LLVM 20.0.0git
HexagonAsmParser.cpp
Go to the documentation of this file.
1//===-- HexagonAsmParser.cpp - Parse Hexagon asm to MCInst instructions----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
17#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/Twine.h"
23#include "llvm/MC/MCAssembler.h"
24#include "llvm/MC/MCContext.h"
27#include "llvm/MC/MCExpr.h"
28#include "llvm/MC/MCInst.h"
36#include "llvm/MC/MCStreamer.h"
38#include "llvm/MC/MCSymbol.h"
39#include "llvm/MC/MCValue.h"
43#include "llvm/Support/Debug.h"
45#include "llvm/Support/Format.h"
48#include "llvm/Support/SMLoc.h"
51#include <cassert>
52#include <cctype>
53#include <cstddef>
54#include <cstdint>
55#include <memory>
56#include <string>
57#include <utility>
58
59#define DEBUG_TYPE "mcasmparser"
60
61using namespace llvm;
62
64 "mwarn-missing-parenthesis",
65 cl::desc("Warn for missing parenthesis around predicate registers"),
66 cl::init(true));
68 "merror-missing-parenthesis",
69 cl::desc("Error for missing parenthesis around predicate registers"),
70 cl::init(false));
72 "mwarn-sign-mismatch",
73 cl::desc("Warn for mismatching a signed and unsigned value"),
74 cl::init(false));
76 "mwarn-noncontigious-register",
77 cl::desc("Warn for register names that arent contigious"), cl::init(true));
79 "merror-noncontigious-register",
80 cl::desc("Error for register names that aren't contigious"),
81 cl::init(false));
82static cl::opt<bool> AddBuildAttributes("hexagon-add-build-attributes");
83namespace {
84
85struct HexagonOperand;
86
87class HexagonAsmParser : public MCTargetAsmParser {
88
89 HexagonTargetStreamer &getTargetStreamer() {
91 return static_cast<HexagonTargetStreamer &>(TS);
92 }
93
94 MCAsmParser &Parser;
95 MCInst MCB;
96 bool InBrackets;
97
98 MCAsmParser &getParser() const { return Parser; }
99 MCAssembler *getAssembler() const {
100 MCAssembler *Assembler = nullptr;
101 // FIXME: need better way to detect AsmStreamer (upstream removed getKind())
102 if (!Parser.getStreamer().hasRawTextSupport()) {
103 MCELFStreamer *MES = static_cast<MCELFStreamer *>(&Parser.getStreamer());
104 Assembler = &MES->getAssembler();
105 }
106 return Assembler;
107 }
108
109 MCAsmLexer &getLexer() const { return Parser.getLexer(); }
110
111 bool equalIsAsmAssignment() override { return false; }
112 bool isLabel(AsmToken &Token) override;
113
114 void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
115 bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
116 bool ParseDirectiveFalign(unsigned Size, SMLoc L);
117
118 bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) override;
120 SMLoc &EndLoc) override;
121 bool ParseDirectiveSubsection(SMLoc L);
122 bool ParseDirectiveComm(bool IsLocal, SMLoc L);
123
124 bool parseDirectiveAttribute(SMLoc L);
125
126 bool RegisterMatchesArch(MCRegister MatchNum) const;
127
128 bool matchBundleOptions();
129 bool handleNoncontigiousRegister(bool Contigious, SMLoc &Loc);
130 bool finishBundle(SMLoc IDLoc, MCStreamer &Out);
131 void canonicalizeImmediates(MCInst &MCI);
132 bool matchOneInstruction(MCInst &MCB, SMLoc IDLoc,
133 OperandVector &InstOperands, uint64_t &ErrorInfo,
134 bool MatchingInlineAsm);
135 void eatToEndOfPacket();
136 bool matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
139 bool MatchingInlineAsm) override;
140
142 unsigned Kind) override;
143 bool OutOfRange(SMLoc IDLoc, long long Val, long long Max);
144 int processInstruction(MCInst &Inst, OperandVector const &Operands,
145 SMLoc IDLoc);
146
147 MCRegister matchRegister(StringRef Name);
148
149 /// @name Auto-generated Match Functions
150 /// {
151
152#define GET_ASSEMBLER_HEADER
153#include "HexagonGenAsmMatcher.inc"
154
155 /// }
156
157public:
158 HexagonAsmParser(const MCSubtargetInfo &_STI, MCAsmParser &_Parser,
159 const MCInstrInfo &MII, const MCTargetOptions &Options)
160 : MCTargetAsmParser(Options, _STI, MII), Parser(_Parser),
161 InBrackets(false) {
162 MCB.setOpcode(Hexagon::BUNDLE);
163 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
164
165 Parser.addAliasForDirective(".half", ".2byte");
166 Parser.addAliasForDirective(".hword", ".2byte");
167 Parser.addAliasForDirective(".word", ".4byte");
168
170
172 getTargetStreamer().emitTargetAttributes(*STI);
173 }
174
175 bool splitIdentifier(OperandVector &Operands);
176 bool parseOperand(OperandVector &Operands);
178 bool implicitExpressionLocation(OperandVector &Operands);
179 bool parseExpressionOrOperand(OperandVector &Operands);
180 bool parseExpression(MCExpr const *&Expr);
181
183 SMLoc NameLoc, OperandVector &Operands) override {
184 llvm_unreachable("Unimplemented");
185 }
186
188 OperandVector &Operands) override;
189
190 bool ParseDirective(AsmToken DirectiveID) override;
191};
192
193/// HexagonOperand - Instances of this class represent a parsed Hexagon machine
194/// instruction.
195struct HexagonOperand : public MCParsedAsmOperand {
196 enum KindTy { Token, Immediate, Register } Kind;
197 MCContext &Context;
198
199 SMLoc StartLoc, EndLoc;
200
201 struct TokTy {
202 const char *Data;
203 unsigned Length;
204 };
205
206 struct RegTy {
207 MCRegister RegNum;
208 };
209
210 struct ImmTy {
211 const MCExpr *Val;
212 };
213
214 union {
215 struct TokTy Tok;
216 struct RegTy Reg;
217 struct ImmTy Imm;
218 };
219
220 HexagonOperand(KindTy K, MCContext &Context) : Kind(K), Context(Context) {}
221
222public:
223 HexagonOperand(const HexagonOperand &o)
224 : MCParsedAsmOperand(), Context(o.Context) {
225 Kind = o.Kind;
226 StartLoc = o.StartLoc;
227 EndLoc = o.EndLoc;
228 switch (Kind) {
229 case Register:
230 Reg = o.Reg;
231 break;
232 case Immediate:
233 Imm = o.Imm;
234 break;
235 case Token:
236 Tok = o.Tok;
237 break;
238 }
239 }
240
241 /// getStartLoc - Get the location of the first token of this operand.
242 SMLoc getStartLoc() const override { return StartLoc; }
243
244 /// getEndLoc - Get the location of the last token of this operand.
245 SMLoc getEndLoc() const override { return EndLoc; }
246
247 MCRegister getReg() const override {
248 assert(Kind == Register && "Invalid access!");
249 return Reg.RegNum;
250 }
251
252 const MCExpr *getImm() const {
253 assert(Kind == Immediate && "Invalid access!");
254 return Imm.Val;
255 }
256
257 bool isToken() const override { return Kind == Token; }
258 bool isImm() const override { return Kind == Immediate; }
259 bool isMem() const override { llvm_unreachable("No isMem"); }
260 bool isReg() const override { return Kind == Register; }
261
262 bool CheckImmRange(int immBits, int zeroBits, bool isSigned,
263 bool isRelocatable, bool Extendable) const {
264 if (Kind == Immediate) {
265 const MCExpr *myMCExpr = &HexagonMCInstrInfo::getExpr(*getImm());
266 if (HexagonMCInstrInfo::mustExtend(*Imm.Val) && !Extendable)
267 return false;
268 int64_t Res;
269 if (myMCExpr->evaluateAsAbsolute(Res)) {
270 int bits = immBits + zeroBits;
271 // Field bit range is zerobits + bits
272 // zeroBits must be 0
273 if (Res & ((1 << zeroBits) - 1))
274 return false;
275 if (isSigned) {
276 if (Res < (1LL << (bits - 1)) && Res >= -(1LL << (bits - 1)))
277 return true;
278 } else {
279 if (bits == 64)
280 return true;
281 if (Res >= 0)
282 return ((uint64_t)Res < (uint64_t)(1ULL << bits));
283 else {
284 const int64_t high_bit_set = 1ULL << 63;
285 const uint64_t mask = (high_bit_set >> (63 - bits));
286 return (((uint64_t)Res & mask) == mask);
287 }
288 }
289 } else if (myMCExpr->getKind() == MCExpr::SymbolRef && isRelocatable)
290 return true;
291 else if (myMCExpr->getKind() == MCExpr::Binary ||
292 myMCExpr->getKind() == MCExpr::Unary)
293 return true;
294 }
295 return false;
296 }
297
298 bool isa30_2Imm() const { return CheckImmRange(30, 2, true, true, true); }
299 bool isb30_2Imm() const { return CheckImmRange(30, 2, true, true, true); }
300 bool isb15_2Imm() const { return CheckImmRange(15, 2, true, true, false); }
301 bool isb13_2Imm() const { return CheckImmRange(13, 2, true, true, false); }
302
303 bool ism32_0Imm() const { return true; }
304
305 bool isf32Imm() const { return false; }
306 bool isf64Imm() const { return false; }
307 bool iss32_0Imm() const { return true; }
308 bool iss31_1Imm() const { return true; }
309 bool iss30_2Imm() const { return true; }
310 bool iss29_3Imm() const { return true; }
311 bool iss27_2Imm() const { return CheckImmRange(27, 2, true, true, false); }
312 bool iss10_0Imm() const { return CheckImmRange(10, 0, true, false, false); }
313 bool iss10_6Imm() const { return CheckImmRange(10, 6, true, false, false); }
314 bool iss9_0Imm() const { return CheckImmRange(9, 0, true, false, false); }
315 bool iss8_0Imm() const { return CheckImmRange(8, 0, true, false, false); }
316 bool iss8_0Imm64() const { return CheckImmRange(8, 0, true, true, false); }
317 bool iss7_0Imm() const { return CheckImmRange(7, 0, true, false, false); }
318 bool iss6_0Imm() const { return CheckImmRange(6, 0, true, false, false); }
319 bool iss6_3Imm() const { return CheckImmRange(6, 3, true, false, false); }
320 bool iss4_0Imm() const { return CheckImmRange(4, 0, true, false, false); }
321 bool iss4_1Imm() const { return CheckImmRange(4, 1, true, false, false); }
322 bool iss4_2Imm() const { return CheckImmRange(4, 2, true, false, false); }
323 bool iss4_3Imm() const { return CheckImmRange(4, 3, true, false, false); }
324 bool iss3_0Imm() const { return CheckImmRange(3, 0, true, false, false); }
325
326 bool isu64_0Imm() const { return CheckImmRange(64, 0, false, true, true); }
327 bool isu32_0Imm() const { return true; }
328 bool isu31_1Imm() const { return true; }
329 bool isu30_2Imm() const { return true; }
330 bool isu29_3Imm() const { return true; }
331 bool isu26_6Imm() const { return CheckImmRange(26, 6, false, true, false); }
332 bool isu16_0Imm() const { return CheckImmRange(16, 0, false, true, false); }
333 bool isu16_1Imm() const { return CheckImmRange(16, 1, false, true, false); }
334 bool isu16_2Imm() const { return CheckImmRange(16, 2, false, true, false); }
335 bool isu16_3Imm() const { return CheckImmRange(16, 3, false, true, false); }
336 bool isu11_3Imm() const { return CheckImmRange(11, 3, false, false, false); }
337 bool isu10_0Imm() const { return CheckImmRange(10, 0, false, false, false); }
338 bool isu9_0Imm() const { return CheckImmRange(9, 0, false, false, false); }
339 bool isu8_0Imm() const { return CheckImmRange(8, 0, false, false, false); }
340 bool isu7_0Imm() const { return CheckImmRange(7, 0, false, false, false); }
341 bool isu6_0Imm() const { return CheckImmRange(6, 0, false, false, false); }
342 bool isu6_1Imm() const { return CheckImmRange(6, 1, false, false, false); }
343 bool isu6_2Imm() const { return CheckImmRange(6, 2, false, false, false); }
344 bool isu6_3Imm() const { return CheckImmRange(6, 3, false, false, false); }
345 bool isu5_0Imm() const { return CheckImmRange(5, 0, false, false, false); }
346 bool isu5_2Imm() const { return CheckImmRange(5, 2, false, false, false); }
347 bool isu5_3Imm() const { return CheckImmRange(5, 3, false, false, false); }
348 bool isu4_0Imm() const { return CheckImmRange(4, 0, false, false, false); }
349 bool isu4_2Imm() const { return CheckImmRange(4, 2, false, false, false); }
350 bool isu3_0Imm() const { return CheckImmRange(3, 0, false, false, false); }
351 bool isu3_1Imm() const { return CheckImmRange(3, 1, false, false, false); }
352 bool isu2_0Imm() const { return CheckImmRange(2, 0, false, false, false); }
353 bool isu1_0Imm() const { return CheckImmRange(1, 0, false, false, false); }
354
355 bool isn1Const() const {
356 if (!isImm())
357 return false;
358 int64_t Value;
359 if (!getImm()->evaluateAsAbsolute(Value))
360 return false;
361 return Value == -1;
362 }
363 bool issgp10Const() const {
364 if (!isReg())
365 return false;
366 return getReg() == Hexagon::SGP1_0;
367 }
368 bool iss11_0Imm() const {
369 return CheckImmRange(11 + 26, 0, true, true, true);
370 }
371 bool iss11_1Imm() const {
372 return CheckImmRange(11 + 26, 1, true, true, true);
373 }
374 bool iss11_2Imm() const {
375 return CheckImmRange(11 + 26, 2, true, true, true);
376 }
377 bool iss11_3Imm() const {
378 return CheckImmRange(11 + 26, 3, true, true, true);
379 }
380 bool isu32_0MustExt() const { return isImm(); }
381
382 void addRegOperands(MCInst &Inst, unsigned N) const {
383 assert(N == 1 && "Invalid number of operands!");
385 }
386
387 void addImmOperands(MCInst &Inst, unsigned N) const {
388 assert(N == 1 && "Invalid number of operands!");
389 Inst.addOperand(MCOperand::createExpr(getImm()));
390 }
391
392 void addSignedImmOperands(MCInst &Inst, unsigned N) const {
393 assert(N == 1 && "Invalid number of operands!");
394 HexagonMCExpr *Expr =
395 const_cast<HexagonMCExpr *>(cast<HexagonMCExpr>(getImm()));
396 int64_t Value;
397 if (!Expr->evaluateAsAbsolute(Value)) {
399 return;
400 }
401 int64_t Extended = SignExtend64(Value, 32);
403 MCConstantExpr::create(Extended, Context), Context);
404 if ((Extended < 0) != (Value < 0))
405 NewExpr->setSignMismatch();
406 NewExpr->setMustExtend(Expr->mustExtend());
407 NewExpr->setMustNotExtend(Expr->mustNotExtend());
409 }
410
411 void addn1ConstOperands(MCInst &Inst, unsigned N) const {
412 addImmOperands(Inst, N);
413 }
414 void addsgp10ConstOperands(MCInst &Inst, unsigned N) const {
415 addRegOperands(Inst, N);
416 }
417
418 StringRef getToken() const {
419 assert(Kind == Token && "Invalid access!");
420 return StringRef(Tok.Data, Tok.Length);
421 }
422
423 void print(raw_ostream &OS) const override;
424
425 static std::unique_ptr<HexagonOperand> CreateToken(MCContext &Context,
426 StringRef Str, SMLoc S) {
427 HexagonOperand *Op = new HexagonOperand(Token, Context);
428 Op->Tok.Data = Str.data();
429 Op->Tok.Length = Str.size();
430 Op->StartLoc = S;
431 Op->EndLoc = S;
432 return std::unique_ptr<HexagonOperand>(Op);
433 }
434
435 static std::unique_ptr<HexagonOperand>
436 CreateReg(MCContext &Context, MCRegister Reg, SMLoc S, SMLoc E) {
437 HexagonOperand *Op = new HexagonOperand(Register, Context);
438 Op->Reg.RegNum = Reg;
439 Op->StartLoc = S;
440 Op->EndLoc = E;
441 return std::unique_ptr<HexagonOperand>(Op);
442 }
443
444 static std::unique_ptr<HexagonOperand>
445 CreateImm(MCContext &Context, const MCExpr *Val, SMLoc S, SMLoc E) {
446 HexagonOperand *Op = new HexagonOperand(Immediate, Context);
447 Op->Imm.Val = Val;
448 Op->StartLoc = S;
449 Op->EndLoc = E;
450 return std::unique_ptr<HexagonOperand>(Op);
451 }
452};
453
454} // end anonymous namespace
455
456void HexagonOperand::print(raw_ostream &OS) const {
457 switch (Kind) {
458 case Immediate:
459 getImm()->print(OS, nullptr);
460 break;
461 case Register:
462 OS << "<register R";
463 OS << getReg() << ">";
464 break;
465 case Token:
466 OS << "'" << getToken() << "'";
467 break;
468 }
469}
470
471bool HexagonAsmParser::finishBundle(SMLoc IDLoc, MCStreamer &Out) {
472 LLVM_DEBUG(dbgs() << "Bundle:");
474 LLVM_DEBUG(dbgs() << "--\n");
475
476 MCB.setLoc(IDLoc);
477
478 // Check the bundle for errors.
479 const MCRegisterInfo *RI = getContext().getRegisterInfo();
480 MCSubtargetInfo const &STI = getSTI();
481
482 MCInst OrigBundle = MCB;
483 HexagonMCChecker Check(getContext(), MII, STI, MCB, *RI, true);
484
486 MII, STI, getContext(), MCB, &Check, true);
487
488 if (CheckOk) {
489 if (HexagonMCInstrInfo::bundleSize(MCB) == 0) {
492 // Empty packets are valid yet aren't emitted
493 return false;
494 }
495
497
498 Out.emitInstruction(MCB, STI);
499 } else
500 return true; // Error
501
502 return false; // No error
503}
504
505bool HexagonAsmParser::matchBundleOptions() {
506 MCAsmParser &Parser = getParser();
507 while (true) {
508 if (!Parser.getTok().is(AsmToken::Colon))
509 return false;
510 Lex();
511 char const *MemNoShuffMsg =
512 "invalid instruction packet: mem_noshuf specifier not "
513 "supported with this architecture";
514 StringRef Option = Parser.getTok().getString();
515 auto IDLoc = Parser.getTok().getLoc();
516 if (Option.compare_insensitive("endloop01") == 0) {
519 } else if (Option.compare_insensitive("endloop0") == 0) {
521 } else if (Option.compare_insensitive("endloop1") == 0) {
523 } else if (Option.compare_insensitive("mem_noshuf") == 0) {
524 if (getSTI().hasFeature(Hexagon::FeatureMemNoShuf))
526 else
527 return getParser().Error(IDLoc, MemNoShuffMsg);
528 } else if (Option.compare_insensitive("mem_no_order") == 0) {
529 // Nothing.
530 } else
531 return getParser().Error(IDLoc, llvm::Twine("'") + Option +
532 "' is not a valid bundle option");
533 Lex();
534 }
535}
536
537// For instruction aliases, immediates are generated rather than
538// MCConstantExpr. Convert them for uniform MCExpr.
539// Also check for signed/unsigned mismatches and warn
540void HexagonAsmParser::canonicalizeImmediates(MCInst &MCI) {
541 MCInst NewInst;
542 NewInst.setOpcode(MCI.getOpcode());
543 for (MCOperand &I : MCI)
544 if (I.isImm()) {
545 int64_t Value(I.getImm());
547 MCConstantExpr::create(Value, getContext()), getContext())));
548 } else {
549 if (I.isExpr() && cast<HexagonMCExpr>(I.getExpr())->signMismatch() &&
551 Warning(MCI.getLoc(), "Signed/Unsigned mismatch");
552 NewInst.addOperand(I);
553 }
554 MCI = NewInst;
555}
556
557bool HexagonAsmParser::matchOneInstruction(MCInst &MCI, SMLoc IDLoc,
558 OperandVector &InstOperands,
560 bool MatchingInlineAsm) {
561 // Perform matching with tablegen asmmatcher generated function
562 int result =
563 MatchInstructionImpl(InstOperands, MCI, ErrorInfo, MatchingInlineAsm);
564 if (result == Match_Success) {
565 MCI.setLoc(IDLoc);
566 canonicalizeImmediates(MCI);
567 result = processInstruction(MCI, InstOperands, IDLoc);
568
569 LLVM_DEBUG(dbgs() << "Insn:");
571 LLVM_DEBUG(dbgs() << "\n\n");
572
573 MCI.setLoc(IDLoc);
574 }
575
576 // Create instruction operand for bundle instruction
577 // Break this into a separate function Code here is less readable
578 // Think about how to get an instruction error to report correctly.
579 // SMLoc will return the "{"
580 switch (result) {
581 default:
582 break;
583 case Match_Success:
584 return false;
585 case Match_MissingFeature:
586 return Error(IDLoc, "invalid instruction");
587 case Match_MnemonicFail:
588 return Error(IDLoc, "unrecognized instruction");
589 case Match_InvalidOperand:
590 [[fallthrough]];
591 case Match_InvalidTiedOperand:
592 SMLoc ErrorLoc = IDLoc;
593 if (ErrorInfo != ~0U) {
594 if (ErrorInfo >= InstOperands.size())
595 return Error(IDLoc, "too few operands for instruction");
596
597 ErrorLoc = (static_cast<HexagonOperand *>(InstOperands[ErrorInfo].get()))
598 ->getStartLoc();
599 if (ErrorLoc == SMLoc())
600 ErrorLoc = IDLoc;
601 }
602 return Error(ErrorLoc, "invalid operand for instruction");
603 }
604 llvm_unreachable("Implement any new match types added!");
605}
606
607void HexagonAsmParser::eatToEndOfPacket() {
608 assert(InBrackets);
609 MCAsmLexer &Lexer = getLexer();
610 while (!Lexer.is(AsmToken::RCurly))
611 Lexer.Lex();
612 Lexer.Lex();
613 InBrackets = false;
614}
615
616bool HexagonAsmParser::matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
618 MCStreamer &Out,
620 bool MatchingInlineAsm) {
621 if (!InBrackets) {
622 MCB.clear();
624 }
625 HexagonOperand &FirstOperand = static_cast<HexagonOperand &>(*Operands[0]);
626 if (FirstOperand.isToken() && FirstOperand.getToken() == "{") {
627 assert(Operands.size() == 1 && "Brackets should be by themselves");
628 if (InBrackets) {
629 getParser().Error(IDLoc, "Already in a packet");
630 InBrackets = false;
631 return true;
632 }
633 InBrackets = true;
634 return false;
635 }
636 if (FirstOperand.isToken() && FirstOperand.getToken() == "}") {
637 assert(Operands.size() == 1 && "Brackets should be by themselves");
638 if (!InBrackets) {
639 getParser().Error(IDLoc, "Not in a packet");
640 return true;
641 }
642 InBrackets = false;
643 if (matchBundleOptions())
644 return true;
645 return finishBundle(IDLoc, Out);
646 }
647 MCInst *SubInst = getParser().getContext().createMCInst();
648 if (matchOneInstruction(*SubInst, IDLoc, Operands, ErrorInfo,
649 MatchingInlineAsm)) {
650 if (InBrackets)
651 eatToEndOfPacket();
652 return true;
653 }
655 getParser().getContext(), MII, MCB, *SubInst);
656 MCB.addOperand(MCOperand::createInst(SubInst));
657 if (!InBrackets)
658 return finishBundle(IDLoc, Out);
659 return false;
660}
661/// parseDirectiveAttribute
662/// ::= .attribute int, int
663/// ::= .attribute Tag_name, int
664bool HexagonAsmParser::parseDirectiveAttribute(SMLoc L) {
665 MCAsmParser &Parser = getParser();
666 int64_t Tag;
667 SMLoc TagLoc = Parser.getTok().getLoc();
668 if (Parser.getTok().is(AsmToken::Identifier)) {
669 StringRef Name = Parser.getTok().getIdentifier();
670 std::optional<unsigned> Ret = ELFAttrs::attrTypeFromString(
672 if (!Ret)
673 return Error(TagLoc, "attribute name not recognized: " + Name);
674 Tag = *Ret;
675 Parser.Lex();
676 } else {
677 const MCExpr *AttrExpr;
678
679 TagLoc = Parser.getTok().getLoc();
680 if (Parser.parseExpression(AttrExpr))
681 return true;
682
683 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
684 if (check(!CE, TagLoc, "expected numeric constant"))
685 return true;
686
687 Tag = CE->getValue();
688 }
689
690 if (Parser.parseComma())
691 return true;
692
693 // We currently only have integer values.
694 int64_t IntegerValue = 0;
695 SMLoc ValueExprLoc = Parser.getTok().getLoc();
696 const MCExpr *ValueExpr;
697 if (Parser.parseExpression(ValueExpr))
698 return true;
699
700 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
701 if (!CE)
702 return Error(ValueExprLoc, "expected numeric constant");
703 IntegerValue = CE->getValue();
704
705 if (Parser.parseEOL())
706 return true;
707
708 getTargetStreamer().emitAttribute(Tag, IntegerValue);
709 return false;
710}
711
712/// ParseDirective parses the Hexagon specific directives
713bool HexagonAsmParser::ParseDirective(AsmToken DirectiveID) {
714 StringRef IDVal = DirectiveID.getIdentifier();
715 if (IDVal.lower() == ".falign")
716 return ParseDirectiveFalign(256, DirectiveID.getLoc());
717 if ((IDVal.lower() == ".lcomm") || (IDVal.lower() == ".lcommon"))
718 return ParseDirectiveComm(true, DirectiveID.getLoc());
719 if ((IDVal.lower() == ".comm") || (IDVal.lower() == ".common"))
720 return ParseDirectiveComm(false, DirectiveID.getLoc());
721 if (IDVal.lower() == ".subsection")
722 return ParseDirectiveSubsection(DirectiveID.getLoc());
723 if (IDVal == ".attribute")
724 return parseDirectiveAttribute(DirectiveID.getLoc());
725
726 return true;
727}
728bool HexagonAsmParser::ParseDirectiveSubsection(SMLoc L) {
729 const MCExpr *Subsection = nullptr;
730 int64_t Res;
731
732 assert((getLexer().isNot(AsmToken::EndOfStatement)) &&
733 "Invalid subsection directive");
734 getParser().parseExpression(Subsection);
735
736 if (!Subsection->evaluateAsAbsolute(Res))
737 return Error(L, "Cannot evaluate subsection number");
738
739 if (getLexer().isNot(AsmToken::EndOfStatement))
740 return TokError("unexpected token in directive");
741
742 // 0-8192 is the hard-coded range in MCObjectStreamper.cpp, this keeps the
743 // negative subsections together and in the same order but at the opposite
744 // end of the section. Only legacy hexagon-gcc created assembly code
745 // used negative subsections.
746 if ((Res < 0) && (Res > -8193))
747 Res += 8192;
748 getStreamer().switchSection(getStreamer().getCurrentSectionOnly(), Res);
749 return false;
750}
751
752/// ::= .falign [expression]
753bool HexagonAsmParser::ParseDirectiveFalign(unsigned Size, SMLoc L) {
754
755 int64_t MaxBytesToFill = 15;
756
757 // if there is an argument
758 if (getLexer().isNot(AsmToken::EndOfStatement)) {
759 const MCExpr *Value;
760 SMLoc ExprLoc = L;
761
762 // Make sure we have a number (false is returned if expression is a number)
763 if (!getParser().parseExpression(Value)) {
764 // Make sure this is a number that is in range
765 auto *MCE = cast<MCConstantExpr>(Value);
766 uint64_t IntValue = MCE->getValue();
767 if (!isUIntN(Size, IntValue) && !isIntN(Size, IntValue))
768 return Error(ExprLoc, "literal value out of range (256) for falign");
769 MaxBytesToFill = IntValue;
770 Lex();
771 } else {
772 return Error(ExprLoc, "not a valid expression for falign directive");
773 }
774 }
775
776 getTargetStreamer().emitFAlign(16, MaxBytesToFill);
777 Lex();
778
779 return false;
780}
781
782// This is largely a copy of AsmParser's ParseDirectiveComm extended to
783// accept a 3rd argument, AccessAlignment which indicates the smallest
784// memory access made to the symbol, expressed in bytes. If no
785// AccessAlignment is specified it defaults to the Alignment Value.
786// Hexagon's .lcomm:
787// .lcomm Symbol, Length, Alignment, AccessAlignment
788bool HexagonAsmParser::ParseDirectiveComm(bool IsLocal, SMLoc Loc) {
789 // FIXME: need better way to detect if AsmStreamer (upstream removed
790 // getKind())
791 if (getStreamer().hasRawTextSupport())
792 return true; // Only object file output requires special treatment.
793
795 if (getParser().parseIdentifier(Name))
796 return TokError("expected identifier in directive");
797 // Handle the identifier as the key symbol.
798 MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
799
800 if (getLexer().isNot(AsmToken::Comma))
801 return TokError("unexpected token in directive");
802 Lex();
803
804 int64_t Size;
805 SMLoc SizeLoc = getLexer().getLoc();
806 if (getParser().parseAbsoluteExpression(Size))
807 return true;
808
809 int64_t ByteAlignment = 1;
810 SMLoc ByteAlignmentLoc;
811 if (getLexer().is(AsmToken::Comma)) {
812 Lex();
813 ByteAlignmentLoc = getLexer().getLoc();
814 if (getParser().parseAbsoluteExpression(ByteAlignment))
815 return true;
816 if (!isPowerOf2_64(ByteAlignment))
817 return Error(ByteAlignmentLoc, "alignment must be a power of 2");
818 }
819
820 int64_t AccessAlignment = 0;
821 if (getLexer().is(AsmToken::Comma)) {
822 // The optional access argument specifies the size of the smallest memory
823 // access to be made to the symbol, expressed in bytes.
824 SMLoc AccessAlignmentLoc;
825 Lex();
826 AccessAlignmentLoc = getLexer().getLoc();
827 if (getParser().parseAbsoluteExpression(AccessAlignment))
828 return true;
829
830 if (!isPowerOf2_64(AccessAlignment))
831 return Error(AccessAlignmentLoc, "access alignment must be a power of 2");
832 }
833
834 if (getLexer().isNot(AsmToken::EndOfStatement))
835 return TokError("unexpected token in '.comm' or '.lcomm' directive");
836
837 Lex();
838
839 // NOTE: a size of zero for a .comm should create a undefined symbol
840 // but a size of .lcomm creates a bss symbol of size zero.
841 if (Size < 0)
842 return Error(SizeLoc, "invalid '.comm' or '.lcomm' directive size, can't "
843 "be less than zero");
844
845 // NOTE: The alignment in the directive is a power of 2 value, the assembler
846 // may internally end up wanting an alignment in bytes.
847 // FIXME: Diagnose overflow.
848 if (ByteAlignment < 0)
849 return Error(ByteAlignmentLoc, "invalid '.comm' or '.lcomm' directive "
850 "alignment, can't be less than zero");
851
852 if (!Sym->isUndefined())
853 return Error(Loc, "invalid symbol redefinition");
854
855 HexagonMCELFStreamer &HexagonELFStreamer =
856 static_cast<HexagonMCELFStreamer &>(getStreamer());
857 if (IsLocal) {
858 HexagonELFStreamer.HexagonMCEmitLocalCommonSymbol(
859 Sym, Size, Align(ByteAlignment), AccessAlignment);
860 return false;
861 }
862
863 HexagonELFStreamer.HexagonMCEmitCommonSymbol(Sym, Size, Align(ByteAlignment),
864 AccessAlignment);
865 return false;
866}
867
868// validate register against architecture
869bool HexagonAsmParser::RegisterMatchesArch(MCRegister MatchNum) const {
870 if (HexagonMCRegisterClasses[Hexagon::V62RegsRegClassID].contains(MatchNum))
871 if (!getSTI().hasFeature(Hexagon::ArchV62))
872 return false;
873 return true;
874}
875
876// extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeHexagonAsmLexer();
877
878/// Force static initialization.
881}
882
883#define GET_MATCHER_IMPLEMENTATION
884#define GET_REGISTER_MATCHER
885#include "HexagonGenAsmMatcher.inc"
886
889 if (Index >= Operands.size())
890 return false;
891 MCParsedAsmOperand &Operand = *Operands[Operands.size() - Index - 1];
892 if (!Operand.isToken())
893 return false;
894 return static_cast<HexagonOperand &>(Operand).getToken().equals_insensitive(
895 String);
896}
897
899 return previousEqual(Operands, Index, "loop0") ||
900 previousEqual(Operands, Index, "loop1") ||
901 previousEqual(Operands, Index, "sp1loop0") ||
902 previousEqual(Operands, Index, "sp2loop0") ||
903 previousEqual(Operands, Index, "sp3loop0");
904}
905
906bool HexagonAsmParser::splitIdentifier(OperandVector &Operands) {
907 AsmToken const &Token = getParser().getTok();
908 StringRef String = Token.getString();
909 SMLoc Loc = Token.getLoc();
910 Lex();
911 do {
912 std::pair<StringRef, StringRef> HeadTail = String.split('.');
913 if (!HeadTail.first.empty())
914 Operands.push_back(
915 HexagonOperand::CreateToken(getContext(), HeadTail.first, Loc));
916 if (!HeadTail.second.empty())
917 Operands.push_back(HexagonOperand::CreateToken(
918 getContext(), String.substr(HeadTail.first.size(), 1), Loc));
919 String = HeadTail.second;
920 } while (!String.empty());
921 return false;
922}
923
924bool HexagonAsmParser::parseOperand(OperandVector &Operands) {
926 SMLoc Begin;
927 SMLoc End;
928 MCAsmLexer &Lexer = getLexer();
929 if (!parseRegister(Register, Begin, End)) {
931 switch (Register.id()) {
932 default:
933 break;
934 case Hexagon::P0:
935 case Hexagon::P1:
936 case Hexagon::P2:
937 case Hexagon::P3:
938 if (previousEqual(Operands, 0, "if")) {
940 Warning(Begin, "Missing parenthesis around predicate register");
941 static char const *LParen = "(";
942 static char const *RParen = ")";
943 Operands.push_back(
944 HexagonOperand::CreateToken(getContext(), LParen, Begin));
945 Operands.push_back(
946 HexagonOperand::CreateReg(getContext(), Register, Begin, End));
947 const AsmToken &MaybeDotNew = Lexer.getTok();
948 if (MaybeDotNew.is(AsmToken::TokenKind::Identifier) &&
949 MaybeDotNew.getString().equals_insensitive(".new"))
950 splitIdentifier(Operands);
951 Operands.push_back(
952 HexagonOperand::CreateToken(getContext(), RParen, Begin));
953 return false;
954 }
955 if (previousEqual(Operands, 0, "!") &&
956 previousEqual(Operands, 1, "if")) {
958 Warning(Begin, "Missing parenthesis around predicate register");
959 static char const *LParen = "(";
960 static char const *RParen = ")";
961 Operands.insert(Operands.end() - 1, HexagonOperand::CreateToken(
962 getContext(), LParen, Begin));
963 Operands.push_back(
964 HexagonOperand::CreateReg(getContext(), Register, Begin, End));
965 const AsmToken &MaybeDotNew = Lexer.getTok();
966 if (MaybeDotNew.is(AsmToken::TokenKind::Identifier) &&
967 MaybeDotNew.getString().equals_insensitive(".new"))
968 splitIdentifier(Operands);
969 Operands.push_back(
970 HexagonOperand::CreateToken(getContext(), RParen, Begin));
971 return false;
972 }
973 break;
974 }
975 Operands.push_back(
976 HexagonOperand::CreateReg(getContext(), Register, Begin, End));
977 return false;
978 }
979 return splitIdentifier(Operands);
980}
981
982bool HexagonAsmParser::isLabel(AsmToken &Token) {
983 MCAsmLexer &Lexer = getLexer();
984 AsmToken const &Second = Lexer.getTok();
985 AsmToken Third = Lexer.peekTok();
986 StringRef String = Token.getString();
987 if (Token.is(AsmToken::TokenKind::LCurly) ||
988 Token.is(AsmToken::TokenKind::RCurly))
989 return false;
990 // special case for parsing vwhist256:sat
991 if (String.lower() == "vwhist256" && Second.is(AsmToken::Colon) &&
992 Third.getString().lower() == "sat")
993 return false;
994 if (!Token.is(AsmToken::TokenKind::Identifier))
995 return true;
996 if (!matchRegister(String.lower()))
997 return true;
998 assert(Second.is(AsmToken::Colon));
999 StringRef Raw(String.data(), Third.getString().data() - String.data() +
1000 Third.getString().size());
1001 std::string Collapsed = std::string(Raw);
1002 llvm::erase_if(Collapsed, isSpace);
1003 StringRef Whole = Collapsed;
1004 std::pair<StringRef, StringRef> DotSplit = Whole.split('.');
1005 if (!matchRegister(DotSplit.first.lower()))
1006 return true;
1007 return false;
1008}
1009
1010bool HexagonAsmParser::handleNoncontigiousRegister(bool Contigious,
1011 SMLoc &Loc) {
1012 if (!Contigious && ErrorNoncontigiousRegister) {
1013 Error(Loc, "Register name is not contigious");
1014 return true;
1015 }
1016 if (!Contigious && WarnNoncontigiousRegister)
1017 Warning(Loc, "Register name is not contigious");
1018 return false;
1019}
1020
1021bool HexagonAsmParser::parseRegister(MCRegister &Reg, SMLoc &StartLoc,
1022 SMLoc &EndLoc) {
1023 return !tryParseRegister(Reg, StartLoc, EndLoc).isSuccess();
1024}
1025
1026ParseStatus HexagonAsmParser::tryParseRegister(MCRegister &Reg, SMLoc &StartLoc,
1027 SMLoc &EndLoc) {
1028 MCAsmLexer &Lexer = getLexer();
1029 StartLoc = getLexer().getLoc();
1030 SmallVector<AsmToken, 5> Lookahead;
1031 StringRef RawString(Lexer.getTok().getString().data(), 0);
1032 bool Again = Lexer.is(AsmToken::Identifier);
1033 bool NeededWorkaround = false;
1034 while (Again) {
1035 AsmToken const &Token = Lexer.getTok();
1036 RawString = StringRef(RawString.data(), Token.getString().data() -
1037 RawString.data() +
1038 Token.getString().size());
1039 Lookahead.push_back(Token);
1040 Lexer.Lex();
1041 bool Contigious = Lexer.getTok().getString().data() ==
1042 Lookahead.back().getString().data() +
1043 Lookahead.back().getString().size();
1044 bool Type = Lexer.is(AsmToken::Identifier) || Lexer.is(AsmToken::Dot) ||
1045 Lexer.is(AsmToken::Integer) || Lexer.is(AsmToken::Real) ||
1046 Lexer.is(AsmToken::Colon);
1047 bool Workaround =
1048 Lexer.is(AsmToken::Colon) || Lookahead.back().is(AsmToken::Colon);
1049 Again = (Contigious && Type) || (Workaround && Type);
1050 NeededWorkaround = NeededWorkaround || (Again && !(Contigious && Type));
1051 }
1052 std::string Collapsed = std::string(RawString);
1053 llvm::erase_if(Collapsed, isSpace);
1054 StringRef FullString = Collapsed;
1055 std::pair<StringRef, StringRef> DotSplit = FullString.split('.');
1056 MCRegister DotReg = matchRegister(DotSplit.first.lower());
1057 if (DotReg && RegisterMatchesArch(DotReg)) {
1058 if (DotSplit.second.empty()) {
1059 Reg = DotReg;
1060 EndLoc = Lexer.getLoc();
1061 if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
1062 return ParseStatus::NoMatch;
1063 return ParseStatus::Success;
1064 } else {
1065 Reg = DotReg;
1066 size_t First = RawString.find('.');
1067 StringRef DotString (RawString.data() + First, RawString.size() - First);
1068 Lexer.UnLex(AsmToken(AsmToken::Identifier, DotString));
1069 EndLoc = Lexer.getLoc();
1070 if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
1071 return ParseStatus::NoMatch;
1072 return ParseStatus::Success;
1073 }
1074 }
1075 std::pair<StringRef, StringRef> ColonSplit = StringRef(FullString).split(':');
1076 MCRegister ColonReg = matchRegister(ColonSplit.first.lower());
1077 if (ColonReg && RegisterMatchesArch(DotReg)) {
1078 do {
1079 Lexer.UnLex(Lookahead.pop_back_val());
1080 } while (!Lookahead.empty() && !Lexer.is(AsmToken::Colon));
1081 Reg = ColonReg;
1082 EndLoc = Lexer.getLoc();
1083 if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
1084 return ParseStatus::NoMatch;
1085 return ParseStatus::Success;
1086 }
1087 while (!Lookahead.empty()) {
1088 Lexer.UnLex(Lookahead.pop_back_val());
1089 }
1090 return ParseStatus::NoMatch;
1091}
1092
1093bool HexagonAsmParser::implicitExpressionLocation(OperandVector &Operands) {
1094 if (previousEqual(Operands, 0, "call"))
1095 return true;
1096 if (previousEqual(Operands, 0, "jump"))
1097 if (!getLexer().getTok().is(AsmToken::Colon))
1098 return true;
1099 if (previousEqual(Operands, 0, "(") && previousIsLoop(Operands, 1))
1100 return true;
1101 if (previousEqual(Operands, 1, ":") && previousEqual(Operands, 2, "jump") &&
1102 (previousEqual(Operands, 0, "nt") || previousEqual(Operands, 0, "t")))
1103 return true;
1104 return false;
1105}
1106
1107bool HexagonAsmParser::parseExpression(MCExpr const *&Expr) {
1109 MCAsmLexer &Lexer = getLexer();
1110 bool Done = false;
1111 static char const *Comma = ",";
1112 do {
1113 Tokens.emplace_back(Lexer.getTok());
1114 Lex();
1115 switch (Tokens.back().getKind()) {
1116 case AsmToken::TokenKind::Hash:
1117 if (Tokens.size() > 1)
1118 if ((Tokens.end() - 2)->getKind() == AsmToken::TokenKind::Plus) {
1119 Tokens.insert(Tokens.end() - 2,
1120 AsmToken(AsmToken::TokenKind::Comma, Comma));
1121 Done = true;
1122 }
1123 break;
1124 case AsmToken::TokenKind::RCurly:
1125 case AsmToken::TokenKind::EndOfStatement:
1126 case AsmToken::TokenKind::Eof:
1127 Done = true;
1128 break;
1129 default:
1130 break;
1131 }
1132 } while (!Done);
1133 while (!Tokens.empty()) {
1134 Lexer.UnLex(Tokens.back());
1135 Tokens.pop_back();
1136 }
1137 SMLoc Loc = Lexer.getLoc();
1138 return getParser().parseExpression(Expr, Loc);
1139}
1140
1141bool HexagonAsmParser::parseExpressionOrOperand(OperandVector &Operands) {
1142 if (implicitExpressionLocation(Operands)) {
1143 MCAsmParser &Parser = getParser();
1144 SMLoc Loc = Parser.getLexer().getLoc();
1145 MCExpr const *Expr = nullptr;
1146 bool Error = parseExpression(Expr);
1147 Expr = HexagonMCExpr::create(Expr, getContext());
1148 if (!Error)
1149 Operands.push_back(
1150 HexagonOperand::CreateImm(getContext(), Expr, Loc, Loc));
1151 return Error;
1152 }
1153 return parseOperand(Operands);
1154}
1155
1156/// Parse an instruction.
1157bool HexagonAsmParser::parseInstruction(OperandVector &Operands) {
1158 MCAsmParser &Parser = getParser();
1159 MCAsmLexer &Lexer = getLexer();
1160 while (true) {
1161 AsmToken const &Token = Parser.getTok();
1162 switch (Token.getKind()) {
1163 case AsmToken::Eof:
1165 Lex();
1166 return false;
1167 }
1168 case AsmToken::LCurly: {
1169 if (!Operands.empty())
1170 return true;
1171 Operands.push_back(HexagonOperand::CreateToken(
1172 getContext(), Token.getString(), Token.getLoc()));
1173 Lex();
1174 return false;
1175 }
1176 case AsmToken::RCurly: {
1177 if (Operands.empty()) {
1178 Operands.push_back(HexagonOperand::CreateToken(
1179 getContext(), Token.getString(), Token.getLoc()));
1180 Lex();
1181 }
1182 return false;
1183 }
1184 case AsmToken::Comma: {
1185 Lex();
1186 continue;
1187 }
1193 case AsmToken::LessLess: {
1194 Operands.push_back(HexagonOperand::CreateToken(
1195 getContext(), Token.getString().substr(0, 1), Token.getLoc()));
1196 Operands.push_back(HexagonOperand::CreateToken(
1197 getContext(), Token.getString().substr(1, 1), Token.getLoc()));
1198 Lex();
1199 continue;
1200 }
1201 case AsmToken::Hash: {
1202 bool MustNotExtend = false;
1203 bool ImplicitExpression = implicitExpressionLocation(Operands);
1204 SMLoc ExprLoc = Lexer.getLoc();
1205 if (!ImplicitExpression)
1206 Operands.push_back(HexagonOperand::CreateToken(
1207 getContext(), Token.getString(), Token.getLoc()));
1208 Lex();
1209 bool MustExtend = false;
1210 bool HiOnly = false;
1211 bool LoOnly = false;
1212 if (Lexer.is(AsmToken::Hash)) {
1213 Lex();
1214 MustExtend = true;
1215 } else if (ImplicitExpression)
1216 MustNotExtend = true;
1217 AsmToken const &Token = Parser.getTok();
1218 if (Token.is(AsmToken::Identifier)) {
1219 StringRef String = Token.getString();
1220 if (String.lower() == "hi") {
1221 HiOnly = true;
1222 } else if (String.lower() == "lo") {
1223 LoOnly = true;
1224 }
1225 if (HiOnly || LoOnly) {
1226 AsmToken LParen = Lexer.peekTok();
1227 if (!LParen.is(AsmToken::LParen)) {
1228 HiOnly = false;
1229 LoOnly = false;
1230 } else {
1231 Lex();
1232 }
1233 }
1234 }
1235 MCExpr const *Expr = nullptr;
1236 if (parseExpression(Expr))
1237 return true;
1238 int64_t Value;
1239 MCContext &Context = Parser.getContext();
1240 assert(Expr != nullptr);
1241 if (Expr->evaluateAsAbsolute(Value)) {
1242 if (HiOnly)
1244 Expr, MCConstantExpr::create(16, Context), Context);
1245 if (HiOnly || LoOnly)
1247 Expr, MCConstantExpr::create(0xffff, Context), Context);
1248 } else {
1249 MCValue Value;
1250 if (Expr->evaluateAsRelocatable(Value, nullptr, nullptr)) {
1251 if (!Value.isAbsolute()) {
1252 switch (Value.getAccessVariant()) {
1253 case MCSymbolRefExpr::VariantKind::VK_TPREL:
1254 case MCSymbolRefExpr::VariantKind::VK_DTPREL:
1255 // Don't lazy extend these expression variants
1256 MustNotExtend = !MustExtend;
1257 break;
1258 default:
1259 break;
1260 }
1261 }
1262 }
1263 }
1264 Expr = HexagonMCExpr::create(Expr, Context);
1265 HexagonMCInstrInfo::setMustNotExtend(*Expr, MustNotExtend);
1266 HexagonMCInstrInfo::setMustExtend(*Expr, MustExtend);
1267 std::unique_ptr<HexagonOperand> Operand =
1268 HexagonOperand::CreateImm(getContext(), Expr, ExprLoc, ExprLoc);
1269 Operands.push_back(std::move(Operand));
1270 continue;
1271 }
1272 default:
1273 break;
1274 }
1275 if (parseExpressionOrOperand(Operands))
1276 return true;
1277 }
1278}
1279
1280bool HexagonAsmParser::parseInstruction(ParseInstructionInfo &Info,
1283 getLexer().UnLex(ID);
1284 return parseInstruction(Operands);
1285}
1286
1287static MCInst makeCombineInst(int opCode, MCOperand &Rdd, MCOperand &MO1,
1288 MCOperand &MO2) {
1289 MCInst TmpInst;
1290 TmpInst.setOpcode(opCode);
1291 TmpInst.addOperand(Rdd);
1292 TmpInst.addOperand(MO1);
1293 TmpInst.addOperand(MO2);
1294
1295 return TmpInst;
1296}
1297
1298// Define this matcher function after the auto-generated include so we
1299// have the match class enum definitions.
1300unsigned HexagonAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
1301 unsigned Kind) {
1302 HexagonOperand *Op = static_cast<HexagonOperand *>(&AsmOp);
1303
1304 switch (Kind) {
1305 case MCK_0: {
1306 int64_t Value;
1307 return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == 0
1308 ? Match_Success
1309 : Match_InvalidOperand;
1310 }
1311 case MCK_1: {
1312 int64_t Value;
1313 return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == 1
1314 ? Match_Success
1315 : Match_InvalidOperand;
1316 }
1317 }
1318 if (Op->Kind == HexagonOperand::Token && Kind != InvalidMatchClass) {
1319 StringRef myStringRef = StringRef(Op->Tok.Data, Op->Tok.Length);
1320 if (matchTokenString(myStringRef.lower()) == (MatchClassKind)Kind)
1321 return Match_Success;
1322 if (matchTokenString(myStringRef.upper()) == (MatchClassKind)Kind)
1323 return Match_Success;
1324 }
1325
1326 LLVM_DEBUG(dbgs() << "Unmatched Operand:");
1327 LLVM_DEBUG(Op->dump());
1328 LLVM_DEBUG(dbgs() << "\n");
1329
1330 return Match_InvalidOperand;
1331}
1332
1333// FIXME: Calls to OutOfRange shoudl propagate failure up to parseStatement.
1334bool HexagonAsmParser::OutOfRange(SMLoc IDLoc, long long Val, long long Max) {
1335 std::string errStr;
1336 raw_string_ostream ES(errStr);
1337 ES << "value " << Val << "(" << format_hex(Val, 0) << ") out of range: ";
1338 if (Max >= 0)
1339 ES << "0-" << Max;
1340 else
1341 ES << Max << "-" << (-Max - 1);
1342 return Parser.printError(IDLoc, ES.str());
1343}
1344
1345int HexagonAsmParser::processInstruction(MCInst &Inst,
1346 OperandVector const &Operands,
1347 SMLoc IDLoc) {
1348 MCContext &Context = getParser().getContext();
1349 const MCRegisterInfo *RI = getContext().getRegisterInfo();
1350 const std::string r = "r";
1351 const std::string v = "v";
1352 const std::string Colon = ":";
1353 using RegPairVals = std::pair<unsigned, unsigned>;
1354 auto GetRegPair = [this, r](RegPairVals RegPair) {
1355 const std::string R1 = r + utostr(RegPair.first);
1356 const std::string R2 = r + utostr(RegPair.second);
1357
1358 return std::make_pair(matchRegister(R1), matchRegister(R2));
1359 };
1360 auto GetScalarRegs = [RI, GetRegPair](MCRegister RegPair) {
1361 const unsigned Lower = RI->getEncodingValue(RegPair);
1362 const RegPairVals RegPair_ = std::make_pair(Lower + 1, Lower);
1363
1364 return GetRegPair(RegPair_);
1365 };
1366 auto GetVecRegs = [GetRegPair](MCRegister VecRegPair) {
1367 const RegPairVals RegPair =
1369
1370 return GetRegPair(RegPair);
1371 };
1372
1373 bool is32bit = false; // used to distinguish between CONST32 and CONST64
1374 switch (Inst.getOpcode()) {
1375 default:
1376 if (HexagonMCInstrInfo::getDesc(MII, Inst).isPseudo()) {
1377 SMDiagnostic Diag = getSourceManager().GetMessage(
1378 IDLoc, SourceMgr::DK_Error,
1379 "Found pseudo instruction with no expansion");
1380 Diag.print("", errs());
1381 report_fatal_error("Invalid pseudo instruction");
1382 }
1383 break;
1384
1385 case Hexagon::J2_trap1:
1386 if (!getSTI().hasFeature(Hexagon::ArchV65)) {
1387 MCOperand &Rx = Inst.getOperand(0);
1388 MCOperand &Ry = Inst.getOperand(1);
1389 if (Rx.getReg() != Hexagon::R0 || Ry.getReg() != Hexagon::R0) {
1390 Error(IDLoc, "trap1 can only have register r0 as operand");
1391 return Match_InvalidOperand;
1392 }
1393 }
1394 break;
1395
1396 case Hexagon::A2_iconst: {
1397 Inst.setOpcode(Hexagon::A2_addi);
1398 MCOperand Reg = Inst.getOperand(0);
1399 MCOperand S27 = Inst.getOperand(1);
1402 Inst.clear();
1403 Inst.addOperand(Reg);
1404 Inst.addOperand(MCOperand::createReg(Hexagon::R0));
1405 Inst.addOperand(S27);
1406 break;
1407 }
1408 case Hexagon::M4_mpyrr_addr:
1409 case Hexagon::S4_addi_asl_ri:
1410 case Hexagon::S4_addi_lsr_ri:
1411 case Hexagon::S4_andi_asl_ri:
1412 case Hexagon::S4_andi_lsr_ri:
1413 case Hexagon::S4_ori_asl_ri:
1414 case Hexagon::S4_ori_lsr_ri:
1415 case Hexagon::S4_or_andix:
1416 case Hexagon::S4_subi_asl_ri:
1417 case Hexagon::S4_subi_lsr_ri: {
1418 MCOperand &Ry = Inst.getOperand(0);
1419 MCOperand &src = Inst.getOperand(2);
1420 if (RI->getEncodingValue(Ry.getReg()) != RI->getEncodingValue(src.getReg()))
1421 return Match_InvalidOperand;
1422 break;
1423 }
1424
1425 case Hexagon::C2_cmpgei: {
1426 MCOperand &MO = Inst.getOperand(2);
1429 MCConstantExpr::create(1, Context), Context),
1430 Context));
1431 Inst.setOpcode(Hexagon::C2_cmpgti);
1432 break;
1433 }
1434
1435 case Hexagon::C2_cmpgeui: {
1436 MCOperand &MO = Inst.getOperand(2);
1437 int64_t Value;
1438 bool Success = MO.getExpr()->evaluateAsAbsolute(Value);
1439 (void)Success;
1440 assert(Success && "Assured by matcher");
1441 if (Value == 0) {
1442 MCInst TmpInst;
1443 MCOperand &Pd = Inst.getOperand(0);
1444 MCOperand &Rt = Inst.getOperand(1);
1445 TmpInst.setOpcode(Hexagon::C2_cmpeq);
1446 TmpInst.addOperand(Pd);
1447 TmpInst.addOperand(Rt);
1448 TmpInst.addOperand(Rt);
1449 Inst = TmpInst;
1450 } else {
1453 MCConstantExpr::create(1, Context), Context),
1454 Context));
1455 Inst.setOpcode(Hexagon::C2_cmpgtui);
1456 }
1457 break;
1458 }
1459
1460 // Translate a "$Rdd = $Rss" to "$Rdd = combine($Rs, $Rt)"
1461 case Hexagon::A2_tfrp: {
1462 MCOperand &MO = Inst.getOperand(1);
1463 const std::pair<MCRegister, MCRegister> RegPair =
1464 GetScalarRegs(MO.getReg());
1465 MO.setReg(RegPair.first);
1466 Inst.addOperand(MCOperand::createReg(RegPair.second));
1467 Inst.setOpcode(Hexagon::A2_combinew);
1468 break;
1469 }
1470
1471 case Hexagon::A2_tfrpt:
1472 case Hexagon::A2_tfrpf: {
1473 MCOperand &MO = Inst.getOperand(2);
1474 const std::pair<MCRegister, MCRegister> RegPair =
1475 GetScalarRegs(MO.getReg());
1476 MO.setReg(RegPair.first);
1477 Inst.addOperand(MCOperand::createReg(RegPair.second));
1478 Inst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrpt)
1479 ? Hexagon::C2_ccombinewt
1480 : Hexagon::C2_ccombinewf);
1481 break;
1482 }
1483 case Hexagon::A2_tfrptnew:
1484 case Hexagon::A2_tfrpfnew: {
1485 MCOperand &MO = Inst.getOperand(2);
1486 const std::pair<MCRegister, MCRegister> RegPair =
1487 GetScalarRegs(MO.getReg());
1488 MO.setReg(RegPair.first);
1489 Inst.addOperand(MCOperand::createReg(RegPair.second));
1490 Inst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrptnew)
1491 ? Hexagon::C2_ccombinewnewt
1492 : Hexagon::C2_ccombinewnewf);
1493 break;
1494 }
1495
1496 // Translate a "$Vdd = $Vss" to "$Vdd = vcombine($Vs, $Vt)"
1497 case Hexagon::V6_vassignp: {
1498 MCOperand &MO = Inst.getOperand(1);
1499 const std::pair<MCRegister, MCRegister> RegPair = GetVecRegs(MO.getReg());
1500 MO.setReg(RegPair.first);
1501 Inst.addOperand(MCOperand::createReg(RegPair.second));
1502 Inst.setOpcode(Hexagon::V6_vcombine);
1503 break;
1504 }
1505
1506 // Translate a "$Rx = CONST32(#imm)" to "$Rx = memw(gp+#LABEL) "
1507 case Hexagon::CONST32:
1508 is32bit = true;
1509 [[fallthrough]];
1510 // Translate a "$Rx:y = CONST64(#imm)" to "$Rx:y = memd(gp+#LABEL) "
1511 case Hexagon::CONST64:
1512 // FIXME: need better way to detect AsmStreamer (upstream removed getKind())
1513 if (!Parser.getStreamer().hasRawTextSupport()) {
1514 MCELFStreamer *MES = static_cast<MCELFStreamer *>(&Parser.getStreamer());
1515 MCOperand &MO_1 = Inst.getOperand(1);
1516 MCOperand &MO_0 = Inst.getOperand(0);
1517
1518 // push section onto section stack
1519 MES->pushSection();
1520
1521 std::string myCharStr;
1522 MCSectionELF *mySection;
1523
1524 // check if this as an immediate or a symbol
1525 int64_t Value;
1526 bool Absolute = MO_1.getExpr()->evaluateAsAbsolute(Value);
1527 if (Absolute) {
1528 // Create a new section - one for each constant
1529 // Some or all of the zeros are replaced with the given immediate.
1530 if (is32bit) {
1531 std::string myImmStr = utohexstr(static_cast<uint32_t>(Value));
1532 myCharStr = StringRef(".gnu.linkonce.l4.CONST_00000000")
1533 .drop_back(myImmStr.size())
1534 .str() +
1535 myImmStr;
1536 } else {
1537 std::string myImmStr = utohexstr(Value);
1538 myCharStr = StringRef(".gnu.linkonce.l8.CONST_0000000000000000")
1539 .drop_back(myImmStr.size())
1540 .str() +
1541 myImmStr;
1542 }
1543
1544 mySection = getContext().getELFSection(myCharStr, ELF::SHT_PROGBITS,
1546 } else if (MO_1.isExpr()) {
1547 // .lita - for expressions
1548 myCharStr = ".lita";
1549 mySection = getContext().getELFSection(myCharStr, ELF::SHT_PROGBITS,
1551 } else
1552 llvm_unreachable("unexpected type of machine operand!");
1553
1554 MES->switchSection(mySection);
1555 unsigned byteSize = is32bit ? 4 : 8;
1556 getStreamer().emitCodeAlignment(Align(byteSize), &getSTI(), byteSize);
1557
1558 MCSymbol *Sym;
1559
1560 // for symbols, get rid of prepended ".gnu.linkonce.lx."
1561
1562 // emit symbol if needed
1563 if (Absolute) {
1564 Sym = getContext().getOrCreateSymbol(StringRef(myCharStr.c_str() + 16));
1565 if (Sym->isUndefined()) {
1566 getStreamer().emitLabel(Sym);
1567 getStreamer().emitSymbolAttribute(Sym, MCSA_Global);
1568 getStreamer().emitIntValue(Value, byteSize);
1569 }
1570 } else if (MO_1.isExpr()) {
1571 const char *StringStart = nullptr;
1572 const char *StringEnd = nullptr;
1573 if (*Operands[4]->getStartLoc().getPointer() == '#') {
1574 StringStart = Operands[5]->getStartLoc().getPointer();
1575 StringEnd = Operands[6]->getStartLoc().getPointer();
1576 } else { // no pound
1577 StringStart = Operands[4]->getStartLoc().getPointer();
1578 StringEnd = Operands[5]->getStartLoc().getPointer();
1579 }
1580
1581 unsigned size = StringEnd - StringStart;
1582 std::string DotConst = ".CONST_";
1583 Sym = getContext().getOrCreateSymbol(DotConst +
1584 StringRef(StringStart, size));
1585
1586 if (Sym->isUndefined()) {
1587 // case where symbol is not yet defined: emit symbol
1588 getStreamer().emitLabel(Sym);
1589 getStreamer().emitSymbolAttribute(Sym, MCSA_Local);
1590 getStreamer().emitValue(MO_1.getExpr(), 4);
1591 }
1592 } else
1593 llvm_unreachable("unexpected type of machine operand!");
1594
1595 MES->popSection();
1596
1597 if (Sym) {
1598 MCInst TmpInst;
1599 if (is32bit) // 32 bit
1600 TmpInst.setOpcode(Hexagon::L2_loadrigp);
1601 else // 64 bit
1602 TmpInst.setOpcode(Hexagon::L2_loadrdgp);
1603
1604 TmpInst.addOperand(MO_0);
1606 MCSymbolRefExpr::create(Sym, getContext()), getContext())));
1607 Inst = TmpInst;
1608 }
1609 }
1610 break;
1611
1612 // Translate a "$Rdd = #-imm" to "$Rdd = combine(#[-1,0], #-imm)"
1613 case Hexagon::A2_tfrpi: {
1614 MCOperand &Rdd = Inst.getOperand(0);
1615 MCOperand &MO = Inst.getOperand(1);
1616 int64_t Value;
1617 int sVal = (MO.getExpr()->evaluateAsAbsolute(Value) && Value < 0) ? -1 : 0;
1619 HexagonMCExpr::create(MCConstantExpr::create(sVal, Context), Context)));
1620 Inst = makeCombineInst(Hexagon::A2_combineii, Rdd, imm, MO);
1621 break;
1622 }
1623
1624 // Translate a "$Rdd = [#]#imm" to "$Rdd = combine(#, [#]#imm)"
1625 case Hexagon::TFRI64_V4: {
1626 MCOperand &Rdd = Inst.getOperand(0);
1627 MCOperand &MO = Inst.getOperand(1);
1628 int64_t Value;
1629 if (MO.getExpr()->evaluateAsAbsolute(Value)) {
1630 int s8 = Hi_32(Value);
1631 if (!isInt<8>(s8))
1632 OutOfRange(IDLoc, s8, -128);
1634 MCConstantExpr::create(s8, Context), Context))); // upper 32
1635 auto Expr = HexagonMCExpr::create(
1636 MCConstantExpr::create(Lo_32(Value), Context), Context);
1639 MCOperand imm2(MCOperand::createExpr(Expr)); // lower 32
1640 Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, imm, imm2);
1641 } else {
1643 MCConstantExpr::create(0, Context), Context))); // upper 32
1644 Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, imm, MO);
1645 }
1646 break;
1647 }
1648
1649 // Handle $Rdd = combine(##imm, #imm)"
1650 case Hexagon::TFRI64_V2_ext: {
1651 MCOperand &Rdd = Inst.getOperand(0);
1652 MCOperand &MO1 = Inst.getOperand(1);
1653 MCOperand &MO2 = Inst.getOperand(2);
1654 int64_t Value;
1655 if (MO2.getExpr()->evaluateAsAbsolute(Value)) {
1656 int s8 = Value;
1657 if (s8 < -128 || s8 > 127)
1658 OutOfRange(IDLoc, s8, -128);
1659 }
1660 Inst = makeCombineInst(Hexagon::A2_combineii, Rdd, MO1, MO2);
1661 break;
1662 }
1663
1664 // Handle $Rdd = combine(#imm, ##imm)"
1665 case Hexagon::A4_combineii: {
1666 MCOperand &Rdd = Inst.getOperand(0);
1667 MCOperand &MO1 = Inst.getOperand(1);
1668 int64_t Value;
1669 if (MO1.getExpr()->evaluateAsAbsolute(Value)) {
1670 int s8 = Value;
1671 if (s8 < -128 || s8 > 127)
1672 OutOfRange(IDLoc, s8, -128);
1673 }
1674 MCOperand &MO2 = Inst.getOperand(2);
1675 Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, MO1, MO2);
1676 break;
1677 }
1678
1679 case Hexagon::S2_tableidxb_goodsyntax:
1680 Inst.setOpcode(Hexagon::S2_tableidxb);
1681 break;
1682
1683 case Hexagon::S2_tableidxh_goodsyntax: {
1684 MCInst TmpInst;
1685 MCOperand &Rx = Inst.getOperand(0);
1686 MCOperand &Rs = Inst.getOperand(2);
1687 MCOperand &Imm4 = Inst.getOperand(3);
1688 MCOperand &Imm6 = Inst.getOperand(4);
1691 MCConstantExpr::create(1, Context), Context),
1692 Context));
1693 TmpInst.setOpcode(Hexagon::S2_tableidxh);
1694 TmpInst.addOperand(Rx);
1695 TmpInst.addOperand(Rx);
1696 TmpInst.addOperand(Rs);
1697 TmpInst.addOperand(Imm4);
1698 TmpInst.addOperand(Imm6);
1699 Inst = TmpInst;
1700 break;
1701 }
1702
1703 case Hexagon::S2_tableidxw_goodsyntax: {
1704 MCInst TmpInst;
1705 MCOperand &Rx = Inst.getOperand(0);
1706 MCOperand &Rs = Inst.getOperand(2);
1707 MCOperand &Imm4 = Inst.getOperand(3);
1708 MCOperand &Imm6 = Inst.getOperand(4);
1711 MCConstantExpr::create(2, Context), Context),
1712 Context));
1713 TmpInst.setOpcode(Hexagon::S2_tableidxw);
1714 TmpInst.addOperand(Rx);
1715 TmpInst.addOperand(Rx);
1716 TmpInst.addOperand(Rs);
1717 TmpInst.addOperand(Imm4);
1718 TmpInst.addOperand(Imm6);
1719 Inst = TmpInst;
1720 break;
1721 }
1722
1723 case Hexagon::S2_tableidxd_goodsyntax: {
1724 MCInst TmpInst;
1725 MCOperand &Rx = Inst.getOperand(0);
1726 MCOperand &Rs = Inst.getOperand(2);
1727 MCOperand &Imm4 = Inst.getOperand(3);
1728 MCOperand &Imm6 = Inst.getOperand(4);
1731 MCConstantExpr::create(3, Context), Context),
1732 Context));
1733 TmpInst.setOpcode(Hexagon::S2_tableidxd);
1734 TmpInst.addOperand(Rx);
1735 TmpInst.addOperand(Rx);
1736 TmpInst.addOperand(Rs);
1737 TmpInst.addOperand(Imm4);
1738 TmpInst.addOperand(Imm6);
1739 Inst = TmpInst;
1740 break;
1741 }
1742
1743 case Hexagon::M2_mpyui:
1744 Inst.setOpcode(Hexagon::M2_mpyi);
1745 break;
1746 case Hexagon::M2_mpysmi: {
1747 MCInst TmpInst;
1748 MCOperand &Rd = Inst.getOperand(0);
1749 MCOperand &Rs = Inst.getOperand(1);
1750 MCOperand &Imm = Inst.getOperand(2);
1751 int64_t Value;
1752 MCExpr const &Expr = *Imm.getExpr();
1753 bool Absolute = Expr.evaluateAsAbsolute(Value);
1754 if (!Absolute)
1755 return Match_InvalidOperand;
1756 if (!HexagonMCInstrInfo::mustExtend(Expr) &&
1757 ((Value <= -256) || Value >= 256))
1758 return Match_InvalidOperand;
1759 if (Value < 0 && Value > -256) {
1760 Imm.setExpr(HexagonMCExpr::create(
1761 MCConstantExpr::create(Value * -1, Context), Context));
1762 TmpInst.setOpcode(Hexagon::M2_mpysin);
1763 } else
1764 TmpInst.setOpcode(Hexagon::M2_mpysip);
1765 TmpInst.addOperand(Rd);
1766 TmpInst.addOperand(Rs);
1767 TmpInst.addOperand(Imm);
1768 Inst = TmpInst;
1769 break;
1770 }
1771
1772 case Hexagon::S2_asr_i_r_rnd_goodsyntax: {
1773 MCOperand &Imm = Inst.getOperand(2);
1774 MCInst TmpInst;
1775 int64_t Value;
1776 bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
1777 if (!Absolute)
1778 return Match_InvalidOperand;
1779 if (Value == 0) { // convert to $Rd = $Rs
1780 TmpInst.setOpcode(Hexagon::A2_tfr);
1781 MCOperand &Rd = Inst.getOperand(0);
1782 MCOperand &Rs = Inst.getOperand(1);
1783 TmpInst.addOperand(Rd);
1784 TmpInst.addOperand(Rs);
1785 } else {
1786 Imm.setExpr(HexagonMCExpr::create(
1787 MCBinaryExpr::createSub(Imm.getExpr(),
1788 MCConstantExpr::create(1, Context), Context),
1789 Context));
1790 TmpInst.setOpcode(Hexagon::S2_asr_i_r_rnd);
1791 MCOperand &Rd = Inst.getOperand(0);
1792 MCOperand &Rs = Inst.getOperand(1);
1793 TmpInst.addOperand(Rd);
1794 TmpInst.addOperand(Rs);
1795 TmpInst.addOperand(Imm);
1796 }
1797 Inst = TmpInst;
1798 break;
1799 }
1800
1801 case Hexagon::S2_asr_i_p_rnd_goodsyntax: {
1802 MCOperand &Rdd = Inst.getOperand(0);
1803 MCOperand &Rss = Inst.getOperand(1);
1804 MCOperand &Imm = Inst.getOperand(2);
1805 int64_t Value;
1806 bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
1807 if (!Absolute)
1808 return Match_InvalidOperand;
1809 if (Value == 0) { // convert to $Rdd = combine ($Rs[0], $Rs[1])
1810 MCInst TmpInst;
1811 unsigned int RegPairNum = RI->getEncodingValue(Rss.getReg());
1812 std::string R1 = r + utostr(RegPairNum + 1);
1813 StringRef Reg1(R1);
1814 Rss.setReg(matchRegister(Reg1));
1815 // Add a new operand for the second register in the pair.
1816 std::string R2 = r + utostr(RegPairNum);
1817 StringRef Reg2(R2);
1818 TmpInst.setOpcode(Hexagon::A2_combinew);
1819 TmpInst.addOperand(Rdd);
1820 TmpInst.addOperand(Rss);
1821 TmpInst.addOperand(MCOperand::createReg(matchRegister(Reg2)));
1822 Inst = TmpInst;
1823 } else {
1824 Imm.setExpr(HexagonMCExpr::create(
1825 MCBinaryExpr::createSub(Imm.getExpr(),
1826 MCConstantExpr::create(1, Context), Context),
1827 Context));
1828 Inst.setOpcode(Hexagon::S2_asr_i_p_rnd);
1829 }
1830 break;
1831 }
1832
1833 case Hexagon::A4_boundscheck: {
1834 MCOperand &Rs = Inst.getOperand(1);
1835 unsigned int RegNum = RI->getEncodingValue(Rs.getReg());
1836 if (RegNum & 1) { // Odd mapped to raw:hi, regpair is rodd:odd-1, like r3:2
1837 Inst.setOpcode(Hexagon::A4_boundscheck_hi);
1838 std::string Name = r + utostr(RegNum) + Colon + utostr(RegNum - 1);
1839 StringRef RegPair = Name;
1840 Rs.setReg(matchRegister(RegPair));
1841 } else { // raw:lo
1842 Inst.setOpcode(Hexagon::A4_boundscheck_lo);
1843 std::string Name = r + utostr(RegNum + 1) + Colon + utostr(RegNum);
1844 StringRef RegPair = Name;
1845 Rs.setReg(matchRegister(RegPair));
1846 }
1847 break;
1848 }
1849
1850 case Hexagon::A2_addsp: {
1851 MCOperand &Rs = Inst.getOperand(1);
1852 unsigned int RegNum = RI->getEncodingValue(Rs.getReg());
1853 if (RegNum & 1) { // Odd mapped to raw:hi
1854 Inst.setOpcode(Hexagon::A2_addsph);
1855 std::string Name = r + utostr(RegNum) + Colon + utostr(RegNum - 1);
1856 StringRef RegPair = Name;
1857 Rs.setReg(matchRegister(RegPair));
1858 } else { // Even mapped raw:lo
1859 Inst.setOpcode(Hexagon::A2_addspl);
1860 std::string Name = r + utostr(RegNum + 1) + Colon + utostr(RegNum);
1861 StringRef RegPair = Name;
1862 Rs.setReg(matchRegister(RegPair));
1863 }
1864 break;
1865 }
1866
1867 case Hexagon::M2_vrcmpys_s1: {
1868 MCOperand &Rt = Inst.getOperand(2);
1869 unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
1870 if (RegNum & 1) { // Odd mapped to sat:raw:hi
1871 Inst.setOpcode(Hexagon::M2_vrcmpys_s1_h);
1872 std::string Name = r + utostr(RegNum) + Colon + utostr(RegNum - 1);
1873 StringRef RegPair = Name;
1874 Rt.setReg(matchRegister(RegPair));
1875 } else { // Even mapped sat:raw:lo
1876 Inst.setOpcode(Hexagon::M2_vrcmpys_s1_l);
1877 std::string Name = r + utostr(RegNum + 1) + Colon + utostr(RegNum);
1878 StringRef RegPair = Name;
1879 Rt.setReg(matchRegister(RegPair));
1880 }
1881 break;
1882 }
1883
1884 case Hexagon::M2_vrcmpys_acc_s1: {
1885 MCInst TmpInst;
1886 MCOperand &Rxx = Inst.getOperand(0);
1887 MCOperand &Rss = Inst.getOperand(2);
1888 MCOperand &Rt = Inst.getOperand(3);
1889 unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
1890 if (RegNum & 1) { // Odd mapped to sat:raw:hi
1891 TmpInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_h);
1892 std::string Name = r + utostr(RegNum) + Colon + utostr(RegNum - 1);
1893 StringRef RegPair = Name;
1894 Rt.setReg(matchRegister(RegPair));
1895 } else { // Even mapped sat:raw:lo
1896 TmpInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_l);
1897 std::string Name = r + utostr(RegNum + 1) + Colon + utostr(RegNum);
1898 StringRef RegPair = Name;
1899 Rt.setReg(matchRegister(RegPair));
1900 }
1901 // Registers are in different positions
1902 TmpInst.addOperand(Rxx);
1903 TmpInst.addOperand(Rxx);
1904 TmpInst.addOperand(Rss);
1905 TmpInst.addOperand(Rt);
1906 Inst = TmpInst;
1907 break;
1908 }
1909
1910 case Hexagon::M2_vrcmpys_s1rp: {
1911 MCOperand &Rt = Inst.getOperand(2);
1912 unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
1913 if (RegNum & 1) { // Odd mapped to rnd:sat:raw:hi
1914 Inst.setOpcode(Hexagon::M2_vrcmpys_s1rp_h);
1915 std::string Name = r + utostr(RegNum) + Colon + utostr(RegNum - 1);
1916 StringRef RegPair = Name;
1917 Rt.setReg(matchRegister(RegPair));
1918 } else { // Even mapped rnd:sat:raw:lo
1919 Inst.setOpcode(Hexagon::M2_vrcmpys_s1rp_l);
1920 std::string Name = r + utostr(RegNum + 1) + Colon + utostr(RegNum);
1921 StringRef RegPair = Name;
1922 Rt.setReg(matchRegister(RegPair));
1923 }
1924 break;
1925 }
1926
1927 case Hexagon::S5_asrhub_rnd_sat_goodsyntax: {
1928 MCOperand &Imm = Inst.getOperand(2);
1929 int64_t Value;
1930 bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
1931 if (!Absolute)
1932 return Match_InvalidOperand;
1933 if (Value == 0)
1934 Inst.setOpcode(Hexagon::S2_vsathub);
1935 else {
1936 Imm.setExpr(HexagonMCExpr::create(
1937 MCBinaryExpr::createSub(Imm.getExpr(),
1938 MCConstantExpr::create(1, Context), Context),
1939 Context));
1940 Inst.setOpcode(Hexagon::S5_asrhub_rnd_sat);
1941 }
1942 break;
1943 }
1944
1945 case Hexagon::S5_vasrhrnd_goodsyntax: {
1946 MCOperand &Rdd = Inst.getOperand(0);
1947 MCOperand &Rss = Inst.getOperand(1);
1948 MCOperand &Imm = Inst.getOperand(2);
1949 int64_t Value;
1950 bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
1951 if (!Absolute)
1952 return Match_InvalidOperand;
1953 if (Value == 0) {
1954 MCInst TmpInst;
1955 unsigned int RegPairNum = RI->getEncodingValue(Rss.getReg());
1956 std::string R1 = r + utostr(RegPairNum + 1);
1957 StringRef Reg1(R1);
1958 Rss.setReg(matchRegister(Reg1));
1959 // Add a new operand for the second register in the pair.
1960 std::string R2 = r + utostr(RegPairNum);
1961 StringRef Reg2(R2);
1962 TmpInst.setOpcode(Hexagon::A2_combinew);
1963 TmpInst.addOperand(Rdd);
1964 TmpInst.addOperand(Rss);
1965 TmpInst.addOperand(MCOperand::createReg(matchRegister(Reg2)));
1966 Inst = TmpInst;
1967 } else {
1968 Imm.setExpr(HexagonMCExpr::create(
1969 MCBinaryExpr::createSub(Imm.getExpr(),
1970 MCConstantExpr::create(1, Context), Context),
1971 Context));
1972 Inst.setOpcode(Hexagon::S5_vasrhrnd);
1973 }
1974 break;
1975 }
1976
1977 case Hexagon::A2_not: {
1978 MCInst TmpInst;
1979 MCOperand &Rd = Inst.getOperand(0);
1980 MCOperand &Rs = Inst.getOperand(1);
1981 TmpInst.setOpcode(Hexagon::A2_subri);
1982 TmpInst.addOperand(Rd);
1984 HexagonMCExpr::create(MCConstantExpr::create(-1, Context), Context)));
1985 TmpInst.addOperand(Rs);
1986 Inst = TmpInst;
1987 break;
1988 }
1989 case Hexagon::PS_loadrubabs:
1991 Inst.setOpcode(Hexagon::L2_loadrubgp);
1992 break;
1993 case Hexagon::PS_loadrbabs:
1995 Inst.setOpcode(Hexagon::L2_loadrbgp);
1996 break;
1997 case Hexagon::PS_loadruhabs:
1999 Inst.setOpcode(Hexagon::L2_loadruhgp);
2000 break;
2001 case Hexagon::PS_loadrhabs:
2003 Inst.setOpcode(Hexagon::L2_loadrhgp);
2004 break;
2005 case Hexagon::PS_loadriabs:
2007 Inst.setOpcode(Hexagon::L2_loadrigp);
2008 break;
2009 case Hexagon::PS_loadrdabs:
2011 Inst.setOpcode(Hexagon::L2_loadrdgp);
2012 break;
2013 case Hexagon::PS_storerbabs:
2015 Inst.setOpcode(Hexagon::S2_storerbgp);
2016 break;
2017 case Hexagon::PS_storerhabs:
2019 Inst.setOpcode(Hexagon::S2_storerhgp);
2020 break;
2021 case Hexagon::PS_storerfabs:
2023 Inst.setOpcode(Hexagon::S2_storerfgp);
2024 break;
2025 case Hexagon::PS_storeriabs:
2027 Inst.setOpcode(Hexagon::S2_storerigp);
2028 break;
2029 case Hexagon::PS_storerdabs:
2031 Inst.setOpcode(Hexagon::S2_storerdgp);
2032 break;
2033 case Hexagon::PS_storerbnewabs:
2035 Inst.setOpcode(Hexagon::S2_storerbnewgp);
2036 break;
2037 case Hexagon::PS_storerhnewabs:
2039 Inst.setOpcode(Hexagon::S2_storerhnewgp);
2040 break;
2041 case Hexagon::PS_storerinewabs:
2043 Inst.setOpcode(Hexagon::S2_storerinewgp);
2044 break;
2045 case Hexagon::A2_zxtb: {
2046 Inst.setOpcode(Hexagon::A2_andir);
2047 Inst.addOperand(
2049 break;
2050 }
2051 } // switch
2052
2053 return Match_Success;
2054}
2055
2056MCRegister HexagonAsmParser::matchRegister(StringRef Name) {
2058 return Reg;
2059 return MatchRegisterAltName(Name);
2060}
static MCRegister MatchRegisterName(StringRef Name)
#define Success
static bool isNot(const MachineRegisterInfo &MRI, const MachineInstr &MI)
static MCRegister MatchRegisterAltName(StringRef Name)
Maps from the set of all alternative registernames to a register number.
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
static size_t byteSize(BTF::CommonType *Type)
Definition: BTFParser.cpp:154
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
#define LLVM_EXTERNAL_VISIBILITY
Definition: Compiler.h:128
#define LLVM_DEBUG(...)
Definition: Debug.h:106
std::string Name
uint32_t Index
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
Symbol * Sym
Definition: ELF_riscv.cpp:479
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
static bool isSigned(unsigned int Opcode)
#define Check(C,...)
static cl::opt< bool > WarnSignedMismatch("mwarn-sign-mismatch", cl::desc("Warn for mismatching a signed and unsigned value"), cl::init(false))
static cl::opt< bool > WarnNoncontigiousRegister("mwarn-noncontigious-register", cl::desc("Warn for register names that arent contigious"), cl::init(true))
static cl::opt< bool > ErrorMissingParenthesis("merror-missing-parenthesis", cl::desc("Error for missing parenthesis around predicate registers"), cl::init(false))
static cl::opt< bool > ErrorNoncontigiousRegister("merror-noncontigious-register", cl::desc("Error for register names that aren't contigious"), cl::init(false))
static bool previousEqual(OperandVector &Operands, size_t Index, StringRef String)
LLVM_EXTERNAL_VISIBILITY void LLVMInitializeHexagonAsmParser()
Force static initialization.
static MCInst makeCombineInst(int opCode, MCOperand &Rdd, MCOperand &MO1, MCOperand &MO2)
static bool previousIsLoop(OperandVector &Operands, size_t Index)
static cl::opt< bool > WarnMissingParenthesis("mwarn-missing-parenthesis", cl::desc("Warn for missing parenthesis around predicate registers"), cl::init(true))
static cl::opt< bool > AddBuildAttributes("hexagon-add-build-attributes")
static LVOptions Options
Definition: LVOptions.cpp:25
#define I(x, y, z)
Definition: MD5.cpp:58
mir Rename Register Operands
unsigned Reg
#define R2(n)
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static bool isReg(const MCInst &MI, unsigned OpNo)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool isImm(const MachineOperand &MO, MachineRegisterInfo *MRI)
This file contains some templates that are useful if you are working with the STL at all.
raw_pwrite_stream & OS
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition: Value.cpp:469
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
Target independent representation for an assembler token.
Definition: MCAsmMacro.h:21
SMLoc getLoc() const
Definition: MCAsmLexer.cpp:26
StringRef getString() const
Get the string for the current token, this includes all characters (for example, the quotes on string...
Definition: MCAsmMacro.h:110
bool is(TokenKind K) const
Definition: MCAsmMacro.h:82
TokenKind getKind() const
Definition: MCAsmMacro.h:81
StringRef getIdentifier() const
Get the identifier string for the current token, which should be an identifier or a string.
Definition: MCAsmMacro.h:99
This class represents an Operation in the Expression.
Base class for user error types.
Definition: Error.h:355
Lightweight error class with error context and mandatory checking.
Definition: Error.h:160
Check for a valid bundle.
void HexagonMCEmitLocalCommonSymbol(MCSymbol *Symbol, uint64_t Size, Align ByteAlignment, unsigned AccessSize)
void HexagonMCEmitCommonSymbol(MCSymbol *Symbol, uint64_t Size, Align ByteAlignment, unsigned AccessSize)
bool mustNotExtend() const
bool mustExtend() const
static HexagonMCExpr * create(MCExpr const *Expr, MCContext &Ctx)
Generic assembler lexer interface, for use by target specific assembly lexers.
Definition: MCAsmLexer.h:37
void UnLex(AsmToken const &Token)
Definition: MCAsmLexer.h:93
const AsmToken peekTok(bool ShouldSkipSpace=true)
Look ahead at the next token to be lexed.
Definition: MCAsmLexer.h:111
SMLoc getLoc() const
Get the current source location.
Definition: MCAsmLexer.cpp:22
const AsmToken & getTok() const
Get the current (last) lexed token.
Definition: MCAsmLexer.h:106
const AsmToken & Lex()
Consume the next token from the input stream and return it.
Definition: MCAsmLexer.h:79
bool is(AsmToken::TokenKind K) const
Check if the current token has kind K.
Definition: MCAsmLexer.h:141
virtual void Initialize(MCAsmParser &Parser)
Initialize the extension for parsing using the given Parser.
Generic assembler parser interface, for use by target specific assembly parsers.
Definition: MCAsmParser.h:123
virtual bool printError(SMLoc L, const Twine &Msg, SMRange Range=std::nullopt)=0
Emit an error at the location L, with the message Msg.
virtual MCStreamer & getStreamer()=0
Return the output streamer for the assembler.
virtual bool parseExpression(const MCExpr *&Res, SMLoc &EndLoc)=0
Parse an arbitrary expression.
const AsmToken & getTok() const
Get the current AsmToken from the stream.
Definition: MCAsmParser.cpp:40
virtual const AsmToken & Lex()=0
Get the next AsmToken in the stream, possibly handling file inclusion first.
virtual MCAsmLexer & getLexer()=0
virtual bool Warning(SMLoc L, const Twine &Msg, SMRange Range=std::nullopt)=0
Emit a warning at the location L, with the message Msg.
virtual void addAliasForDirective(StringRef Directive, StringRef Alias)=0
virtual MCContext & getContext()=0
bool Error(SMLoc L, const Twine &Msg, SMRange Range=std::nullopt)
Return an error at the location L, with the message Msg.
static const MCBinaryExpr * createLShr(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition: MCExpr.h:617
static const MCBinaryExpr * createAnd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition: MCExpr.h:542
static const MCBinaryExpr * createSub(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition: MCExpr.h:622
static const MCConstantExpr * create(int64_t Value, MCContext &Ctx, bool PrintInHex=false, unsigned SizeInBytes=0)
Definition: MCExpr.cpp:222
Context object for machine code objects.
Definition: MCContext.h:83
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:34
bool evaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm, const SectionAddrMap &Addrs) const
Try to evaluate the expression to an absolute value.
Definition: MCExpr.cpp:581
@ Unary
Unary expressions.
Definition: MCExpr.h:40
@ SymbolRef
References to labels and assigned expressions.
Definition: MCExpr.h:39
@ Binary
Binary expressions.
Definition: MCExpr.h:37
bool evaluateAsRelocatable(MCValue &Res, const MCAssembler *Asm, const MCFixup *Fixup) const
Try to evaluate the expression to a relocatable value, i.e.
Definition: MCExpr.cpp:819
ExprKind getKind() const
Definition: MCExpr.h:78
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:185
void dump_pretty(raw_ostream &OS, const MCInstPrinter *Printer=nullptr, StringRef Separator=" ", const MCRegisterInfo *RegInfo=nullptr) const
Dump the MCInst as prettily as possible using the additional MC structures, if given.
Definition: MCInst.cpp:84
void setLoc(SMLoc loc)
Definition: MCInst.h:204
unsigned getOpcode() const
Definition: MCInst.h:199
void addOperand(const MCOperand Op)
Definition: MCInst.h:211
void setOpcode(unsigned Op)
Definition: MCInst.h:198
void clear()
Definition: MCInst.h:216
const MCOperand & getOperand(unsigned i) const
Definition: MCInst.h:207
Interface to description of machine instruction set.
Definition: MCInstrInfo.h:26
MCAssembler & getAssembler()
Instances of this class represent operands of the MCInst class.
Definition: MCInst.h:37
static MCOperand createExpr(const MCExpr *Val)
Definition: MCInst.h:163
void setExpr(const MCExpr *Val)
Definition: MCInst.h:120
static MCOperand createReg(MCRegister Reg)
Definition: MCInst.h:135
static MCOperand createImm(int64_t Val)
Definition: MCInst.h:142
void setReg(MCRegister Reg)
Set the register number.
Definition: MCInst.h:76
MCRegister getReg() const
Returns the register number.
Definition: MCInst.h:70
const MCExpr * getExpr() const
Definition: MCInst.h:115
bool isExpr() const
Definition: MCInst.h:66
static MCOperand createInst(const MCInst *Val)
Definition: MCInst.h:170
MCParsedAsmOperand - This abstract class represents a source-level assembly instruction operand.
virtual bool isToken() const =0
isToken - Is this a token operand?
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
uint16_t getEncodingValue(MCRegister Reg) const
Returns the encoding for Reg.
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
This represents a section on linux, lots of unix variants and some bare metal systems.
Definition: MCSectionELF.h:27
Streaming machine code generation interface.
Definition: MCStreamer.h:213
bool popSection()
Restore the current and previous section from the section stack.
virtual void emitInstruction(const MCInst &Inst, const MCSubtargetInfo &STI)
Emit the given Instruction into the current section.
virtual bool hasRawTextSupport() const
Return true if this asm streamer supports emitting unformatted text to the .s file with EmitRawText.
Definition: MCStreamer.h:347
MCTargetStreamer * getTargetStreamer()
Definition: MCStreamer.h:309
void pushSection()
Save the current and previous section on the section stack.
Definition: MCStreamer.h:418
virtual void switchSection(MCSection *Section, uint32_t Subsec=0)
Set the current section where code is being emitted to Section.
Generic base class for all target subtargets.
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx)
Definition: MCExpr.h:398
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
MCTargetAsmParser - Generic interface to target specific assembly parsers.
virtual bool parseInstruction(ParseInstructionInfo &Info, StringRef Name, SMLoc NameLoc, OperandVector &Operands)=0
Parse one assembly instruction.
virtual bool equalIsAsmAssignment()
virtual bool parseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc)=0
virtual bool ParseDirective(AsmToken DirectiveID)
ParseDirective - Parse a target specific assembler directive This method is deprecated,...
virtual ParseStatus tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc)=0
tryParseRegister - parse one register if possible
virtual bool matchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, OperandVector &Operands, MCStreamer &Out, uint64_t &ErrorInfo, bool MatchingInlineAsm)=0
Recognize a series of operands of a parsed instruction as an actual MCInst and emit it to the specifi...
virtual bool isLabel(AsmToken &Token)
void setAvailableFeatures(const FeatureBitset &Value)
const MCSubtargetInfo & getSTI() const
virtual unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, unsigned Kind)
Allow a target to add special case operand matching for things that tblgen doesn't/can't handle effec...
Target specific streamer interface.
Definition: MCStreamer.h:94
MCStreamer & getStreamer()
Definition: MCStreamer.h:102
This represents an "assembler immediate".
Definition: MCValue.h:36
Ternary parse status returned by various parse* methods.
static constexpr StatusTy Success
static constexpr StatusTy NoMatch
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr unsigned id() const
Definition: Register.h:103
Instances of this class encapsulate one diagnostic report, allowing printing to a raw_ostream as a ca...
Definition: SourceMgr.h:281
void print(const char *ProgName, raw_ostream &S, bool ShowColors=true, bool ShowKindLabel=true, bool ShowLocation=true) const
Definition: SourceMgr.cpp:484
Represents a location in source code.
Definition: SMLoc.h:23
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:937
iterator insert(iterator I, T &&Elt)
Definition: SmallVector.h:805
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition: StringRef.h:700
std::string str() const
str - Get the contents as an std::string.
Definition: StringRef.h:229
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition: StringRef.h:571
std::string upper() const
Convert the given ASCII string to uppercase.
Definition: StringRef.cpp:118
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:150
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition: StringRef.h:144
std::string lower() const
Definition: StringRef.cpp:113
StringRef drop_back(size_t N=1) const
Return a StringRef equal to 'this' but with the last N elements dropped.
Definition: StringRef.h:616
bool equals_insensitive(StringRef RHS) const
Check for string equality, ignoring case.
Definition: StringRef.h:176
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM Value Representation.
Definition: Value.h:74
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:661
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
std::optional< unsigned > attrTypeFromString(StringRef tag, TagNameMap tagNameMap)
@ SHT_PROGBITS
Definition: ELF.h:1090
@ SHF_ALLOC
Definition: ELF.h:1188
@ SHF_WRITE
Definition: ELF.h:1185
const TagNameMap & getHexagonAttributeTags()
std::pair< unsigned, unsigned > GetVecRegPairIndices(MCRegister VecRegPair)
Returns an ordered pair of the constituent register ordinals for each of the elements of VecRegPair.
bool isOuterLoop(MCInst const &MCI)
size_t bundleSize(MCInst const &MCI)
void setS27_2_reloc(MCExpr const &Expr, bool Val=true)
MCInstrDesc const & getDesc(MCInstrInfo const &MCII, MCInst const &MCI)
void setMemReorderDisabled(MCInst &MCI)
bool isBundle(MCInst const &MCI)
MCExpr const & getExpr(MCExpr const &Expr)
bool isInnerLoop(MCInst const &MCI)
bool canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCContext &Context, MCInst &MCB, HexagonMCChecker *Checker, bool AttemptCompatibility=false)
void setMustNotExtend(MCExpr const &Expr, bool Val=true)
void extendIfNeeded(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB, MCInst const &MCI)
bool mustExtend(MCExpr const &Expr)
void setMustExtend(MCExpr const &Expr, bool Val=true)
@ ByteAlignment
Definition: MCAsmInfo.h:50
@ CE
Windows NT (Windows on ARM)
bool isPseudo(uint64_t TSFlags)
Definition: X86BaseInfo.h:887
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Length
Definition: DWP.cpp:480
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1697
bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition: MathExtras.h:255
static bool isMem(const MachineInstr &MI, unsigned Op)
Definition: X86InstrInfo.h:170
@ Done
Definition: Threading.h:61
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:296
Target & getTheHexagonTarget()
constexpr uint32_t Hi_32(uint64_t Value)
Return the high 32 bits of a 64 bit value.
Definition: MathExtras.h:154
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
constexpr uint32_t Lo_32(uint64_t Value)
Return the low 32 bits of a 64 bit value.
Definition: MathExtras.h:159
FormattedNumber format_hex(uint64_t N, unsigned Width, bool Upper=false)
format_hex - Output N as a fixed width hexadecimal.
Definition: Format.h:187
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
Definition: MathExtras.h:260
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition: STLExtras.h:2099
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition: MathExtras.h:581
@ MCSA_Local
.local (ELF)
Definition: MCDirectives.h:38
@ MCSA_Global
.type _foo, @gnu_unique_object
Definition: MCDirectives.h:30
auto mask(ShuffFunc S, unsigned Length, OptArgs... args) -> MaskT
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
RegisterMCAsmParser - Helper template for registering a target specific assembly parser,...