LLVM 19.0.0git
SCCPSolver.cpp
Go to the documentation of this file.
1//===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// \file
10// This file implements the Sparse Conditional Constant Propagation (SCCP)
11// utility.
12//
13//===----------------------------------------------------------------------===//
14
21#include "llvm/IR/InstVisitor.h"
23#include "llvm/Support/Debug.h"
27#include <cassert>
28#include <utility>
29#include <vector>
30
31using namespace llvm;
32
33#define DEBUG_TYPE "sccp"
34
35// The maximum number of range extensions allowed for operations requiring
36// widening.
37static const unsigned MaxNumRangeExtensions = 10;
38
39/// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
43}
44
46 bool UndefAllowed = true) {
47 assert(Ty->isIntOrIntVectorTy() && "Should be int or int vector");
48 if (LV.isConstantRange(UndefAllowed))
49 return LV.getConstantRange();
50 return ConstantRange::getFull(Ty->getScalarSizeInBits());
51}
52
53namespace llvm {
54
56 return LV.isConstant() ||
58}
59
61 return !LV.isUnknownOrUndef() && !SCCPSolver::isConstant(LV);
62}
63
66 return true;
67
68 // Some instructions can be handled but are rejected above. Catch
69 // those cases by falling through to here.
70 // TODO: Mark globals as being constant earlier, so
71 // TODO: wouldInstructionBeTriviallyDead() knows that atomic loads
72 // TODO: are safe to remove.
73 return isa<LoadInst>(I);
74}
75
77 Constant *Const = getConstantOrNull(V);
78 if (!Const)
79 return false;
80 // Replacing `musttail` instructions with constant breaks `musttail` invariant
81 // unless the call itself can be removed.
82 // Calls with "clang.arc.attachedcall" implicitly use the return value and
83 // those uses cannot be updated with a constant.
84 CallBase *CB = dyn_cast<CallBase>(V);
85 if (CB && ((CB->isMustTailCall() &&
89
90 // Don't zap returns of the callee
91 if (F)
93
94 LLVM_DEBUG(dbgs() << " Can\'t treat the result of call " << *CB
95 << " as a constant\n");
96 return false;
97 }
98
99 LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
100
101 // Replaces all of the uses of a variable with uses of the constant.
102 V->replaceAllUsesWith(Const);
103 return true;
104}
105
106/// Try to use \p Inst's value range from \p Solver to infer the NUW flag.
107static bool refineInstruction(SCCPSolver &Solver,
108 const SmallPtrSetImpl<Value *> &InsertedValues,
109 Instruction &Inst) {
110 bool Changed = false;
111 auto GetRange = [&Solver, &InsertedValues](Value *Op) {
112 if (auto *Const = dyn_cast<ConstantInt>(Op))
113 return ConstantRange(Const->getValue());
114 if (isa<Constant>(Op) || InsertedValues.contains(Op)) {
115 unsigned Bitwidth = Op->getType()->getScalarSizeInBits();
116 return ConstantRange::getFull(Bitwidth);
117 }
118 return getConstantRange(Solver.getLatticeValueFor(Op), Op->getType(),
119 /*UndefAllowed=*/false);
120 };
121
122 if (isa<OverflowingBinaryOperator>(Inst)) {
123 if (Inst.hasNoSignedWrap() && Inst.hasNoUnsignedWrap())
124 return false;
125
126 auto RangeA = GetRange(Inst.getOperand(0));
127 auto RangeB = GetRange(Inst.getOperand(1));
128 if (!Inst.hasNoUnsignedWrap()) {
130 Instruction::BinaryOps(Inst.getOpcode()), RangeB,
132 if (NUWRange.contains(RangeA)) {
134 Changed = true;
135 }
136 }
137 if (!Inst.hasNoSignedWrap()) {
139 Instruction::BinaryOps(Inst.getOpcode()), RangeB,
141 if (NSWRange.contains(RangeA)) {
142 Inst.setHasNoSignedWrap();
143 Changed = true;
144 }
145 }
146 } else if (isa<ZExtInst>(Inst) && !Inst.hasNonNeg()) {
147 auto Range = GetRange(Inst.getOperand(0));
148 if (Range.isAllNonNegative()) {
149 Inst.setNonNeg();
150 Changed = true;
151 }
152 } else if (TruncInst *TI = dyn_cast<TruncInst>(&Inst)) {
153 if (TI->hasNoSignedWrap() && TI->hasNoUnsignedWrap())
154 return false;
155
156 auto Range = GetRange(Inst.getOperand(0));
157 uint64_t DestWidth = TI->getDestTy()->getScalarSizeInBits();
158 if (!TI->hasNoUnsignedWrap()) {
159 if (Range.getActiveBits() <= DestWidth) {
160 TI->setHasNoUnsignedWrap(true);
161 Changed = true;
162 }
163 }
164 if (!TI->hasNoSignedWrap()) {
165 if (Range.getMinSignedBits() <= DestWidth) {
166 TI->setHasNoSignedWrap(true);
167 Changed = true;
168 }
169 }
170 }
171
172 return Changed;
173}
174
175/// Try to replace signed instructions with their unsigned equivalent.
176static bool replaceSignedInst(SCCPSolver &Solver,
177 SmallPtrSetImpl<Value *> &InsertedValues,
178 Instruction &Inst) {
179 // Determine if a signed value is known to be >= 0.
180 auto isNonNegative = [&Solver](Value *V) {
181 // If this value was constant-folded, it may not have a solver entry.
182 // Handle integers. Otherwise, return false.
183 if (auto *C = dyn_cast<Constant>(V)) {
184 auto *CInt = dyn_cast<ConstantInt>(C);
185 return CInt && !CInt->isNegative();
186 }
187 const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
188 return IV.isConstantRange(/*UndefAllowed=*/false) &&
189 IV.getConstantRange().isAllNonNegative();
190 };
191
192 Instruction *NewInst = nullptr;
193 switch (Inst.getOpcode()) {
194 // Note: We do not fold sitofp -> uitofp here because that could be more
195 // expensive in codegen and may not be reversible in the backend.
196 case Instruction::SExt: {
197 // If the source value is not negative, this is a zext.
198 Value *Op0 = Inst.getOperand(0);
199 if (InsertedValues.count(Op0) || !isNonNegative(Op0))
200 return false;
201 NewInst = new ZExtInst(Op0, Inst.getType(), "", Inst.getIterator());
202 NewInst->setNonNeg();
203 break;
204 }
205 case Instruction::AShr: {
206 // If the shifted value is not negative, this is a logical shift right.
207 Value *Op0 = Inst.getOperand(0);
208 if (InsertedValues.count(Op0) || !isNonNegative(Op0))
209 return false;
210 NewInst = BinaryOperator::CreateLShr(Op0, Inst.getOperand(1), "", Inst.getIterator());
211 NewInst->setIsExact(Inst.isExact());
212 break;
213 }
214 case Instruction::SDiv:
215 case Instruction::SRem: {
216 // If both operands are not negative, this is the same as udiv/urem.
217 Value *Op0 = Inst.getOperand(0), *Op1 = Inst.getOperand(1);
218 if (InsertedValues.count(Op0) || InsertedValues.count(Op1) ||
219 !isNonNegative(Op0) || !isNonNegative(Op1))
220 return false;
221 auto NewOpcode = Inst.getOpcode() == Instruction::SDiv ? Instruction::UDiv
222 : Instruction::URem;
223 NewInst = BinaryOperator::Create(NewOpcode, Op0, Op1, "", Inst.getIterator());
224 if (Inst.getOpcode() == Instruction::SDiv)
225 NewInst->setIsExact(Inst.isExact());
226 break;
227 }
228 default:
229 return false;
230 }
231
232 // Wire up the new instruction and update state.
233 assert(NewInst && "Expected replacement instruction");
234 NewInst->takeName(&Inst);
235 InsertedValues.insert(NewInst);
236 Inst.replaceAllUsesWith(NewInst);
237 Solver.removeLatticeValueFor(&Inst);
238 Inst.eraseFromParent();
239 return true;
240}
241
243 SmallPtrSetImpl<Value *> &InsertedValues,
244 Statistic &InstRemovedStat,
245 Statistic &InstReplacedStat) {
246 bool MadeChanges = false;
247 for (Instruction &Inst : make_early_inc_range(BB)) {
248 if (Inst.getType()->isVoidTy())
249 continue;
250 if (tryToReplaceWithConstant(&Inst)) {
251 if (canRemoveInstruction(&Inst))
252 Inst.eraseFromParent();
253
254 MadeChanges = true;
255 ++InstRemovedStat;
256 } else if (replaceSignedInst(*this, InsertedValues, Inst)) {
257 MadeChanges = true;
258 ++InstReplacedStat;
259 } else if (refineInstruction(*this, InsertedValues, Inst)) {
260 MadeChanges = true;
261 }
262 }
263 return MadeChanges;
264}
265
267 BasicBlock *&NewUnreachableBB) const {
268 SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors;
269 bool HasNonFeasibleEdges = false;
270 for (BasicBlock *Succ : successors(BB)) {
271 if (isEdgeFeasible(BB, Succ))
272 FeasibleSuccessors.insert(Succ);
273 else
274 HasNonFeasibleEdges = true;
275 }
276
277 // All edges feasible, nothing to do.
278 if (!HasNonFeasibleEdges)
279 return false;
280
281 // SCCP can only determine non-feasible edges for br, switch and indirectbr.
282 Instruction *TI = BB->getTerminator();
283 assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
284 isa<IndirectBrInst>(TI)) &&
285 "Terminator must be a br, switch or indirectbr");
286
287 if (FeasibleSuccessors.size() == 0) {
288 // Branch on undef/poison, replace with unreachable.
291 for (BasicBlock *Succ : successors(BB)) {
292 Succ->removePredecessor(BB);
293 if (SeenSuccs.insert(Succ).second)
294 Updates.push_back({DominatorTree::Delete, BB, Succ});
295 }
296 TI->eraseFromParent();
297 new UnreachableInst(BB->getContext(), BB);
298 DTU.applyUpdatesPermissive(Updates);
299 } else if (FeasibleSuccessors.size() == 1) {
300 // Replace with an unconditional branch to the only feasible successor.
301 BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin();
303 bool HaveSeenOnlyFeasibleSuccessor = false;
304 for (BasicBlock *Succ : successors(BB)) {
305 if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) {
306 // Don't remove the edge to the only feasible successor the first time
307 // we see it. We still do need to remove any multi-edges to it though.
308 HaveSeenOnlyFeasibleSuccessor = true;
309 continue;
310 }
311
312 Succ->removePredecessor(BB);
313 Updates.push_back({DominatorTree::Delete, BB, Succ});
314 }
315
316 BranchInst::Create(OnlyFeasibleSuccessor, BB);
317 TI->eraseFromParent();
318 DTU.applyUpdatesPermissive(Updates);
319 } else if (FeasibleSuccessors.size() > 1) {
320 SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI));
322
323 // If the default destination is unfeasible it will never be taken. Replace
324 // it with a new block with a single Unreachable instruction.
325 BasicBlock *DefaultDest = SI->getDefaultDest();
326 if (!FeasibleSuccessors.contains(DefaultDest)) {
327 if (!NewUnreachableBB) {
328 NewUnreachableBB =
329 BasicBlock::Create(DefaultDest->getContext(), "default.unreachable",
330 DefaultDest->getParent(), DefaultDest);
331 new UnreachableInst(DefaultDest->getContext(), NewUnreachableBB);
332 }
333
334 DefaultDest->removePredecessor(BB);
335 SI->setDefaultDest(NewUnreachableBB);
336 Updates.push_back({DominatorTree::Delete, BB, DefaultDest});
337 Updates.push_back({DominatorTree::Insert, BB, NewUnreachableBB});
338 }
339
340 for (auto CI = SI->case_begin(); CI != SI->case_end();) {
341 if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) {
342 ++CI;
343 continue;
344 }
345
346 BasicBlock *Succ = CI->getCaseSuccessor();
347 Succ->removePredecessor(BB);
348 Updates.push_back({DominatorTree::Delete, BB, Succ});
349 SI.removeCase(CI);
350 // Don't increment CI, as we removed a case.
351 }
352
353 DTU.applyUpdatesPermissive(Updates);
354 } else {
355 llvm_unreachable("Must have at least one feasible successor");
356 }
357 return true;
358}
359
360/// Helper class for SCCPSolver. This implements the instruction visitor and
361/// holds all the state.
362class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> {
363 const DataLayout &DL;
364 std::function<const TargetLibraryInfo &(Function &)> GetTLI;
365 SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
367 ValueState; // The state each value is in.
368
369 /// StructValueState - This maintains ValueState for values that have
370 /// StructType, for example for formal arguments, calls, insertelement, etc.
372
373 /// GlobalValue - If we are tracking any values for the contents of a global
374 /// variable, we keep a mapping from the constant accessor to the element of
375 /// the global, to the currently known value. If the value becomes
376 /// overdefined, it's entry is simply removed from this map.
378
379 /// TrackedRetVals - If we are tracking arguments into and the return
380 /// value out of a function, it will have an entry in this map, indicating
381 /// what the known return value for the function is.
383
384 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
385 /// that return multiple values.
387 TrackedMultipleRetVals;
388
389 /// The set of values whose lattice has been invalidated.
390 /// Populated by resetLatticeValueFor(), cleared after resolving undefs.
391 DenseSet<Value *> Invalidated;
392
393 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
394 /// represented here for efficient lookup.
395 SmallPtrSet<Function *, 16> MRVFunctionsTracked;
396
397 /// A list of functions whose return cannot be modified.
398 SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
399
400 /// TrackingIncomingArguments - This is the set of functions for whose
401 /// arguments we make optimistic assumptions about and try to prove as
402 /// constants.
403 SmallPtrSet<Function *, 16> TrackingIncomingArguments;
404
405 /// The reason for two worklists is that overdefined is the lowest state
406 /// on the lattice, and moving things to overdefined as fast as possible
407 /// makes SCCP converge much faster.
408 ///
409 /// By having a separate worklist, we accomplish this because everything
410 /// possibly overdefined will become overdefined at the soonest possible
411 /// point.
412 SmallVector<Value *, 64> OverdefinedInstWorkList;
413 SmallVector<Value *, 64> InstWorkList;
414
415 // The BasicBlock work list
417
418 /// KnownFeasibleEdges - Entries in this set are edges which have already had
419 /// PHI nodes retriggered.
420 using Edge = std::pair<BasicBlock *, BasicBlock *>;
421 DenseSet<Edge> KnownFeasibleEdges;
422
424
426
427 LLVMContext &Ctx;
428
429private:
430 ConstantInt *getConstantInt(const ValueLatticeElement &IV, Type *Ty) const {
431 return dyn_cast_or_null<ConstantInt>(getConstant(IV, Ty));
432 }
433
434 // pushToWorkList - Helper for markConstant/markOverdefined
435 void pushToWorkList(ValueLatticeElement &IV, Value *V);
436
437 // Helper to push \p V to the worklist, after updating it to \p IV. Also
438 // prints a debug message with the updated value.
439 void pushToWorkListMsg(ValueLatticeElement &IV, Value *V);
440
441 // markConstant - Make a value be marked as "constant". If the value
442 // is not already a constant, add it to the instruction work list so that
443 // the users of the instruction are updated later.
444 bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
445 bool MayIncludeUndef = false);
446
447 bool markConstant(Value *V, Constant *C) {
448 assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
449 return markConstant(ValueState[V], V, C);
450 }
451
452 /// markConstantRange - Mark the object as constant range with \p CR. If the
453 /// object is not a constant range with the range \p CR, add it to the
454 /// instruction work list so that the users of the instruction are updated
455 /// later.
456 bool markConstantRange(ValueLatticeElement &IV, Value *V,
457 const ConstantRange &CR);
458
459 // markOverdefined - Make a value be marked as "overdefined". If the
460 // value is not already overdefined, add it to the overdefined instruction
461 // work list so that the users of the instruction are updated later.
462 bool markOverdefined(ValueLatticeElement &IV, Value *V);
463
464 /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
465 /// changes.
466 bool mergeInValue(ValueLatticeElement &IV, Value *V,
467 ValueLatticeElement MergeWithV,
469 /*MayIncludeUndef=*/false, /*CheckWiden=*/false});
470
471 bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
473 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
474 assert(!V->getType()->isStructTy() &&
475 "non-structs should use markConstant");
476 return mergeInValue(ValueState[V], V, MergeWithV, Opts);
477 }
478
479 /// getValueState - Return the ValueLatticeElement object that corresponds to
480 /// the value. This function handles the case when the value hasn't been seen
481 /// yet by properly seeding constants etc.
482 ValueLatticeElement &getValueState(Value *V) {
483 assert(!V->getType()->isStructTy() && "Should use getStructValueState");
484
485 auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
486 ValueLatticeElement &LV = I.first->second;
487
488 if (!I.second)
489 return LV; // Common case, already in the map.
490
491 if (auto *C = dyn_cast<Constant>(V))
492 LV.markConstant(C); // Constants are constant
493
494 // All others are unknown by default.
495 return LV;
496 }
497
498 /// getStructValueState - Return the ValueLatticeElement object that
499 /// corresponds to the value/field pair. This function handles the case when
500 /// the value hasn't been seen yet by properly seeding constants etc.
501 ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
502 assert(V->getType()->isStructTy() && "Should use getValueState");
503 assert(i < cast<StructType>(V->getType())->getNumElements() &&
504 "Invalid element #");
505
506 auto I = StructValueState.insert(
507 std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
508 ValueLatticeElement &LV = I.first->second;
509
510 if (!I.second)
511 return LV; // Common case, already in the map.
512
513 if (auto *C = dyn_cast<Constant>(V)) {
514 Constant *Elt = C->getAggregateElement(i);
515
516 if (!Elt)
517 LV.markOverdefined(); // Unknown sort of constant.
518 else
519 LV.markConstant(Elt); // Constants are constant.
520 }
521
522 // All others are underdefined by default.
523 return LV;
524 }
525
526 /// Traverse the use-def chain of \p Call, marking itself and its users as
527 /// "unknown" on the way.
528 void invalidate(CallBase *Call) {
530 ToInvalidate.push_back(Call);
531
532 while (!ToInvalidate.empty()) {
533 Instruction *Inst = ToInvalidate.pop_back_val();
534
535 if (!Invalidated.insert(Inst).second)
536 continue;
537
538 if (!BBExecutable.count(Inst->getParent()))
539 continue;
540
541 Value *V = nullptr;
542 // For return instructions we need to invalidate the tracked returns map.
543 // Anything else has its lattice in the value map.
544 if (auto *RetInst = dyn_cast<ReturnInst>(Inst)) {
545 Function *F = RetInst->getParent()->getParent();
546 if (auto It = TrackedRetVals.find(F); It != TrackedRetVals.end()) {
547 It->second = ValueLatticeElement();
548 V = F;
549 } else if (MRVFunctionsTracked.count(F)) {
550 auto *STy = cast<StructType>(F->getReturnType());
551 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
552 TrackedMultipleRetVals[{F, I}] = ValueLatticeElement();
553 V = F;
554 }
555 } else if (auto *STy = dyn_cast<StructType>(Inst->getType())) {
556 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
557 if (auto It = StructValueState.find({Inst, I});
558 It != StructValueState.end()) {
559 It->second = ValueLatticeElement();
560 V = Inst;
561 }
562 }
563 } else if (auto It = ValueState.find(Inst); It != ValueState.end()) {
564 It->second = ValueLatticeElement();
565 V = Inst;
566 }
567
568 if (V) {
569 LLVM_DEBUG(dbgs() << "Invalidated lattice for " << *V << "\n");
570
571 for (User *U : V->users())
572 if (auto *UI = dyn_cast<Instruction>(U))
573 ToInvalidate.push_back(UI);
574
575 auto It = AdditionalUsers.find(V);
576 if (It != AdditionalUsers.end())
577 for (User *U : It->second)
578 if (auto *UI = dyn_cast<Instruction>(U))
579 ToInvalidate.push_back(UI);
580 }
581 }
582 }
583
584 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
585 /// work list if it is not already executable.
586 bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
587
588 // getFeasibleSuccessors - Return a vector of booleans to indicate which
589 // successors are reachable from a given terminator instruction.
590 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
591
592 // OperandChangedState - This method is invoked on all of the users of an
593 // instruction that was just changed state somehow. Based on this
594 // information, we need to update the specified user of this instruction.
595 void operandChangedState(Instruction *I) {
596 if (BBExecutable.count(I->getParent())) // Inst is executable?
597 visit(*I);
598 }
599
600 // Add U as additional user of V.
601 void addAdditionalUser(Value *V, User *U) {
602 auto Iter = AdditionalUsers.insert({V, {}});
603 Iter.first->second.insert(U);
604 }
605
606 // Mark I's users as changed, including AdditionalUsers.
607 void markUsersAsChanged(Value *I) {
608 // Functions include their arguments in the use-list. Changed function
609 // values mean that the result of the function changed. We only need to
610 // update the call sites with the new function result and do not have to
611 // propagate the call arguments.
612 if (isa<Function>(I)) {
613 for (User *U : I->users()) {
614 if (auto *CB = dyn_cast<CallBase>(U))
615 handleCallResult(*CB);
616 }
617 } else {
618 for (User *U : I->users())
619 if (auto *UI = dyn_cast<Instruction>(U))
620 operandChangedState(UI);
621 }
622
623 auto Iter = AdditionalUsers.find(I);
624 if (Iter != AdditionalUsers.end()) {
625 // Copy additional users before notifying them of changes, because new
626 // users may be added, potentially invalidating the iterator.
628 for (User *U : Iter->second)
629 if (auto *UI = dyn_cast<Instruction>(U))
630 ToNotify.push_back(UI);
631 for (Instruction *UI : ToNotify)
632 operandChangedState(UI);
633 }
634 }
635 void handleCallOverdefined(CallBase &CB);
636 void handleCallResult(CallBase &CB);
637 void handleCallArguments(CallBase &CB);
638 void handleExtractOfWithOverflow(ExtractValueInst &EVI,
639 const WithOverflowInst *WO, unsigned Idx);
640
641private:
642 friend class InstVisitor<SCCPInstVisitor>;
643
644 // visit implementations - Something changed in this instruction. Either an
645 // operand made a transition, or the instruction is newly executable. Change
646 // the value type of I to reflect these changes if appropriate.
647 void visitPHINode(PHINode &I);
648
649 // Terminators
650
651 void visitReturnInst(ReturnInst &I);
652 void visitTerminator(Instruction &TI);
653
654 void visitCastInst(CastInst &I);
655 void visitSelectInst(SelectInst &I);
656 void visitUnaryOperator(Instruction &I);
657 void visitFreezeInst(FreezeInst &I);
658 void visitBinaryOperator(Instruction &I);
659 void visitCmpInst(CmpInst &I);
660 void visitExtractValueInst(ExtractValueInst &EVI);
661 void visitInsertValueInst(InsertValueInst &IVI);
662
663 void visitCatchSwitchInst(CatchSwitchInst &CPI) {
664 markOverdefined(&CPI);
665 visitTerminator(CPI);
666 }
667
668 // Instructions that cannot be folded away.
669
670 void visitStoreInst(StoreInst &I);
671 void visitLoadInst(LoadInst &I);
672 void visitGetElementPtrInst(GetElementPtrInst &I);
673
674 void visitInvokeInst(InvokeInst &II) {
675 visitCallBase(II);
676 visitTerminator(II);
677 }
678
679 void visitCallBrInst(CallBrInst &CBI) {
680 visitCallBase(CBI);
681 visitTerminator(CBI);
682 }
683
684 void visitCallBase(CallBase &CB);
685 void visitResumeInst(ResumeInst &I) { /*returns void*/
686 }
687 void visitUnreachableInst(UnreachableInst &I) { /*returns void*/
688 }
689 void visitFenceInst(FenceInst &I) { /*returns void*/
690 }
691
692 void visitInstruction(Instruction &I);
693
694public:
696 FnPredicateInfo.insert({&F, std::make_unique<PredicateInfo>(F, DT, AC)});
697 }
698
699 void visitCallInst(CallInst &I) { visitCallBase(I); }
700
702
704 auto It = FnPredicateInfo.find(I->getParent()->getParent());
705 if (It == FnPredicateInfo.end())
706 return nullptr;
707 return It->second->getPredicateInfoFor(I);
708 }
709
711 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
712 LLVMContext &Ctx)
713 : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {}
714
716 // We only track the contents of scalar globals.
717 if (GV->getValueType()->isSingleValueType()) {
718 ValueLatticeElement &IV = TrackedGlobals[GV];
719 IV.markConstant(GV->getInitializer());
720 }
721 }
722
724 // Add an entry, F -> undef.
725 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
726 MRVFunctionsTracked.insert(F);
727 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
728 TrackedMultipleRetVals.insert(
729 std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
730 } else if (!F->getReturnType()->isVoidTy())
731 TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
732 }
733
735 MustPreserveReturnsInFunctions.insert(F);
736 }
737
739 return MustPreserveReturnsInFunctions.count(F);
740 }
741
743 TrackingIncomingArguments.insert(F);
744 }
745
747 return TrackingIncomingArguments.count(F);
748 }
749
750 void solve();
751
753
755
757 return BBExecutable.count(BB);
758 }
759
760 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
761
762 std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
763 std::vector<ValueLatticeElement> StructValues;
764 auto *STy = dyn_cast<StructType>(V->getType());
765 assert(STy && "getStructLatticeValueFor() can be called only on structs");
766 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
767 auto I = StructValueState.find(std::make_pair(V, i));
768 assert(I != StructValueState.end() && "Value not in valuemap!");
769 StructValues.push_back(I->second);
770 }
771 return StructValues;
772 }
773
774 void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
775
776 /// Invalidate the Lattice Value of \p Call and its users after specializing
777 /// the call. Then recompute it.
779 // Calls to void returning functions do not need invalidation.
780 Function *F = Call->getCalledFunction();
781 (void)F;
782 assert(!F->getReturnType()->isVoidTy() &&
783 (TrackedRetVals.count(F) || MRVFunctionsTracked.count(F)) &&
784 "All non void specializations should be tracked");
785 invalidate(Call);
786 handleCallResult(*Call);
787 }
788
790 assert(!V->getType()->isStructTy() &&
791 "Should use getStructLatticeValueFor");
793 ValueState.find(V);
794 assert(I != ValueState.end() &&
795 "V not found in ValueState nor Paramstate map!");
796 return I->second;
797 }
798
800 return TrackedRetVals;
801 }
802
804 return TrackedGlobals;
805 }
806
808 return MRVFunctionsTracked;
809 }
810
812 if (auto *STy = dyn_cast<StructType>(V->getType()))
813 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
814 markOverdefined(getStructValueState(V, i), V);
815 else
816 markOverdefined(ValueState[V], V);
817 }
818
820 if (A->getType()->isIntegerTy()) {
821 if (std::optional<ConstantRange> Range = A->getRange()) {
822 markConstantRange(ValueState[A], A, *Range);
823 return;
824 }
825 }
826 // Assume nothing about the incoming arguments without range.
827 markOverdefined(A);
828 }
829
831
832 Constant *getConstant(const ValueLatticeElement &LV, Type *Ty) const;
833
835
837 return TrackingIncomingArguments;
838 }
839
841 const SmallVectorImpl<ArgInfo> &Args);
842
844 for (auto &BB : *F)
845 BBExecutable.erase(&BB);
846 }
847
849 bool ResolvedUndefs = true;
850 while (ResolvedUndefs) {
851 solve();
852 ResolvedUndefs = false;
853 for (Function &F : M)
854 ResolvedUndefs |= resolvedUndefsIn(F);
855 }
856 }
857
859 bool ResolvedUndefs = true;
860 while (ResolvedUndefs) {
861 solve();
862 ResolvedUndefs = false;
863 for (Function *F : WorkList)
864 ResolvedUndefs |= resolvedUndefsIn(*F);
865 }
866 }
867
869 bool ResolvedUndefs = true;
870 while (ResolvedUndefs) {
871 solve();
872 ResolvedUndefs = false;
873 for (Value *V : Invalidated)
874 if (auto *I = dyn_cast<Instruction>(V))
875 ResolvedUndefs |= resolvedUndef(*I);
876 }
877 Invalidated.clear();
878 }
879};
880
881} // namespace llvm
882
884 if (!BBExecutable.insert(BB).second)
885 return false;
886 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
887 BBWorkList.push_back(BB); // Add the block to the work list!
888 return true;
889}
890
891void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) {
892 if (IV.isOverdefined()) {
893 if (OverdefinedInstWorkList.empty() || OverdefinedInstWorkList.back() != V)
894 OverdefinedInstWorkList.push_back(V);
895 return;
896 }
897 if (InstWorkList.empty() || InstWorkList.back() != V)
898 InstWorkList.push_back(V);
899}
900
901void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
902 LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
903 pushToWorkList(IV, V);
904}
905
906bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V,
907 Constant *C, bool MayIncludeUndef) {
908 if (!IV.markConstant(C, MayIncludeUndef))
909 return false;
910 LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
911 pushToWorkList(IV, V);
912 return true;
913}
914
915bool SCCPInstVisitor::markConstantRange(ValueLatticeElement &IV, Value *V,
916 const ConstantRange &CR) {
917 if (!IV.markConstantRange(CR))
918 return false;
919 LLVM_DEBUG(dbgs() << "markConstantRange: " << CR << ": " << *V << '\n');
920 pushToWorkList(IV, V);
921 return true;
922}
923
924bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) {
925 if (!IV.markOverdefined())
926 return false;
927
928 LLVM_DEBUG(dbgs() << "markOverdefined: ";
929 if (auto *F = dyn_cast<Function>(V)) dbgs()
930 << "Function '" << F->getName() << "'\n";
931 else dbgs() << *V << '\n');
932 // Only instructions go on the work list
933 pushToWorkList(IV, V);
934 return true;
935}
936
938 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
939 const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
940 assert(It != TrackedMultipleRetVals.end());
941 ValueLatticeElement LV = It->second;
942 if (!SCCPSolver::isConstant(LV))
943 return false;
944 }
945 return true;
946}
947
949 Type *Ty) const {
950 if (LV.isConstant()) {
951 Constant *C = LV.getConstant();
952 assert(C->getType() == Ty && "Type mismatch");
953 return C;
954 }
955
956 if (LV.isConstantRange()) {
957 const auto &CR = LV.getConstantRange();
958 if (CR.getSingleElement())
959 return ConstantInt::get(Ty, *CR.getSingleElement());
960 }
961 return nullptr;
962}
963
965 Constant *Const = nullptr;
966 if (V->getType()->isStructTy()) {
967 std::vector<ValueLatticeElement> LVs = getStructLatticeValueFor(V);
969 return nullptr;
970 std::vector<Constant *> ConstVals;
971 auto *ST = cast<StructType>(V->getType());
972 for (unsigned I = 0, E = ST->getNumElements(); I != E; ++I) {
973 ValueLatticeElement LV = LVs[I];
974 ConstVals.push_back(SCCPSolver::isConstant(LV)
975 ? getConstant(LV, ST->getElementType(I))
976 : UndefValue::get(ST->getElementType(I)));
977 }
978 Const = ConstantStruct::get(ST, ConstVals);
979 } else {
982 return nullptr;
983 Const = SCCPSolver::isConstant(LV) ? getConstant(LV, V->getType())
984 : UndefValue::get(V->getType());
985 }
986 assert(Const && "Constant is nullptr here!");
987 return Const;
988}
989
991 const SmallVectorImpl<ArgInfo> &Args) {
992 assert(!Args.empty() && "Specialization without arguments");
993 assert(F->arg_size() == Args[0].Formal->getParent()->arg_size() &&
994 "Functions should have the same number of arguments");
995
996 auto Iter = Args.begin();
997 Function::arg_iterator NewArg = F->arg_begin();
998 Function::arg_iterator OldArg = Args[0].Formal->getParent()->arg_begin();
999 for (auto End = F->arg_end(); NewArg != End; ++NewArg, ++OldArg) {
1000
1001 LLVM_DEBUG(dbgs() << "SCCP: Marking argument "
1002 << NewArg->getNameOrAsOperand() << "\n");
1003
1004 // Mark the argument constants in the new function
1005 // or copy the lattice state over from the old function.
1006 if (Iter != Args.end() && Iter->Formal == &*OldArg) {
1007 if (auto *STy = dyn_cast<StructType>(NewArg->getType())) {
1008 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
1009 ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}];
1010 NewValue.markConstant(Iter->Actual->getAggregateElement(I));
1011 }
1012 } else {
1013 ValueState[&*NewArg].markConstant(Iter->Actual);
1014 }
1015 ++Iter;
1016 } else {
1017 if (auto *STy = dyn_cast<StructType>(NewArg->getType())) {
1018 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
1019 ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}];
1020 NewValue = StructValueState[{&*OldArg, I}];
1021 }
1022 } else {
1023 ValueLatticeElement &NewValue = ValueState[&*NewArg];
1024 NewValue = ValueState[&*OldArg];
1025 }
1026 }
1027 }
1028}
1029
1030void SCCPInstVisitor::visitInstruction(Instruction &I) {
1031 // All the instructions we don't do any special handling for just
1032 // go to overdefined.
1033 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
1034 markOverdefined(&I);
1035}
1036
1037bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V,
1038 ValueLatticeElement MergeWithV,
1040 if (IV.mergeIn(MergeWithV, Opts)) {
1041 pushToWorkList(IV, V);
1042 LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
1043 << IV << "\n");
1044 return true;
1045 }
1046 return false;
1047}
1048
1049bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
1050 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
1051 return false; // This edge is already known to be executable!
1052
1053 if (!markBlockExecutable(Dest)) {
1054 // If the destination is already executable, we just made an *edge*
1055 // feasible that wasn't before. Revisit the PHI nodes in the block
1056 // because they have potentially new operands.
1057 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
1058 << " -> " << Dest->getName() << '\n');
1059
1060 for (PHINode &PN : Dest->phis())
1061 visitPHINode(PN);
1062 }
1063 return true;
1064}
1065
1066// getFeasibleSuccessors - Return a vector of booleans to indicate which
1067// successors are reachable from a given terminator instruction.
1068void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI,
1069 SmallVectorImpl<bool> &Succs) {
1070 Succs.resize(TI.getNumSuccessors());
1071 if (auto *BI = dyn_cast<BranchInst>(&TI)) {
1072 if (BI->isUnconditional()) {
1073 Succs[0] = true;
1074 return;
1075 }
1076
1077 ValueLatticeElement BCValue = getValueState(BI->getCondition());
1078 ConstantInt *CI = getConstantInt(BCValue, BI->getCondition()->getType());
1079 if (!CI) {
1080 // Overdefined condition variables, and branches on unfoldable constant
1081 // conditions, mean the branch could go either way.
1082 if (!BCValue.isUnknownOrUndef())
1083 Succs[0] = Succs[1] = true;
1084 return;
1085 }
1086
1087 // Constant condition variables mean the branch can only go a single way.
1088 Succs[CI->isZero()] = true;
1089 return;
1090 }
1091
1092 // We cannot analyze special terminators, so consider all successors
1093 // executable.
1094 if (TI.isSpecialTerminator()) {
1095 Succs.assign(TI.getNumSuccessors(), true);
1096 return;
1097 }
1098
1099 if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
1100 if (!SI->getNumCases()) {
1101 Succs[0] = true;
1102 return;
1103 }
1104 const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
1105 if (ConstantInt *CI =
1106 getConstantInt(SCValue, SI->getCondition()->getType())) {
1107 Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
1108 return;
1109 }
1110
1111 // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
1112 // is ready.
1113 if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
1114 const ConstantRange &Range = SCValue.getConstantRange();
1115 unsigned ReachableCaseCount = 0;
1116 for (const auto &Case : SI->cases()) {
1117 const APInt &CaseValue = Case.getCaseValue()->getValue();
1118 if (Range.contains(CaseValue)) {
1119 Succs[Case.getSuccessorIndex()] = true;
1120 ++ReachableCaseCount;
1121 }
1122 }
1123
1124 Succs[SI->case_default()->getSuccessorIndex()] =
1125 Range.isSizeLargerThan(ReachableCaseCount);
1126 return;
1127 }
1128
1129 // Overdefined or unknown condition? All destinations are executable!
1130 if (!SCValue.isUnknownOrUndef())
1131 Succs.assign(TI.getNumSuccessors(), true);
1132 return;
1133 }
1134
1135 // In case of indirect branch and its address is a blockaddress, we mark
1136 // the target as executable.
1137 if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
1138 // Casts are folded by visitCastInst.
1139 ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
1140 BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(
1141 getConstant(IBRValue, IBR->getAddress()->getType()));
1142 if (!Addr) { // Overdefined or unknown condition?
1143 // All destinations are executable!
1144 if (!IBRValue.isUnknownOrUndef())
1145 Succs.assign(TI.getNumSuccessors(), true);
1146 return;
1147 }
1148
1149 BasicBlock *T = Addr->getBasicBlock();
1150 assert(Addr->getFunction() == T->getParent() &&
1151 "Block address of a different function ?");
1152 for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
1153 // This is the target.
1154 if (IBR->getDestination(i) == T) {
1155 Succs[i] = true;
1156 return;
1157 }
1158 }
1159
1160 // If we didn't find our destination in the IBR successor list, then we
1161 // have undefined behavior. Its ok to assume no successor is executable.
1162 return;
1163 }
1164
1165 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
1166 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
1167}
1168
1169// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
1170// block to the 'To' basic block is currently feasible.
1172 // Check if we've called markEdgeExecutable on the edge yet. (We could
1173 // be more aggressive and try to consider edges which haven't been marked
1174 // yet, but there isn't any need.)
1175 return KnownFeasibleEdges.count(Edge(From, To));
1176}
1177
1178// visit Implementations - Something changed in this instruction, either an
1179// operand made a transition, or the instruction is newly executable. Change
1180// the value type of I to reflect these changes if appropriate. This method
1181// makes sure to do the following actions:
1182//
1183// 1. If a phi node merges two constants in, and has conflicting value coming
1184// from different branches, or if the PHI node merges in an overdefined
1185// value, then the PHI node becomes overdefined.
1186// 2. If a phi node merges only constants in, and they all agree on value, the
1187// PHI node becomes a constant value equal to that.
1188// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
1189// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
1190// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
1191// 6. If a conditional branch has a value that is constant, make the selected
1192// destination executable
1193// 7. If a conditional branch has a value that is overdefined, make all
1194// successors executable.
1195void SCCPInstVisitor::visitPHINode(PHINode &PN) {
1196 // If this PN returns a struct, just mark the result overdefined.
1197 // TODO: We could do a lot better than this if code actually uses this.
1198 if (PN.getType()->isStructTy())
1199 return (void)markOverdefined(&PN);
1200
1201 if (getValueState(&PN).isOverdefined())
1202 return; // Quick exit
1203
1204 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
1205 // and slow us down a lot. Just mark them overdefined.
1206 if (PN.getNumIncomingValues() > 64)
1207 return (void)markOverdefined(&PN);
1208
1209 unsigned NumActiveIncoming = 0;
1210
1211 // Look at all of the executable operands of the PHI node. If any of them
1212 // are overdefined, the PHI becomes overdefined as well. If they are all
1213 // constant, and they agree with each other, the PHI becomes the identical
1214 // constant. If they are constant and don't agree, the PHI is a constant
1215 // range. If there are no executable operands, the PHI remains unknown.
1216 ValueLatticeElement PhiState = getValueState(&PN);
1217 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1218 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
1219 continue;
1220
1221 ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
1222 PhiState.mergeIn(IV);
1223 NumActiveIncoming++;
1224 if (PhiState.isOverdefined())
1225 break;
1226 }
1227
1228 // We allow up to 1 range extension per active incoming value and one
1229 // additional extension. Note that we manually adjust the number of range
1230 // extensions to match the number of active incoming values. This helps to
1231 // limit multiple extensions caused by the same incoming value, if other
1232 // incoming values are equal.
1233 mergeInValue(&PN, PhiState,
1234 ValueLatticeElement::MergeOptions().setMaxWidenSteps(
1235 NumActiveIncoming + 1));
1236 ValueLatticeElement &PhiStateRef = getValueState(&PN);
1237 PhiStateRef.setNumRangeExtensions(
1238 std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
1239}
1240
1241void SCCPInstVisitor::visitReturnInst(ReturnInst &I) {
1242 if (I.getNumOperands() == 0)
1243 return; // ret void
1244
1245 Function *F = I.getParent()->getParent();
1246 Value *ResultOp = I.getOperand(0);
1247
1248 // If we are tracking the return value of this function, merge it in.
1249 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
1250 auto TFRVI = TrackedRetVals.find(F);
1251 if (TFRVI != TrackedRetVals.end()) {
1252 mergeInValue(TFRVI->second, F, getValueState(ResultOp));
1253 return;
1254 }
1255 }
1256
1257 // Handle functions that return multiple values.
1258 if (!TrackedMultipleRetVals.empty()) {
1259 if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
1260 if (MRVFunctionsTracked.count(F))
1261 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1262 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
1263 getStructValueState(ResultOp, i));
1264 }
1265}
1266
1267void SCCPInstVisitor::visitTerminator(Instruction &TI) {
1268 SmallVector<bool, 16> SuccFeasible;
1269 getFeasibleSuccessors(TI, SuccFeasible);
1270
1271 BasicBlock *BB = TI.getParent();
1272
1273 // Mark all feasible successors executable.
1274 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
1275 if (SuccFeasible[i])
1276 markEdgeExecutable(BB, TI.getSuccessor(i));
1277}
1278
1279void SCCPInstVisitor::visitCastInst(CastInst &I) {
1280 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1281 // discover a concrete value later.
1282 if (ValueState[&I].isOverdefined())
1283 return;
1284
1285 ValueLatticeElement OpSt = getValueState(I.getOperand(0));
1286 if (OpSt.isUnknownOrUndef())
1287 return;
1288
1289 if (Constant *OpC = getConstant(OpSt, I.getOperand(0)->getType())) {
1290 // Fold the constant as we build.
1291 if (Constant *C =
1292 ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL))
1293 return (void)markConstant(&I, C);
1294 }
1295
1296 if (I.getDestTy()->isIntegerTy() && I.getSrcTy()->isIntOrIntVectorTy()) {
1297 auto &LV = getValueState(&I);
1298 ConstantRange OpRange = getConstantRange(OpSt, I.getSrcTy());
1299
1300 Type *DestTy = I.getDestTy();
1301 // Vectors where all elements have the same known constant range are treated
1302 // as a single constant range in the lattice. When bitcasting such vectors,
1303 // there is a mis-match between the width of the lattice value (single
1304 // constant range) and the original operands (vector). Go to overdefined in
1305 // that case.
1306 if (I.getOpcode() == Instruction::BitCast &&
1307 I.getOperand(0)->getType()->isVectorTy() &&
1308 OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
1309 return (void)markOverdefined(&I);
1310
1311 ConstantRange Res =
1312 OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
1313 mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
1314 } else
1315 markOverdefined(&I);
1316}
1317
1318void SCCPInstVisitor::handleExtractOfWithOverflow(ExtractValueInst &EVI,
1319 const WithOverflowInst *WO,
1320 unsigned Idx) {
1321 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
1322 ValueLatticeElement L = getValueState(LHS);
1323 ValueLatticeElement R = getValueState(RHS);
1324 addAdditionalUser(LHS, &EVI);
1325 addAdditionalUser(RHS, &EVI);
1326 if (L.isUnknownOrUndef() || R.isUnknownOrUndef())
1327 return; // Wait to resolve.
1328
1329 Type *Ty = LHS->getType();
1330 ConstantRange LR = getConstantRange(L, Ty);
1331 ConstantRange RR = getConstantRange(R, Ty);
1332 if (Idx == 0) {
1333 ConstantRange Res = LR.binaryOp(WO->getBinaryOp(), RR);
1334 mergeInValue(&EVI, ValueLatticeElement::getRange(Res));
1335 } else {
1336 assert(Idx == 1 && "Index can only be 0 or 1");
1338 WO->getBinaryOp(), RR, WO->getNoWrapKind());
1339 if (NWRegion.contains(LR))
1340 return (void)markConstant(&EVI, ConstantInt::getFalse(EVI.getType()));
1341 markOverdefined(&EVI);
1342 }
1343}
1344
1345void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) {
1346 // If this returns a struct, mark all elements over defined, we don't track
1347 // structs in structs.
1348 if (EVI.getType()->isStructTy())
1349 return (void)markOverdefined(&EVI);
1350
1351 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1352 // discover a concrete value later.
1353 if (ValueState[&EVI].isOverdefined())
1354 return (void)markOverdefined(&EVI);
1355
1356 // If this is extracting from more than one level of struct, we don't know.
1357 if (EVI.getNumIndices() != 1)
1358 return (void)markOverdefined(&EVI);
1359
1360 Value *AggVal = EVI.getAggregateOperand();
1361 if (AggVal->getType()->isStructTy()) {
1362 unsigned i = *EVI.idx_begin();
1363 if (auto *WO = dyn_cast<WithOverflowInst>(AggVal))
1364 return handleExtractOfWithOverflow(EVI, WO, i);
1365 ValueLatticeElement EltVal = getStructValueState(AggVal, i);
1366 mergeInValue(getValueState(&EVI), &EVI, EltVal);
1367 } else {
1368 // Otherwise, must be extracting from an array.
1369 return (void)markOverdefined(&EVI);
1370 }
1371}
1372
1373void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) {
1374 auto *STy = dyn_cast<StructType>(IVI.getType());
1375 if (!STy)
1376 return (void)markOverdefined(&IVI);
1377
1378 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1379 // discover a concrete value later.
1380 if (SCCPSolver::isOverdefined(ValueState[&IVI]))
1381 return (void)markOverdefined(&IVI);
1382
1383 // If this has more than one index, we can't handle it, drive all results to
1384 // undef.
1385 if (IVI.getNumIndices() != 1)
1386 return (void)markOverdefined(&IVI);
1387
1388 Value *Aggr = IVI.getAggregateOperand();
1389 unsigned Idx = *IVI.idx_begin();
1390
1391 // Compute the result based on what we're inserting.
1392 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1393 // This passes through all values that aren't the inserted element.
1394 if (i != Idx) {
1395 ValueLatticeElement EltVal = getStructValueState(Aggr, i);
1396 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
1397 continue;
1398 }
1399
1400 Value *Val = IVI.getInsertedValueOperand();
1401 if (Val->getType()->isStructTy())
1402 // We don't track structs in structs.
1403 markOverdefined(getStructValueState(&IVI, i), &IVI);
1404 else {
1405 ValueLatticeElement InVal = getValueState(Val);
1406 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
1407 }
1408 }
1409}
1410
1411void SCCPInstVisitor::visitSelectInst(SelectInst &I) {
1412 // If this select returns a struct, just mark the result overdefined.
1413 // TODO: We could do a lot better than this if code actually uses this.
1414 if (I.getType()->isStructTy())
1415 return (void)markOverdefined(&I);
1416
1417 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1418 // discover a concrete value later.
1419 if (ValueState[&I].isOverdefined())
1420 return (void)markOverdefined(&I);
1421
1422 ValueLatticeElement CondValue = getValueState(I.getCondition());
1423 if (CondValue.isUnknownOrUndef())
1424 return;
1425
1426 if (ConstantInt *CondCB =
1427 getConstantInt(CondValue, I.getCondition()->getType())) {
1428 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
1429 mergeInValue(&I, getValueState(OpVal));
1430 return;
1431 }
1432
1433 // Otherwise, the condition is overdefined or a constant we can't evaluate.
1434 // See if we can produce something better than overdefined based on the T/F
1435 // value.
1436 ValueLatticeElement TVal = getValueState(I.getTrueValue());
1437 ValueLatticeElement FVal = getValueState(I.getFalseValue());
1438
1439 bool Changed = ValueState[&I].mergeIn(TVal);
1440 Changed |= ValueState[&I].mergeIn(FVal);
1441 if (Changed)
1442 pushToWorkListMsg(ValueState[&I], &I);
1443}
1444
1445// Handle Unary Operators.
1446void SCCPInstVisitor::visitUnaryOperator(Instruction &I) {
1447 ValueLatticeElement V0State = getValueState(I.getOperand(0));
1448
1449 ValueLatticeElement &IV = ValueState[&I];
1450 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1451 // discover a concrete value later.
1453 return (void)markOverdefined(&I);
1454
1455 // If something is unknown/undef, wait for it to resolve.
1456 if (V0State.isUnknownOrUndef())
1457 return;
1458
1459 if (SCCPSolver::isConstant(V0State))
1461 I.getOpcode(), getConstant(V0State, I.getType()), DL))
1462 return (void)markConstant(IV, &I, C);
1463
1464 markOverdefined(&I);
1465}
1466
1467void SCCPInstVisitor::visitFreezeInst(FreezeInst &I) {
1468 // If this freeze returns a struct, just mark the result overdefined.
1469 // TODO: We could do a lot better than this.
1470 if (I.getType()->isStructTy())
1471 return (void)markOverdefined(&I);
1472
1473 ValueLatticeElement V0State = getValueState(I.getOperand(0));
1474 ValueLatticeElement &IV = ValueState[&I];
1475 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1476 // discover a concrete value later.
1478 return (void)markOverdefined(&I);
1479
1480 // If something is unknown/undef, wait for it to resolve.
1481 if (V0State.isUnknownOrUndef())
1482 return;
1483
1484 if (SCCPSolver::isConstant(V0State) &&
1485 isGuaranteedNotToBeUndefOrPoison(getConstant(V0State, I.getType())))
1486 return (void)markConstant(IV, &I, getConstant(V0State, I.getType()));
1487
1488 markOverdefined(&I);
1489}
1490
1491// Handle Binary Operators.
1492void SCCPInstVisitor::visitBinaryOperator(Instruction &I) {
1493 ValueLatticeElement V1State = getValueState(I.getOperand(0));
1494 ValueLatticeElement V2State = getValueState(I.getOperand(1));
1495
1496 ValueLatticeElement &IV = ValueState[&I];
1497 if (IV.isOverdefined())
1498 return;
1499
1500 // If something is undef, wait for it to resolve.
1501 if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
1502 return;
1503
1504 if (V1State.isOverdefined() && V2State.isOverdefined())
1505 return (void)markOverdefined(&I);
1506
1507 // If either of the operands is a constant, try to fold it to a constant.
1508 // TODO: Use information from notconstant better.
1509 if ((V1State.isConstant() || V2State.isConstant())) {
1510 Value *V1 = SCCPSolver::isConstant(V1State)
1511 ? getConstant(V1State, I.getOperand(0)->getType())
1512 : I.getOperand(0);
1513 Value *V2 = SCCPSolver::isConstant(V2State)
1514 ? getConstant(V2State, I.getOperand(1)->getType())
1515 : I.getOperand(1);
1516 Value *R = simplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
1517 auto *C = dyn_cast_or_null<Constant>(R);
1518 if (C) {
1519 // Conservatively assume that the result may be based on operands that may
1520 // be undef. Note that we use mergeInValue to combine the constant with
1521 // the existing lattice value for I, as different constants might be found
1522 // after one of the operands go to overdefined, e.g. due to one operand
1523 // being a special floating value.
1525 NewV.markConstant(C, /*MayIncludeUndef=*/true);
1526 return (void)mergeInValue(&I, NewV);
1527 }
1528 }
1529
1530 // Only use ranges for binary operators on integers.
1531 if (!I.getType()->isIntegerTy())
1532 return markOverdefined(&I);
1533
1534 // Try to simplify to a constant range.
1535 ConstantRange A = getConstantRange(V1State, I.getType());
1536 ConstantRange B = getConstantRange(V2State, I.getType());
1537
1538 auto *BO = cast<BinaryOperator>(&I);
1539 ConstantRange R = ConstantRange::getEmpty(I.getType()->getScalarSizeInBits());
1540 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO))
1541 R = A.overflowingBinaryOp(BO->getOpcode(), B, OBO->getNoWrapKind());
1542 else
1543 R = A.binaryOp(BO->getOpcode(), B);
1544 mergeInValue(&I, ValueLatticeElement::getRange(R));
1545
1546 // TODO: Currently we do not exploit special values that produce something
1547 // better than overdefined with an overdefined operand for vector or floating
1548 // point types, like and <4 x i32> overdefined, zeroinitializer.
1549}
1550
1551// Handle ICmpInst instruction.
1552void SCCPInstVisitor::visitCmpInst(CmpInst &I) {
1553 // Do not cache this lookup, getValueState calls later in the function might
1554 // invalidate the reference.
1555 if (SCCPSolver::isOverdefined(ValueState[&I]))
1556 return (void)markOverdefined(&I);
1557
1558 Value *Op1 = I.getOperand(0);
1559 Value *Op2 = I.getOperand(1);
1560
1561 // For parameters, use ParamState which includes constant range info if
1562 // available.
1563 auto V1State = getValueState(Op1);
1564 auto V2State = getValueState(Op2);
1565
1566 Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL);
1567 if (C) {
1569 CV.markConstant(C);
1570 mergeInValue(&I, CV);
1571 return;
1572 }
1573
1574 // If operands are still unknown, wait for it to resolve.
1575 if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
1576 !SCCPSolver::isConstant(ValueState[&I]))
1577 return;
1578
1579 markOverdefined(&I);
1580}
1581
1582// Handle getelementptr instructions. If all operands are constants then we
1583// can turn this into a getelementptr ConstantExpr.
1584void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
1585 if (SCCPSolver::isOverdefined(ValueState[&I]))
1586 return (void)markOverdefined(&I);
1587
1589 Operands.reserve(I.getNumOperands());
1590
1591 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1592 ValueLatticeElement State = getValueState(I.getOperand(i));
1593 if (State.isUnknownOrUndef())
1594 return; // Operands are not resolved yet.
1595
1596 if (SCCPSolver::isOverdefined(State))
1597 return (void)markOverdefined(&I);
1598
1599 if (Constant *C = getConstant(State, I.getOperand(i)->getType())) {
1600 Operands.push_back(C);
1601 continue;
1602 }
1603
1604 return (void)markOverdefined(&I);
1605 }
1606
1608 markConstant(&I, C);
1609}
1610
1611void SCCPInstVisitor::visitStoreInst(StoreInst &SI) {
1612 // If this store is of a struct, ignore it.
1613 if (SI.getOperand(0)->getType()->isStructTy())
1614 return;
1615
1616 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1617 return;
1618
1619 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1620 auto I = TrackedGlobals.find(GV);
1621 if (I == TrackedGlobals.end())
1622 return;
1623
1624 // Get the value we are storing into the global, then merge it.
1625 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
1627 if (I->second.isOverdefined())
1628 TrackedGlobals.erase(I); // No need to keep tracking this!
1629}
1630
1632 if (I->getType()->isIntegerTy()) {
1633 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1636
1637 if (const auto *CB = dyn_cast<CallBase>(I))
1638 if (std::optional<ConstantRange> Range = CB->getRange())
1639 return ValueLatticeElement::getRange(*Range);
1640 }
1641 if (I->hasMetadata(LLVMContext::MD_nonnull))
1643 ConstantPointerNull::get(cast<PointerType>(I->getType())));
1645}
1646
1647// Handle load instructions. If the operand is a constant pointer to a constant
1648// global, we can replace the load with the loaded constant value!
1649void SCCPInstVisitor::visitLoadInst(LoadInst &I) {
1650 // If this load is of a struct or the load is volatile, just mark the result
1651 // as overdefined.
1652 if (I.getType()->isStructTy() || I.isVolatile())
1653 return (void)markOverdefined(&I);
1654
1655 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1656 // discover a concrete value later.
1657 if (ValueState[&I].isOverdefined())
1658 return (void)markOverdefined(&I);
1659
1660 ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
1661 if (PtrVal.isUnknownOrUndef())
1662 return; // The pointer is not resolved yet!
1663
1664 ValueLatticeElement &IV = ValueState[&I];
1665
1666 if (SCCPSolver::isConstant(PtrVal)) {
1667 Constant *Ptr = getConstant(PtrVal, I.getOperand(0)->getType());
1668
1669 // load null is undefined.
1670 if (isa<ConstantPointerNull>(Ptr)) {
1671 if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
1672 return (void)markOverdefined(IV, &I);
1673 else
1674 return;
1675 }
1676
1677 // Transform load (constant global) into the value loaded.
1678 if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
1679 if (!TrackedGlobals.empty()) {
1680 // If we are tracking this global, merge in the known value for it.
1681 auto It = TrackedGlobals.find(GV);
1682 if (It != TrackedGlobals.end()) {
1683 mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
1684 return;
1685 }
1686 }
1687 }
1688
1689 // Transform load from a constant into a constant if possible.
1690 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL))
1691 return (void)markConstant(IV, &I, C);
1692 }
1693
1694 // Fall back to metadata.
1695 mergeInValue(&I, getValueFromMetadata(&I));
1696}
1697
1698void SCCPInstVisitor::visitCallBase(CallBase &CB) {
1699 handleCallResult(CB);
1700 handleCallArguments(CB);
1701}
1702
1703void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) {
1705
1706 // Void return and not tracking callee, just bail.
1707 if (CB.getType()->isVoidTy())
1708 return;
1709
1710 // Always mark struct return as overdefined.
1711 if (CB.getType()->isStructTy())
1712 return (void)markOverdefined(&CB);
1713
1714 // Otherwise, if we have a single return value case, and if the function is
1715 // a declaration, maybe we can constant fold it.
1716 if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
1718 for (const Use &A : CB.args()) {
1719 if (A.get()->getType()->isStructTy())
1720 return markOverdefined(&CB); // Can't handle struct args.
1721 if (A.get()->getType()->isMetadataTy())
1722 continue; // Carried in CB, not allowed in Operands.
1723 ValueLatticeElement State = getValueState(A);
1724
1725 if (State.isUnknownOrUndef())
1726 return; // Operands are not resolved yet.
1727 if (SCCPSolver::isOverdefined(State))
1728 return (void)markOverdefined(&CB);
1729 assert(SCCPSolver::isConstant(State) && "Unknown state!");
1730 Operands.push_back(getConstant(State, A->getType()));
1731 }
1732
1733 if (SCCPSolver::isOverdefined(getValueState(&CB)))
1734 return (void)markOverdefined(&CB);
1735
1736 // If we can constant fold this, mark the result of the call as a
1737 // constant.
1738 if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F)))
1739 return (void)markConstant(&CB, C);
1740 }
1741
1742 // Fall back to metadata.
1743 mergeInValue(&CB, getValueFromMetadata(&CB));
1744}
1745
1746void SCCPInstVisitor::handleCallArguments(CallBase &CB) {
1748 // If this is a local function that doesn't have its address taken, mark its
1749 // entry block executable and merge in the actual arguments to the call into
1750 // the formal arguments of the function.
1751 if (TrackingIncomingArguments.count(F)) {
1752 markBlockExecutable(&F->front());
1753
1754 // Propagate information from this call site into the callee.
1755 auto CAI = CB.arg_begin();
1756 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1757 ++AI, ++CAI) {
1758 // If this argument is byval, and if the function is not readonly, there
1759 // will be an implicit copy formed of the input aggregate.
1760 if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1761 markOverdefined(&*AI);
1762 continue;
1763 }
1764
1765 if (auto *STy = dyn_cast<StructType>(AI->getType())) {
1766 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1767 ValueLatticeElement CallArg = getStructValueState(*CAI, i);
1768 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
1770 }
1771 } else
1772 mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
1773 }
1774 }
1775}
1776
1777void SCCPInstVisitor::handleCallResult(CallBase &CB) {
1779
1780 if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
1781 if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1782 if (ValueState[&CB].isOverdefined())
1783 return;
1784
1785 Value *CopyOf = CB.getOperand(0);
1786 ValueLatticeElement CopyOfVal = getValueState(CopyOf);
1787 const auto *PI = getPredicateInfoFor(&CB);
1788 assert(PI && "Missing predicate info for ssa.copy");
1789
1790 const std::optional<PredicateConstraint> &Constraint =
1791 PI->getConstraint();
1792 if (!Constraint) {
1793 mergeInValue(ValueState[&CB], &CB, CopyOfVal);
1794 return;
1795 }
1796
1797 CmpInst::Predicate Pred = Constraint->Predicate;
1798 Value *OtherOp = Constraint->OtherOp;
1799
1800 // Wait until OtherOp is resolved.
1801 if (getValueState(OtherOp).isUnknown()) {
1802 addAdditionalUser(OtherOp, &CB);
1803 return;
1804 }
1805
1806 ValueLatticeElement CondVal = getValueState(OtherOp);
1807 ValueLatticeElement &IV = ValueState[&CB];
1808 if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
1809 auto ImposedCR =
1810 ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
1811
1812 // Get the range imposed by the condition.
1813 if (CondVal.isConstantRange())
1815 Pred, CondVal.getConstantRange());
1816
1817 // Combine range info for the original value with the new range from the
1818 // condition.
1819 auto CopyOfCR = getConstantRange(CopyOfVal, CopyOf->getType());
1820 auto NewCR = ImposedCR.intersectWith(CopyOfCR);
1821 // If the existing information is != x, do not use the information from
1822 // a chained predicate, as the != x information is more likely to be
1823 // helpful in practice.
1824 if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
1825 NewCR = CopyOfCR;
1826
1827 // The new range is based on a branch condition. That guarantees that
1828 // neither of the compare operands can be undef in the branch targets,
1829 // unless we have conditions that are always true/false (e.g. icmp ule
1830 // i32, %a, i32_max). For the latter overdefined/empty range will be
1831 // inferred, but the branch will get folded accordingly anyways.
1832 addAdditionalUser(OtherOp, &CB);
1833 mergeInValue(
1834 IV, &CB,
1835 ValueLatticeElement::getRange(NewCR, /*MayIncludeUndef*/ false));
1836 return;
1837 } else if (Pred == CmpInst::ICMP_EQ &&
1838 (CondVal.isConstant() || CondVal.isNotConstant())) {
1839 // For non-integer values or integer constant expressions, only
1840 // propagate equal constants or not-constants.
1841 addAdditionalUser(OtherOp, &CB);
1842 mergeInValue(IV, &CB, CondVal);
1843 return;
1844 } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant()) {
1845 // Propagate inequalities.
1846 addAdditionalUser(OtherOp, &CB);
1847 mergeInValue(IV, &CB,
1849 return;
1850 }
1851
1852 return (void)mergeInValue(IV, &CB, CopyOfVal);
1853 }
1854
1855 if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
1856 // Compute result range for intrinsics supported by ConstantRange.
1857 // Do this even if we don't know a range for all operands, as we may
1858 // still know something about the result range, e.g. of abs(x).
1860 for (Value *Op : II->args()) {
1861 const ValueLatticeElement &State = getValueState(Op);
1862 if (State.isUnknownOrUndef())
1863 return;
1864 OpRanges.push_back(getConstantRange(State, Op->getType()));
1865 }
1866
1868 ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
1869 return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
1870 }
1871 }
1872
1873 // The common case is that we aren't tracking the callee, either because we
1874 // are not doing interprocedural analysis or the callee is indirect, or is
1875 // external. Handle these cases first.
1876 if (!F || F->isDeclaration())
1877 return handleCallOverdefined(CB);
1878
1879 // If this is a single/zero retval case, see if we're tracking the function.
1880 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
1881 if (!MRVFunctionsTracked.count(F))
1882 return handleCallOverdefined(CB); // Not tracking this callee.
1883
1884 // If we are tracking this callee, propagate the result of the function
1885 // into this call site.
1886 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1887 mergeInValue(getStructValueState(&CB, i), &CB,
1888 TrackedMultipleRetVals[std::make_pair(F, i)],
1890 } else {
1891 auto TFRVI = TrackedRetVals.find(F);
1892 if (TFRVI == TrackedRetVals.end())
1893 return handleCallOverdefined(CB); // Not tracking this callee.
1894
1895 // If so, propagate the return value of the callee into this call result.
1896 mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
1897 }
1898}
1899
1901 // Process the work lists until they are empty!
1902 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1903 !OverdefinedInstWorkList.empty()) {
1904 // Process the overdefined instruction's work list first, which drives other
1905 // things to overdefined more quickly.
1906 while (!OverdefinedInstWorkList.empty()) {
1907 Value *I = OverdefinedInstWorkList.pop_back_val();
1908 Invalidated.erase(I);
1909
1910 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1911
1912 // "I" got into the work list because it either made the transition from
1913 // bottom to constant, or to overdefined.
1914 //
1915 // Anything on this worklist that is overdefined need not be visited
1916 // since all of its users will have already been marked as overdefined
1917 // Update all of the users of this instruction's value.
1918 //
1919 markUsersAsChanged(I);
1920 }
1921
1922 // Process the instruction work list.
1923 while (!InstWorkList.empty()) {
1924 Value *I = InstWorkList.pop_back_val();
1925 Invalidated.erase(I);
1926
1927 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1928
1929 // "I" got into the work list because it made the transition from undef to
1930 // constant.
1931 //
1932 // Anything on this worklist that is overdefined need not be visited
1933 // since all of its users will have already been marked as overdefined.
1934 // Update all of the users of this instruction's value.
1935 //
1936 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1937 markUsersAsChanged(I);
1938 }
1939
1940 // Process the basic block work list.
1941 while (!BBWorkList.empty()) {
1942 BasicBlock *BB = BBWorkList.pop_back_val();
1943
1944 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1945
1946 // Notify all instructions in this basic block that they are newly
1947 // executable.
1948 visit(BB);
1949 }
1950 }
1951}
1952
1954 // Look for instructions which produce undef values.
1955 if (I.getType()->isVoidTy())
1956 return false;
1957
1958 if (auto *STy = dyn_cast<StructType>(I.getType())) {
1959 // Only a few things that can be structs matter for undef.
1960
1961 // Tracked calls must never be marked overdefined in resolvedUndefsIn.
1962 if (auto *CB = dyn_cast<CallBase>(&I))
1963 if (Function *F = CB->getCalledFunction())
1964 if (MRVFunctionsTracked.count(F))
1965 return false;
1966
1967 // extractvalue and insertvalue don't need to be marked; they are
1968 // tracked as precisely as their operands.
1969 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1970 return false;
1971 // Send the results of everything else to overdefined. We could be
1972 // more precise than this but it isn't worth bothering.
1973 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1974 ValueLatticeElement &LV = getStructValueState(&I, i);
1975 if (LV.isUnknown()) {
1976 markOverdefined(LV, &I);
1977 return true;
1978 }
1979 }
1980 return false;
1981 }
1982
1983 ValueLatticeElement &LV = getValueState(&I);
1984 if (!LV.isUnknown())
1985 return false;
1986
1987 // There are two reasons a call can have an undef result
1988 // 1. It could be tracked.
1989 // 2. It could be constant-foldable.
1990 // Because of the way we solve return values, tracked calls must
1991 // never be marked overdefined in resolvedUndefsIn.
1992 if (auto *CB = dyn_cast<CallBase>(&I))
1993 if (Function *F = CB->getCalledFunction())
1994 if (TrackedRetVals.count(F))
1995 return false;
1996
1997 if (isa<LoadInst>(I)) {
1998 // A load here means one of two things: a load of undef from a global,
1999 // a load from an unknown pointer. Either way, having it return undef
2000 // is okay.
2001 return false;
2002 }
2003
2004 markOverdefined(&I);
2005 return true;
2006}
2007
2008/// While solving the dataflow for a function, we don't compute a result for
2009/// operations with an undef operand, to allow undef to be lowered to a
2010/// constant later. For example, constant folding of "zext i8 undef to i16"
2011/// would result in "i16 0", and if undef is later lowered to "i8 1", then the
2012/// zext result would become "i16 1" and would result into an overdefined
2013/// lattice value once merged with the previous result. Not computing the
2014/// result of the zext (treating undef the same as unknown) allows us to handle
2015/// a later undef->constant lowering more optimally.
2016///
2017/// However, if the operand remains undef when the solver returns, we do need
2018/// to assign some result to the instruction (otherwise we would treat it as
2019/// unreachable). For simplicity, we mark any instructions that are still
2020/// unknown as overdefined.
2022 bool MadeChange = false;
2023 for (BasicBlock &BB : F) {
2024 if (!BBExecutable.count(&BB))
2025 continue;
2026
2027 for (Instruction &I : BB)
2028 MadeChange |= resolvedUndef(I);
2029 }
2030
2031 LLVM_DEBUG(if (MadeChange) dbgs()
2032 << "\nResolved undefs in " << F.getName() << '\n');
2033
2034 return MadeChange;
2035}
2036
2037//===----------------------------------------------------------------------===//
2038//
2039// SCCPSolver implementations
2040//
2042 const DataLayout &DL,
2043 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
2044 LLVMContext &Ctx)
2045 : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {}
2046
2047SCCPSolver::~SCCPSolver() = default;
2048
2050 AssumptionCache &AC) {
2051 Visitor->addPredicateInfo(F, DT, AC);
2052}
2053
2055 return Visitor->markBlockExecutable(BB);
2056}
2057
2059 return Visitor->getPredicateInfoFor(I);
2060}
2061
2063 Visitor->trackValueOfGlobalVariable(GV);
2064}
2065
2067 Visitor->addTrackedFunction(F);
2068}
2069
2071 Visitor->addToMustPreserveReturnsInFunctions(F);
2072}
2073
2075 return Visitor->mustPreserveReturn(F);
2076}
2077
2079 Visitor->addArgumentTrackedFunction(F);
2080}
2081
2083 return Visitor->isArgumentTrackedFunction(F);
2084}
2085
2086void SCCPSolver::solve() { Visitor->solve(); }
2087
2089 return Visitor->resolvedUndefsIn(F);
2090}
2091
2093 Visitor->solveWhileResolvedUndefsIn(M);
2094}
2095
2096void
2098 Visitor->solveWhileResolvedUndefsIn(WorkList);
2099}
2100
2102 Visitor->solveWhileResolvedUndefs();
2103}
2104
2106 return Visitor->isBlockExecutable(BB);
2107}
2108
2110 return Visitor->isEdgeFeasible(From, To);
2111}
2112
2113std::vector<ValueLatticeElement>
2115 return Visitor->getStructLatticeValueFor(V);
2116}
2117
2119 return Visitor->removeLatticeValueFor(V);
2120}
2121
2123 Visitor->resetLatticeValueFor(Call);
2124}
2125
2127 return Visitor->getLatticeValueFor(V);
2128}
2129
2132 return Visitor->getTrackedRetVals();
2133}
2134
2137 return Visitor->getTrackedGlobals();
2138}
2139
2141 return Visitor->getMRVFunctionsTracked();
2142}
2143
2144void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); }
2145
2147 Visitor->trackValueOfArgument(V);
2148}
2149
2151 return Visitor->isStructLatticeConstant(F, STy);
2152}
2153
2155 Type *Ty) const {
2156 return Visitor->getConstant(LV, Ty);
2157}
2158
2160 return Visitor->getConstantOrNull(V);
2161}
2162
2164 return Visitor->getArgumentTrackedFunctions();
2165}
2166
2168 const SmallVectorImpl<ArgInfo> &Args) {
2169 Visitor->setLatticeValueForSpecializationArguments(F, Args);
2170}
2171
2173 Visitor->markFunctionUnreachable(F);
2174}
2175
2176void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); }
2177
2178void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); }
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
uint64_t Addr
bool End
Definition: ELF_riscv.cpp:480
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
mir Rename Register Operands
static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts()
Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
Definition: SCCPSolver.cpp:40
static const unsigned MaxNumRangeExtensions
Definition: SCCPSolver.cpp:37
static ValueLatticeElement getValueFromMetadata(const Instruction *I)
static ConstantRange getConstantRange(const ValueLatticeElement &LV, Type *Ty, bool UndefAllowed=true)
Definition: SCCPSolver.cpp:45
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition: blake3_impl.h:78
Class for arbitrary precision integers.
Definition: APInt.h:76
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:499
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:199
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:206
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:168
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:221
void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
Definition: BasicBlock.cpp:509
Value * getRHS() const
unsigned getNoWrapKind() const
Returns one of OBO::NoSignedWrap or OBO::NoUnsignedWrap.
Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
Value * getLHS() const
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore)
Construct a binary instruction, given the opcode and the two operands.
The address of a basic block.
Definition: Constants.h:889
static BranchInst * Create(BasicBlock *IfTrue, BasicBlock::iterator InsertBefore)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1494
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Definition: InstrTypes.h:2400
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1742
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
Definition: InstrTypes.h:1662
bool isMustTailCall() const
Tests if this call site must be tail call optimized.
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
Definition: InstrTypes.h:1678
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:601
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:983
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:993
@ ICMP_EQ
equal
Definition: InstrTypes.h:1014
@ ICMP_NE
not equal
Definition: InstrTypes.h:1015
This is the shared class of boolean and integer constants.
Definition: Constants.h:80
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:205
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:856
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
Definition: Constants.cpp:1775
This class represents a range of values.
Definition: ConstantRange.h:47
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
ConstantRange castOp(Instruction::CastOps CastOp, uint32_t BitWidth) const
Return a new range representing the possible values resulting from an application of the specified ca...
static ConstantRange intrinsic(Intrinsic::ID IntrinsicID, ArrayRef< ConstantRange > Ops)
Compute range of intrinsic result for the given operand ranges.
static bool isIntrinsicSupported(Intrinsic::ID IntrinsicID)
Returns true if ConstantRange calculations are supported for intrinsic with IntrinsicID.
bool isSingleElement() const
Return true if this set contains exactly one member.
static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, const ConstantRange &Other, unsigned NoWrapKind)
Produce the largest range containing all X such that "X BinOp Y" is guaranteed not to wrap (overflow)...
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
ConstantRange binaryOp(Instruction::BinaryOps BinOp, const ConstantRange &Other) const
Return a new range representing the possible values resulting from an application of the specified bi...
static Constant * get(StructType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:1356
This is an important base class in LLVM.
Definition: Constant.h:41
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
bool erase(const KeyT &Val)
Definition: DenseMap.h:329
iterator end()
Definition: DenseMap.h:84
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:220
Implements a dense probed hash-table based set.
Definition: DenseSet.h:271
void applyUpdatesPermissive(ArrayRef< DominatorTree::UpdateType > Updates)
Submit updates to all available trees.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
This instruction extracts a struct member or array element value from an aggregate value.
unsigned getNumIndices() const
idx_iterator idx_begin() const
An instruction for ordering other memory operations.
Definition: Instructions.h:460
This class represents a freeze function that returns random concrete value if an operand is either a ...
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:973
Type * getValueType() const
Definition: GlobalValue.h:296
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
This instruction inserts a struct field of array element value into an aggregate value.
Base class for instruction visitors.
Definition: InstVisitor.h:78
void visit(Iterator Start, Iterator End)
Definition: InstVisitor.h:87
void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const BasicBlock * getParent() const
Definition: Instruction.h:152
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
BasicBlock * getSuccessor(unsigned Idx) const LLVM_READONLY
Return the specified successor. This instruction must be a terminator.
void setNonNeg(bool b=true)
Set or clear the nneg flag on this instruction, which must be a zext instruction.
bool hasNonNeg() const LLVM_READONLY
Determine whether the the nneg flag is set.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:252
void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
bool isSpecialTerminator() const
Definition: Instruction.h:262
Invoke instruction.
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:184
Metadata node.
Definition: Metadata.h:1067
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
size_type count(const KeyT &Key) const
Definition: MapVector.h:165
iterator end()
Definition: MapVector.h:71
iterator find(const KeyT &Key)
Definition: MapVector.h:167
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: MapVector.h:141
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
Resume the propagation of an exception.
Return a value (possibly void), from a function.
Helper class for SCCPSolver.
Definition: SCCPSolver.cpp:362
const PredicateBase * getPredicateInfoFor(Instruction *I)
Definition: SCCPSolver.cpp:703
std::vector< ValueLatticeElement > getStructLatticeValueFor(Value *V) const
Definition: SCCPSolver.cpp:762
bool resolvedUndef(Instruction &I)
void markFunctionUnreachable(Function *F)
Definition: SCCPSolver.cpp:843
bool markBlockExecutable(BasicBlock *BB)
Definition: SCCPSolver.cpp:883
bool resolvedUndefsIn(Function &F)
While solving the dataflow for a function, we don't compute a result for operations with an undef ope...
Constant * getConstant(const ValueLatticeElement &LV, Type *Ty) const
Definition: SCCPSolver.cpp:948
SCCPInstVisitor(const DataLayout &DL, std::function< const TargetLibraryInfo &(Function &)> GetTLI, LLVMContext &Ctx)
Definition: SCCPSolver.cpp:710
const ValueLatticeElement & getLatticeValueFor(Value *V) const
Definition: SCCPSolver.cpp:789
void removeLatticeValueFor(Value *V)
Definition: SCCPSolver.cpp:774
const DenseMap< GlobalVariable *, ValueLatticeElement > & getTrackedGlobals()
Definition: SCCPSolver.cpp:803
void trackValueOfArgument(Argument *A)
Definition: SCCPSolver.cpp:819
void visitCallInst(CallInst &I)
Definition: SCCPSolver.cpp:699
void markOverdefined(Value *V)
Definition: SCCPSolver.cpp:811
bool isArgumentTrackedFunction(Function *F)
Definition: SCCPSolver.cpp:746
void addTrackedFunction(Function *F)
Definition: SCCPSolver.cpp:723
SmallPtrSetImpl< Function * > & getArgumentTrackedFunctions()
Definition: SCCPSolver.cpp:836
void solveWhileResolvedUndefsIn(Module &M)
Definition: SCCPSolver.cpp:848
void trackValueOfGlobalVariable(GlobalVariable *GV)
Definition: SCCPSolver.cpp:715
Constant * getConstantOrNull(Value *V) const
Definition: SCCPSolver.cpp:964
const SmallPtrSet< Function *, 16 > getMRVFunctionsTracked()
Definition: SCCPSolver.cpp:807
void resetLatticeValueFor(CallBase *Call)
Invalidate the Lattice Value of Call and its users after specializing the call.
Definition: SCCPSolver.cpp:778
const MapVector< Function *, ValueLatticeElement > & getTrackedRetVals()
Definition: SCCPSolver.cpp:799
void addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC)
Definition: SCCPSolver.cpp:695
void addToMustPreserveReturnsInFunctions(Function *F)
Definition: SCCPSolver.cpp:734
void addArgumentTrackedFunction(Function *F)
Definition: SCCPSolver.cpp:742
bool isStructLatticeConstant(Function *F, StructType *STy)
Definition: SCCPSolver.cpp:937
void solveWhileResolvedUndefsIn(SmallVectorImpl< Function * > &WorkList)
Definition: SCCPSolver.cpp:858
bool isBlockExecutable(BasicBlock *BB) const
Definition: SCCPSolver.cpp:756
bool mustPreserveReturn(Function *F)
Definition: SCCPSolver.cpp:738
void setLatticeValueForSpecializationArguments(Function *F, const SmallVectorImpl< ArgInfo > &Args)
Definition: SCCPSolver.cpp:990
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const
SCCPSolver - This interface class is a general purpose solver for Sparse Conditional Constant Propaga...
Definition: SCCPSolver.h:65
void visitCall(CallInst &I)
const DenseMap< GlobalVariable *, ValueLatticeElement > & getTrackedGlobals()
getTrackedGlobals - Get and return the set of inferred initializers for global variables.
void resetLatticeValueFor(CallBase *Call)
Invalidate the Lattice Value of Call and its users after specializing the call.
void trackValueOfGlobalVariable(GlobalVariable *GV)
trackValueOfGlobalVariable - Clients can use this method to inform the SCCPSolver that it should trac...
bool tryToReplaceWithConstant(Value *V)
Definition: SCCPSolver.cpp:76
bool isStructLatticeConstant(Function *F, StructType *STy)
void addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC)
void solve()
Solve - Solve for constants and executable blocks.
void visit(Instruction *I)
void trackValueOfArgument(Argument *V)
trackValueOfArgument - Mark the specified argument overdefined unless it have range attribute.
void addTrackedFunction(Function *F)
addTrackedFunction - If the SCCP solver is supposed to track calls into and out of the specified func...
const MapVector< Function *, ValueLatticeElement > & getTrackedRetVals()
getTrackedRetVals - Get the inferred return value map.
void solveWhileResolvedUndefsIn(Module &M)
const PredicateBase * getPredicateInfoFor(Instruction *I)
bool resolvedUndefsIn(Function &F)
resolvedUndefsIn - While solving the dataflow for a function, we assume that branches on undef values...
void addArgumentTrackedFunction(Function *F)
void solveWhileResolvedUndefs()
void removeLatticeValueFor(Value *V)
std::vector< ValueLatticeElement > getStructLatticeValueFor(Value *V) const
const SmallPtrSet< Function *, 16 > getMRVFunctionsTracked()
getMRVFunctionsTracked - Get the set of functions which return multiple values tracked by the pass.
Constant * getConstantOrNull(Value *V) const
Return either a Constant or nullptr for a given Value.
bool simplifyInstsInBlock(BasicBlock &BB, SmallPtrSetImpl< Value * > &InsertedValues, Statistic &InstRemovedStat, Statistic &InstReplacedStat)
Definition: SCCPSolver.cpp:242
Constant * getConstant(const ValueLatticeElement &LV, Type *Ty) const
Helper to return a Constant if LV is either a constant or a constant range with a single element.
const ValueLatticeElement & getLatticeValueFor(Value *V) const
void addToMustPreserveReturnsInFunctions(Function *F)
Add function to the list of functions whose return cannot be modified.
bool removeNonFeasibleEdges(BasicBlock *BB, DomTreeUpdater &DTU, BasicBlock *&NewUnreachableBB) const
Definition: SCCPSolver.cpp:266
bool isBlockExecutable(BasicBlock *BB) const
bool markBlockExecutable(BasicBlock *BB)
markBlockExecutable - This method can be used by clients to mark all of the blocks that are known to ...
void setLatticeValueForSpecializationArguments(Function *F, const SmallVectorImpl< ArgInfo > &Args)
Set the Lattice Value for the arguments of a specialization F.
static bool isConstant(const ValueLatticeElement &LV)
Definition: SCCPSolver.cpp:55
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const
bool mustPreserveReturn(Function *F)
Returns true if the return of the given function cannot be modified.
static bool isOverdefined(const ValueLatticeElement &LV)
Definition: SCCPSolver.cpp:60
void markFunctionUnreachable(Function *F)
Mark all of the blocks in function F non-executable.
bool isArgumentTrackedFunction(Function *F)
Returns true if the given function is in the solver's set of argument-tracked functions.
SCCPSolver(const DataLayout &DL, std::function< const TargetLibraryInfo &(Function &)> GetTLI, LLVMContext &Ctx)
SmallPtrSetImpl< Function * > & getArgumentTrackedFunctions()
Return a reference to the set of argument tracked functions.
void markOverdefined(Value *V)
markOverdefined - Mark the specified value overdefined.
This class represents the LLVM 'select' instruction.
size_type size() const
Definition: SmallPtrSet.h:94
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:321
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:360
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:342
iterator begin() const
Definition: SmallPtrSet.h:380
bool contains(ConstPtrType Ptr) const
Definition: SmallPtrSet.h:366
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:427
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void assign(size_type NumElts, ValueParamT Elt)
Definition: SmallVector.h:717
void resize(size_type N)
Definition: SmallVector.h:651
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An instruction for storing to memory.
Definition: Instructions.h:317
Class to represent struct types.
Definition: DerivedTypes.h:216
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:341
A wrapper class to simplify modification of SwitchInst cases along with their prof branch_weights met...
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:234
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
Definition: Type.h:287
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:249
bool isVoidTy() const
Return true if this is 'void'.
Definition: Type.h:140
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1808
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
Value * getOperand(unsigned i) const
Definition: User.h:169
This class represents lattice values for constants.
Definition: ValueLattice.h:29
static ValueLatticeElement getRange(ConstantRange CR, bool MayIncludeUndef=false)
Definition: ValueLattice.h:214
Constant * getCompare(CmpInst::Predicate Pred, Type *Ty, const ValueLatticeElement &Other, const DataLayout &DL) const
true, false or undef constants, or nullptr if the comparison cannot be evaluated.
static ValueLatticeElement getNot(Constant *C)
Definition: ValueLattice.h:208
void setNumRangeExtensions(unsigned N)
Definition: ValueLattice.h:456
const ConstantRange & getConstantRange(bool UndefAllowed=true) const
Returns the constant range for this value.
Definition: ValueLattice.h:269
bool isConstantRange(bool UndefAllowed=true) const
Returns true if this value is a constant range.
Definition: ValueLattice.h:249
unsigned getNumRangeExtensions() const
Definition: ValueLattice.h:455
bool isUnknownOrUndef() const
Definition: ValueLattice.h:239
Constant * getConstant() const
Definition: ValueLattice.h:255
bool mergeIn(const ValueLatticeElement &RHS, MergeOptions Opts=MergeOptions())
Updates this object to approximate both this object and RHS.
Definition: ValueLattice.h:385
bool markConstant(Constant *V, bool MayIncludeUndef=false)
Definition: ValueLattice.h:301
static ValueLatticeElement getOverdefined()
Definition: ValueLattice.h:231
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
std::string getNameOrAsOperand() const
Definition: Value.cpp:445
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:383
Represents an op.with.overflow intrinsic.
This class represents zero extension of integer types.
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:206
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition: DenseSet.h:97
self_iterator getIterator()
Definition: ilist_node.h:109
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
static bool replaceSignedInst(SCCPSolver &Solver, SmallPtrSetImpl< Value * > &InsertedValues, Instruction &Inst)
Try to replace signed instructions with their unsigned equivalent.
Definition: SCCPSolver.cpp:176
bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
auto successors(const MachineBasicBlock *BB)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:656
ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
Constant * ConstantFoldInstOperands(Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
Definition: Function.cpp:2043
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
Definition: Local.cpp:418
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
DWARFExpression::Operation Op
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1849
static bool canRemoveInstruction(Instruction *I)
Definition: SCCPSolver.cpp:64
Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
static bool refineInstruction(SCCPSolver &Solver, const SmallPtrSetImpl< Value * > &InsertedValues, Instruction &Inst)
Try to use Inst's value range from Solver to infer the NUW flag.
Definition: SCCPSolver.cpp:107
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
Struct to control some aspects related to merging constant ranges.
Definition: ValueLattice.h:111
MergeOptions & setMaxWidenSteps(unsigned Steps=1)
Definition: ValueLattice.h:140
MergeOptions & setCheckWiden(bool V=true)
Definition: ValueLattice.h:135