LLVM 18.0.0git
SCCPSolver.cpp
Go to the documentation of this file.
1//===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// \file
10// This file implements the Sparse Conditional Constant Propagation (SCCP)
11// utility.
12//
13//===----------------------------------------------------------------------===//
14
21#include "llvm/IR/InstVisitor.h"
23#include "llvm/Support/Debug.h"
27#include <cassert>
28#include <utility>
29#include <vector>
30
31using namespace llvm;
32
33#define DEBUG_TYPE "sccp"
34
35// The maximum number of range extensions allowed for operations requiring
36// widening.
37static const unsigned MaxNumRangeExtensions = 10;
38
39/// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
43}
44
46 bool UndefAllowed = true) {
47 assert(Ty->isIntOrIntVectorTy() && "Should be int or int vector");
48 if (LV.isConstantRange(UndefAllowed))
49 return LV.getConstantRange();
50 return ConstantRange::getFull(Ty->getScalarSizeInBits());
51}
52
53namespace llvm {
54
56 return LV.isConstant() ||
58}
59
61 return !LV.isUnknownOrUndef() && !SCCPSolver::isConstant(LV);
62}
63
66 return true;
67
68 // Some instructions can be handled but are rejected above. Catch
69 // those cases by falling through to here.
70 // TODO: Mark globals as being constant earlier, so
71 // TODO: wouldInstructionBeTriviallyDead() knows that atomic loads
72 // TODO: are safe to remove.
73 return isa<LoadInst>(I);
74}
75
77 Constant *Const = getConstantOrNull(V);
78 if (!Const)
79 return false;
80 // Replacing `musttail` instructions with constant breaks `musttail` invariant
81 // unless the call itself can be removed.
82 // Calls with "clang.arc.attachedcall" implicitly use the return value and
83 // those uses cannot be updated with a constant.
84 CallBase *CB = dyn_cast<CallBase>(V);
85 if (CB && ((CB->isMustTailCall() &&
89
90 // Don't zap returns of the callee
91 if (F)
93
94 LLVM_DEBUG(dbgs() << " Can\'t treat the result of call " << *CB
95 << " as a constant\n");
96 return false;
97 }
98
99 LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
100
101 // Replaces all of the uses of a variable with uses of the constant.
102 V->replaceAllUsesWith(Const);
103 return true;
104}
105
106/// Try to use \p Inst's value range from \p Solver to infer the NUW flag.
107static bool refineInstruction(SCCPSolver &Solver,
108 const SmallPtrSetImpl<Value *> &InsertedValues,
109 Instruction &Inst) {
110 if (!isa<OverflowingBinaryOperator>(Inst))
111 return false;
112
113 auto GetRange = [&Solver, &InsertedValues](Value *Op) {
114 if (auto *Const = dyn_cast<ConstantInt>(Op))
115 return ConstantRange(Const->getValue());
116 if (isa<Constant>(Op) || InsertedValues.contains(Op)) {
117 unsigned Bitwidth = Op->getType()->getScalarSizeInBits();
118 return ConstantRange::getFull(Bitwidth);
119 }
120 return getConstantRange(Solver.getLatticeValueFor(Op), Op->getType(),
121 /*UndefAllowed=*/false);
122 };
123 auto RangeA = GetRange(Inst.getOperand(0));
124 auto RangeB = GetRange(Inst.getOperand(1));
125 bool Changed = false;
126 if (!Inst.hasNoUnsignedWrap()) {
128 Instruction::BinaryOps(Inst.getOpcode()), RangeB,
130 if (NUWRange.contains(RangeA)) {
132 Changed = true;
133 }
134 }
135 if (!Inst.hasNoSignedWrap()) {
138 if (NSWRange.contains(RangeA)) {
139 Inst.setHasNoSignedWrap();
140 Changed = true;
141 }
142 }
143
144 return Changed;
145}
146
147/// Try to replace signed instructions with their unsigned equivalent.
148static bool replaceSignedInst(SCCPSolver &Solver,
149 SmallPtrSetImpl<Value *> &InsertedValues,
150 Instruction &Inst) {
151 // Determine if a signed value is known to be >= 0.
152 auto isNonNegative = [&Solver](Value *V) {
153 // If this value was constant-folded, it may not have a solver entry.
154 // Handle integers. Otherwise, return false.
155 if (auto *C = dyn_cast<Constant>(V)) {
156 auto *CInt = dyn_cast<ConstantInt>(C);
157 return CInt && !CInt->isNegative();
158 }
159 const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
160 return IV.isConstantRange(/*UndefAllowed=*/false) &&
161 IV.getConstantRange().isAllNonNegative();
162 };
163
164 Instruction *NewInst = nullptr;
165 switch (Inst.getOpcode()) {
166 // Note: We do not fold sitofp -> uitofp here because that could be more
167 // expensive in codegen and may not be reversible in the backend.
168 case Instruction::SExt: {
169 // If the source value is not negative, this is a zext.
170 Value *Op0 = Inst.getOperand(0);
171 if (InsertedValues.count(Op0) || !isNonNegative(Op0))
172 return false;
173 NewInst = new ZExtInst(Op0, Inst.getType(), "", &Inst);
174 break;
175 }
176 case Instruction::AShr: {
177 // If the shifted value is not negative, this is a logical shift right.
178 Value *Op0 = Inst.getOperand(0);
179 if (InsertedValues.count(Op0) || !isNonNegative(Op0))
180 return false;
181 NewInst = BinaryOperator::CreateLShr(Op0, Inst.getOperand(1), "", &Inst);
182 break;
183 }
184 case Instruction::SDiv:
185 case Instruction::SRem: {
186 // If both operands are not negative, this is the same as udiv/urem.
187 Value *Op0 = Inst.getOperand(0), *Op1 = Inst.getOperand(1);
188 if (InsertedValues.count(Op0) || InsertedValues.count(Op1) ||
189 !isNonNegative(Op0) || !isNonNegative(Op1))
190 return false;
191 auto NewOpcode = Inst.getOpcode() == Instruction::SDiv ? Instruction::UDiv
192 : Instruction::URem;
193 NewInst = BinaryOperator::Create(NewOpcode, Op0, Op1, "", &Inst);
194 break;
195 }
196 default:
197 return false;
198 }
199
200 // Wire up the new instruction and update state.
201 assert(NewInst && "Expected replacement instruction");
202 NewInst->takeName(&Inst);
203 InsertedValues.insert(NewInst);
204 Inst.replaceAllUsesWith(NewInst);
205 Solver.removeLatticeValueFor(&Inst);
206 Inst.eraseFromParent();
207 return true;
208}
209
211 SmallPtrSetImpl<Value *> &InsertedValues,
212 Statistic &InstRemovedStat,
213 Statistic &InstReplacedStat) {
214 bool MadeChanges = false;
215 for (Instruction &Inst : make_early_inc_range(BB)) {
216 if (Inst.getType()->isVoidTy())
217 continue;
218 if (tryToReplaceWithConstant(&Inst)) {
219 if (canRemoveInstruction(&Inst))
220 Inst.eraseFromParent();
221
222 MadeChanges = true;
223 ++InstRemovedStat;
224 } else if (replaceSignedInst(*this, InsertedValues, Inst)) {
225 MadeChanges = true;
226 ++InstReplacedStat;
227 } else if (refineInstruction(*this, InsertedValues, Inst)) {
228 MadeChanges = true;
229 }
230 }
231 return MadeChanges;
232}
233
235 BasicBlock *&NewUnreachableBB) const {
236 SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors;
237 bool HasNonFeasibleEdges = false;
238 for (BasicBlock *Succ : successors(BB)) {
239 if (isEdgeFeasible(BB, Succ))
240 FeasibleSuccessors.insert(Succ);
241 else
242 HasNonFeasibleEdges = true;
243 }
244
245 // All edges feasible, nothing to do.
246 if (!HasNonFeasibleEdges)
247 return false;
248
249 // SCCP can only determine non-feasible edges for br, switch and indirectbr.
250 Instruction *TI = BB->getTerminator();
251 assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
252 isa<IndirectBrInst>(TI)) &&
253 "Terminator must be a br, switch or indirectbr");
254
255 if (FeasibleSuccessors.size() == 0) {
256 // Branch on undef/poison, replace with unreachable.
259 for (BasicBlock *Succ : successors(BB)) {
260 Succ->removePredecessor(BB);
261 if (SeenSuccs.insert(Succ).second)
262 Updates.push_back({DominatorTree::Delete, BB, Succ});
263 }
264 TI->eraseFromParent();
265 new UnreachableInst(BB->getContext(), BB);
266 DTU.applyUpdatesPermissive(Updates);
267 } else if (FeasibleSuccessors.size() == 1) {
268 // Replace with an unconditional branch to the only feasible successor.
269 BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin();
271 bool HaveSeenOnlyFeasibleSuccessor = false;
272 for (BasicBlock *Succ : successors(BB)) {
273 if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) {
274 // Don't remove the edge to the only feasible successor the first time
275 // we see it. We still do need to remove any multi-edges to it though.
276 HaveSeenOnlyFeasibleSuccessor = true;
277 continue;
278 }
279
280 Succ->removePredecessor(BB);
281 Updates.push_back({DominatorTree::Delete, BB, Succ});
282 }
283
284 BranchInst::Create(OnlyFeasibleSuccessor, BB);
285 TI->eraseFromParent();
286 DTU.applyUpdatesPermissive(Updates);
287 } else if (FeasibleSuccessors.size() > 1) {
288 SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI));
290
291 // If the default destination is unfeasible it will never be taken. Replace
292 // it with a new block with a single Unreachable instruction.
293 BasicBlock *DefaultDest = SI->getDefaultDest();
294 if (!FeasibleSuccessors.contains(DefaultDest)) {
295 if (!NewUnreachableBB) {
296 NewUnreachableBB =
297 BasicBlock::Create(DefaultDest->getContext(), "default.unreachable",
298 DefaultDest->getParent(), DefaultDest);
299 new UnreachableInst(DefaultDest->getContext(), NewUnreachableBB);
300 }
301
302 SI->setDefaultDest(NewUnreachableBB);
303 Updates.push_back({DominatorTree::Delete, BB, DefaultDest});
304 Updates.push_back({DominatorTree::Insert, BB, NewUnreachableBB});
305 }
306
307 for (auto CI = SI->case_begin(); CI != SI->case_end();) {
308 if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) {
309 ++CI;
310 continue;
311 }
312
313 BasicBlock *Succ = CI->getCaseSuccessor();
314 Succ->removePredecessor(BB);
315 Updates.push_back({DominatorTree::Delete, BB, Succ});
316 SI.removeCase(CI);
317 // Don't increment CI, as we removed a case.
318 }
319
320 DTU.applyUpdatesPermissive(Updates);
321 } else {
322 llvm_unreachable("Must have at least one feasible successor");
323 }
324 return true;
325}
326
327/// Helper class for SCCPSolver. This implements the instruction visitor and
328/// holds all the state.
329class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> {
330 const DataLayout &DL;
331 std::function<const TargetLibraryInfo &(Function &)> GetTLI;
332 SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
334 ValueState; // The state each value is in.
335
336 /// StructValueState - This maintains ValueState for values that have
337 /// StructType, for example for formal arguments, calls, insertelement, etc.
339
340 /// GlobalValue - If we are tracking any values for the contents of a global
341 /// variable, we keep a mapping from the constant accessor to the element of
342 /// the global, to the currently known value. If the value becomes
343 /// overdefined, it's entry is simply removed from this map.
345
346 /// TrackedRetVals - If we are tracking arguments into and the return
347 /// value out of a function, it will have an entry in this map, indicating
348 /// what the known return value for the function is.
350
351 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
352 /// that return multiple values.
354 TrackedMultipleRetVals;
355
356 /// The set of values whose lattice has been invalidated.
357 /// Populated by resetLatticeValueFor(), cleared after resolving undefs.
358 DenseSet<Value *> Invalidated;
359
360 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
361 /// represented here for efficient lookup.
362 SmallPtrSet<Function *, 16> MRVFunctionsTracked;
363
364 /// A list of functions whose return cannot be modified.
365 SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
366
367 /// TrackingIncomingArguments - This is the set of functions for whose
368 /// arguments we make optimistic assumptions about and try to prove as
369 /// constants.
370 SmallPtrSet<Function *, 16> TrackingIncomingArguments;
371
372 /// The reason for two worklists is that overdefined is the lowest state
373 /// on the lattice, and moving things to overdefined as fast as possible
374 /// makes SCCP converge much faster.
375 ///
376 /// By having a separate worklist, we accomplish this because everything
377 /// possibly overdefined will become overdefined at the soonest possible
378 /// point.
379 SmallVector<Value *, 64> OverdefinedInstWorkList;
380 SmallVector<Value *, 64> InstWorkList;
381
382 // The BasicBlock work list
384
385 /// KnownFeasibleEdges - Entries in this set are edges which have already had
386 /// PHI nodes retriggered.
387 using Edge = std::pair<BasicBlock *, BasicBlock *>;
388 DenseSet<Edge> KnownFeasibleEdges;
389
391
393
394 LLVMContext &Ctx;
395
396private:
397 ConstantInt *getConstantInt(const ValueLatticeElement &IV, Type *Ty) const {
398 return dyn_cast_or_null<ConstantInt>(getConstant(IV, Ty));
399 }
400
401 // pushToWorkList - Helper for markConstant/markOverdefined
402 void pushToWorkList(ValueLatticeElement &IV, Value *V);
403
404 // Helper to push \p V to the worklist, after updating it to \p IV. Also
405 // prints a debug message with the updated value.
406 void pushToWorkListMsg(ValueLatticeElement &IV, Value *V);
407
408 // markConstant - Make a value be marked as "constant". If the value
409 // is not already a constant, add it to the instruction work list so that
410 // the users of the instruction are updated later.
411 bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
412 bool MayIncludeUndef = false);
413
414 bool markConstant(Value *V, Constant *C) {
415 assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
416 return markConstant(ValueState[V], V, C);
417 }
418
419 // markOverdefined - Make a value be marked as "overdefined". If the
420 // value is not already overdefined, add it to the overdefined instruction
421 // work list so that the users of the instruction are updated later.
422 bool markOverdefined(ValueLatticeElement &IV, Value *V);
423
424 /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
425 /// changes.
426 bool mergeInValue(ValueLatticeElement &IV, Value *V,
427 ValueLatticeElement MergeWithV,
429 /*MayIncludeUndef=*/false, /*CheckWiden=*/false});
430
431 bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
433 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
434 assert(!V->getType()->isStructTy() &&
435 "non-structs should use markConstant");
436 return mergeInValue(ValueState[V], V, MergeWithV, Opts);
437 }
438
439 /// getValueState - Return the ValueLatticeElement object that corresponds to
440 /// the value. This function handles the case when the value hasn't been seen
441 /// yet by properly seeding constants etc.
442 ValueLatticeElement &getValueState(Value *V) {
443 assert(!V->getType()->isStructTy() && "Should use getStructValueState");
444
445 auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
446 ValueLatticeElement &LV = I.first->second;
447
448 if (!I.second)
449 return LV; // Common case, already in the map.
450
451 if (auto *C = dyn_cast<Constant>(V))
452 LV.markConstant(C); // Constants are constant
453
454 // All others are unknown by default.
455 return LV;
456 }
457
458 /// getStructValueState - Return the ValueLatticeElement object that
459 /// corresponds to the value/field pair. This function handles the case when
460 /// the value hasn't been seen yet by properly seeding constants etc.
461 ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
462 assert(V->getType()->isStructTy() && "Should use getValueState");
463 assert(i < cast<StructType>(V->getType())->getNumElements() &&
464 "Invalid element #");
465
466 auto I = StructValueState.insert(
467 std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
468 ValueLatticeElement &LV = I.first->second;
469
470 if (!I.second)
471 return LV; // Common case, already in the map.
472
473 if (auto *C = dyn_cast<Constant>(V)) {
474 Constant *Elt = C->getAggregateElement(i);
475
476 if (!Elt)
477 LV.markOverdefined(); // Unknown sort of constant.
478 else
479 LV.markConstant(Elt); // Constants are constant.
480 }
481
482 // All others are underdefined by default.
483 return LV;
484 }
485
486 /// Traverse the use-def chain of \p Call, marking itself and its users as
487 /// "unknown" on the way.
488 void invalidate(CallBase *Call) {
490 ToInvalidate.push_back(Call);
491
492 while (!ToInvalidate.empty()) {
493 Instruction *Inst = ToInvalidate.pop_back_val();
494
495 if (!Invalidated.insert(Inst).second)
496 continue;
497
498 if (!BBExecutable.count(Inst->getParent()))
499 continue;
500
501 Value *V = nullptr;
502 // For return instructions we need to invalidate the tracked returns map.
503 // Anything else has its lattice in the value map.
504 if (auto *RetInst = dyn_cast<ReturnInst>(Inst)) {
505 Function *F = RetInst->getParent()->getParent();
506 if (auto It = TrackedRetVals.find(F); It != TrackedRetVals.end()) {
507 It->second = ValueLatticeElement();
508 V = F;
509 } else if (MRVFunctionsTracked.count(F)) {
510 auto *STy = cast<StructType>(F->getReturnType());
511 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
512 TrackedMultipleRetVals[{F, I}] = ValueLatticeElement();
513 V = F;
514 }
515 } else if (auto *STy = dyn_cast<StructType>(Inst->getType())) {
516 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
517 if (auto It = StructValueState.find({Inst, I});
518 It != StructValueState.end()) {
519 It->second = ValueLatticeElement();
520 V = Inst;
521 }
522 }
523 } else if (auto It = ValueState.find(Inst); It != ValueState.end()) {
524 It->second = ValueLatticeElement();
525 V = Inst;
526 }
527
528 if (V) {
529 LLVM_DEBUG(dbgs() << "Invalidated lattice for " << *V << "\n");
530
531 for (User *U : V->users())
532 if (auto *UI = dyn_cast<Instruction>(U))
533 ToInvalidate.push_back(UI);
534
535 auto It = AdditionalUsers.find(V);
536 if (It != AdditionalUsers.end())
537 for (User *U : It->second)
538 if (auto *UI = dyn_cast<Instruction>(U))
539 ToInvalidate.push_back(UI);
540 }
541 }
542 }
543
544 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
545 /// work list if it is not already executable.
546 bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
547
548 // getFeasibleSuccessors - Return a vector of booleans to indicate which
549 // successors are reachable from a given terminator instruction.
550 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
551
552 // OperandChangedState - This method is invoked on all of the users of an
553 // instruction that was just changed state somehow. Based on this
554 // information, we need to update the specified user of this instruction.
555 void operandChangedState(Instruction *I) {
556 if (BBExecutable.count(I->getParent())) // Inst is executable?
557 visit(*I);
558 }
559
560 // Add U as additional user of V.
561 void addAdditionalUser(Value *V, User *U) {
562 auto Iter = AdditionalUsers.insert({V, {}});
563 Iter.first->second.insert(U);
564 }
565
566 // Mark I's users as changed, including AdditionalUsers.
567 void markUsersAsChanged(Value *I) {
568 // Functions include their arguments in the use-list. Changed function
569 // values mean that the result of the function changed. We only need to
570 // update the call sites with the new function result and do not have to
571 // propagate the call arguments.
572 if (isa<Function>(I)) {
573 for (User *U : I->users()) {
574 if (auto *CB = dyn_cast<CallBase>(U))
575 handleCallResult(*CB);
576 }
577 } else {
578 for (User *U : I->users())
579 if (auto *UI = dyn_cast<Instruction>(U))
580 operandChangedState(UI);
581 }
582
583 auto Iter = AdditionalUsers.find(I);
584 if (Iter != AdditionalUsers.end()) {
585 // Copy additional users before notifying them of changes, because new
586 // users may be added, potentially invalidating the iterator.
588 for (User *U : Iter->second)
589 if (auto *UI = dyn_cast<Instruction>(U))
590 ToNotify.push_back(UI);
591 for (Instruction *UI : ToNotify)
592 operandChangedState(UI);
593 }
594 }
595 void handleCallOverdefined(CallBase &CB);
596 void handleCallResult(CallBase &CB);
597 void handleCallArguments(CallBase &CB);
598 void handleExtractOfWithOverflow(ExtractValueInst &EVI,
599 const WithOverflowInst *WO, unsigned Idx);
600
601private:
602 friend class InstVisitor<SCCPInstVisitor>;
603
604 // visit implementations - Something changed in this instruction. Either an
605 // operand made a transition, or the instruction is newly executable. Change
606 // the value type of I to reflect these changes if appropriate.
607 void visitPHINode(PHINode &I);
608
609 // Terminators
610
611 void visitReturnInst(ReturnInst &I);
612 void visitTerminator(Instruction &TI);
613
614 void visitCastInst(CastInst &I);
615 void visitSelectInst(SelectInst &I);
616 void visitUnaryOperator(Instruction &I);
617 void visitFreezeInst(FreezeInst &I);
618 void visitBinaryOperator(Instruction &I);
619 void visitCmpInst(CmpInst &I);
620 void visitExtractValueInst(ExtractValueInst &EVI);
621 void visitInsertValueInst(InsertValueInst &IVI);
622
623 void visitCatchSwitchInst(CatchSwitchInst &CPI) {
624 markOverdefined(&CPI);
625 visitTerminator(CPI);
626 }
627
628 // Instructions that cannot be folded away.
629
630 void visitStoreInst(StoreInst &I);
631 void visitLoadInst(LoadInst &I);
632 void visitGetElementPtrInst(GetElementPtrInst &I);
633
634 void visitInvokeInst(InvokeInst &II) {
635 visitCallBase(II);
636 visitTerminator(II);
637 }
638
639 void visitCallBrInst(CallBrInst &CBI) {
640 visitCallBase(CBI);
641 visitTerminator(CBI);
642 }
643
644 void visitCallBase(CallBase &CB);
645 void visitResumeInst(ResumeInst &I) { /*returns void*/
646 }
647 void visitUnreachableInst(UnreachableInst &I) { /*returns void*/
648 }
649 void visitFenceInst(FenceInst &I) { /*returns void*/
650 }
651
652 void visitInstruction(Instruction &I);
653
654public:
656 FnPredicateInfo.insert({&F, std::make_unique<PredicateInfo>(F, DT, AC)});
657 }
658
659 void visitCallInst(CallInst &I) { visitCallBase(I); }
660
662
664 auto It = FnPredicateInfo.find(I->getParent()->getParent());
665 if (It == FnPredicateInfo.end())
666 return nullptr;
667 return It->second->getPredicateInfoFor(I);
668 }
669
671 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
672 LLVMContext &Ctx)
673 : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {}
674
676 // We only track the contents of scalar globals.
677 if (GV->getValueType()->isSingleValueType()) {
678 ValueLatticeElement &IV = TrackedGlobals[GV];
679 IV.markConstant(GV->getInitializer());
680 }
681 }
682
684 // Add an entry, F -> undef.
685 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
686 MRVFunctionsTracked.insert(F);
687 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
688 TrackedMultipleRetVals.insert(
689 std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
690 } else if (!F->getReturnType()->isVoidTy())
691 TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
692 }
693
695 MustPreserveReturnsInFunctions.insert(F);
696 }
697
699 return MustPreserveReturnsInFunctions.count(F);
700 }
701
703 TrackingIncomingArguments.insert(F);
704 }
705
707 return TrackingIncomingArguments.count(F);
708 }
709
710 void solve();
711
713
715
717 return BBExecutable.count(BB);
718 }
719
720 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
721
722 std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
723 std::vector<ValueLatticeElement> StructValues;
724 auto *STy = dyn_cast<StructType>(V->getType());
725 assert(STy && "getStructLatticeValueFor() can be called only on structs");
726 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
727 auto I = StructValueState.find(std::make_pair(V, i));
728 assert(I != StructValueState.end() && "Value not in valuemap!");
729 StructValues.push_back(I->second);
730 }
731 return StructValues;
732 }
733
734 void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
735
736 /// Invalidate the Lattice Value of \p Call and its users after specializing
737 /// the call. Then recompute it.
739 // Calls to void returning functions do not need invalidation.
740 Function *F = Call->getCalledFunction();
741 (void)F;
742 assert(!F->getReturnType()->isVoidTy() &&
743 (TrackedRetVals.count(F) || MRVFunctionsTracked.count(F)) &&
744 "All non void specializations should be tracked");
745 invalidate(Call);
746 handleCallResult(*Call);
747 }
748
750 assert(!V->getType()->isStructTy() &&
751 "Should use getStructLatticeValueFor");
753 ValueState.find(V);
754 assert(I != ValueState.end() &&
755 "V not found in ValueState nor Paramstate map!");
756 return I->second;
757 }
758
760 return TrackedRetVals;
761 }
762
764 return TrackedGlobals;
765 }
766
768 return MRVFunctionsTracked;
769 }
770
772 if (auto *STy = dyn_cast<StructType>(V->getType()))
773 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
774 markOverdefined(getStructValueState(V, i), V);
775 else
776 markOverdefined(ValueState[V], V);
777 }
778
780
781 Constant *getConstant(const ValueLatticeElement &LV, Type *Ty) const;
782
784
786 return TrackingIncomingArguments;
787 }
788
790 const SmallVectorImpl<ArgInfo> &Args);
791
793 for (auto &BB : *F)
794 BBExecutable.erase(&BB);
795 }
796
798 bool ResolvedUndefs = true;
799 while (ResolvedUndefs) {
800 solve();
801 ResolvedUndefs = false;
802 for (Function &F : M)
803 ResolvedUndefs |= resolvedUndefsIn(F);
804 }
805 }
806
808 bool ResolvedUndefs = true;
809 while (ResolvedUndefs) {
810 solve();
811 ResolvedUndefs = false;
812 for (Function *F : WorkList)
813 ResolvedUndefs |= resolvedUndefsIn(*F);
814 }
815 }
816
818 bool ResolvedUndefs = true;
819 while (ResolvedUndefs) {
820 solve();
821 ResolvedUndefs = false;
822 for (Value *V : Invalidated)
823 if (auto *I = dyn_cast<Instruction>(V))
824 ResolvedUndefs |= resolvedUndef(*I);
825 }
826 Invalidated.clear();
827 }
828};
829
830} // namespace llvm
831
833 if (!BBExecutable.insert(BB).second)
834 return false;
835 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
836 BBWorkList.push_back(BB); // Add the block to the work list!
837 return true;
838}
839
840void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) {
841 if (IV.isOverdefined()) {
842 if (OverdefinedInstWorkList.empty() || OverdefinedInstWorkList.back() != V)
843 OverdefinedInstWorkList.push_back(V);
844 return;
845 }
846 if (InstWorkList.empty() || InstWorkList.back() != V)
847 InstWorkList.push_back(V);
848}
849
850void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
851 LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
852 pushToWorkList(IV, V);
853}
854
855bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V,
856 Constant *C, bool MayIncludeUndef) {
857 if (!IV.markConstant(C, MayIncludeUndef))
858 return false;
859 LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
860 pushToWorkList(IV, V);
861 return true;
862}
863
864bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) {
865 if (!IV.markOverdefined())
866 return false;
867
868 LLVM_DEBUG(dbgs() << "markOverdefined: ";
869 if (auto *F = dyn_cast<Function>(V)) dbgs()
870 << "Function '" << F->getName() << "'\n";
871 else dbgs() << *V << '\n');
872 // Only instructions go on the work list
873 pushToWorkList(IV, V);
874 return true;
875}
876
878 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
879 const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
880 assert(It != TrackedMultipleRetVals.end());
881 ValueLatticeElement LV = It->second;
882 if (!SCCPSolver::isConstant(LV))
883 return false;
884 }
885 return true;
886}
887
889 Type *Ty) const {
890 if (LV.isConstant()) {
891 Constant *C = LV.getConstant();
892 assert(C->getType() == Ty && "Type mismatch");
893 return C;
894 }
895
896 if (LV.isConstantRange()) {
897 const auto &CR = LV.getConstantRange();
898 if (CR.getSingleElement())
899 return ConstantInt::get(Ty, *CR.getSingleElement());
900 }
901 return nullptr;
902}
903
905 Constant *Const = nullptr;
906 if (V->getType()->isStructTy()) {
907 std::vector<ValueLatticeElement> LVs = getStructLatticeValueFor(V);
909 return nullptr;
910 std::vector<Constant *> ConstVals;
911 auto *ST = cast<StructType>(V->getType());
912 for (unsigned I = 0, E = ST->getNumElements(); I != E; ++I) {
913 ValueLatticeElement LV = LVs[I];
914 ConstVals.push_back(SCCPSolver::isConstant(LV)
915 ? getConstant(LV, ST->getElementType(I))
916 : UndefValue::get(ST->getElementType(I)));
917 }
918 Const = ConstantStruct::get(ST, ConstVals);
919 } else {
922 return nullptr;
923 Const = SCCPSolver::isConstant(LV) ? getConstant(LV, V->getType())
924 : UndefValue::get(V->getType());
925 }
926 assert(Const && "Constant is nullptr here!");
927 return Const;
928}
929
931 const SmallVectorImpl<ArgInfo> &Args) {
932 assert(!Args.empty() && "Specialization without arguments");
933 assert(F->arg_size() == Args[0].Formal->getParent()->arg_size() &&
934 "Functions should have the same number of arguments");
935
936 auto Iter = Args.begin();
937 Function::arg_iterator NewArg = F->arg_begin();
938 Function::arg_iterator OldArg = Args[0].Formal->getParent()->arg_begin();
939 for (auto End = F->arg_end(); NewArg != End; ++NewArg, ++OldArg) {
940
941 LLVM_DEBUG(dbgs() << "SCCP: Marking argument "
942 << NewArg->getNameOrAsOperand() << "\n");
943
944 // Mark the argument constants in the new function
945 // or copy the lattice state over from the old function.
946 if (Iter != Args.end() && Iter->Formal == &*OldArg) {
947 if (auto *STy = dyn_cast<StructType>(NewArg->getType())) {
948 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
949 ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}];
950 NewValue.markConstant(Iter->Actual->getAggregateElement(I));
951 }
952 } else {
953 ValueState[&*NewArg].markConstant(Iter->Actual);
954 }
955 ++Iter;
956 } else {
957 if (auto *STy = dyn_cast<StructType>(NewArg->getType())) {
958 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
959 ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}];
960 NewValue = StructValueState[{&*OldArg, I}];
961 }
962 } else {
963 ValueLatticeElement &NewValue = ValueState[&*NewArg];
964 NewValue = ValueState[&*OldArg];
965 }
966 }
967 }
968}
969
970void SCCPInstVisitor::visitInstruction(Instruction &I) {
971 // All the instructions we don't do any special handling for just
972 // go to overdefined.
973 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
974 markOverdefined(&I);
975}
976
977bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V,
978 ValueLatticeElement MergeWithV,
980 if (IV.mergeIn(MergeWithV, Opts)) {
981 pushToWorkList(IV, V);
982 LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
983 << IV << "\n");
984 return true;
985 }
986 return false;
987}
988
989bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
990 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
991 return false; // This edge is already known to be executable!
992
993 if (!markBlockExecutable(Dest)) {
994 // If the destination is already executable, we just made an *edge*
995 // feasible that wasn't before. Revisit the PHI nodes in the block
996 // because they have potentially new operands.
997 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
998 << " -> " << Dest->getName() << '\n');
999
1000 for (PHINode &PN : Dest->phis())
1001 visitPHINode(PN);
1002 }
1003 return true;
1004}
1005
1006// getFeasibleSuccessors - Return a vector of booleans to indicate which
1007// successors are reachable from a given terminator instruction.
1008void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI,
1009 SmallVectorImpl<bool> &Succs) {
1010 Succs.resize(TI.getNumSuccessors());
1011 if (auto *BI = dyn_cast<BranchInst>(&TI)) {
1012 if (BI->isUnconditional()) {
1013 Succs[0] = true;
1014 return;
1015 }
1016
1017 ValueLatticeElement BCValue = getValueState(BI->getCondition());
1018 ConstantInt *CI = getConstantInt(BCValue, BI->getCondition()->getType());
1019 if (!CI) {
1020 // Overdefined condition variables, and branches on unfoldable constant
1021 // conditions, mean the branch could go either way.
1022 if (!BCValue.isUnknownOrUndef())
1023 Succs[0] = Succs[1] = true;
1024 return;
1025 }
1026
1027 // Constant condition variables mean the branch can only go a single way.
1028 Succs[CI->isZero()] = true;
1029 return;
1030 }
1031
1032 // We cannot analyze special terminators, so consider all successors
1033 // executable.
1034 if (TI.isSpecialTerminator()) {
1035 Succs.assign(TI.getNumSuccessors(), true);
1036 return;
1037 }
1038
1039 if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
1040 if (!SI->getNumCases()) {
1041 Succs[0] = true;
1042 return;
1043 }
1044 const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
1045 if (ConstantInt *CI =
1046 getConstantInt(SCValue, SI->getCondition()->getType())) {
1047 Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
1048 return;
1049 }
1050
1051 // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
1052 // is ready.
1053 if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
1054 const ConstantRange &Range = SCValue.getConstantRange();
1055 for (const auto &Case : SI->cases()) {
1056 const APInt &CaseValue = Case.getCaseValue()->getValue();
1057 if (Range.contains(CaseValue))
1058 Succs[Case.getSuccessorIndex()] = true;
1059 }
1060
1061 // TODO: Determine whether default case is reachable.
1062 Succs[SI->case_default()->getSuccessorIndex()] = true;
1063 return;
1064 }
1065
1066 // Overdefined or unknown condition? All destinations are executable!
1067 if (!SCValue.isUnknownOrUndef())
1068 Succs.assign(TI.getNumSuccessors(), true);
1069 return;
1070 }
1071
1072 // In case of indirect branch and its address is a blockaddress, we mark
1073 // the target as executable.
1074 if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
1075 // Casts are folded by visitCastInst.
1076 ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
1077 BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(
1078 getConstant(IBRValue, IBR->getAddress()->getType()));
1079 if (!Addr) { // Overdefined or unknown condition?
1080 // All destinations are executable!
1081 if (!IBRValue.isUnknownOrUndef())
1082 Succs.assign(TI.getNumSuccessors(), true);
1083 return;
1084 }
1085
1086 BasicBlock *T = Addr->getBasicBlock();
1087 assert(Addr->getFunction() == T->getParent() &&
1088 "Block address of a different function ?");
1089 for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
1090 // This is the target.
1091 if (IBR->getDestination(i) == T) {
1092 Succs[i] = true;
1093 return;
1094 }
1095 }
1096
1097 // If we didn't find our destination in the IBR successor list, then we
1098 // have undefined behavior. Its ok to assume no successor is executable.
1099 return;
1100 }
1101
1102 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
1103 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
1104}
1105
1106// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
1107// block to the 'To' basic block is currently feasible.
1109 // Check if we've called markEdgeExecutable on the edge yet. (We could
1110 // be more aggressive and try to consider edges which haven't been marked
1111 // yet, but there isn't any need.)
1112 return KnownFeasibleEdges.count(Edge(From, To));
1113}
1114
1115// visit Implementations - Something changed in this instruction, either an
1116// operand made a transition, or the instruction is newly executable. Change
1117// the value type of I to reflect these changes if appropriate. This method
1118// makes sure to do the following actions:
1119//
1120// 1. If a phi node merges two constants in, and has conflicting value coming
1121// from different branches, or if the PHI node merges in an overdefined
1122// value, then the PHI node becomes overdefined.
1123// 2. If a phi node merges only constants in, and they all agree on value, the
1124// PHI node becomes a constant value equal to that.
1125// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
1126// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
1127// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
1128// 6. If a conditional branch has a value that is constant, make the selected
1129// destination executable
1130// 7. If a conditional branch has a value that is overdefined, make all
1131// successors executable.
1132void SCCPInstVisitor::visitPHINode(PHINode &PN) {
1133 // If this PN returns a struct, just mark the result overdefined.
1134 // TODO: We could do a lot better than this if code actually uses this.
1135 if (PN.getType()->isStructTy())
1136 return (void)markOverdefined(&PN);
1137
1138 if (getValueState(&PN).isOverdefined())
1139 return; // Quick exit
1140
1141 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
1142 // and slow us down a lot. Just mark them overdefined.
1143 if (PN.getNumIncomingValues() > 64)
1144 return (void)markOverdefined(&PN);
1145
1146 unsigned NumActiveIncoming = 0;
1147
1148 // Look at all of the executable operands of the PHI node. If any of them
1149 // are overdefined, the PHI becomes overdefined as well. If they are all
1150 // constant, and they agree with each other, the PHI becomes the identical
1151 // constant. If they are constant and don't agree, the PHI is a constant
1152 // range. If there are no executable operands, the PHI remains unknown.
1153 ValueLatticeElement PhiState = getValueState(&PN);
1154 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1155 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
1156 continue;
1157
1158 ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
1159 PhiState.mergeIn(IV);
1160 NumActiveIncoming++;
1161 if (PhiState.isOverdefined())
1162 break;
1163 }
1164
1165 // We allow up to 1 range extension per active incoming value and one
1166 // additional extension. Note that we manually adjust the number of range
1167 // extensions to match the number of active incoming values. This helps to
1168 // limit multiple extensions caused by the same incoming value, if other
1169 // incoming values are equal.
1170 mergeInValue(&PN, PhiState,
1171 ValueLatticeElement::MergeOptions().setMaxWidenSteps(
1172 NumActiveIncoming + 1));
1173 ValueLatticeElement &PhiStateRef = getValueState(&PN);
1174 PhiStateRef.setNumRangeExtensions(
1175 std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
1176}
1177
1178void SCCPInstVisitor::visitReturnInst(ReturnInst &I) {
1179 if (I.getNumOperands() == 0)
1180 return; // ret void
1181
1182 Function *F = I.getParent()->getParent();
1183 Value *ResultOp = I.getOperand(0);
1184
1185 // If we are tracking the return value of this function, merge it in.
1186 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
1187 auto TFRVI = TrackedRetVals.find(F);
1188 if (TFRVI != TrackedRetVals.end()) {
1189 mergeInValue(TFRVI->second, F, getValueState(ResultOp));
1190 return;
1191 }
1192 }
1193
1194 // Handle functions that return multiple values.
1195 if (!TrackedMultipleRetVals.empty()) {
1196 if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
1197 if (MRVFunctionsTracked.count(F))
1198 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1199 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
1200 getStructValueState(ResultOp, i));
1201 }
1202}
1203
1204void SCCPInstVisitor::visitTerminator(Instruction &TI) {
1205 SmallVector<bool, 16> SuccFeasible;
1206 getFeasibleSuccessors(TI, SuccFeasible);
1207
1208 BasicBlock *BB = TI.getParent();
1209
1210 // Mark all feasible successors executable.
1211 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
1212 if (SuccFeasible[i])
1213 markEdgeExecutable(BB, TI.getSuccessor(i));
1214}
1215
1216void SCCPInstVisitor::visitCastInst(CastInst &I) {
1217 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1218 // discover a concrete value later.
1219 if (ValueState[&I].isOverdefined())
1220 return;
1221
1222 ValueLatticeElement OpSt = getValueState(I.getOperand(0));
1223 if (OpSt.isUnknownOrUndef())
1224 return;
1225
1226 if (Constant *OpC = getConstant(OpSt, I.getOperand(0)->getType())) {
1227 // Fold the constant as we build.
1228 Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL);
1229 markConstant(&I, C);
1230 } else if (I.getDestTy()->isIntegerTy() &&
1231 I.getSrcTy()->isIntOrIntVectorTy()) {
1232 auto &LV = getValueState(&I);
1233 ConstantRange OpRange = getConstantRange(OpSt, I.getSrcTy());
1234
1235 Type *DestTy = I.getDestTy();
1236 // Vectors where all elements have the same known constant range are treated
1237 // as a single constant range in the lattice. When bitcasting such vectors,
1238 // there is a mis-match between the width of the lattice value (single
1239 // constant range) and the original operands (vector). Go to overdefined in
1240 // that case.
1241 if (I.getOpcode() == Instruction::BitCast &&
1242 I.getOperand(0)->getType()->isVectorTy() &&
1243 OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
1244 return (void)markOverdefined(&I);
1245
1246 ConstantRange Res =
1247 OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
1248 mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
1249 } else
1250 markOverdefined(&I);
1251}
1252
1253void SCCPInstVisitor::handleExtractOfWithOverflow(ExtractValueInst &EVI,
1254 const WithOverflowInst *WO,
1255 unsigned Idx) {
1256 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
1257 ValueLatticeElement L = getValueState(LHS);
1258 ValueLatticeElement R = getValueState(RHS);
1259 addAdditionalUser(LHS, &EVI);
1260 addAdditionalUser(RHS, &EVI);
1261 if (L.isUnknownOrUndef() || R.isUnknownOrUndef())
1262 return; // Wait to resolve.
1263
1264 Type *Ty = LHS->getType();
1265 ConstantRange LR = getConstantRange(L, Ty);
1266 ConstantRange RR = getConstantRange(R, Ty);
1267 if (Idx == 0) {
1268 ConstantRange Res = LR.binaryOp(WO->getBinaryOp(), RR);
1269 mergeInValue(&EVI, ValueLatticeElement::getRange(Res));
1270 } else {
1271 assert(Idx == 1 && "Index can only be 0 or 1");
1273 WO->getBinaryOp(), RR, WO->getNoWrapKind());
1274 if (NWRegion.contains(LR))
1275 return (void)markConstant(&EVI, ConstantInt::getFalse(EVI.getType()));
1276 markOverdefined(&EVI);
1277 }
1278}
1279
1280void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) {
1281 // If this returns a struct, mark all elements over defined, we don't track
1282 // structs in structs.
1283 if (EVI.getType()->isStructTy())
1284 return (void)markOverdefined(&EVI);
1285
1286 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1287 // discover a concrete value later.
1288 if (ValueState[&EVI].isOverdefined())
1289 return (void)markOverdefined(&EVI);
1290
1291 // If this is extracting from more than one level of struct, we don't know.
1292 if (EVI.getNumIndices() != 1)
1293 return (void)markOverdefined(&EVI);
1294
1295 Value *AggVal = EVI.getAggregateOperand();
1296 if (AggVal->getType()->isStructTy()) {
1297 unsigned i = *EVI.idx_begin();
1298 if (auto *WO = dyn_cast<WithOverflowInst>(AggVal))
1299 return handleExtractOfWithOverflow(EVI, WO, i);
1300 ValueLatticeElement EltVal = getStructValueState(AggVal, i);
1301 mergeInValue(getValueState(&EVI), &EVI, EltVal);
1302 } else {
1303 // Otherwise, must be extracting from an array.
1304 return (void)markOverdefined(&EVI);
1305 }
1306}
1307
1308void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) {
1309 auto *STy = dyn_cast<StructType>(IVI.getType());
1310 if (!STy)
1311 return (void)markOverdefined(&IVI);
1312
1313 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1314 // discover a concrete value later.
1315 if (SCCPSolver::isOverdefined(ValueState[&IVI]))
1316 return (void)markOverdefined(&IVI);
1317
1318 // If this has more than one index, we can't handle it, drive all results to
1319 // undef.
1320 if (IVI.getNumIndices() != 1)
1321 return (void)markOverdefined(&IVI);
1322
1323 Value *Aggr = IVI.getAggregateOperand();
1324 unsigned Idx = *IVI.idx_begin();
1325
1326 // Compute the result based on what we're inserting.
1327 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1328 // This passes through all values that aren't the inserted element.
1329 if (i != Idx) {
1330 ValueLatticeElement EltVal = getStructValueState(Aggr, i);
1331 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
1332 continue;
1333 }
1334
1335 Value *Val = IVI.getInsertedValueOperand();
1336 if (Val->getType()->isStructTy())
1337 // We don't track structs in structs.
1338 markOverdefined(getStructValueState(&IVI, i), &IVI);
1339 else {
1340 ValueLatticeElement InVal = getValueState(Val);
1341 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
1342 }
1343 }
1344}
1345
1346void SCCPInstVisitor::visitSelectInst(SelectInst &I) {
1347 // If this select returns a struct, just mark the result overdefined.
1348 // TODO: We could do a lot better than this if code actually uses this.
1349 if (I.getType()->isStructTy())
1350 return (void)markOverdefined(&I);
1351
1352 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1353 // discover a concrete value later.
1354 if (ValueState[&I].isOverdefined())
1355 return (void)markOverdefined(&I);
1356
1357 ValueLatticeElement CondValue = getValueState(I.getCondition());
1358 if (CondValue.isUnknownOrUndef())
1359 return;
1360
1361 if (ConstantInt *CondCB =
1362 getConstantInt(CondValue, I.getCondition()->getType())) {
1363 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
1364 mergeInValue(&I, getValueState(OpVal));
1365 return;
1366 }
1367
1368 // Otherwise, the condition is overdefined or a constant we can't evaluate.
1369 // See if we can produce something better than overdefined based on the T/F
1370 // value.
1371 ValueLatticeElement TVal = getValueState(I.getTrueValue());
1372 ValueLatticeElement FVal = getValueState(I.getFalseValue());
1373
1374 bool Changed = ValueState[&I].mergeIn(TVal);
1375 Changed |= ValueState[&I].mergeIn(FVal);
1376 if (Changed)
1377 pushToWorkListMsg(ValueState[&I], &I);
1378}
1379
1380// Handle Unary Operators.
1381void SCCPInstVisitor::visitUnaryOperator(Instruction &I) {
1382 ValueLatticeElement V0State = getValueState(I.getOperand(0));
1383
1384 ValueLatticeElement &IV = ValueState[&I];
1385 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1386 // discover a concrete value later.
1388 return (void)markOverdefined(&I);
1389
1390 // If something is unknown/undef, wait for it to resolve.
1391 if (V0State.isUnknownOrUndef())
1392 return;
1393
1394 if (SCCPSolver::isConstant(V0State))
1396 I.getOpcode(), getConstant(V0State, I.getType()), DL))
1397 return (void)markConstant(IV, &I, C);
1398
1399 markOverdefined(&I);
1400}
1401
1402void SCCPInstVisitor::visitFreezeInst(FreezeInst &I) {
1403 // If this freeze returns a struct, just mark the result overdefined.
1404 // TODO: We could do a lot better than this.
1405 if (I.getType()->isStructTy())
1406 return (void)markOverdefined(&I);
1407
1408 ValueLatticeElement V0State = getValueState(I.getOperand(0));
1409 ValueLatticeElement &IV = ValueState[&I];
1410 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1411 // discover a concrete value later.
1413 return (void)markOverdefined(&I);
1414
1415 // If something is unknown/undef, wait for it to resolve.
1416 if (V0State.isUnknownOrUndef())
1417 return;
1418
1419 if (SCCPSolver::isConstant(V0State) &&
1420 isGuaranteedNotToBeUndefOrPoison(getConstant(V0State, I.getType())))
1421 return (void)markConstant(IV, &I, getConstant(V0State, I.getType()));
1422
1423 markOverdefined(&I);
1424}
1425
1426// Handle Binary Operators.
1427void SCCPInstVisitor::visitBinaryOperator(Instruction &I) {
1428 ValueLatticeElement V1State = getValueState(I.getOperand(0));
1429 ValueLatticeElement V2State = getValueState(I.getOperand(1));
1430
1431 ValueLatticeElement &IV = ValueState[&I];
1432 if (IV.isOverdefined())
1433 return;
1434
1435 // If something is undef, wait for it to resolve.
1436 if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
1437 return;
1438
1439 if (V1State.isOverdefined() && V2State.isOverdefined())
1440 return (void)markOverdefined(&I);
1441
1442 // If either of the operands is a constant, try to fold it to a constant.
1443 // TODO: Use information from notconstant better.
1444 if ((V1State.isConstant() || V2State.isConstant())) {
1445 Value *V1 = SCCPSolver::isConstant(V1State)
1446 ? getConstant(V1State, I.getOperand(0)->getType())
1447 : I.getOperand(0);
1448 Value *V2 = SCCPSolver::isConstant(V2State)
1449 ? getConstant(V2State, I.getOperand(1)->getType())
1450 : I.getOperand(1);
1451 Value *R = simplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
1452 auto *C = dyn_cast_or_null<Constant>(R);
1453 if (C) {
1454 // Conservatively assume that the result may be based on operands that may
1455 // be undef. Note that we use mergeInValue to combine the constant with
1456 // the existing lattice value for I, as different constants might be found
1457 // after one of the operands go to overdefined, e.g. due to one operand
1458 // being a special floating value.
1460 NewV.markConstant(C, /*MayIncludeUndef=*/true);
1461 return (void)mergeInValue(&I, NewV);
1462 }
1463 }
1464
1465 // Only use ranges for binary operators on integers.
1466 if (!I.getType()->isIntegerTy())
1467 return markOverdefined(&I);
1468
1469 // Try to simplify to a constant range.
1470 ConstantRange A = getConstantRange(V1State, I.getType());
1471 ConstantRange B = getConstantRange(V2State, I.getType());
1472 ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B);
1473 mergeInValue(&I, ValueLatticeElement::getRange(R));
1474
1475 // TODO: Currently we do not exploit special values that produce something
1476 // better than overdefined with an overdefined operand for vector or floating
1477 // point types, like and <4 x i32> overdefined, zeroinitializer.
1478}
1479
1480// Handle ICmpInst instruction.
1481void SCCPInstVisitor::visitCmpInst(CmpInst &I) {
1482 // Do not cache this lookup, getValueState calls later in the function might
1483 // invalidate the reference.
1484 if (SCCPSolver::isOverdefined(ValueState[&I]))
1485 return (void)markOverdefined(&I);
1486
1487 Value *Op1 = I.getOperand(0);
1488 Value *Op2 = I.getOperand(1);
1489
1490 // For parameters, use ParamState which includes constant range info if
1491 // available.
1492 auto V1State = getValueState(Op1);
1493 auto V2State = getValueState(Op2);
1494
1495 Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL);
1496 if (C) {
1498 CV.markConstant(C);
1499 mergeInValue(&I, CV);
1500 return;
1501 }
1502
1503 // If operands are still unknown, wait for it to resolve.
1504 if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
1505 !SCCPSolver::isConstant(ValueState[&I]))
1506 return;
1507
1508 markOverdefined(&I);
1509}
1510
1511// Handle getelementptr instructions. If all operands are constants then we
1512// can turn this into a getelementptr ConstantExpr.
1513void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
1514 if (SCCPSolver::isOverdefined(ValueState[&I]))
1515 return (void)markOverdefined(&I);
1516
1518 Operands.reserve(I.getNumOperands());
1519
1520 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1521 ValueLatticeElement State = getValueState(I.getOperand(i));
1522 if (State.isUnknownOrUndef())
1523 return; // Operands are not resolved yet.
1524
1525 if (SCCPSolver::isOverdefined(State))
1526 return (void)markOverdefined(&I);
1527
1528 if (Constant *C = getConstant(State, I.getOperand(i)->getType())) {
1529 Operands.push_back(C);
1530 continue;
1531 }
1532
1533 return (void)markOverdefined(&I);
1534 }
1535
1537 markConstant(&I, C);
1538}
1539
1540void SCCPInstVisitor::visitStoreInst(StoreInst &SI) {
1541 // If this store is of a struct, ignore it.
1542 if (SI.getOperand(0)->getType()->isStructTy())
1543 return;
1544
1545 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1546 return;
1547
1548 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1549 auto I = TrackedGlobals.find(GV);
1550 if (I == TrackedGlobals.end())
1551 return;
1552
1553 // Get the value we are storing into the global, then merge it.
1554 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
1556 if (I->second.isOverdefined())
1557 TrackedGlobals.erase(I); // No need to keep tracking this!
1558}
1559
1561 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1562 if (I->getType()->isIntegerTy())
1565 if (I->hasMetadata(LLVMContext::MD_nonnull))
1567 ConstantPointerNull::get(cast<PointerType>(I->getType())));
1569}
1570
1571// Handle load instructions. If the operand is a constant pointer to a constant
1572// global, we can replace the load with the loaded constant value!
1573void SCCPInstVisitor::visitLoadInst(LoadInst &I) {
1574 // If this load is of a struct or the load is volatile, just mark the result
1575 // as overdefined.
1576 if (I.getType()->isStructTy() || I.isVolatile())
1577 return (void)markOverdefined(&I);
1578
1579 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1580 // discover a concrete value later.
1581 if (ValueState[&I].isOverdefined())
1582 return (void)markOverdefined(&I);
1583
1584 ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
1585 if (PtrVal.isUnknownOrUndef())
1586 return; // The pointer is not resolved yet!
1587
1588 ValueLatticeElement &IV = ValueState[&I];
1589
1590 if (SCCPSolver::isConstant(PtrVal)) {
1591 Constant *Ptr = getConstant(PtrVal, I.getOperand(0)->getType());
1592
1593 // load null is undefined.
1594 if (isa<ConstantPointerNull>(Ptr)) {
1595 if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
1596 return (void)markOverdefined(IV, &I);
1597 else
1598 return;
1599 }
1600
1601 // Transform load (constant global) into the value loaded.
1602 if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
1603 if (!TrackedGlobals.empty()) {
1604 // If we are tracking this global, merge in the known value for it.
1605 auto It = TrackedGlobals.find(GV);
1606 if (It != TrackedGlobals.end()) {
1607 mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
1608 return;
1609 }
1610 }
1611 }
1612
1613 // Transform load from a constant into a constant if possible.
1614 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL))
1615 return (void)markConstant(IV, &I, C);
1616 }
1617
1618 // Fall back to metadata.
1619 mergeInValue(&I, getValueFromMetadata(&I));
1620}
1621
1622void SCCPInstVisitor::visitCallBase(CallBase &CB) {
1623 handleCallResult(CB);
1624 handleCallArguments(CB);
1625}
1626
1627void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) {
1629
1630 // Void return and not tracking callee, just bail.
1631 if (CB.getType()->isVoidTy())
1632 return;
1633
1634 // Always mark struct return as overdefined.
1635 if (CB.getType()->isStructTy())
1636 return (void)markOverdefined(&CB);
1637
1638 // Otherwise, if we have a single return value case, and if the function is
1639 // a declaration, maybe we can constant fold it.
1640 if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
1642 for (const Use &A : CB.args()) {
1643 if (A.get()->getType()->isStructTy())
1644 return markOverdefined(&CB); // Can't handle struct args.
1645 if (A.get()->getType()->isMetadataTy())
1646 continue; // Carried in CB, not allowed in Operands.
1647 ValueLatticeElement State = getValueState(A);
1648
1649 if (State.isUnknownOrUndef())
1650 return; // Operands are not resolved yet.
1651 if (SCCPSolver::isOverdefined(State))
1652 return (void)markOverdefined(&CB);
1653 assert(SCCPSolver::isConstant(State) && "Unknown state!");
1654 Operands.push_back(getConstant(State, A->getType()));
1655 }
1656
1657 if (SCCPSolver::isOverdefined(getValueState(&CB)))
1658 return (void)markOverdefined(&CB);
1659
1660 // If we can constant fold this, mark the result of the call as a
1661 // constant.
1662 if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F)))
1663 return (void)markConstant(&CB, C);
1664 }
1665
1666 // Fall back to metadata.
1667 mergeInValue(&CB, getValueFromMetadata(&CB));
1668}
1669
1670void SCCPInstVisitor::handleCallArguments(CallBase &CB) {
1672 // If this is a local function that doesn't have its address taken, mark its
1673 // entry block executable and merge in the actual arguments to the call into
1674 // the formal arguments of the function.
1675 if (TrackingIncomingArguments.count(F)) {
1676 markBlockExecutable(&F->front());
1677
1678 // Propagate information from this call site into the callee.
1679 auto CAI = CB.arg_begin();
1680 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1681 ++AI, ++CAI) {
1682 // If this argument is byval, and if the function is not readonly, there
1683 // will be an implicit copy formed of the input aggregate.
1684 if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1685 markOverdefined(&*AI);
1686 continue;
1687 }
1688
1689 if (auto *STy = dyn_cast<StructType>(AI->getType())) {
1690 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1691 ValueLatticeElement CallArg = getStructValueState(*CAI, i);
1692 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
1694 }
1695 } else
1696 mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
1697 }
1698 }
1699}
1700
1701void SCCPInstVisitor::handleCallResult(CallBase &CB) {
1703
1704 if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
1705 if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1706 if (ValueState[&CB].isOverdefined())
1707 return;
1708
1709 Value *CopyOf = CB.getOperand(0);
1710 ValueLatticeElement CopyOfVal = getValueState(CopyOf);
1711 const auto *PI = getPredicateInfoFor(&CB);
1712 assert(PI && "Missing predicate info for ssa.copy");
1713
1714 const std::optional<PredicateConstraint> &Constraint =
1715 PI->getConstraint();
1716 if (!Constraint) {
1717 mergeInValue(ValueState[&CB], &CB, CopyOfVal);
1718 return;
1719 }
1720
1721 CmpInst::Predicate Pred = Constraint->Predicate;
1722 Value *OtherOp = Constraint->OtherOp;
1723
1724 // Wait until OtherOp is resolved.
1725 if (getValueState(OtherOp).isUnknown()) {
1726 addAdditionalUser(OtherOp, &CB);
1727 return;
1728 }
1729
1730 ValueLatticeElement CondVal = getValueState(OtherOp);
1731 ValueLatticeElement &IV = ValueState[&CB];
1732 if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
1733 auto ImposedCR =
1734 ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
1735
1736 // Get the range imposed by the condition.
1737 if (CondVal.isConstantRange())
1739 Pred, CondVal.getConstantRange());
1740
1741 // Combine range info for the original value with the new range from the
1742 // condition.
1743 auto CopyOfCR = getConstantRange(CopyOfVal, CopyOf->getType());
1744 auto NewCR = ImposedCR.intersectWith(CopyOfCR);
1745 // If the existing information is != x, do not use the information from
1746 // a chained predicate, as the != x information is more likely to be
1747 // helpful in practice.
1748 if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
1749 NewCR = CopyOfCR;
1750
1751 // The new range is based on a branch condition. That guarantees that
1752 // neither of the compare operands can be undef in the branch targets,
1753 // unless we have conditions that are always true/false (e.g. icmp ule
1754 // i32, %a, i32_max). For the latter overdefined/empty range will be
1755 // inferred, but the branch will get folded accordingly anyways.
1756 addAdditionalUser(OtherOp, &CB);
1757 mergeInValue(
1758 IV, &CB,
1759 ValueLatticeElement::getRange(NewCR, /*MayIncludeUndef*/ false));
1760 return;
1761 } else if (Pred == CmpInst::ICMP_EQ &&
1762 (CondVal.isConstant() || CondVal.isNotConstant())) {
1763 // For non-integer values or integer constant expressions, only
1764 // propagate equal constants or not-constants.
1765 addAdditionalUser(OtherOp, &CB);
1766 mergeInValue(IV, &CB, CondVal);
1767 return;
1768 } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant()) {
1769 // Propagate inequalities.
1770 addAdditionalUser(OtherOp, &CB);
1771 mergeInValue(IV, &CB,
1773 return;
1774 }
1775
1776 return (void)mergeInValue(IV, &CB, CopyOfVal);
1777 }
1778
1779 if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
1780 // Compute result range for intrinsics supported by ConstantRange.
1781 // Do this even if we don't know a range for all operands, as we may
1782 // still know something about the result range, e.g. of abs(x).
1784 for (Value *Op : II->args()) {
1785 const ValueLatticeElement &State = getValueState(Op);
1786 if (State.isUnknownOrUndef())
1787 return;
1788 OpRanges.push_back(getConstantRange(State, Op->getType()));
1789 }
1790
1792 ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
1793 return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
1794 }
1795 }
1796
1797 // The common case is that we aren't tracking the callee, either because we
1798 // are not doing interprocedural analysis or the callee is indirect, or is
1799 // external. Handle these cases first.
1800 if (!F || F->isDeclaration())
1801 return handleCallOverdefined(CB);
1802
1803 // If this is a single/zero retval case, see if we're tracking the function.
1804 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
1805 if (!MRVFunctionsTracked.count(F))
1806 return handleCallOverdefined(CB); // Not tracking this callee.
1807
1808 // If we are tracking this callee, propagate the result of the function
1809 // into this call site.
1810 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1811 mergeInValue(getStructValueState(&CB, i), &CB,
1812 TrackedMultipleRetVals[std::make_pair(F, i)],
1814 } else {
1815 auto TFRVI = TrackedRetVals.find(F);
1816 if (TFRVI == TrackedRetVals.end())
1817 return handleCallOverdefined(CB); // Not tracking this callee.
1818
1819 // If so, propagate the return value of the callee into this call result.
1820 mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
1821 }
1822}
1823
1825 // Process the work lists until they are empty!
1826 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1827 !OverdefinedInstWorkList.empty()) {
1828 // Process the overdefined instruction's work list first, which drives other
1829 // things to overdefined more quickly.
1830 while (!OverdefinedInstWorkList.empty()) {
1831 Value *I = OverdefinedInstWorkList.pop_back_val();
1832 Invalidated.erase(I);
1833
1834 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1835
1836 // "I" got into the work list because it either made the transition from
1837 // bottom to constant, or to overdefined.
1838 //
1839 // Anything on this worklist that is overdefined need not be visited
1840 // since all of its users will have already been marked as overdefined
1841 // Update all of the users of this instruction's value.
1842 //
1843 markUsersAsChanged(I);
1844 }
1845
1846 // Process the instruction work list.
1847 while (!InstWorkList.empty()) {
1848 Value *I = InstWorkList.pop_back_val();
1849 Invalidated.erase(I);
1850
1851 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1852
1853 // "I" got into the work list because it made the transition from undef to
1854 // constant.
1855 //
1856 // Anything on this worklist that is overdefined need not be visited
1857 // since all of its users will have already been marked as overdefined.
1858 // Update all of the users of this instruction's value.
1859 //
1860 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1861 markUsersAsChanged(I);
1862 }
1863
1864 // Process the basic block work list.
1865 while (!BBWorkList.empty()) {
1866 BasicBlock *BB = BBWorkList.pop_back_val();
1867
1868 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1869
1870 // Notify all instructions in this basic block that they are newly
1871 // executable.
1872 visit(BB);
1873 }
1874 }
1875}
1876
1878 // Look for instructions which produce undef values.
1879 if (I.getType()->isVoidTy())
1880 return false;
1881
1882 if (auto *STy = dyn_cast<StructType>(I.getType())) {
1883 // Only a few things that can be structs matter for undef.
1884
1885 // Tracked calls must never be marked overdefined in resolvedUndefsIn.
1886 if (auto *CB = dyn_cast<CallBase>(&I))
1887 if (Function *F = CB->getCalledFunction())
1888 if (MRVFunctionsTracked.count(F))
1889 return false;
1890
1891 // extractvalue and insertvalue don't need to be marked; they are
1892 // tracked as precisely as their operands.
1893 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1894 return false;
1895 // Send the results of everything else to overdefined. We could be
1896 // more precise than this but it isn't worth bothering.
1897 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1898 ValueLatticeElement &LV = getStructValueState(&I, i);
1899 if (LV.isUnknown()) {
1900 markOverdefined(LV, &I);
1901 return true;
1902 }
1903 }
1904 return false;
1905 }
1906
1907 ValueLatticeElement &LV = getValueState(&I);
1908 if (!LV.isUnknown())
1909 return false;
1910
1911 // There are two reasons a call can have an undef result
1912 // 1. It could be tracked.
1913 // 2. It could be constant-foldable.
1914 // Because of the way we solve return values, tracked calls must
1915 // never be marked overdefined in resolvedUndefsIn.
1916 if (auto *CB = dyn_cast<CallBase>(&I))
1917 if (Function *F = CB->getCalledFunction())
1918 if (TrackedRetVals.count(F))
1919 return false;
1920
1921 if (isa<LoadInst>(I)) {
1922 // A load here means one of two things: a load of undef from a global,
1923 // a load from an unknown pointer. Either way, having it return undef
1924 // is okay.
1925 return false;
1926 }
1927
1928 markOverdefined(&I);
1929 return true;
1930}
1931
1932/// While solving the dataflow for a function, we don't compute a result for
1933/// operations with an undef operand, to allow undef to be lowered to a
1934/// constant later. For example, constant folding of "zext i8 undef to i16"
1935/// would result in "i16 0", and if undef is later lowered to "i8 1", then the
1936/// zext result would become "i16 1" and would result into an overdefined
1937/// lattice value once merged with the previous result. Not computing the
1938/// result of the zext (treating undef the same as unknown) allows us to handle
1939/// a later undef->constant lowering more optimally.
1940///
1941/// However, if the operand remains undef when the solver returns, we do need
1942/// to assign some result to the instruction (otherwise we would treat it as
1943/// unreachable). For simplicity, we mark any instructions that are still
1944/// unknown as overdefined.
1946 bool MadeChange = false;
1947 for (BasicBlock &BB : F) {
1948 if (!BBExecutable.count(&BB))
1949 continue;
1950
1951 for (Instruction &I : BB)
1952 MadeChange |= resolvedUndef(I);
1953 }
1954
1955 LLVM_DEBUG(if (MadeChange) dbgs()
1956 << "\nResolved undefs in " << F.getName() << '\n');
1957
1958 return MadeChange;
1959}
1960
1961//===----------------------------------------------------------------------===//
1962//
1963// SCCPSolver implementations
1964//
1966 const DataLayout &DL,
1967 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
1968 LLVMContext &Ctx)
1969 : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {}
1970
1971SCCPSolver::~SCCPSolver() = default;
1972
1974 AssumptionCache &AC) {
1975 Visitor->addPredicateInfo(F, DT, AC);
1976}
1977
1979 return Visitor->markBlockExecutable(BB);
1980}
1981
1983 return Visitor->getPredicateInfoFor(I);
1984}
1985
1987 Visitor->trackValueOfGlobalVariable(GV);
1988}
1989
1991 Visitor->addTrackedFunction(F);
1992}
1993
1995 Visitor->addToMustPreserveReturnsInFunctions(F);
1996}
1997
1999 return Visitor->mustPreserveReturn(F);
2000}
2001
2003 Visitor->addArgumentTrackedFunction(F);
2004}
2005
2007 return Visitor->isArgumentTrackedFunction(F);
2008}
2009
2010void SCCPSolver::solve() { Visitor->solve(); }
2011
2013 return Visitor->resolvedUndefsIn(F);
2014}
2015
2017 Visitor->solveWhileResolvedUndefsIn(M);
2018}
2019
2020void
2022 Visitor->solveWhileResolvedUndefsIn(WorkList);
2023}
2024
2026 Visitor->solveWhileResolvedUndefs();
2027}
2028
2030 return Visitor->isBlockExecutable(BB);
2031}
2032
2034 return Visitor->isEdgeFeasible(From, To);
2035}
2036
2037std::vector<ValueLatticeElement>
2039 return Visitor->getStructLatticeValueFor(V);
2040}
2041
2043 return Visitor->removeLatticeValueFor(V);
2044}
2045
2047 Visitor->resetLatticeValueFor(Call);
2048}
2049
2051 return Visitor->getLatticeValueFor(V);
2052}
2053
2056 return Visitor->getTrackedRetVals();
2057}
2058
2061 return Visitor->getTrackedGlobals();
2062}
2063
2065 return Visitor->getMRVFunctionsTracked();
2066}
2067
2068void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); }
2069
2071 return Visitor->isStructLatticeConstant(F, STy);
2072}
2073
2075 Type *Ty) const {
2076 return Visitor->getConstant(LV, Ty);
2077}
2078
2080 return Visitor->getConstantOrNull(V);
2081}
2082
2084 return Visitor->getArgumentTrackedFunctions();
2085}
2086
2088 const SmallVectorImpl<ArgInfo> &Args) {
2089 Visitor->setLatticeValueForSpecializationArguments(F, Args);
2090}
2091
2093 Visitor->markFunctionUnreachable(F);
2094}
2095
2096void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); }
2097
2098void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); }
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
uint64_t Addr
bool End
Definition: ELF_riscv.cpp:469
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
mir Rename Register Operands
static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts()
Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
Definition: SCCPSolver.cpp:40
static const unsigned MaxNumRangeExtensions
Definition: SCCPSolver.cpp:37
static ValueLatticeElement getValueFromMetadata(const Instruction *I)
static ConstantRange getConstantRange(const ValueLatticeElement &LV, Type *Ty, bool UndefAllowed=true)
Definition: SCCPSolver.cpp:45
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition: VPlanSLP.cpp:191
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition: blake3_impl.h:78
Class for arbitrary precision integers.
Definition: APInt.h:76
This class represents an incoming formal argument to a Function.
Definition: Argument.h:28
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition: BasicBlock.h:56
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:393
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:105
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:112
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:35
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:127
void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
Definition: BasicBlock.cpp:353
Value * getRHS() const
unsigned getNoWrapKind() const
Returns one of OBO::NoSignedWrap or OBO::NoUnsignedWrap.
Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
Value * getLHS() const
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
The address of a basic block.
Definition: Constants.h:874
static BranchInst * Create(BasicBlock *IfTrue, Instruction *InsertBefore=nullptr)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1190
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Definition: InstrTypes.h:2054
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1412
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
Definition: InstrTypes.h:1332
bool isMustTailCall() const
Tests if this call site must be tail call optimized.
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
Definition: InstrTypes.h:1348
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:428
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:701
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:711
@ ICMP_EQ
equal
Definition: InstrTypes.h:732
@ ICMP_NE
not equal
Definition: InstrTypes.h:733
This is the shared class of boolean and integer constants.
Definition: Constants.h:78
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:197
static Constant * get(Type *Ty, uint64_t V, bool IsSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:888
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:840
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
Definition: Constants.cpp:1691
This class represents a range of values.
Definition: ConstantRange.h:47
ConstantRange castOp(Instruction::CastOps CastOp, uint32_t BitWidth) const
Return a new range representing the possible values resulting from an application of the specified ca...
static ConstantRange intrinsic(Intrinsic::ID IntrinsicID, ArrayRef< ConstantRange > Ops)
Compute range of intrinsic result for the given operand ranges.
static bool isIntrinsicSupported(Intrinsic::ID IntrinsicID)
Returns true if ConstantRange calculations are supported for intrinsic with IntrinsicID.
bool isSingleElement() const
Return true if this set contains exactly one member.
static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, const ConstantRange &Other, unsigned NoWrapKind)
Produce the largest range containing all X such that "X BinOp Y" is guaranteed not to wrap (overflow)...
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
ConstantRange binaryOp(Instruction::BinaryOps BinOp, const ConstantRange &Other) const
Return a new range representing the possible values resulting from an application of the specified bi...
static Constant * get(StructType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:1300
This is an important base class in LLVM.
Definition: Constant.h:41
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
bool erase(const KeyT &Val)
Definition: DenseMap.h:329
iterator end()
Definition: DenseMap.h:84
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:220
Implements a dense probed hash-table based set.
Definition: DenseSet.h:271
void applyUpdatesPermissive(ArrayRef< DominatorTree::UpdateType > Updates)
Submit updates to all available trees.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:166
This instruction extracts a struct member or array element value from an aggregate value.
unsigned getNumIndices() const
idx_iterator idx_begin() const
An instruction for ordering other memory operations.
Definition: Instructions.h:436
This class represents a freeze function that returns random concrete value if an operand is either a ...
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:940
Type * getValueType() const
Definition: GlobalValue.h:292
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
This instruction inserts a struct field of array element value into an aggregate value.
Base class for instruction visitors.
Definition: InstVisitor.h:78
void visit(Iterator Start, Iterator End)
Definition: InstVisitor.h:87
void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const BasicBlock * getParent() const
Definition: Instruction.h:90
BasicBlock * getSuccessor(unsigned Idx) const LLVM_READONLY
Return the specified successor. This instruction must be a terminator.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:195
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:83
bool isSpecialTerminator() const
Definition: Instruction.h:205
Invoke instruction.
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:177
Metadata node.
Definition: Metadata.h:950
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
size_type count(const KeyT &Key) const
Definition: MapVector.h:144
iterator end()
Definition: MapVector.h:71
iterator find(const KeyT &Key)
Definition: MapVector.h:146
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: MapVector.h:117
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
Resume the propagation of an exception.
Return a value (possibly void), from a function.
Helper class for SCCPSolver.
Definition: SCCPSolver.cpp:329
const PredicateBase * getPredicateInfoFor(Instruction *I)
Definition: SCCPSolver.cpp:663
std::vector< ValueLatticeElement > getStructLatticeValueFor(Value *V) const
Definition: SCCPSolver.cpp:722
bool resolvedUndef(Instruction &I)
void markFunctionUnreachable(Function *F)
Definition: SCCPSolver.cpp:792
bool markBlockExecutable(BasicBlock *BB)
Definition: SCCPSolver.cpp:832
bool resolvedUndefsIn(Function &F)
While solving the dataflow for a function, we don't compute a result for operations with an undef ope...
Constant * getConstant(const ValueLatticeElement &LV, Type *Ty) const
Definition: SCCPSolver.cpp:888
SCCPInstVisitor(const DataLayout &DL, std::function< const TargetLibraryInfo &(Function &)> GetTLI, LLVMContext &Ctx)
Definition: SCCPSolver.cpp:670
const ValueLatticeElement & getLatticeValueFor(Value *V) const
Definition: SCCPSolver.cpp:749
void removeLatticeValueFor(Value *V)
Definition: SCCPSolver.cpp:734
const DenseMap< GlobalVariable *, ValueLatticeElement > & getTrackedGlobals()
Definition: SCCPSolver.cpp:763
void visitCallInst(CallInst &I)
Definition: SCCPSolver.cpp:659
void markOverdefined(Value *V)
Definition: SCCPSolver.cpp:771
bool isArgumentTrackedFunction(Function *F)
Definition: SCCPSolver.cpp:706
void addTrackedFunction(Function *F)
Definition: SCCPSolver.cpp:683
SmallPtrSetImpl< Function * > & getArgumentTrackedFunctions()
Definition: SCCPSolver.cpp:785
void solveWhileResolvedUndefsIn(Module &M)
Definition: SCCPSolver.cpp:797
void trackValueOfGlobalVariable(GlobalVariable *GV)
Definition: SCCPSolver.cpp:675
Constant * getConstantOrNull(Value *V) const
Definition: SCCPSolver.cpp:904
const SmallPtrSet< Function *, 16 > getMRVFunctionsTracked()
Definition: SCCPSolver.cpp:767
void resetLatticeValueFor(CallBase *Call)
Invalidate the Lattice Value of Call and its users after specializing the call.
Definition: SCCPSolver.cpp:738
const MapVector< Function *, ValueLatticeElement > & getTrackedRetVals()
Definition: SCCPSolver.cpp:759
void addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC)
Definition: SCCPSolver.cpp:655
void addToMustPreserveReturnsInFunctions(Function *F)
Definition: SCCPSolver.cpp:694
void addArgumentTrackedFunction(Function *F)
Definition: SCCPSolver.cpp:702
bool isStructLatticeConstant(Function *F, StructType *STy)
Definition: SCCPSolver.cpp:877
void solveWhileResolvedUndefsIn(SmallVectorImpl< Function * > &WorkList)
Definition: SCCPSolver.cpp:807
bool isBlockExecutable(BasicBlock *BB) const
Definition: SCCPSolver.cpp:716
bool mustPreserveReturn(Function *F)
Definition: SCCPSolver.cpp:698
void setLatticeValueForSpecializationArguments(Function *F, const SmallVectorImpl< ArgInfo > &Args)
Definition: SCCPSolver.cpp:930
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const
SCCPSolver - This interface class is a general purpose solver for Sparse Conditional Constant Propaga...
Definition: SCCPSolver.h:65
void visitCall(CallInst &I)
const DenseMap< GlobalVariable *, ValueLatticeElement > & getTrackedGlobals()
getTrackedGlobals - Get and return the set of inferred initializers for global variables.
void resetLatticeValueFor(CallBase *Call)
Invalidate the Lattice Value of Call and its users after specializing the call.
void trackValueOfGlobalVariable(GlobalVariable *GV)
trackValueOfGlobalVariable - Clients can use this method to inform the SCCPSolver that it should trac...
bool tryToReplaceWithConstant(Value *V)
Definition: SCCPSolver.cpp:76
bool isStructLatticeConstant(Function *F, StructType *STy)
void addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC)
void solve()
Solve - Solve for constants and executable blocks.
void visit(Instruction *I)
void addTrackedFunction(Function *F)
addTrackedFunction - If the SCCP solver is supposed to track calls into and out of the specified func...
const MapVector< Function *, ValueLatticeElement > & getTrackedRetVals()
getTrackedRetVals - Get the inferred return value map.
void solveWhileResolvedUndefsIn(Module &M)
const PredicateBase * getPredicateInfoFor(Instruction *I)
bool resolvedUndefsIn(Function &F)
resolvedUndefsIn - While solving the dataflow for a function, we assume that branches on undef values...
void addArgumentTrackedFunction(Function *F)
void solveWhileResolvedUndefs()
void removeLatticeValueFor(Value *V)
std::vector< ValueLatticeElement > getStructLatticeValueFor(Value *V) const
const SmallPtrSet< Function *, 16 > getMRVFunctionsTracked()
getMRVFunctionsTracked - Get the set of functions which return multiple values tracked by the pass.
Constant * getConstantOrNull(Value *V) const
Return either a Constant or nullptr for a given Value.
bool simplifyInstsInBlock(BasicBlock &BB, SmallPtrSetImpl< Value * > &InsertedValues, Statistic &InstRemovedStat, Statistic &InstReplacedStat)
Definition: SCCPSolver.cpp:210
Constant * getConstant(const ValueLatticeElement &LV, Type *Ty) const
Helper to return a Constant if LV is either a constant or a constant range with a single element.
const ValueLatticeElement & getLatticeValueFor(Value *V) const
void addToMustPreserveReturnsInFunctions(Function *F)
Add function to the list of functions whose return cannot be modified.
bool removeNonFeasibleEdges(BasicBlock *BB, DomTreeUpdater &DTU, BasicBlock *&NewUnreachableBB) const
Definition: SCCPSolver.cpp:234
bool isBlockExecutable(BasicBlock *BB) const
bool markBlockExecutable(BasicBlock *BB)
markBlockExecutable - This method can be used by clients to mark all of the blocks that are known to ...
void setLatticeValueForSpecializationArguments(Function *F, const SmallVectorImpl< ArgInfo > &Args)
Set the Lattice Value for the arguments of a specialization F.
static bool isConstant(const ValueLatticeElement &LV)
Definition: SCCPSolver.cpp:55
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const
bool mustPreserveReturn(Function *F)
Returns true if the return of the given function cannot be modified.
static bool isOverdefined(const ValueLatticeElement &LV)
Definition: SCCPSolver.cpp:60
void markFunctionUnreachable(Function *F)
Mark all of the blocks in function F non-executable.
bool isArgumentTrackedFunction(Function *F)
Returns true if the given function is in the solver's set of argument-tracked functions.
SCCPSolver(const DataLayout &DL, std::function< const TargetLibraryInfo &(Function &)> GetTLI, LLVMContext &Ctx)
SmallPtrSetImpl< Function * > & getArgumentTrackedFunctions()
Return a reference to the set of argument tracked functions.
void markOverdefined(Value *V)
markOverdefined - Mark the specified value overdefined.
This class represents the LLVM 'select' instruction.
size_type size() const
Definition: SmallPtrSet.h:93
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:345
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:384
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:366
iterator begin() const
Definition: SmallPtrSet.h:404
bool contains(ConstPtrType Ptr) const
Definition: SmallPtrSet.h:390
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:451
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:577
void assign(size_type NumElts, ValueParamT Elt)
Definition: SmallVector.h:708
void resize(size_type N)
Definition: SmallVector.h:642
void push_back(const T &Elt)
Definition: SmallVector.h:416
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
An instruction for storing to memory.
Definition: Instructions.h:301
Class to represent struct types.
Definition: DerivedTypes.h:213
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:338
A wrapper class to simplify modification of SwitchInst cases along with their prof branch_weights met...
Provides information about what library functions are available for the current target.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:234
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
Definition: Type.h:287
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:249
bool isVoidTy() const
Return true if this is 'void'.
Definition: Type.h:140
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1724
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
Value * getOperand(unsigned i) const
Definition: User.h:169
This class represents lattice values for constants.
Definition: ValueLattice.h:29
static ValueLatticeElement getRange(ConstantRange CR, bool MayIncludeUndef=false)
Definition: ValueLattice.h:217
Constant * getCompare(CmpInst::Predicate Pred, Type *Ty, const ValueLatticeElement &Other, const DataLayout &DL) const
true, false or undef constants, or nullptr if the comparison cannot be evaluated.
static ValueLatticeElement getNot(Constant *C)
Definition: ValueLattice.h:211
void setNumRangeExtensions(unsigned N)
Definition: ValueLattice.h:459
const ConstantRange & getConstantRange(bool UndefAllowed=true) const
Returns the constant range for this value.
Definition: ValueLattice.h:272
bool isConstantRange(bool UndefAllowed=true) const
Returns true if this value is a constant range.
Definition: ValueLattice.h:252
unsigned getNumRangeExtensions() const
Definition: ValueLattice.h:458
bool isUnknownOrUndef() const
Definition: ValueLattice.h:242
Constant * getConstant() const
Definition: ValueLattice.h:258
bool mergeIn(const ValueLatticeElement &RHS, MergeOptions Opts=MergeOptions())
Updates this object to approximate both this object and RHS.
Definition: ValueLattice.h:388
bool markConstant(Constant *V, bool MayIncludeUndef=false)
Definition: ValueLattice.h:304
static ValueLatticeElement getOverdefined()
Definition: ValueLattice.h:234
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
std::string getNameOrAsOperand() const
Definition: Value.cpp:446
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:535
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:384
Represents an op.with.overflow intrinsic.
This class represents zero extension of integer types.
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:206
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition: DenseSet.h:97
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
static bool replaceSignedInst(SCCPSolver &Solver, SmallPtrSetImpl< Value * > &InsertedValues, Instruction &Inst)
Try to replace signed instructions with their unsigned equivalent.
Definition: SCCPSolver.cpp:148
bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
auto successors(const MachineBasicBlock *BB)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:666
ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1734
Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
Constant * ConstantFoldInstOperands(Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
Definition: Function.cpp:1985
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
Definition: Local.cpp:417
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
DWARFExpression::Operation Op
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1854
static bool canRemoveInstruction(Instruction *I)
Definition: SCCPSolver.cpp:64
Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
static bool refineInstruction(SCCPSolver &Solver, const SmallPtrSetImpl< Value * > &InsertedValues, Instruction &Inst)
Try to use Inst's value range from Solver to infer the NUW flag.
Definition: SCCPSolver.cpp:107
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
Struct to control some aspects related to merging constant ranges.
Definition: ValueLattice.h:111
MergeOptions & setMaxWidenSteps(unsigned Steps=1)
Definition: ValueLattice.h:140
MergeOptions & setCheckWiden(bool V=true)
Definition: ValueLattice.h:135