISD::ArgFlagsTy Flags;
70 addFlagsUsingAttrFn(Flags, [&Call, &ArgIdx](Attribute::AttrKind Attr) {
71 return Call.paramHasAttr(ArgIdx, Attr);
72 });
73 return Flags;
74}
75
78 ISD::ArgFlagsTy Flags;
80 return Call.hasRetAttr(Attr);
81 });
82 return Flags;
83}
84
86 const AttributeList &Attrs,
87 unsigned OpIdx) const {
88 addFlagsUsingAttrFn(Flags, [&Attrs, &OpIdx](Attribute::AttrKind Attr) {
89 return Attrs.hasAttributeAtIndex(OpIdx, Attr);
90 });
91}
92
94 ArrayRef<Register> ResRegs,
96 Register SwiftErrorVReg,
97 std::optional<PtrAuthInfo> PAI,
98 Register ConvergenceCtrlToken,
99 std::function<Register()> GetCalleeReg) const {
100 CallLoweringInfo Info;
101 const DataLayout &DL = MIRBuilder.getDataLayout();
102 MachineFunction &MF = MIRBuilder.getMF();
104 bool CanBeTailCalled = CB.isTailCall() &&
106 (MF.getFunction()
107 .getFnAttribute("disable-tail-calls")
108 .getValueAsString() != "true");
109
110 CallingConv::ID CallConv = CB.getCallingConv();
111 Type *RetTy = CB.getType();
112 bool IsVarArg = CB.getFunctionType()->isVarArg();
113
115 getReturnInfo(CallConv, RetTy, CB.getAttributes(), SplitArgs, DL);
116 Info.CanLowerReturn = canLowerReturn(MF, CallConv, SplitArgs, IsVarArg);
117
118 Info.IsConvergent = CB.isConvergent();
119
120 if (!Info.CanLowerReturn) {
121 // Callee requires sret demotion.
122 insertSRetOutgoingArgument(MIRBuilder, CB, Info);
123
124 // The sret demotion isn't compatible with tail-calls, since the sret
125 // argument points into the caller's stack frame.
126 CanBeTailCalled = false;
127 }
128
129 // First step is to marshall all the function's parameters into the correct
130 // physregs and memory locations. Gather the sequence of argument types that
131 // we'll pass to the assigner function.
132 unsigned i = 0;
133 unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
134 for (const auto &Arg : CB.args()) {
135 ArgInfo OrigArg{ArgRegs[i], *Arg.get(), i, getAttributesForArgIdx(CB, i)};
136 setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
137 if (i >= NumFixedArgs)
138 OrigArg.Flags[0].setVarArg();
139
140 // If we have an explicit sret argument that is an Instruction, (i.e., it
141 // might point to function-local memory), we can't meaningfully tail-call.
142 if (OrigArg.Flags[0].isSRet() && isa<Instruction>(&Arg))
143 CanBeTailCalled = false;
144
145 Info.OrigArgs.push_back(OrigArg);
146 ++i;
147 }
148
149 // Try looking through a bitcast from one function type to another.
150 // Commonly happens with calls to objc_msgSend().
151 const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
152
153 // If IRTranslator chose to drop the ptrauth info, we can turn this into
154 // a direct call.
156 CalleeV = cast<ConstantPtrAuth>(CalleeV)->getPointer();
157 assert(isa<Function>(CalleeV));
158 }
159
160 if (const Function *F = dyn_cast<Function>(CalleeV)) {
161 if (F->hasFnAttribute(Attribute::NonLazyBind)) {
162 LLT Ty = getLLTForType(*F->getType(), DL);
163 Register Reg = MIRBuilder.buildGlobalValue(Ty, F).getReg(0);
164 Info.Callee = MachineOperand::CreateReg(Reg, false);
165 } else {
166 Info.Callee = MachineOperand::CreateGA(F, 0);
167 }
168 } else if (isa<GlobalIFunc>(CalleeV) || isa<GlobalAlias>(CalleeV)) {
169 // IR IFuncs and Aliases can't be forward declared (only defined), so the
170 // callee must be in the same TU and therefore we can direct-call it without
171 // worrying about it being out of range.
172 Info.Callee = MachineOperand::CreateGA(cast<GlobalValue>(CalleeV), 0);
173 } else
174 Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);
175
176 Register ReturnHintAlignReg;
177 Align ReturnHintAlign;
178
179 Info.OrigRet = ArgInfo{ResRegs, RetTy, 0, getAttributesForReturn(CB)};
180
181 if (!Info.OrigRet.Ty->isVoidTy()) {
182 setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);
183
184 if (MaybeAlign Alignment = CB.getRetAlign()) {
185 if (*Alignment > Align(1)) {
186 ReturnHintAlignReg = MRI.cloneVirtualRegister(ResRegs[0]);
187 Info.OrigRet.Regs[0] = ReturnHintAlignReg;
188 ReturnHintAlign = *Alignment;
189 }
190 }
191 }
192
193 auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi);
194 if (Bundle && CB.isIndirectCall()) {
195 Info.CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
196 assert(Info.CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
197 }
198
199 Info.CB = &CB;
200 Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
201 Info.CallConv = CallConv;
202 Info.SwiftErrorVReg = SwiftErrorVReg;
203 Info.PAI = PAI;
204 Info.ConvergenceCtrlToken = ConvergenceCtrlToken;
205 Info.IsMustTailCall = CB.isMustTailCall();
206 Info.IsTailCall = CanBeTailCalled;
207 Info.IsVarArg = IsVarArg;
208 if (!lowerCall(MIRBuilder, Info))
209 return false;
210
211 if (ReturnHintAlignReg && !Info.LoweredTailCall) {
212 MIRBuilder.buildAssertAlign(ResRegs[0], ReturnHintAlignReg,
213 ReturnHintAlign);
214 }
215
216 return true;
217}
218
219template <typename FuncInfoTy>
221 const DataLayout &DL,
222 const FuncInfoTy &FuncInfo) const {
223 auto &Flags = Arg.Flags[0];
224 const AttributeList &Attrs = FuncInfo.getAttributes();
225 addArgFlagsFromAttributes(Flags, Attrs, OpIdx);
226
228 if (PtrTy) {
229 Flags.setPointer();
230 Flags.setPointerAddrSpace(PtrTy->getPointerAddressSpace());
231 }
232
233 Align MemAlign = DL.getABITypeAlign(Arg.Ty);
234 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
235 Flags.isByRef()) {
236 assert(OpIdx >= AttributeList::FirstArgIndex);
237 unsigned ParamIdx = OpIdx - AttributeList::FirstArgIndex;
238
239 Type *ElementTy = FuncInfo.getParamByValType(ParamIdx);
240 if (!ElementTy)
241 ElementTy = FuncInfo.getParamByRefType(ParamIdx);
242 if (!ElementTy)
243 ElementTy = FuncInfo.getParamInAllocaType(ParamIdx);
244 if (!ElementTy)
245 ElementTy = FuncInfo.getParamPreallocatedType(ParamIdx);
246
247 assert(ElementTy && "Must have byval, inalloca or preallocated type");
248
249 uint64_t MemSize = DL.getTypeAllocSize(ElementTy);
250 if (Flags.isByRef())
251 Flags.setByRefSize(MemSize);
252 else
253 Flags.setByValSize(MemSize);
254
255 // For ByVal, alignment should be passed from FE. BE will guess if
256 // this info is not there but there are cases it cannot get right.
257 if (auto ParamAlign = FuncInfo.getParamStackAlign(ParamIdx))
258 MemAlign = *ParamAlign;
259 else if ((ParamAlign = FuncInfo.getParamAlign(ParamIdx)))
260 MemAlign = *ParamAlign;
261 else
262 MemAlign = getTLI()->getByValTypeAlignment(ElementTy, DL);
263 } else if (OpIdx >= AttributeList::FirstArgIndex) {
264 if (auto ParamAlign =
265 FuncInfo.getParamStackAlign(OpIdx - AttributeList::FirstArgIndex))
266 MemAlign = *ParamAlign;
267 }
268 Flags.setMemAlign(MemAlign);
269 Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
270
271 // Don't try to use the returned attribute if the argument is marked as
272 // swiftself, since it won't be passed in x0.
273 if (Flags.isSwiftSelf())
274 Flags.setReturned(false);
275}
276
277template void
279 const DataLayout &DL,
280 const Function &FuncInfo) const;
281
282template void
284 const DataLayout &DL,
285 const CallBase &FuncInfo) const;
286
288 SmallVectorImpl<ArgInfo> &SplitArgs,
289 const DataLayout &DL,
290 CallingConv::ID CallConv,
291 SmallVectorImpl<uint64_t> *Offsets) const {
292 LLVMContext &Ctx = OrigArg.Ty->getContext();
293
294 SmallVector<EVT, 4> SplitVTs;
295 ComputeValueVTs(*TLI, DL, OrigArg.Ty, SplitVTs, Offsets, 0);
296
297 if (SplitVTs.size() == 0)
298 return;
299
300 if (SplitVTs.size() == 1) {
301 // No splitting to do, but we want to replace the original type (e.g. [1 x
302 // double] -> double).
303 SplitArgs.emplace_back(OrigArg.Regs[0], SplitVTs[0].getTypeForEVT(Ctx),
304 OrigArg.OrigArgIndex, OrigArg.Flags[0],
305 OrigArg.OrigValue);
306 return;
307 }
308
309 // Create one ArgInfo for each virtual register in the original ArgInfo.
310 assert(OrigArg.Regs.size() == SplitVTs.size() && "Regs / types mismatch");
311
312 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
313 OrigArg.Ty, CallConv, false, DL);
314 for (unsigned i = 0, e = SplitVTs.size(); i < e; ++i) {
315 Type *SplitTy = SplitVTs[i].getTypeForEVT(Ctx);
316 SplitArgs.emplace_back(OrigArg.Regs[i], SplitTy, OrigArg.OrigArgIndex,
317 OrigArg.Flags[0]);
318 if (NeedsRegBlock)
319 SplitArgs.back().Flags[0].setInConsecutiveRegs();
320 }
321
322 SplitArgs.back().Flags[0].setInConsecutiveRegsLast();
323}
324
325/// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
328 ArrayRef<Register> SrcRegs) {
329 MachineRegisterInfo &MRI = *B.getMRI();
330 LLT LLTy = MRI.getType(DstRegs[0]);
331 LLT PartLLT = MRI.getType(SrcRegs[0]);
332
333 // Deal with v3s16 split into v2s16
334 LLT LCMTy = getCoverTy(LLTy, PartLLT);
335 if (LCMTy == LLTy) {
336 // Common case where no padding is needed.
337 assert(DstRegs.size() == 1);
338 return B.buildConcatVectors(DstRegs[0], SrcRegs);
339 }
340
341 // We need to create an unmerge to the result registers, which may require
342 // widening the original value.
343 Register UnmergeSrcReg;
344 if (LCMTy != PartLLT) {
345 assert(DstRegs.size() == 1);
346 return B.buildDeleteTrailingVectorElements(
347 DstRegs[0], B.buildMergeLikeInstr(LCMTy, SrcRegs));
348 } else {
349 // We don't need to widen anything if we're extracting a scalar which was
350 // promoted to a vector e.g. s8 -> v4s8 -> s8
351 assert(SrcRegs.size() == 1);
352 UnmergeSrcReg = SrcRegs[0];
353 }
354
355 int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();
356
357 SmallVector<Register, 8> PadDstRegs(NumDst);
358 llvm::copy(DstRegs, PadDstRegs.begin());
359
360 // Create the excess dead defs for the unmerge.
361 for (int I = DstRegs.size(); I != NumDst; ++I)
362 PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);
363
364 if (PadDstRegs.size() == 1)
365 return B.buildDeleteTrailingVectorElements(DstRegs[0], UnmergeSrcReg);
366 return B.buildUnmerge(PadDstRegs, UnmergeSrcReg);
367}
368
369/// Create a sequence of instructions to combine pieces split into register
370/// typed values to the original IR value. \p OrigRegs contains the destination
371/// value registers of type \p LLTy, and \p Regs contains the legalized pieces
372/// with type \p PartLLT. This is used for incoming values (physregs to vregs).
374 ArrayRef<Register> Regs, LLT LLTy, LLT PartLLT,
375 const ISD::ArgFlagsTy Flags) {
376 MachineRegisterInfo &MRI = *B.getMRI();
377
378 if (PartLLT == LLTy) {
379 // We should have avoided introducing a new virtual register, and just
380 // directly assigned here.
381 assert(OrigRegs[0] == Regs[0]);
382 return;
383 }
384
385 if (PartLLT.getSizeInBits() == LLTy.getSizeInBits() && OrigRegs.size() == 1 &&
386 Regs.size() == 1) {
387 B.buildBitcast(OrigRegs[0], Regs[0]);
388 return;
389 }
390
391 // A vector PartLLT needs extending to LLTy's element size.
392 // E.g. <2 x s64> = G_SEXT <2 x s32>.
393 if (PartLLT.isVector() == LLTy.isVector() &&
394 PartLLT.getScalarSizeInBits() > LLTy.getScalarSizeInBits() &&
395 (!PartLLT.isVector() ||
396 PartLLT.getElementCount() == LLTy.getElementCount()) &&
397 OrigRegs.size() == 1 && Regs.size() == 1) {
398 Register SrcReg = Regs[0];
399
400 LLT LocTy = MRI.getType(SrcReg);
401
402 if (Flags.isSExt()) {
403 SrcReg = B.buildAssertSExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
404 .getReg(0);
405 } else if (Flags.isZExt()) {
406 SrcReg = B.buildAssertZExt(LocTy, SrcReg, LLTy.getScalarSizeInBits())
407 .getReg(0);
408 }
409
410 // Sometimes pointers are passed zero extended.
411 LLT OrigTy = MRI.getType(OrigRegs[0]);
412 if (OrigTy.isPointer()) {
413 LLT IntPtrTy = LLT::scalar(OrigTy.getSizeInBits());
414 B.buildIntToPtr(OrigRegs[0], B.buildTrunc(IntPtrTy, SrcReg));
415 return;
416 }
417
418 B.buildTrunc(OrigRegs[0], SrcReg);
419 return;
420 }
421
422 if (!LLTy.isVector() && !PartLLT.isVector()) {
423 assert(OrigRegs.size() == 1);
424 LLT OrigTy = MRI.getType(OrigRegs[0]);
425
426 unsigned SrcSize = PartLLT.getSizeInBits().getFixedValue() * Regs.size();
427 if (SrcSize == OrigTy.getSizeInBits())
428 B.buildMergeValues(OrigRegs[0], Regs);
429 else {
430 auto Widened = B.buildMergeLikeInstr(LLT::scalar(SrcSize), Regs);
431 B.buildTrunc(OrigRegs[0], Widened);
432 }
433
434 return;
435 }
436
437 if (PartLLT.isVector()) {
438 assert(OrigRegs.size() == 1);
439 SmallVector<Register> CastRegs(Regs);
440
441 // If PartLLT is a mismatched vector in both number of elements and element
442 // size, e.g. PartLLT == v2s64 and LLTy is v3s32, then first coerce it to
443 // have the same elt type, i.e. v4s32.
444 // TODO: Extend this coersion to element multiples other than just 2.
445 if (TypeSize::isKnownGT(PartLLT.getSizeInBits(), LLTy.getSizeInBits()) &&
446 PartLLT.getScalarSizeInBits() == LLTy.getScalarSizeInBits() * 2 &&
447 Regs.size() == 1) {
448 LLT NewTy = PartLLT.changeElementType(LLTy.getElementType())
449 .changeElementCount(PartLLT.getElementCount() * 2);
450 CastRegs[0] = B.buildBitcast(NewTy, Regs[0]).getReg(0);
451 PartLLT = NewTy;
452 }
453
454 if (LLTy.getScalarType() == PartLLT.getElementType()) {
455 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
456 } else {
457 unsigned I = 0;
458 LLT GCDTy = getGCDType(LLTy, PartLLT);
459
460 // We are both splitting a vector, and bitcasting its element types. Cast
461 // the source pieces into the appropriate number of pieces with the result
462 // element type.
463 for (Register SrcReg : CastRegs)
464 CastRegs[I++] = B.buildBitcast(GCDTy, SrcReg).getReg(0);
465 mergeVectorRegsToResultRegs(B, OrigRegs, CastRegs);
466 }
467
468 return;
469 }
470
471 assert(LLTy.isVector() && !PartLLT.isVector());
472
473 LLT DstEltTy = LLTy.getElementType();
474
475 // Pointer information was discarded. We'll need to coerce some register types
476 // to avoid violating type constraints.
477 LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();
478
479 assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());
480
481 if (DstEltTy == PartLLT) {
482 // Vector was trivially scalarized.
483
484 if (RealDstEltTy.isPointer()) {
485 for (Register Reg : Regs)
486 MRI.setType(Reg, RealDstEltTy);
487 }
488
489 B.buildBuildVector(OrigRegs[0], Regs);
490 } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
491 // Deal with vector with 64-bit elements decomposed to 32-bit
492 // registers. Need to create intermediate 64-bit elements.
493 SmallVector<Register, 8> EltMerges;
494 int PartsPerElt =
495 divideCeil(DstEltTy.getSizeInBits(), PartLLT.getSizeInBits());
496 LLT ExtendedPartTy = LLT::scalar(PartLLT.getSizeInBits() * PartsPerElt);
497
498 for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I) {
499 auto Merge =
500 B.buildMergeLikeInstr(ExtendedPartTy, Regs.take_front(PartsPerElt));
501 if (ExtendedPartTy.getSizeInBits() > RealDstEltTy.getSizeInBits())
502 Merge = B.buildTrunc(RealDstEltTy, Merge);
503 // Fix the type in case this is really a vector of pointers.
504 MRI.setType(Merge.getReg(0), RealDstEltTy);
505 EltMerges.push_back(Merge.getReg(0));
506 Regs = Regs.drop_front(PartsPerElt);
507 }
508
509 B.buildBuildVector(OrigRegs[0], EltMerges);
510 } else {
511 // Vector was split, and elements promoted to a wider type.
512 // FIXME: Should handle floating point promotions.
513 unsigned NumElts = LLTy.getNumElements();
514 LLT BVType = LLT::fixed_vector(NumElts, PartLLT);
515
516 Register BuildVec;
517 if (NumElts == Regs.size())
518 BuildVec = B.buildBuildVector(BVType, Regs).getReg(0);
519 else {
520 // Vector elements are packed in the inputs.
521 // e.g. we have a <4 x s16> but 2 x s32 in regs.
522 assert(NumElts > Regs.size());
523 LLT SrcEltTy = MRI.getType(Regs[0]);
524
525 LLT OriginalEltTy = MRI.getType(OrigRegs[0]).getElementType();
526
527 // Input registers contain packed elements.
528 // Determine how many elements per reg.
529 assert((SrcEltTy.getSizeInBits() % OriginalEltTy.getSizeInBits()) == 0);
530 unsigned EltPerReg =
531 (SrcEltTy.getSizeInBits() / OriginalEltTy.getSizeInBits());
532
534 BVRegs.reserve(Regs.size() * EltPerReg);
535 for (Register R : Regs) {
536 auto Unmerge = B.buildUnmerge(OriginalEltTy, R);
537 for (unsigned K = 0; K < EltPerReg; ++K)
538 BVRegs.push_back(B.buildAnyExt(PartLLT, Unmerge.getReg(K)).getReg(0));
539 }
540
541 // We may have some more elements in BVRegs, e.g. if we have 2 s32 pieces
542 // for a <3 x s16> vector. We should have less than EltPerReg extra items.
543 if (BVRegs.size() > NumElts) {
544 assert((BVRegs.size() - NumElts) < EltPerReg);
545 BVRegs.truncate(NumElts);
546 }
547 BuildVec = B.buildBuildVector(BVType, BVRegs).getReg(0);
548 }
549 B.buildTrunc(OrigRegs[0], BuildVec);
550 }
551}
552
553/// Create a sequence of instructions to expand the value in \p SrcReg (of type
554/// \p SrcTy) to the types in \p DstRegs (of type \p PartTy). \p ExtendOp should
555/// contain the type of scalar value extension if necessary.
556///
557/// This is used for outgoing values (vregs to physregs)
559 Register SrcReg, LLT SrcTy, LLT PartTy,
560 unsigned ExtendOp = TargetOpcode::G_ANYEXT) {
561 // We could just insert a regular copy, but this is unreachable at the moment.
562 assert(SrcTy != PartTy && "identical part types shouldn't reach here");
563
564 const TypeSize PartSize = PartTy.getSizeInBits();
565
566 if (PartTy.isVector() == SrcTy.isVector() &&
567 PartTy.getScalarSizeInBits() > SrcTy.getScalarSizeInBits()) {
568 assert(DstRegs.size() == 1);
569 B.buildInstr(ExtendOp, {DstRegs[0]}, {SrcReg});
570 return;
571 }
572
573 if (SrcTy.isVector() && !PartTy.isVector() &&
574 TypeSize::isKnownGT(PartSize, SrcTy.getElementType().getSizeInBits())) {
575 // Vector was scalarized, and the elements extended.
576 auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(), SrcReg);
577 for (int i = 0, e = DstRegs.size(); i != e; ++i)
578 B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
579 return;
580 }
581
582 if (SrcTy.isVector() && PartTy.isVector() &&
583 PartTy.getSizeInBits() == SrcTy.getSizeInBits() &&
584 ElementCount::isKnownLT(SrcTy.getElementCount(),
585 PartTy.getElementCount())) {
586 // A coercion like: v2f32 -> v4f32 or nxv2f32 -> nxv4f32
587 Register DstReg = DstRegs.front();
588 B.buildPadVectorWithUndefElements(DstReg, SrcReg);
589 return;
590 }
591
592 LLT GCDTy = getGCDType(SrcTy, PartTy);
593 if (GCDTy == PartTy) {
594 // If this already evenly divisible, we can create a simple unmerge.
595 B.buildUnmerge(DstRegs, SrcReg);
596 return;
597 }
598
599 if (SrcTy.isVector() && !PartTy.isVector() &&
600 SrcTy.getScalarSizeInBits() > PartTy.getSizeInBits()) {
601 LLT ExtTy =
602 LLT::vector(SrcTy.getElementCount(),
603 LLT::scalar(PartTy.getScalarSizeInBits() * DstRegs.size() /
604 SrcTy.getNumElements()));
605 auto Ext = B.buildAnyExt(ExtTy, SrcReg);
606 B.buildUnmerge(DstRegs, Ext);
607 return;
608 }
609
610 MachineRegisterInfo &MRI = *B.getMRI();
611 LLT DstTy = MRI.getType(DstRegs[0]);
612 LLT LCMTy = getCoverTy(SrcTy, PartTy);
613
614 if (PartTy.isVector() && LCMTy == PartTy) {
615 assert(DstRegs.size() == 1);
616 B.buildPadVectorWithUndefElements(DstRegs[0], SrcReg);
617 return;
618 }
619
620 const unsigned DstSize = DstTy.getSizeInBits();
621 const unsigned SrcSize = SrcTy.getSizeInBits();
622 unsigned CoveringSize = LCMTy.getSizeInBits();
623
624 Register UnmergeSrc = SrcReg;
625
626 if (!LCMTy.isVector() && CoveringSize != SrcSize) {
627 // For scalars, it's common to be able to use a simple extension.
628 if (SrcTy.isScalar() && DstTy.isScalar()) {
629 CoveringSize = alignTo(SrcSize, DstSize);
630 LLT CoverTy = LLT::scalar(CoveringSize);
631 UnmergeSrc = B.buildInstr(ExtendOp, {CoverTy}, {SrcReg}).getReg(0);
632 } else {
633 // Widen to the common type.
634 // FIXME: This should respect the extend type
635 Register Undef = B.buildUndef(SrcTy).getReg(0);
636 SmallVector<Register, 8> MergeParts(1, SrcReg);
637 for (unsigned Size = SrcSize; Size != CoveringSize; Size += SrcSize)
638 MergeParts.push_back(Undef);
639 UnmergeSrc = B.buildMergeLikeInstr(LCMTy, MergeParts).getReg(0);
640 }
641 }
642
643 if (LCMTy.isVector() && CoveringSize != SrcSize)
644 UnmergeSrc = B.buildPadVectorWithUndefElements(LCMTy, SrcReg).getReg(0);
645
646 B.buildUnmerge(DstRegs, UnmergeSrc);
647}
648
650 ValueHandler &Handler, ValueAssigner &Assigner,
652 CallingConv::ID CallConv, bool IsVarArg,
653 ArrayRef<Register> ThisReturnRegs) const {
654 MachineFunction &MF = MIRBuilder.getMF();
655 const Function &F = MF.getFunction();
657
658 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, F.getContext());
659 if (!determineAssignments(Assigner, Args, CCInfo))
660 return false;
661
662 return handleAssignments(Handler, Args, CCInfo, ArgLocs, MIRBuilder,
663 ThisReturnRegs);
664}
665
667 if (Flags.isSExt())
668 return TargetOpcode::G_SEXT;
669 if (Flags.isZExt())
670 return TargetOpcode::G_ZEXT;
671 return TargetOpcode::G_ANYEXT;
672}
673
676 CCState &CCInfo) const {
677 LLVMContext &Ctx = CCInfo.getContext();
678 const CallingConv::ID CallConv = CCInfo.getCallingConv();
679
680 unsigned NumArgs = Args.size();
681 for (unsigned i = 0; i != NumArgs; ++i) {
682 EVT CurVT = EVT::getEVT(Args[i].Ty);
683
684 MVT NewVT = TLI->getRegisterTypeForCallingConv(Ctx, CallConv, CurVT);
685
686 // If we need to split the type over multiple regs, check it's a scenario
687 // we currently support.
688 unsigned NumParts =
689 TLI->getNumRegistersForCallingConv(Ctx, CallConv, CurVT);
690
691 if (NumParts == 1) {
692 // Try to use the register type if we couldn't assign the VT.
693 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
694 Args[i].Flags[0], CCInfo))
695 return false;
696 continue;
697 }
698
699 // For incoming arguments (physregs to vregs), we could have values in
700 // physregs (or memlocs) which we want to extract and copy to vregs.
701 // During this, we might have to deal with the LLT being split across
702 // multiple regs, so we have to record this information for later.
703 //
704 // If we have outgoing args, then we have the opposite case. We have a
705 // vreg with an LLT which we want to assign to a physical location, and
706 // we might have to record that the value has to be split later.
707
708 // We're handling an incoming arg which is split over multiple regs.
709 // E.g. passing an s128 on AArch64.
710 ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
711 Args[i].Flags.clear();
712
713 for (unsigned Part = 0; Part < NumParts; ++Part) {
714 ISD::ArgFlagsTy Flags = OrigFlags;
715 if (Part == 0) {
716 Flags.setSplit();
717 } else {
718 Flags.setOrigAlign(Align(1));
719 if (Part == NumParts - 1)
720 Flags.setSplitEnd();
721 }
722
723 Args[i].Flags.push_back(Flags);
724 if (Assigner.assignArg(i, CurVT, NewVT, NewVT, CCValAssign::Full, Args[i],
725 Args[i].Flags[Part], CCInfo)) {
726 // Still couldn't assign this smaller part type for some reason.
727 return false;
728 }
729 }
730 }
731
732 return true;
733}
734
737 CCState &CCInfo,
739 MachineIRBuilder &MIRBuilder,
740 ArrayRef<Register> ThisReturnRegs) const {
741 MachineFunction &MF = MIRBuilder.getMF();
743 const Function &F = MF.getFunction();
744 const DataLayout &DL = F.getDataLayout();
745
746 const unsigned NumArgs = Args.size();
747
748 // Stores thunks for outgoing register assignments. This is used so we delay
749 // generating register copies until mem loc assignments are done. We do this
750 // so that if the target is using the delayed stack protector feature, we can
751 // find the split point of the block accurately. E.g. if we have:
752 // G_STORE %val, %memloc
753 // $x0 = COPY %foo
754 // $x1 = COPY %bar
755 // CALL func
756 // ... then the split point for the block will correctly be at, and including,
757 // the copy to $x0. If instead the G_STORE instruction immediately precedes
758 // the CALL, then we'd prematurely choose the CALL as the split point, thus
759 // generating a split block with a CALL that uses undefined physregs.
760 SmallVector<std::function<void()>> DelayedOutgoingRegAssignments;
761
762 for (unsigned i = 0, j = 0; i != NumArgs; ++i, ++j) {
763 assert(j < ArgLocs.size() && "Skipped too many arg locs");
764 CCValAssign &VA = ArgLocs[j];
765 assert(VA.getValNo() == i && "Location doesn't correspond to current arg");
766
767 if (VA.needsCustom()) {
768 std::function<void()> Thunk;
769 unsigned NumArgRegs = Handler.assignCustomValue(
770 Args[i], ArrayRef(ArgLocs).slice(j), &Thunk);
771 if (Thunk)
772 DelayedOutgoingRegAssignments.emplace_back(Thunk);
773 if (!NumArgRegs)
774 return false;
775 j += (NumArgRegs - 1);
776 continue;
777 }
778
779 auto AllocaAddressSpace = MF.getDataLayout().getAllocaAddrSpace();
780
781 const MVT ValVT = VA.getValVT();
782 const MVT LocVT = VA.getLocVT();
783
784 const LLT LocTy(LocVT);
785 const LLT ValTy(ValVT);
786 const LLT NewLLT = Handler.isIncomingArgumentHandler() ? LocTy : ValTy;
787 const EVT OrigVT = EVT::getEVT(Args[i].Ty);
788 const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);
789 const LLT PointerTy = LLT::pointer(
790 AllocaAddressSpace, DL.getPointerSizeInBits(AllocaAddressSpace));
791
792 // Expected to be multiple regs for a single incoming arg.
793 // There should be Regs.size() ArgLocs per argument.
794 // This should be the same as getNumRegistersForCallingConv
795 const unsigned NumParts = Args[i].Flags.size();
796
797 // Now split the registers into the assigned types.
798 Args[i].OrigRegs.assign(Args[i].Regs.begin(), Args[i].Regs.end());
799
800 if (NumParts != 1 || NewLLT != OrigTy) {
801 // If we can't directly assign the register, we need one or more
802 // intermediate values.
803 Args[i].Regs.resize(NumParts);
804
805 // When we have indirect parameter passing we are receiving a pointer,
806 // that points to the actual value, so we need one "temporary" pointer.
807 if (VA.getLocInfo() == CCValAssign::Indirect) {
808 if (Handler.isIncomingArgumentHandler())
809 Args[i].Regs[0] = MRI.createGenericVirtualRegister(PointerTy);
810 } else {
811 // For each split register, create and assign a vreg that will store
812 // the incoming component of the larger value. These will later be
813 // merged to form the final vreg.
814 for (unsigned Part = 0; Part < NumParts; ++Part)
815 Args[i].Regs[Part] = MRI.createGenericVirtualRegister(NewLLT);
816 }
817 }
818
819 assert((j + (NumParts - 1)) < ArgLocs.size() &&
820 "Too many regs for number of args");
821
822 // Coerce into outgoing value types before register assignment.
823 if (!Handler.isIncomingArgumentHandler() && OrigTy != ValTy &&
825 assert(Args[i].OrigRegs.size() == 1);
826 buildCopyToRegs(MIRBuilder, Args[i].Regs, Args[i].OrigRegs[0], OrigTy,
827 ValTy, extendOpFromFlags(Args[i].Flags[0]));
828 }
829
830 bool IndirectParameterPassingHandled = false;
831 bool BigEndianPartOrdering = TLI->hasBigEndianPartOrdering(OrigVT, DL);
832 for (unsigned Part = 0; Part < NumParts; ++Part) {
833 assert((VA.getLocInfo() != CCValAssign::Indirect || Part == 0) &&
834 "Only the first parameter should be processed when "
835 "handling indirect passing!");
836 Register ArgReg = Args[i].Regs[Part];
837 // There should be Regs.size() ArgLocs per argument.
838 unsigned Idx = BigEndianPartOrdering ? NumParts - 1 - Part : Part;
839 CCValAssign &VA = ArgLocs[j + Idx];
840 const ISD::ArgFlagsTy Flags = Args[i].Flags[Part];
841
842 // We found an indirect parameter passing, and we have an
843 // OutgoingValueHandler as our handler (so we are at the call site or the
844 // return value). In this case, start the construction of the following
845 // GMIR, that is responsible for the preparation of indirect parameter
846 // passing:
847 //
848 // %1(indirectly passed type) = The value to pass
849 // %3(pointer) = G_FRAME_INDEX %stack.0
850 // G_STORE %1, %3 :: (store (s128), align 8)
851 //
852 // After this GMIR, the remaining part of the loop body will decide how
853 // to get the value to the caller and we break out of the loop.
854 if (VA.getLocInfo() == CCValAssign::Indirect &&
855 !Handler.isIncomingArgumentHandler()) {
856 Align AlignmentForStored = DL.getPrefTypeAlign(Args[i].Ty);
857 MachineFrameInfo &MFI = MF.getFrameInfo();
858 // Get some space on the stack for the value, so later we can pass it
859 // as a reference.
860 int FrameIdx = MFI.CreateStackObject(OrigTy.getScalarSizeInBits(),
861 AlignmentForStored, false);
862 Register PointerToStackReg =
863 MIRBuilder.buildFrameIndex(PointerTy, FrameIdx).getReg(0);
864 MachinePointerInfo StackPointerMPO =
866 // Store the value in the previously created stack space.
867 MIRBuilder.buildStore(Args[i].OrigRegs[Part], PointerToStackReg,
868 StackPointerMPO,
869 inferAlignFromPtrInfo(MF, StackPointerMPO));
870
871 ArgReg = PointerToStackReg;
872 IndirectParameterPassingHandled = true;
873 }
874
875 if (VA.isMemLoc() && !Flags.isByVal()) {
876 // Individual pieces may have been spilled to the stack and others
877 // passed in registers.
878
879 // TODO: The memory size may be larger than the value we need to
880 // store. We may need to adjust the offset for big endian targets.
881 LLT MemTy = Handler.getStackValueStoreType(DL, VA, Flags);
882
884 Register StackAddr =
886 ? PointerTy.getSizeInBytes()
887 : MemTy.getSizeInBytes(),
888 VA.getLocMemOffset(), MPO, Flags);
889
890 // Finish the handling of indirect passing from the passers
891 // (OutgoingParameterHandler) side.
892 // This branch is needed, so the pointer to the value is loaded onto the
893 // stack.
895 Handler.assignValueToAddress(ArgReg, StackAddr, PointerTy, MPO, VA);
896 else
897 Handler.assignValueToAddress(Args[i], Part, StackAddr, MemTy, MPO,
898 VA);
899 } else if (VA.isMemLoc() && Flags.isByVal()) {
900 assert(Args[i].Regs.size() == 1 && "didn't expect split byval pointer");
901
902 if (Handler.isIncomingArgumentHandler()) {
903 // We just need to copy the frame index value to the pointer.
905 Register StackAddr = Handler.getStackAddress(
906 Flags.getByValSize(), VA.getLocMemOffset(), MPO, Flags);
907 MIRBuilder.buildCopy(Args[i].Regs[0], StackAddr);
908 } else {
909 // For outgoing byval arguments, insert the implicit copy byval
910 // implies, such that writes in the callee do not modify the caller's
911 // value.
912 uint64_t MemSize = Flags.getByValSize();
913 int64_t Offset = VA.getLocMemOffset();
914
915 MachinePointerInfo DstMPO;
916 Register StackAddr =
917 Handler.getStackAddress(MemSize, Offset, DstMPO, Flags);
918
919 MachinePointerInfo SrcMPO(Args[i].OrigValue);
920 if (!Args[i].OrigValue) {
921 // We still need to accurately track the stack address space if we
922 // don't know the underlying value.
923 const LLT PtrTy = MRI.getType(StackAddr);
924 SrcMPO = MachinePointerInfo(PtrTy.getAddressSpace());
925 }
926
927 Align DstAlign = std::max(Flags.getNonZeroByValAlign(),
928 inferAlignFromPtrInfo(MF, DstMPO));
929
930 Align SrcAlign = std::max(Flags.getNonZeroByValAlign(),
931 inferAlignFromPtrInfo(MF, SrcMPO));
932
933 Handler.copyArgumentMemory(Args[i], StackAddr, Args[i].Regs[0],
934 DstMPO, DstAlign, SrcMPO, SrcAlign,
935 MemSize, VA);
936 }
937 } else if (i == 0 && !ThisReturnRegs.empty() &&
938 Handler.isIncomingArgumentHandler() &&
940 Handler.assignValueToReg(ArgReg, ThisReturnRegs[Part], VA);
941 } else if (Handler.isIncomingArgumentHandler()) {
942 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
943 } else {
944 DelayedOutgoingRegAssignments.emplace_back([=, &Handler]() {
945 Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
946 });
947 }
948
949 // Finish the handling of indirect parameter passing when receiving
950 // the value (we are in the called function or the caller when receiving
951 // the return value).
952 if (VA.getLocInfo() == CCValAssign::Indirect &&
953 Handler.isIncomingArgumentHandler()) {
954 Align Alignment = DL.getABITypeAlign(Args[i].Ty);
956
957 // Since we are doing indirect parameter passing, we know that the value
958 // in the temporary register is not the value passed to the function,
959 // but rather a pointer to that value. Let's load that value into the
960 // virtual register where the parameter should go.
961 MIRBuilder.buildLoad(Args[i].OrigRegs[0], Args[i].Regs[0], MPO,
962 Alignment);
963
964 IndirectParameterPassingHandled = true;
965 }
966
967 if (IndirectParameterPassingHandled)
968 break;
969 }
970
971 // Now that all pieces have been assigned, re-pack the register typed values
972 // into the original value typed registers. This is only necessary, when
973 // the value was passed in multiple registers, not indirectly.
974 if (Handler.isIncomingArgumentHandler() && OrigVT != LocVT &&
975 !IndirectParameterPassingHandled) {
976 // Merge the split registers into the expected larger result vregs of
977 // the original call.
978 buildCopyFromRegs(MIRBuilder, Args[i].OrigRegs, Args[i].Regs, OrigTy,
979 LocTy, Args[i].Flags[0]);
980 }
981
982 j += NumParts - 1;
983 }
984 for (auto &Fn : DelayedOutgoingRegAssignments)
985 Fn();
986
987 return true;
988}
989
991 ArrayRef<Register> VRegs, Register DemoteReg,
992 int FI) const {
993 MachineFunction &MF = MIRBuilder.getMF();
995 const DataLayout &DL = MF.getDataLayout();
996
997 SmallVector<EVT, 4> SplitVTs;
999 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
1000
1001 assert(VRegs.size() == SplitVTs.size());
1002
1003 unsigned NumValues = SplitVTs.size();
1004 Align BaseAlign = DL.getPrefTypeAlign(RetTy);
1005 Type *RetPtrTy =
1006 PointerType::get(RetTy->getContext(), DL.getAllocaAddrSpace());
1007 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetPtrTy), DL);
1008
1010
1011 for (unsigned I = 0; I < NumValues; ++I) {
1012 Register Addr;
1013 MIRBuilder.materializeObjectPtrOffset(Addr, DemoteReg, OffsetLLTy,
1014 Offsets[I]);
1015 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
1016 MRI.getType(VRegs[I]),
1017 commonAlignment(BaseAlign, Offsets[I]));
1018 MIRBuilder.buildLoad(VRegs[I], Addr, *MMO);
1019 }
1020}
1021
1023 ArrayRef<Register> VRegs,
1024 Register DemoteReg) const {
1025 MachineFunction &MF = MIRBuilder.getMF();
1027 const DataLayout &DL = MF.getDataLayout();
1028
1029 SmallVector<EVT, 4> SplitVTs;
1031 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs, &Offsets, 0);
1032
1033 assert(VRegs.size() == SplitVTs.size());
1034
1035 unsigned NumValues = SplitVTs.size();
1036 Align BaseAlign = DL.getPrefTypeAlign(RetTy);
1037 unsigned AS = DL.getAllocaAddrSpace();
1038 LLT OffsetLLTy = getLLTForType(*DL.getIndexType(RetTy->getContext(), AS), DL);
1039
1040 MachinePointerInfo PtrInfo(AS);
1041
1042 for (unsigned I = 0; I < NumValues; ++I) {
1043 Register Addr;
1044 MIRBuilder.materializeObjectPtrOffset(Addr, DemoteReg, OffsetLLTy,
1045 Offsets[I]);
1046 auto *MMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
1047 MRI.getType(VRegs[I]),
1048 commonAlignment(BaseAlign, Offsets[I]));
1049 MIRBuilder.buildStore(VRegs[I], Addr, *MMO);
1050 }
1051}
1052
1054 const Function &F, SmallVectorImpl<ArgInfo> &SplitArgs, Register &DemoteReg,
1055 MachineRegisterInfo &MRI, const DataLayout &DL) const {
1056 unsigned AS = DL.getAllocaAddrSpace();
1057 DemoteReg = MRI.createGenericVirtualRegister(
1058 LLT::pointer(AS, DL.getPointerSizeInBits(AS)));
1059
1060 Type *PtrTy = PointerType::get(F.getContext(), AS);
1061
1062 SmallVector<EVT, 1> ValueVTs;
1063 ComputeValueVTs(*TLI, DL, PtrTy, ValueVTs);
1064
1065 // NOTE: Assume that a pointer won't get split into more than one VT.
1066 assert(ValueVTs.size() == 1);
1067
1068 ArgInfo DemoteArg(DemoteReg, ValueVTs[0].getTypeForEVT(PtrTy->getContext()),
1070 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, F);
1071 DemoteArg.Flags[0].setSRet();
1072 SplitArgs.insert(SplitArgs.begin(), DemoteArg);
1073}
1074
1076 const CallBase &CB,
1077 CallLoweringInfo &Info) const {
1078 const DataLayout &DL = MIRBuilder.getDataLayout();
1079 Type *RetTy = CB.getType();
1080 unsigned AS = DL.getAllocaAddrSpace();
1081 LLT FramePtrTy = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1082
1083 int FI = MIRBuilder.getMF().getFrameInfo().CreateStackObject(
1084 DL.getTypeAllocSize(RetTy), DL.getPrefTypeAlign(RetTy), false);
1085
1086 Register DemoteReg = MIRBuilder.buildFrameIndex(FramePtrTy, FI).getReg(0);
1087 ArgInfo DemoteArg(DemoteReg, PointerType::get(RetTy->getContext(), AS),
1089 setArgFlags(DemoteArg, AttributeList::ReturnIndex, DL, CB);
1090 DemoteArg.Flags[0].setSRet();
1091
1092 Info.OrigArgs.insert(Info.OrigArgs.begin(), DemoteArg);
1093 Info.DemoteStackIndex = FI;
1094 Info.DemoteRegister = DemoteReg;
1095}
1096
1099 CCAssignFn *Fn) const {
1100 for (unsigned I = 0, E = Outs.size(); I < E; ++I) {
1101 MVT VT = MVT::getVT(Outs[I].Ty);
1102 if (Fn(I, VT, VT, CCValAssign::Full, Outs[I].Flags[0], Outs[I].Ty, CCInfo))
1103 return false;
1104 }
1105 return true;
1106}
1107
1109 AttributeList Attrs,
1111 const DataLayout &DL) const {
1112 LLVMContext &Context = RetTy->getContext();
1114
1115 SmallVector<EVT, 4> SplitVTs;
1116 ComputeValueVTs(*TLI, DL, RetTy, SplitVTs);
1117 addArgFlagsFromAttributes(Flags, Attrs, AttributeList::ReturnIndex);
1118
1119 for (EVT VT : SplitVTs) {
1120 unsigned NumParts =
1121 TLI->getNumRegistersForCallingConv(Context, CallConv, VT);
1122 MVT RegVT = TLI->getRegisterTypeForCallingConv(Context, CallConv, VT);
1123 Type *PartTy = EVT(RegVT).getTypeForEVT(Context);
1124
1125 for (unsigned I = 0; I < NumParts; ++I) {
1126 Outs.emplace_back(PartTy, Flags);
1127 }
1128 }
1129}
1130
1132 const auto &F = MF.getFunction();
1133 Type *ReturnType = F.getReturnType();
1134 CallingConv::ID CallConv = F.getCallingConv();
1135
1137 getReturnInfo(CallConv, ReturnType, F.getAttributes(), SplitArgs,
1138 MF.getDataLayout());
1139 return canLowerReturn(MF, CallConv, SplitArgs, F.isVarArg());
1140}
1141
1143 const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask,
1144 const SmallVectorImpl<CCValAssign> &OutLocs,
1145 const SmallVectorImpl<ArgInfo> &OutArgs) const {
1146 for (unsigned i = 0; i < OutLocs.size(); ++i) {
1147 const auto &ArgLoc = OutLocs[i];
1148 // If it's not a register, it's fine.
1149 if (!ArgLoc.isRegLoc())
1150 continue;
1151
1152 MCRegister PhysReg = ArgLoc.getLocReg();
1153
1154 // Only look at callee-saved registers.
1155 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, PhysReg))
1156 continue;
1157
1158 LLVM_DEBUG(
1159 dbgs()
1160 << "... Call has an argument passed in a callee-saved register.\n");
1161
1162 // Check if it was copied from.
1163 const ArgInfo &OutInfo = OutArgs[i];
1164
1165 if (OutInfo.Regs.size() > 1) {
1166 LLVM_DEBUG(
1167 dbgs() << "... Cannot handle arguments in multiple registers.\n");
1168 return false;
1169 }
1170
1171 // Check if we copy the register, walking through copies from virtual
1172 // registers. Note that getDefIgnoringCopies does not ignore copies from
1173 // physical registers.
1174 MachineInstr *RegDef = getDefIgnoringCopies(OutInfo.Regs[0], MRI);
1175 if (!RegDef || RegDef->getOpcode() != TargetOpcode::COPY) {
1176 LLVM_DEBUG(
1177 dbgs()
1178 << "... Parameter was not copied into a VReg, cannot tail call.\n");
1179 return false;
1180 }
1181
1182 // Got a copy. Verify that it's the same as the register we want.
1183 Register CopyRHS = RegDef->getOperand(1).getReg();
1184 if (CopyRHS != PhysReg) {
1185 LLVM_DEBUG(dbgs() << "... Callee-saved register was not copied into "
1186 "VReg, cannot tail call.\n");
1187 return false;
1188 }
1189 }
1190
1191 return true;
1192}
1193
1195 MachineFunction &MF,
1197 ValueAssigner &CalleeAssigner,
1198 ValueAssigner &CallerAssigner) const {
1199 const Function &F = MF.getFunction();
1200 CallingConv::ID CalleeCC = Info.CallConv;
1201 CallingConv::ID CallerCC = F.getCallingConv();
1202
1203 if (CallerCC == CalleeCC)
1204 return true;
1205
1207 CCState CCInfo1(CalleeCC, Info.IsVarArg, MF, ArgLocs1, F.getContext());
1208 if (!determineAssignments(CalleeAssigner, InArgs, CCInfo1))
1209 return false;
1210
1212 CCState CCInfo2(CallerCC, F.isVarArg(), MF, ArgLocs2, F.getContext());
1213 if (!determineAssignments(CallerAssigner, InArgs, CCInfo2))
1214 return false;
1215
1216 // We need the argument locations to match up exactly. If there's more in
1217 // one than the other, then we are done.
1218 if (ArgLocs1.size() != ArgLocs2.size())
1219 return false;
1220
1221 // Make sure that each location is passed in exactly the same way.
1222 for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
1223 const CCValAssign &Loc1 = ArgLocs1[i];
1224 const CCValAssign &Loc2 = ArgLocs2[i];
1225
1226 // We need both of them to be the same. So if one is a register and one
1227 // isn't, we're done.
1228 if (Loc1.isRegLoc() != Loc2.isRegLoc())
1229 return false;
1230
1231 if (Loc1.isRegLoc()) {
1232 // If they don't have the same register location, we're done.
1233 if (Loc1.getLocReg() != Loc2.getLocReg())
1234 return false;
1235
1236 // They matched, so we can move to the next ArgLoc.
1237 continue;
1238 }
1239
1240 // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
1241 if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
1242 return false;
1243 }
1244
1245 return true;
1246}
1247
1249 const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const {
1250 const MVT ValVT = VA.getValVT();
1251 if (ValVT != MVT::iPTR) {
1252 LLT ValTy(ValVT);
1253
1254 // We lost the pointeriness going through CCValAssign, so try to restore it
1255 // based on the flags.
1256 if (Flags.isPointer()) {
1257 LLT PtrTy = LLT::pointer(Flags.getPointerAddrSpace(),
1258 ValTy.getScalarSizeInBits());
1259 if (ValVT.isVector() && ValVT.getVectorNumElements() != 1)
1260 return LLT::vector(ValTy.getElementCount(), PtrTy);
1261 return PtrTy;
1262 }
1263
1264 return ValTy;
1265 }
1266
1267 unsigned AddrSpace = Flags.getPointerAddrSpace();
1268 return LLT::pointer(AddrSpace, DL.getPointerSize(AddrSpace));
1269}
1270
1272 const ArgInfo &Arg, Register DstPtr, Register SrcPtr,
1273 const MachinePointerInfo &DstPtrInfo, Align DstAlign,
1274 const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize,
1275 CCValAssign &VA) const {
1276 MachineFunction &MF = MIRBuilder.getMF();
1278 SrcPtrInfo,
1280 SrcAlign);
1281
1283 DstPtrInfo,
1285 MemSize, DstAlign);
1286
1287 const LLT PtrTy = MRI.getType(DstPtr);
1288 const LLT SizeTy = LLT::scalar(PtrTy.getSizeInBits());
1289
1290 auto SizeConst = MIRBuilder.buildConstant(SizeTy, MemSize);
1291 MIRBuilder.buildMemCpy(DstPtr, SrcPtr, SizeConst, *DstMMO, *SrcMMO);
1292}
1293
1295 const CCValAssign &VA,
1296 unsigned MaxSizeBits) {
1297 LLT LocTy{VA.getLocVT()};
1298 LLT ValTy{VA.getValVT()};
1299
1300 if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
1301 return ValReg;
1302
1303 if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
1304 if (MaxSizeBits <= ValTy.getSizeInBits())
1305 return ValReg;
1306 LocTy = LLT::scalar(MaxSizeBits);
1307 }
1308
1309 const LLT ValRegTy = MRI.getType(ValReg);
1310 if (ValRegTy.isPointer()) {
1311 // The x32 ABI wants to zero extend 32-bit pointers to 64-bit registers, so
1312 // we have to cast to do the extension.
1313 LLT IntPtrTy = LLT::scalar(ValRegTy.getSizeInBits());
1314 ValReg = MIRBuilder.buildPtrToInt(IntPtrTy, ValReg).getReg(0);
1315 }
1316
1317 switch (VA.getLocInfo()) {
1318 default:
1319 break;
1320 case CCValAssign::Full:
1321 case CCValAssign::BCvt:
1322 // FIXME: bitconverting between vector types may or may not be a
1323 // nop in big-endian situations.
1324 return ValReg;
1325 case CCValAssign::AExt: {
1326 auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
1327 return MIB.getReg(0);
1328 }
1329 case CCValAssign::SExt: {
1330 Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1331 MIRBuilder.buildSExt(NewReg, ValReg);
1332 return NewReg;
1333 }
1334 case CCValAssign::ZExt: {
1335 Register NewReg = MRI.createGenericVirtualRegister(LocTy);
1336 MIRBuilder.buildZExt(NewReg, ValReg);
1337 return NewReg;
1338 }
1339 }
1340 llvm_unreachable("unable to extend register");
1341}
1342
1343void CallLowering::ValueAssigner::anchor() {}
1344
1346 const CCValAssign &VA, Register SrcReg, LLT NarrowTy) {
1347 switch (VA.getLocInfo()) {
1349 return MIRBuilder
1350 .buildAssertZExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1351 NarrowTy.getScalarSizeInBits())
1352 .getReg(0);
1353 }
1355 return MIRBuilder
1356 .buildAssertSExt(MRI.cloneVirtualRegister(SrcReg), SrcReg,
1357 NarrowTy.getScalarSizeInBits())
1358 .getReg(0);
1359 break;
1360 }
1361 default:
1362 return SrcReg;
1363 }
1364}
1365
1366/// Check if we can use a basic COPY instruction between the two types.
1367///
1368/// We're currently building on top of the infrastructure using MVT, which loses
1369/// pointer information in the CCValAssign. We accept copies from physical
1370/// registers that have been reported as integers if it's to an equivalent sized
1371/// pointer LLT.
1372static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy) {
1373 if (SrcTy == DstTy)
1374 return true;
1375
1376 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1377 return false;
1378
1379 SrcTy = SrcTy.getScalarType();
1380 DstTy = DstTy.getScalarType();
1381
1382 return (SrcTy.isPointer() && DstTy.isScalar()) ||
1383 (DstTy.isPointer() && SrcTy.isScalar());
1384}
1385
1387 Register ValVReg, Register PhysReg, const CCValAssign &VA) {
1388 const MVT LocVT = VA.getLocVT();
1389 const LLT LocTy(LocVT);
1390 const LLT RegTy = MRI.getType(ValVReg);
1391
1392 if (isCopyCompatibleType(RegTy, LocTy)) {
1393 MIRBuilder.buildCopy(ValVReg, PhysReg);
1394 return;
1395 }
1396
1397 auto Copy = MIRBuilder.buildCopy(LocTy, PhysReg);
1398 auto Hint = buildExtensionHint(VA, Copy.getReg(0), RegTy);
1399 MIRBuilder.buildTrunc(ValVReg, Hint);
1400}
unsigned const MachineRegisterInfo * MRI
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static void addFlagsUsingAttrFn(ISD::ArgFlagsTy &Flags, const std::function< bool(Attribute::AttrKind)> &AttrFn)
Helper function which updates Flags when AttrFn returns true.
static void buildCopyToRegs(MachineIRBuilder &B, ArrayRef< Register > DstRegs, Register SrcReg, LLT SrcTy, LLT PartTy, unsigned ExtendOp=TargetOpcode::G_ANYEXT)
Create a sequence of instructions to expand the value in SrcReg (of type SrcTy) to the types in DstRe...
static MachineInstrBuilder mergeVectorRegsToResultRegs(MachineIRBuilder &B, ArrayRef< Register > DstRegs, ArrayRef< Register > SrcRegs)
Pack values SrcRegs to cover the vector type result DstRegs.
static void buildCopyFromRegs(MachineIRBuilder &B, ArrayRef< Register > OrigRegs, ArrayRef< Register > Regs, LLT LLTy, LLT PartLLT, const ISD::ArgFlagsTy Flags)
Create a sequence of instructions to combine pieces split into register typed values to the original ...
static bool isCopyCompatibleType(LLT SrcTy, LLT DstTy)
Check if we can use a basic COPY instruction between the two types.
static unsigned extendOpFromFlags(llvm::ISD::ArgFlagsTy Flags)
This file describes how to lower LLVM calls to machine code calls.
Module.h This file contains the declarations for the Module class.
#define F(x, y, z)
Definition MD5.cpp:55
#define I(x, y, z)
Definition MD5.cpp:58
This file declares the MachineIRBuilder class.
Register Reg
Promote Memory to Register
Definition Mem2Reg.cpp:110
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
MachineInstr unsigned OpIdx
R600 Clause Merge
#define LLVM_DEBUG(...)
Definition Debug.h:119
This file describes how to lower LLVM code to machine code.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:41
ArrayRef< T > take_front(size_t N=1) const
Return a copy of *this with only the first N elements.
Definition ArrayRef.h:224
ArrayRef< T > drop_front(size_t N=1) const
Drop the first N elements of the array.
Definition ArrayRef.h:200
const T & front() const
front - Get the first element.
Definition ArrayRef.h:150
size_t size() const
size - Get the array size.
Definition ArrayRef.h:147
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:142
AttrKind
This enumeration lists the attributes that can be associated with parameters, function results,...
Definition Attributes.h:88
CCState - This class holds information needed while lowering arguments and return values.
CallingConv::ID getCallingConv() const
LLVMContext & getContext() const
CCValAssign - Represent assignment of one arg/retval to a location.
Register getLocReg() const
LocInfo getLocInfo() const
bool needsCustom() const
int64_t getLocMemOffset() const
unsigned getValNo() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
MaybeAlign getRetAlign() const
Extract the alignment of the return value.
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
CallingConv::ID getCallingConv() const
LLVM_ABI bool isMustTailCall() const
Tests if this call site must be tail call optimized.
LLVM_ABI bool isIndirectCall() const
Return true if the callsite is an indirect call.
unsigned countOperandBundlesOfType(StringRef Name) const
Return the number of operand bundles with the tag Name attached to this instruction.
Value * getCalledOperand() const
bool isConvergent() const
Determine if the invoke is convergent.
FunctionType * getFunctionType() const
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
AttributeList getAttributes() const
Return the attributes for this call.
LLVM_ABI bool isTailCall() const
Tests if this call site is marked as a tail call.
void insertSRetOutgoingArgument(MachineIRBuilder &MIRBuilder, const CallBase &CB, CallLoweringInfo &Info) const
For the call-base described by CB, insert the hidden sret ArgInfo to the OrigArgs field of Info.
void insertSRetLoads(MachineIRBuilder &MIRBuilder, Type *RetTy, ArrayRef< Register > VRegs, Register DemoteReg, int FI) const
Load the returned value from the stack into virtual registers in VRegs.
bool checkReturnTypeForCallConv(MachineFunction &MF) const
Toplevel function to check the return type based on the target calling convention.
bool handleAssignments(ValueHandler &Handler, SmallVectorImpl< ArgInfo > &Args, CCState &CCState, SmallVectorImpl< CCValAssign > &ArgLocs, MachineIRBuilder &MIRBuilder, ArrayRef< Register > ThisReturnRegs={}) const
Use Handler to insert code to handle the argument/return values represented by Args.
bool resultsCompatible(CallLoweringInfo &Info, MachineFunction &MF, SmallVectorImpl< ArgInfo > &InArgs, ValueAssigner &CalleeAssigner, ValueAssigner &CallerAssigner) const
void splitToValueTypes(const ArgInfo &OrigArgInfo, SmallVectorImpl< ArgInfo > &SplitArgs, const DataLayout &DL, CallingConv::ID CallConv, SmallVectorImpl< uint64_t > *Offsets=nullptr) const
Break OrigArgInfo into one or more pieces the calling convention can process, returned in SplitArgs.
virtual bool canLowerReturn(MachineFunction &MF, CallingConv::ID CallConv, SmallVectorImpl< BaseArgInfo > &Outs, bool IsVarArg) const
This hook must be implemented to check whether the return values described by Outs can fit into the r...
virtual bool isTypeIsValidForThisReturn(EVT Ty) const
For targets which support the "returned" parameter attribute, returns true if the given type is a val...
void insertSRetIncomingArgument(const Function &F, SmallVectorImpl< ArgInfo > &SplitArgs, Register &DemoteReg, MachineRegisterInfo &MRI, const DataLayout &DL) const
Insert the hidden sret ArgInfo to the beginning of SplitArgs.
ISD::ArgFlagsTy getAttributesForArgIdx(const CallBase &Call, unsigned ArgIdx) const
bool determineAndHandleAssignments(ValueHandler &Handler, ValueAssigner &Assigner, SmallVectorImpl< ArgInfo > &Args, MachineIRBuilder &MIRBuilder, CallingConv::ID CallConv, bool IsVarArg, ArrayRef< Register > ThisReturnRegs={}) const
Invoke ValueAssigner::assignArg on each of the given Args and then use Handler to move them to the as...
void insertSRetStores(MachineIRBuilder &MIRBuilder, Type *RetTy, ArrayRef< Register > VRegs, Register DemoteReg) const
Store the return value given by VRegs into stack starting at the offset specified in DemoteReg.
void addArgFlagsFromAttributes(ISD::ArgFlagsTy &Flags, const AttributeList &Attrs, unsigned OpIdx) const
Adds flags to Flags based off of the attributes in Attrs.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< ArgInfo > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
void getReturnInfo(CallingConv::ID CallConv, Type *RetTy, AttributeList Attrs, SmallVectorImpl< BaseArgInfo > &Outs, const DataLayout &DL) const
Get the type and the ArgFlags for the split components of RetTy as returned by ComputeValueVTs.
bool determineAssignments(ValueAssigner &Assigner, SmallVectorImpl< ArgInfo > &Args, CCState &CCInfo) const
Analyze the argument list in Args, using Assigner to populate CCInfo.
bool checkReturn(CCState &CCInfo, SmallVectorImpl< BaseArgInfo > &Outs, CCAssignFn *Fn) const
const TargetLowering * getTLI() const
Getter for generic TargetLowering class.
virtual bool lowerCall(MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info) const
This hook must be implemented to lower the given call instruction, including argument and return valu...
void setArgFlags(ArgInfo &Arg, unsigned OpIdx, const DataLayout &DL, const FuncInfoTy &FuncInfo) const
ISD::ArgFlagsTy getAttributesForReturn(const CallBase &Call) const
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:63
unsigned getAllocaAddrSpace() const
Definition DataLayout.h:230
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
bool isVarArg() const
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
constexpr unsigned getScalarSizeInBits() const
constexpr bool isScalar() const
constexpr LLT changeElementType(LLT NewEltTy) const
If this type is a vector, return a vector with the same number of elements but the new element type.
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr bool isPointer() const
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
constexpr ElementCount getElementCount() const
constexpr unsigned getAddressSpace() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
constexpr LLT changeElementCount(ElementCount EC) const
Return a vector or scalar with the same element type and the new element count.
constexpr LLT getScalarType() const
constexpr TypeSize getSizeInBytes() const
Returns the total size of the type in bytes, i.e.
This is an important class for using LLVM in a threaded context.
Definition LLVMContext.h:68
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:33
Machine Value Type.
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
static LLVM_ABI MVT getVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Helper class to build MachineInstr.
MachineInstrBuilder buildGlobalValue(const DstOp &Res, const GlobalValue *GV)
Build and insert Res = G_GLOBAL_VALUE GV.
std::optional< MachineInstrBuilder > materializeObjectPtrOffset(Register &Res, Register Op0, const LLT ValueTy, uint64_t Value)
Materialize and insert an instruction with appropriate flags for addressing some offset of an object,...
MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert Res = G_LOAD Addr, MMO.
MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert G_STORE Val, Addr, MMO.
MachineInstrBuilder buildFrameIndex(const DstOp &Res, int Idx)
Build and insert Res = G_FRAME_INDEX Idx.
MachineFunction & getMF()
Getter for the function we currently build.
MachineInstrBuilder buildAssertAlign(const DstOp &Res, const SrcOp &Op, Align AlignVal)
Build and insert Res = G_ASSERT_ALIGN Op, AlignVal.
MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op)
Build and insert Res = COPY Op.
const DataLayout & getDataLayout() const
Register getReg(unsigned Idx) const
Get the register for the operand index.
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
const MachineOperand & getOperand(unsigned i) const
A description of a memory reference used in the backend.
@ MODereferenceable
The memory access is dereferenceable (i.e., doesn't trap).
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
Register getReg() const
getReg - Returns the register number.
static MachineOperand CreateGA(const GlobalValue *GV, int64_t Offset, unsigned TargetFlags=0)
static bool clobbersPhysReg(const uint32_t *RegMask, MCRegister PhysReg)
clobbersPhysReg - Returns true if this RegMask clobbers PhysReg.
static MachineOperand CreateReg(Register Reg, bool isDef, bool isImp=false, bool isKill=false, bool isDead=false, bool isUndef=false, bool isEarlyClobber=false, unsigned SubReg=0, bool isDebug=false, bool isInternalRead=false, bool isRenamable=false)
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Class to represent pointers.
static LLVM_ABI PointerType * get(Type *ElementType, unsigned AddressSpace)
This constructs a pointer to an object of the specified type in a numbered address space.
Wrapper class representing virtual and physical registers.
Definition Register.h:19
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void reserve(size_type N)
iterator insert(iterator I, T &&Elt)
void truncate(size_type N)
Like resize, but requires that N is less than size().
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
virtual Align getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Returns the desired alignment for ByVal or InAlloca aggregate function arguments in the caller parame...
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition Type.h:352
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition Type.h:128
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:701
constexpr ScalarTy getFixedValue() const
Definition TypeSize.h:200
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:216
static constexpr bool isKnownGT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
Definition TypeSize.h:223
CallInst * Call
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:477
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:649
bool CCAssignFn(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, Type *OrigTy, CCState &State)
CCAssignFn - This function assigns a location for Val, updating State to reflect the change.
void * PointerTy
LLVM_ABI MachineInstr * getDefIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI)
Find the def instruction for Reg, folding away any trivial copies.
Definition Utils.cpp:492
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:548
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
Definition MathExtras.h:399
LLVM_ABI LLVM_READNONE LLT getCoverTy(LLT OrigTy, LLT TargetTy)
Return smallest type that covers both OrigTy and TargetTy and is multiple of TargetTy.
Definition Utils.cpp:1256
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:155
bool isInTailCallPosition(const CallBase &Call, const TargetMachine &TM, bool ReturnsFirstArg=false)
Test if the given instruction is in a position to be optimized with a tail-call.
Definition Analysis.cpp:543
void ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL, Type *Ty, SmallVectorImpl< EVT > &ValueVTs, SmallVectorImpl< EVT > *MemVTs, SmallVectorImpl< TypeSize > *Offsets=nullptr, TypeSize StartingOffset=TypeSize::getZero())
ComputeValueVTs - Given an LLVM IR type, compute a sequence of EVTs that represent all the individual...
Definition Analysis.cpp:119
ArrayRef(const T &OneElt) -> ArrayRef< T >
OutputIt copy(R &&Range, OutputIt Out)
Definition STLExtras.h:1837
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:565
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition Alignment.h:212
LLVM_ABI LLVM_READNONE LLT getGCDType(LLT OrigTy, LLT TargetTy)
Return a type where the total size is the greatest common divisor of OrigTy and TargetTy.
Definition Utils.cpp:1277
LLVM_ABI LLT getLLTForType(Type &Ty, const DataLayout &DL)
Construct a low-level type based on an LLVM type.
LLVM_ABI Align inferAlignFromPtrInfo(MachineFunction &MF, const MachinePointerInfo &MPO)
Definition Utils.cpp:899
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
const Value * OrigValue
Optionally track the original IR value for the argument.
SmallVector< Register, 4 > Regs
unsigned OrigArgIndex
Index original Function's argument.
static const unsigned NoArgIndex
Sentinel value for implicit machine-level input arguments.
SmallVector< ISD::ArgFlagsTy, 4 > Flags
void assignValueToReg(Register ValVReg, Register PhysReg, const CCValAssign &VA) override
Provides a default implementation for argument handling.
Register buildExtensionHint(const CCValAssign &VA, Register SrcReg, LLT NarrowTy)
Insert G_ASSERT_ZEXT/G_ASSERT_SEXT or other hint instruction based on VA, returning the new register ...
Argument handling is mostly uniform between the four places that make these decisions: function forma...
virtual bool assignArg(unsigned ValNo, EVT OrigVT, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, const ArgInfo &Info, ISD::ArgFlagsTy Flags, CCState &State)
Wrap call to (typically tablegenerated CCAssignFn).
void copyArgumentMemory(const ArgInfo &Arg, Register DstPtr, Register SrcPtr, const MachinePointerInfo &DstPtrInfo, Align DstAlign, const MachinePointerInfo &SrcPtrInfo, Align SrcAlign, uint64_t MemSize, CCValAssign &VA) const
Do a memory copy of MemSize bytes from SrcPtr to DstPtr.
virtual Register getStackAddress(uint64_t MemSize, int64_t Offset, MachinePointerInfo &MPO, ISD::ArgFlagsTy Flags)=0
Materialize a VReg containing the address of the specified stack-based object.
virtual LLT getStackValueStoreType(const DataLayout &DL, const CCValAssign &VA, ISD::ArgFlagsTy Flags) const
Return the in-memory size to write for the argument at VA.
bool isIncomingArgumentHandler() const
Returns true if the handler is dealing with incoming arguments, i.e.
virtual void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, const MachinePointerInfo &MPO, const CCValAssign &VA)=0
The specified value has been assigned to a stack location.
Register extendRegister(Register ValReg, const CCValAssign &VA, unsigned MaxSizeBits=0)
Extend a register to the location type given in VA, capped at extending to at most MaxSize bits.
virtual unsigned assignCustomValue(ArgInfo &Arg, ArrayRef< CCValAssign > VAs, std::function< void()> *Thunk=nullptr)
Handle custom values, which may be passed into one or more of VAs.
virtual void assignValueToReg(Register ValVReg, Register PhysReg, const CCValAssign &VA)=0
The specified value has been assigned to a physical register, handle the appropriate COPY (either to ...
Extended Value Type.
Definition ValueTypes.h:35
static LLVM_ABI EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
This class contains a discriminated union of information about pointers in memory operands,...
static LLVM_ABI MachinePointerInfo getUnknownStack(MachineFunction &MF)
Stack memory without other information.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:117