LLVM 18.0.0git
ConstraintElimination.cpp
Go to the documentation of this file.
1//===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Eliminate conditions based on constraints collected from dominating
10// conditions.
11//
12//===----------------------------------------------------------------------===//
13
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/ScopeExit.h"
18#include "llvm/ADT/Statistic.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/Dominators.h"
25#include "llvm/IR/Function.h"
27#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/InstrTypes.h"
31#include "llvm/IR/Verifier.h"
32#include "llvm/Pass.h"
34#include "llvm/Support/Debug.h"
40
41#include <cmath>
42#include <optional>
43#include <string>
44
45using namespace llvm;
46using namespace PatternMatch;
47
48#define DEBUG_TYPE "constraint-elimination"
49
50STATISTIC(NumCondsRemoved, "Number of instructions removed");
51DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
52 "Controls which conditions are eliminated");
53
55 MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
56 cl::desc("Maximum number of rows to keep in constraint system"));
57
59 "constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden,
60 cl::desc("Dump IR to reproduce successful transformations."));
61
62static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
63static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
64
65// A helper to multiply 2 signed integers where overflowing is allowed.
66static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
67 int64_t Result;
68 MulOverflow(A, B, Result);
69 return Result;
70}
71
72// A helper to add 2 signed integers where overflowing is allowed.
73static int64_t addWithOverflow(int64_t A, int64_t B) {
74 int64_t Result;
75 AddOverflow(A, B, Result);
76 return Result;
77}
78
80 Instruction *UserI = cast<Instruction>(U.getUser());
81 if (auto *Phi = dyn_cast<PHINode>(UserI))
82 UserI = Phi->getIncomingBlock(U)->getTerminator();
83 return UserI;
84}
85
86namespace {
87/// Struct to express a condition of the form %Op0 Pred %Op1.
88struct ConditionTy {
90 Value *Op0;
91 Value *Op1;
92
94 : Pred(Pred), Op0(Op0), Op1(Op1) {}
95};
96
97/// Represents either
98/// * a condition that holds on entry to a block (=condition fact)
99/// * an assume (=assume fact)
100/// * a use of a compare instruction to simplify.
101/// It also tracks the Dominator DFS in and out numbers for each entry.
102struct FactOrCheck {
103 enum class EntryTy {
104 ConditionFact, /// A condition that holds on entry to a block.
105 InstFact, /// A fact that holds after Inst executed (e.g. an assume or
106 /// min/mix intrinsic.
107 InstCheck, /// An instruction to simplify (e.g. an overflow math
108 /// intrinsics).
109 UseCheck /// An use of a compare instruction to simplify.
110 };
111
112 union {
113 Instruction *Inst;
114 Use *U;
116 };
117
118 unsigned NumIn;
119 unsigned NumOut;
120 EntryTy Ty;
121
122 FactOrCheck(EntryTy Ty, DomTreeNode *DTN, Instruction *Inst)
123 : Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
124 Ty(Ty) {}
125
126 FactOrCheck(DomTreeNode *DTN, Use *U)
127 : U(U), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
128 Ty(EntryTy::UseCheck) {}
129
130 FactOrCheck(DomTreeNode *DTN, CmpInst::Predicate Pred, Value *Op0, Value *Op1)
131 : Cond(Pred, Op0, Op1), NumIn(DTN->getDFSNumIn()),
132 NumOut(DTN->getDFSNumOut()), Ty(EntryTy::ConditionFact) {}
133
134 static FactOrCheck getConditionFact(DomTreeNode *DTN, CmpInst::Predicate Pred,
135 Value *Op0, Value *Op1) {
136 return FactOrCheck(DTN, Pred, Op0, Op1);
137 }
138
139 static FactOrCheck getInstFact(DomTreeNode *DTN, Instruction *Inst) {
140 return FactOrCheck(EntryTy::InstFact, DTN, Inst);
141 }
142
143 static FactOrCheck getFact(DomTreeNode *DTN, CmpInst::Predicate Pred,
144 Value *Op0, Value *Op1) {
145 return FactOrCheck(DTN, Pred, Op0, Op1);
146 }
147
148 static FactOrCheck getCheck(DomTreeNode *DTN, Use *U) {
149 return FactOrCheck(DTN, U);
150 }
151
152 static FactOrCheck getCheck(DomTreeNode *DTN, CallInst *CI) {
153 return FactOrCheck(EntryTy::InstCheck, DTN, CI);
154 }
155
156 bool isCheck() const {
157 return Ty == EntryTy::InstCheck || Ty == EntryTy::UseCheck;
158 }
159
160 Instruction *getContextInst() const {
161 if (Ty == EntryTy::UseCheck)
162 return getContextInstForUse(*U);
163 return Inst;
164 }
165
166 Instruction *getInstructionToSimplify() const {
167 assert(isCheck());
168 if (Ty == EntryTy::InstCheck)
169 return Inst;
170 // The use may have been simplified to a constant already.
171 return dyn_cast<Instruction>(*U);
172 }
173
174 bool isConditionFact() const { return Ty == EntryTy::ConditionFact; }
175};
176
177/// Keep state required to build worklist.
178struct State {
179 DominatorTree &DT;
181
182 State(DominatorTree &DT) : DT(DT) {}
183
184 /// Process block \p BB and add known facts to work-list.
185 void addInfoFor(BasicBlock &BB);
186
187 /// Returns true if we can add a known condition from BB to its successor
188 /// block Succ.
189 bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
190 return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
191 }
192};
193
194class ConstraintInfo;
195
196struct StackEntry {
197 unsigned NumIn;
198 unsigned NumOut;
199 bool IsSigned = false;
200 /// Variables that can be removed from the system once the stack entry gets
201 /// removed.
202 SmallVector<Value *, 2> ValuesToRelease;
203
204 StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
205 SmallVector<Value *, 2> ValuesToRelease)
206 : NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
207 ValuesToRelease(ValuesToRelease) {}
208};
209
210struct ConstraintTy {
211 SmallVector<int64_t, 8> Coefficients;
212 SmallVector<ConditionTy, 2> Preconditions;
213
215
216 bool IsSigned = false;
217
218 ConstraintTy() = default;
219
220 ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned, bool IsEq,
221 bool IsNe)
222 : Coefficients(Coefficients), IsSigned(IsSigned), IsEq(IsEq), IsNe(IsNe) {
223 }
224
225 unsigned size() const { return Coefficients.size(); }
226
227 unsigned empty() const { return Coefficients.empty(); }
228
229 /// Returns true if all preconditions for this list of constraints are
230 /// satisfied given \p CS and the corresponding \p Value2Index mapping.
231 bool isValid(const ConstraintInfo &Info) const;
232
233 bool isEq() const { return IsEq; }
234
235 bool isNe() const { return IsNe; }
236
237 /// Check if the current constraint is implied by the given ConstraintSystem.
238 ///
239 /// \return true or false if the constraint is proven to be respectively true,
240 /// or false. When the constraint cannot be proven to be either true or false,
241 /// std::nullopt is returned.
242 std::optional<bool> isImpliedBy(const ConstraintSystem &CS) const;
243
244private:
245 bool IsEq = false;
246 bool IsNe = false;
247};
248
249/// Wrapper encapsulating separate constraint systems and corresponding value
250/// mappings for both unsigned and signed information. Facts are added to and
251/// conditions are checked against the corresponding system depending on the
252/// signed-ness of their predicates. While the information is kept separate
253/// based on signed-ness, certain conditions can be transferred between the two
254/// systems.
255class ConstraintInfo {
256
257 ConstraintSystem UnsignedCS;
258 ConstraintSystem SignedCS;
259
260 const DataLayout &DL;
261
262public:
263 ConstraintInfo(const DataLayout &DL, ArrayRef<Value *> FunctionArgs)
264 : UnsignedCS(FunctionArgs), SignedCS(FunctionArgs), DL(DL) {}
265
266 DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
267 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
268 }
269 const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
270 return Signed ? SignedCS.getValue2Index() : UnsignedCS.getValue2Index();
271 }
272
273 ConstraintSystem &getCS(bool Signed) {
274 return Signed ? SignedCS : UnsignedCS;
275 }
276 const ConstraintSystem &getCS(bool Signed) const {
277 return Signed ? SignedCS : UnsignedCS;
278 }
279
280 void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
281 void popLastNVariables(bool Signed, unsigned N) {
282 getCS(Signed).popLastNVariables(N);
283 }
284
285 bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
286
287 void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
288 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
289
290 /// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
291 /// constraints, using indices from the corresponding constraint system.
292 /// New variables that need to be added to the system are collected in
293 /// \p NewVariables.
294 ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
295 SmallVectorImpl<Value *> &NewVariables) const;
296
297 /// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
298 /// constraints using getConstraint. Returns an empty constraint if the result
299 /// cannot be used to query the existing constraint system, e.g. because it
300 /// would require adding new variables. Also tries to convert signed
301 /// predicates to unsigned ones if possible to allow using the unsigned system
302 /// which increases the effectiveness of the signed <-> unsigned transfer
303 /// logic.
304 ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
305 Value *Op1) const;
306
307 /// Try to add information from \p A \p Pred \p B to the unsigned/signed
308 /// system if \p Pred is signed/unsigned.
309 void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
310 unsigned NumIn, unsigned NumOut,
311 SmallVectorImpl<StackEntry> &DFSInStack);
312};
313
314/// Represents a (Coefficient * Variable) entry after IR decomposition.
315struct DecompEntry {
316 int64_t Coefficient;
317 Value *Variable;
318 /// True if the variable is known positive in the current constraint.
319 bool IsKnownNonNegative;
320
321 DecompEntry(int64_t Coefficient, Value *Variable,
322 bool IsKnownNonNegative = false)
323 : Coefficient(Coefficient), Variable(Variable),
324 IsKnownNonNegative(IsKnownNonNegative) {}
325};
326
327/// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
328struct Decomposition {
329 int64_t Offset = 0;
331
332 Decomposition(int64_t Offset) : Offset(Offset) {}
333 Decomposition(Value *V, bool IsKnownNonNegative = false) {
334 Vars.emplace_back(1, V, IsKnownNonNegative);
335 }
336 Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
337 : Offset(Offset), Vars(Vars) {}
338
339 void add(int64_t OtherOffset) {
340 Offset = addWithOverflow(Offset, OtherOffset);
341 }
342
343 void add(const Decomposition &Other) {
344 add(Other.Offset);
345 append_range(Vars, Other.Vars);
346 }
347
348 void mul(int64_t Factor) {
349 Offset = multiplyWithOverflow(Offset, Factor);
350 for (auto &Var : Vars)
351 Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
352 }
353};
354
355} // namespace
356
357static Decomposition decompose(Value *V,
358 SmallVectorImpl<ConditionTy> &Preconditions,
359 bool IsSigned, const DataLayout &DL);
360
361static bool canUseSExt(ConstantInt *CI) {
362 const APInt &Val = CI->getValue();
364}
365
366static Decomposition decomposeGEP(GEPOperator &GEP,
367 SmallVectorImpl<ConditionTy> &Preconditions,
368 bool IsSigned, const DataLayout &DL) {
369 // Do not reason about pointers where the index size is larger than 64 bits,
370 // as the coefficients used to encode constraints are 64 bit integers.
371 if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
372 return &GEP;
373
374 if (!GEP.isInBounds())
375 return &GEP;
376
377 assert(!IsSigned && "The logic below only supports decomposition for "
378 "unsinged predicates at the moment.");
379 Type *PtrTy = GEP.getType()->getScalarType();
380 unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy);
381 MapVector<Value *, APInt> VariableOffsets;
382 APInt ConstantOffset(BitWidth, 0);
383 if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
384 return &GEP;
385
386 // Handle the (gep (gep ....), C) case by incrementing the constant
387 // coefficient of the inner GEP, if C is a constant.
388 auto *InnerGEP = dyn_cast<GEPOperator>(GEP.getPointerOperand());
389 if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) {
390 auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL);
391 Result.add(ConstantOffset.getSExtValue());
392
393 if (ConstantOffset.isNegative()) {
394 unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType());
395 int64_t ConstantOffsetI = ConstantOffset.getSExtValue();
396 if (ConstantOffsetI % Scale != 0)
397 return &GEP;
398 // Add pre-condition ensuring the GEP is increasing monotonically and
399 // can be de-composed.
400 // Both sides are normalized by being divided by Scale.
401 Preconditions.emplace_back(
402 CmpInst::ICMP_SGE, InnerGEP->getOperand(1),
403 ConstantInt::get(InnerGEP->getOperand(1)->getType(),
404 -1 * (ConstantOffsetI / Scale)));
405 }
406 return Result;
407 }
408
409 Decomposition Result(ConstantOffset.getSExtValue(),
410 DecompEntry(1, GEP.getPointerOperand()));
411 for (auto [Index, Scale] : VariableOffsets) {
412 auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
413 IdxResult.mul(Scale.getSExtValue());
414 Result.add(IdxResult);
415
416 // If Op0 is signed non-negative, the GEP is increasing monotonically and
417 // can be de-composed.
419 Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
420 ConstantInt::get(Index->getType(), 0));
421 }
422 return Result;
423}
424
425// Decomposes \p V into a constant offset + list of pairs { Coefficient,
426// Variable } where Coefficient * Variable. The sum of the constant offset and
427// pairs equals \p V.
428static Decomposition decompose(Value *V,
429 SmallVectorImpl<ConditionTy> &Preconditions,
430 bool IsSigned, const DataLayout &DL) {
431
432 auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
433 bool IsSignedB) {
434 auto ResA = decompose(A, Preconditions, IsSigned, DL);
435 auto ResB = decompose(B, Preconditions, IsSignedB, DL);
436 ResA.add(ResB);
437 return ResA;
438 };
439
440 // Decompose \p V used with a signed predicate.
441 if (IsSigned) {
442 if (auto *CI = dyn_cast<ConstantInt>(V)) {
443 if (canUseSExt(CI))
444 return CI->getSExtValue();
445 }
446 Value *Op0;
447 Value *Op1;
448 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
449 return MergeResults(Op0, Op1, IsSigned);
450
451 ConstantInt *CI;
452 if (match(V, m_NSWMul(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI)) {
453 auto Result = decompose(Op0, Preconditions, IsSigned, DL);
454 Result.mul(CI->getSExtValue());
455 return Result;
456 }
457
458 return V;
459 }
460
461 if (auto *CI = dyn_cast<ConstantInt>(V)) {
462 if (CI->uge(MaxConstraintValue))
463 return V;
464 return int64_t(CI->getZExtValue());
465 }
466
467 if (auto *GEP = dyn_cast<GEPOperator>(V))
468 return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
469
470 Value *Op0;
471 bool IsKnownNonNegative = false;
472 if (match(V, m_ZExt(m_Value(Op0)))) {
473 IsKnownNonNegative = true;
474 V = Op0;
475 }
476
477 Value *Op1;
478 ConstantInt *CI;
479 if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
480 return MergeResults(Op0, Op1, IsSigned);
481 }
482 if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
483 if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
484 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
485 ConstantInt::get(Op0->getType(), 0));
486 if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
487 Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
488 ConstantInt::get(Op1->getType(), 0));
489
490 return MergeResults(Op0, Op1, IsSigned);
491 }
492
493 if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
494 canUseSExt(CI)) {
495 Preconditions.emplace_back(
497 ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
498 return MergeResults(Op0, CI, true);
499 }
500
501 // Decompose or as an add if there are no common bits between the operands.
502 if (match(V, m_Or(m_Value(Op0), m_ConstantInt(CI))) &&
503 haveNoCommonBitsSet(Op0, CI, DL)) {
504 return MergeResults(Op0, CI, IsSigned);
505 }
506
507 if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
508 if (CI->getSExtValue() < 0 || CI->getSExtValue() >= 64)
509 return {V, IsKnownNonNegative};
510 auto Result = decompose(Op1, Preconditions, IsSigned, DL);
511 Result.mul(int64_t{1} << CI->getSExtValue());
512 return Result;
513 }
514
515 if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
516 (!CI->isNegative())) {
517 auto Result = decompose(Op1, Preconditions, IsSigned, DL);
518 Result.mul(CI->getSExtValue());
519 return Result;
520 }
521
522 if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI))
523 return {-1 * CI->getSExtValue(), {{1, Op0}}};
524 if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
525 return {0, {{1, Op0}, {-1, Op1}}};
526
527 return {V, IsKnownNonNegative};
528}
529
530ConstraintTy
531ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
532 SmallVectorImpl<Value *> &NewVariables) const {
533 assert(NewVariables.empty() && "NewVariables must be empty when passed in");
534 bool IsEq = false;
535 bool IsNe = false;
536
537 // Try to convert Pred to one of ULE/SLT/SLE/SLT.
538 switch (Pred) {
542 case CmpInst::ICMP_SGE: {
543 Pred = CmpInst::getSwappedPredicate(Pred);
544 std::swap(Op0, Op1);
545 break;
546 }
547 case CmpInst::ICMP_EQ:
548 if (match(Op1, m_Zero())) {
549 Pred = CmpInst::ICMP_ULE;
550 } else {
551 IsEq = true;
552 Pred = CmpInst::ICMP_ULE;
553 }
554 break;
555 case CmpInst::ICMP_NE:
556 if (match(Op1, m_Zero())) {
558 std::swap(Op0, Op1);
559 } else {
560 IsNe = true;
561 Pred = CmpInst::ICMP_ULE;
562 }
563 break;
564 default:
565 break;
566 }
567
568 if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
569 Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
570 return {};
571
572 SmallVector<ConditionTy, 4> Preconditions;
573 bool IsSigned = CmpInst::isSigned(Pred);
574 auto &Value2Index = getValue2Index(IsSigned);
576 Preconditions, IsSigned, DL);
578 Preconditions, IsSigned, DL);
579 int64_t Offset1 = ADec.Offset;
580 int64_t Offset2 = BDec.Offset;
581 Offset1 *= -1;
582
583 auto &VariablesA = ADec.Vars;
584 auto &VariablesB = BDec.Vars;
585
586 // First try to look up \p V in Value2Index and NewVariables. Otherwise add a
587 // new entry to NewVariables.
588 DenseMap<Value *, unsigned> NewIndexMap;
589 auto GetOrAddIndex = [&Value2Index, &NewVariables,
590 &NewIndexMap](Value *V) -> unsigned {
591 auto V2I = Value2Index.find(V);
592 if (V2I != Value2Index.end())
593 return V2I->second;
594 auto Insert =
595 NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
596 if (Insert.second)
597 NewVariables.push_back(V);
598 return Insert.first->second;
599 };
600
601 // Make sure all variables have entries in Value2Index or NewVariables.
602 for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
603 GetOrAddIndex(KV.Variable);
604
605 // Build result constraint, by first adding all coefficients from A and then
606 // subtracting all coefficients from B.
607 ConstraintTy Res(
608 SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
609 IsSigned, IsEq, IsNe);
610 // Collect variables that are known to be positive in all uses in the
611 // constraint.
612 DenseMap<Value *, bool> KnownNonNegativeVariables;
613 auto &R = Res.Coefficients;
614 for (const auto &KV : VariablesA) {
615 R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
616 auto I =
617 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
618 I.first->second &= KV.IsKnownNonNegative;
619 }
620
621 for (const auto &KV : VariablesB) {
622 if (SubOverflow(R[GetOrAddIndex(KV.Variable)], KV.Coefficient,
623 R[GetOrAddIndex(KV.Variable)]))
624 return {};
625 auto I =
626 KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
627 I.first->second &= KV.IsKnownNonNegative;
628 }
629
630 int64_t OffsetSum;
631 if (AddOverflow(Offset1, Offset2, OffsetSum))
632 return {};
633 if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
634 if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
635 return {};
636 R[0] = OffsetSum;
637 Res.Preconditions = std::move(Preconditions);
638
639 // Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
640 // variables.
641 while (!NewVariables.empty()) {
642 int64_t Last = R.back();
643 if (Last != 0)
644 break;
645 R.pop_back();
646 Value *RemovedV = NewVariables.pop_back_val();
647 NewIndexMap.erase(RemovedV);
648 }
649
650 // Add extra constraints for variables that are known positive.
651 for (auto &KV : KnownNonNegativeVariables) {
652 if (!KV.second ||
653 (!Value2Index.contains(KV.first) && !NewIndexMap.contains(KV.first)))
654 continue;
655 SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
656 C[GetOrAddIndex(KV.first)] = -1;
657 Res.ExtraInfo.push_back(C);
658 }
659 return Res;
660}
661
662ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
663 Value *Op0,
664 Value *Op1) const {
665 // If both operands are known to be non-negative, change signed predicates to
666 // unsigned ones. This increases the reasoning effectiveness in combination
667 // with the signed <-> unsigned transfer logic.
668 if (CmpInst::isSigned(Pred) &&
669 isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
672
673 SmallVector<Value *> NewVariables;
674 ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
675 if (!NewVariables.empty())
676 return {};
677 return R;
678}
679
680bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
681 return Coefficients.size() > 0 &&
682 all_of(Preconditions, [&Info](const ConditionTy &C) {
683 return Info.doesHold(C.Pred, C.Op0, C.Op1);
684 });
685}
686
687std::optional<bool>
688ConstraintTy::isImpliedBy(const ConstraintSystem &CS) const {
689 bool IsConditionImplied = CS.isConditionImplied(Coefficients);
690
691 if (IsEq || IsNe) {
692 auto NegatedOrEqual = ConstraintSystem::negateOrEqual(Coefficients);
693 bool IsNegatedOrEqualImplied =
694 !NegatedOrEqual.empty() && CS.isConditionImplied(NegatedOrEqual);
695
696 // In order to check that `%a == %b` is true (equality), both conditions `%a
697 // >= %b` and `%a <= %b` must hold true. When checking for equality (`IsEq`
698 // is true), we return true if they both hold, false in the other cases.
699 if (IsConditionImplied && IsNegatedOrEqualImplied)
700 return IsEq;
701
702 auto Negated = ConstraintSystem::negate(Coefficients);
703 bool IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
704
705 auto StrictLessThan = ConstraintSystem::toStrictLessThan(Coefficients);
706 bool IsStrictLessThanImplied =
707 !StrictLessThan.empty() && CS.isConditionImplied(StrictLessThan);
708
709 // In order to check that `%a != %b` is true (non-equality), either
710 // condition `%a > %b` or `%a < %b` must hold true. When checking for
711 // non-equality (`IsNe` is true), we return true if one of the two holds,
712 // false in the other cases.
713 if (IsNegatedImplied || IsStrictLessThanImplied)
714 return IsNe;
715
716 return std::nullopt;
717 }
718
719 if (IsConditionImplied)
720 return true;
721
722 auto Negated = ConstraintSystem::negate(Coefficients);
723 auto IsNegatedImplied = !Negated.empty() && CS.isConditionImplied(Negated);
724 if (IsNegatedImplied)
725 return false;
726
727 // Neither the condition nor its negated holds, did not prove anything.
728 return std::nullopt;
729}
730
731bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
732 Value *B) const {
733 auto R = getConstraintForSolving(Pred, A, B);
734 return R.isValid(*this) &&
735 getCS(R.IsSigned).isConditionImplied(R.Coefficients);
736}
737
738void ConstraintInfo::transferToOtherSystem(
739 CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
740 unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
741 // Check if we can combine facts from the signed and unsigned systems to
742 // derive additional facts.
743 if (!A->getType()->isIntegerTy())
744 return;
745 // FIXME: This currently depends on the order we add facts. Ideally we
746 // would first add all known facts and only then try to add additional
747 // facts.
748 switch (Pred) {
749 default:
750 break;
753 // If B is a signed positive constant, then A >=s 0 and A <s (or <=s) B.
754 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
755 addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
756 NumOut, DFSInStack);
757 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
758 DFSInStack);
759 }
760 break;
763 // If A is a signed positive constant, then B >=s 0 and A >s (or >=s) B.
764 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0))) {
765 addFact(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0), NumIn,
766 NumOut, DFSInStack);
767 addFact(CmpInst::getSignedPredicate(Pred), A, B, NumIn, NumOut,
768 DFSInStack);
769 }
770 break;
772 if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
773 addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
774 break;
775 case CmpInst::ICMP_SGT: {
776 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
777 addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
778 NumOut, DFSInStack);
779 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0)))
780 addFact(CmpInst::ICMP_UGT, A, B, NumIn, NumOut, DFSInStack);
781
782 break;
783 }
785 if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
786 addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
787 }
788 break;
789 }
790}
791
792#ifndef NDEBUG
793
795 const DenseMap<Value *, unsigned> &Value2Index) {
796 ConstraintSystem CS(Value2Index);
798 CS.dump();
799}
800#endif
801
802void State::addInfoFor(BasicBlock &BB) {
803 // True as long as long as the current instruction is guaranteed to execute.
804 bool GuaranteedToExecute = true;
805 // Queue conditions and assumes.
806 for (Instruction &I : BB) {
807 if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
808 for (Use &U : Cmp->uses()) {
809 auto *UserI = getContextInstForUse(U);
810 auto *DTN = DT.getNode(UserI->getParent());
811 if (!DTN)
812 continue;
813 WorkList.push_back(FactOrCheck::getCheck(DTN, &U));
814 }
815 continue;
816 }
817
818 if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) {
819 WorkList.push_back(
820 FactOrCheck::getCheck(DT.getNode(&BB), cast<CallInst>(&I)));
821 continue;
822 }
823
824 if (isa<MinMaxIntrinsic>(&I)) {
825 WorkList.push_back(FactOrCheck::getInstFact(DT.getNode(&BB), &I));
826 continue;
827 }
828
829 Value *A, *B;
831 // For now, just handle assumes with a single compare as condition.
832 if (match(&I, m_Intrinsic<Intrinsic::assume>(
833 m_ICmp(Pred, m_Value(A), m_Value(B))))) {
834 if (GuaranteedToExecute) {
835 // The assume is guaranteed to execute when BB is entered, hence Cond
836 // holds on entry to BB.
837 WorkList.emplace_back(FactOrCheck::getConditionFact(
838 DT.getNode(I.getParent()), Pred, A, B));
839 } else {
840 WorkList.emplace_back(
841 FactOrCheck::getInstFact(DT.getNode(I.getParent()), &I));
842 }
843 }
844 GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
845 }
846
847 if (auto *Switch = dyn_cast<SwitchInst>(BB.getTerminator())) {
848 for (auto &Case : Switch->cases()) {
849 BasicBlock *Succ = Case.getCaseSuccessor();
850 Value *V = Case.getCaseValue();
851 if (!canAddSuccessor(BB, Succ))
852 continue;
853 WorkList.emplace_back(FactOrCheck::getConditionFact(
854 DT.getNode(Succ), CmpInst::ICMP_EQ, Switch->getCondition(), V));
855 }
856 return;
857 }
858
859 auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
860 if (!Br || !Br->isConditional())
861 return;
862
863 Value *Cond = Br->getCondition();
864
865 // If the condition is a chain of ORs/AND and the successor only has the
866 // current block as predecessor, queue conditions for the successor.
867 Value *Op0, *Op1;
868 if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
869 match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
870 bool IsOr = match(Cond, m_LogicalOr());
871 bool IsAnd = match(Cond, m_LogicalAnd());
872 // If there's a select that matches both AND and OR, we need to commit to
873 // one of the options. Arbitrarily pick OR.
874 if (IsOr && IsAnd)
875 IsAnd = false;
876
877 BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
878 if (canAddSuccessor(BB, Successor)) {
879 SmallVector<Value *> CondWorkList;
881 auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
882 if (SeenCond.insert(V).second)
883 CondWorkList.push_back(V);
884 };
885 QueueValue(Op1);
886 QueueValue(Op0);
887 while (!CondWorkList.empty()) {
888 Value *Cur = CondWorkList.pop_back_val();
889 if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
890 WorkList.emplace_back(FactOrCheck::getConditionFact(
891 DT.getNode(Successor),
892 IsOr ? CmpInst::getInversePredicate(Cmp->getPredicate())
893 : Cmp->getPredicate(),
894 Cmp->getOperand(0), Cmp->getOperand(1)));
895 continue;
896 }
897 if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
898 QueueValue(Op1);
899 QueueValue(Op0);
900 continue;
901 }
902 if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
903 QueueValue(Op1);
904 QueueValue(Op0);
905 continue;
906 }
907 }
908 }
909 return;
910 }
911
912 auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
913 if (!CmpI)
914 return;
915 if (canAddSuccessor(BB, Br->getSuccessor(0)))
916 WorkList.emplace_back(FactOrCheck::getConditionFact(
917 DT.getNode(Br->getSuccessor(0)), CmpI->getPredicate(),
918 CmpI->getOperand(0), CmpI->getOperand(1)));
919 if (canAddSuccessor(BB, Br->getSuccessor(1)))
920 WorkList.emplace_back(FactOrCheck::getConditionFact(
921 DT.getNode(Br->getSuccessor(1)),
922 CmpInst::getInversePredicate(CmpI->getPredicate()), CmpI->getOperand(0),
923 CmpI->getOperand(1)));
924}
925
926namespace {
927/// Helper to keep track of a condition and if it should be treated as negated
928/// for reproducer construction.
929/// Pred == Predicate::BAD_ICMP_PREDICATE indicates that this entry is a
930/// placeholder to keep the ReproducerCondStack in sync with DFSInStack.
931struct ReproducerEntry {
933 Value *LHS;
934 Value *RHS;
935
936 ReproducerEntry(ICmpInst::Predicate Pred, Value *LHS, Value *RHS)
937 : Pred(Pred), LHS(LHS), RHS(RHS) {}
938};
939} // namespace
940
941/// Helper function to generate a reproducer function for simplifying \p Cond.
942/// The reproducer function contains a series of @llvm.assume calls, one for
943/// each condition in \p Stack. For each condition, the operand instruction are
944/// cloned until we reach operands that have an entry in \p Value2Index. Those
945/// will then be added as function arguments. \p DT is used to order cloned
946/// instructions. The reproducer function will get added to \p M, if it is
947/// non-null. Otherwise no reproducer function is generated.
950 ConstraintInfo &Info, DominatorTree &DT) {
951 if (!M)
952 return;
953
954 LLVMContext &Ctx = Cond->getContext();
955
956 LLVM_DEBUG(dbgs() << "Creating reproducer for " << *Cond << "\n");
957
958 ValueToValueMapTy Old2New;
961 // Traverse Cond and its operands recursively until we reach a value that's in
962 // Value2Index or not an instruction, or not a operation that
963 // ConstraintElimination can decompose. Such values will be considered as
964 // external inputs to the reproducer, they are collected and added as function
965 // arguments later.
966 auto CollectArguments = [&](ArrayRef<Value *> Ops, bool IsSigned) {
967 auto &Value2Index = Info.getValue2Index(IsSigned);
968 SmallVector<Value *, 4> WorkList(Ops);
969 while (!WorkList.empty()) {
970 Value *V = WorkList.pop_back_val();
971 if (!Seen.insert(V).second)
972 continue;
973 if (Old2New.find(V) != Old2New.end())
974 continue;
975 if (isa<Constant>(V))
976 continue;
977
978 auto *I = dyn_cast<Instruction>(V);
979 if (Value2Index.contains(V) || !I ||
980 !isa<CmpInst, BinaryOperator, GEPOperator, CastInst>(V)) {
981 Old2New[V] = V;
982 Args.push_back(V);
983 LLVM_DEBUG(dbgs() << " found external input " << *V << "\n");
984 } else {
985 append_range(WorkList, I->operands());
986 }
987 }
988 };
989
990 for (auto &Entry : Stack)
991 if (Entry.Pred != ICmpInst::BAD_ICMP_PREDICATE)
992 CollectArguments({Entry.LHS, Entry.RHS}, ICmpInst::isSigned(Entry.Pred));
993 CollectArguments(Cond, ICmpInst::isSigned(Cond->getPredicate()));
994
995 SmallVector<Type *> ParamTys;
996 for (auto *P : Args)
997 ParamTys.push_back(P->getType());
998
999 FunctionType *FTy = FunctionType::get(Cond->getType(), ParamTys,
1000 /*isVarArg=*/false);
1001 Function *F = Function::Create(FTy, Function::ExternalLinkage,
1002 Cond->getModule()->getName() +
1003 Cond->getFunction()->getName() + "repro",
1004 M);
1005 // Add arguments to the reproducer function for each external value collected.
1006 for (unsigned I = 0; I < Args.size(); ++I) {
1007 F->getArg(I)->setName(Args[I]->getName());
1008 Old2New[Args[I]] = F->getArg(I);
1009 }
1010
1011 BasicBlock *Entry = BasicBlock::Create(Ctx, "entry", F);
1012 IRBuilder<> Builder(Entry);
1013 Builder.CreateRet(Builder.getTrue());
1014 Builder.SetInsertPoint(Entry->getTerminator());
1015
1016 // Clone instructions in \p Ops and their operands recursively until reaching
1017 // an value in Value2Index (external input to the reproducer). Update Old2New
1018 // mapping for the original and cloned instructions. Sort instructions to
1019 // clone by dominance, then insert the cloned instructions in the function.
1020 auto CloneInstructions = [&](ArrayRef<Value *> Ops, bool IsSigned) {
1021 SmallVector<Value *, 4> WorkList(Ops);
1023 auto &Value2Index = Info.getValue2Index(IsSigned);
1024 while (!WorkList.empty()) {
1025 Value *V = WorkList.pop_back_val();
1026 if (Old2New.find(V) != Old2New.end())
1027 continue;
1028
1029 auto *I = dyn_cast<Instruction>(V);
1030 if (!Value2Index.contains(V) && I) {
1031 Old2New[V] = nullptr;
1032 ToClone.push_back(I);
1033 append_range(WorkList, I->operands());
1034 }
1035 }
1036
1037 sort(ToClone,
1038 [&DT](Instruction *A, Instruction *B) { return DT.dominates(A, B); });
1039 for (Instruction *I : ToClone) {
1040 Instruction *Cloned = I->clone();
1041 Old2New[I] = Cloned;
1042 Old2New[I]->setName(I->getName());
1043 Cloned->insertBefore(&*Builder.GetInsertPoint());
1045 Cloned->setDebugLoc({});
1046 }
1047 };
1048
1049 // Materialize the assumptions for the reproducer using the entries in Stack.
1050 // That is, first clone the operands of the condition recursively until we
1051 // reach an external input to the reproducer and add them to the reproducer
1052 // function. Then add an ICmp for the condition (with the inverse predicate if
1053 // the entry is negated) and an assert using the ICmp.
1054 for (auto &Entry : Stack) {
1055 if (Entry.Pred == ICmpInst::BAD_ICMP_PREDICATE)
1056 continue;
1057
1058 LLVM_DEBUG(
1059 dbgs() << " Materializing assumption icmp " << Entry.Pred << ' ';
1060 Entry.LHS->printAsOperand(dbgs(), /*PrintType=*/true); dbgs() << ", ";
1061 Entry.RHS->printAsOperand(dbgs(), /*PrintType=*/false); dbgs() << "\n");
1062 CloneInstructions({Entry.LHS, Entry.RHS}, CmpInst::isSigned(Entry.Pred));
1063
1064 auto *Cmp = Builder.CreateICmp(Entry.Pred, Entry.LHS, Entry.RHS);
1065 Builder.CreateAssumption(Cmp);
1066 }
1067
1068 // Finally, clone the condition to reproduce and remap instruction operands in
1069 // the reproducer using Old2New.
1070 CloneInstructions(Cond, CmpInst::isSigned(Cond->getPredicate()));
1071 Entry->getTerminator()->setOperand(0, Cond);
1072 remapInstructionsInBlocks({Entry}, Old2New);
1073
1074 assert(!verifyFunction(*F, &dbgs()));
1075}
1076
1077static std::optional<bool> checkCondition(CmpInst *Cmp, ConstraintInfo &Info,
1078 unsigned NumIn, unsigned NumOut,
1079 Instruction *ContextInst) {
1080 LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n");
1081
1082 CmpInst::Predicate Pred = Cmp->getPredicate();
1083 Value *A = Cmp->getOperand(0);
1084 Value *B = Cmp->getOperand(1);
1085
1086 auto R = Info.getConstraintForSolving(Pred, A, B);
1087 if (R.empty() || !R.isValid(Info)){
1088 LLVM_DEBUG(dbgs() << " failed to decompose condition\n");
1089 return std::nullopt;
1090 }
1091
1092 auto &CSToUse = Info.getCS(R.IsSigned);
1093
1094 // If there was extra information collected during decomposition, apply
1095 // it now and remove it immediately once we are done with reasoning
1096 // about the constraint.
1097 for (auto &Row : R.ExtraInfo)
1098 CSToUse.addVariableRow(Row);
1099 auto InfoRestorer = make_scope_exit([&]() {
1100 for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
1101 CSToUse.popLastConstraint();
1102 });
1103
1104 if (auto ImpliedCondition = R.isImpliedBy(CSToUse)) {
1105 if (!DebugCounter::shouldExecute(EliminatedCounter))
1106 return std::nullopt;
1107
1108 LLVM_DEBUG({
1109 if (*ImpliedCondition) {
1110 dbgs() << "Condition " << *Cmp;
1111 } else {
1112 auto InversePred = Cmp->getInversePredicate();
1113 dbgs() << "Condition " << CmpInst::getPredicateName(InversePred) << " "
1114 << *A << ", " << *B;
1115 }
1116 dbgs() << " implied by dominating constraints\n";
1117 CSToUse.dump();
1118 });
1119 return ImpliedCondition;
1120 }
1121
1122 return std::nullopt;
1123}
1124
1126 CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut,
1127 Instruction *ContextInst, Module *ReproducerModule,
1128 ArrayRef<ReproducerEntry> ReproducerCondStack, DominatorTree &DT,
1130 auto ReplaceCmpWithConstant = [&](CmpInst *Cmp, bool IsTrue) {
1131 generateReproducer(Cmp, ReproducerModule, ReproducerCondStack, Info, DT);
1132 Constant *ConstantC = ConstantInt::getBool(
1133 CmpInst::makeCmpResultType(Cmp->getType()), IsTrue);
1134 Cmp->replaceUsesWithIf(ConstantC, [&DT, NumIn, NumOut,
1135 ContextInst](Use &U) {
1136 auto *UserI = getContextInstForUse(U);
1137 auto *DTN = DT.getNode(UserI->getParent());
1138 if (!DTN || DTN->getDFSNumIn() < NumIn || DTN->getDFSNumOut() > NumOut)
1139 return false;
1140 if (UserI->getParent() == ContextInst->getParent() &&
1141 UserI->comesBefore(ContextInst))
1142 return false;
1143
1144 // Conditions in an assume trivially simplify to true. Skip uses
1145 // in assume calls to not destroy the available information.
1146 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
1147 return !II || II->getIntrinsicID() != Intrinsic::assume;
1148 });
1149 NumCondsRemoved++;
1150 if (Cmp->use_empty())
1151 ToRemove.push_back(Cmp);
1152 return true;
1153 };
1154
1155 if (auto ImpliedCondition =
1156 checkCondition(Cmp, Info, NumIn, NumOut, ContextInst))
1157 return ReplaceCmpWithConstant(Cmp, *ImpliedCondition);
1158 return false;
1159}
1160
1161static void
1162removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info,
1163 Module *ReproducerModule,
1164 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1165 SmallVectorImpl<StackEntry> &DFSInStack) {
1166 Info.popLastConstraint(E.IsSigned);
1167 // Remove variables in the system that went out of scope.
1168 auto &Mapping = Info.getValue2Index(E.IsSigned);
1169 for (Value *V : E.ValuesToRelease)
1170 Mapping.erase(V);
1171 Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
1172 DFSInStack.pop_back();
1173 if (ReproducerModule)
1174 ReproducerCondStack.pop_back();
1175}
1176
1177/// Check if the first condition for an AND implies the second.
1179 FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule,
1180 SmallVectorImpl<ReproducerEntry> &ReproducerCondStack,
1181 SmallVectorImpl<StackEntry> &DFSInStack) {
1182 CmpInst::Predicate Pred;
1183 Value *A, *B;
1184 Instruction *And = CB.getContextInst();
1185 if (!match(And->getOperand(0), m_ICmp(Pred, m_Value(A), m_Value(B))))
1186 return false;
1187
1188 // Optimistically add fact from first condition.
1189 unsigned OldSize = DFSInStack.size();
1190 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1191 if (OldSize == DFSInStack.size())
1192 return false;
1193
1194 bool Changed = false;
1195 // Check if the second condition can be simplified now.
1196 if (auto ImpliedCondition =
1197 checkCondition(cast<ICmpInst>(And->getOperand(1)), Info, CB.NumIn,
1198 CB.NumOut, CB.getContextInst())) {
1199 And->setOperand(1, ConstantInt::getBool(And->getType(), *ImpliedCondition));
1200 Changed = true;
1201 }
1202
1203 // Remove entries again.
1204 while (OldSize < DFSInStack.size()) {
1205 StackEntry E = DFSInStack.back();
1206 removeEntryFromStack(E, Info, ReproducerModule, ReproducerCondStack,
1207 DFSInStack);
1208 }
1209 return Changed;
1210}
1211
1212void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
1213 unsigned NumIn, unsigned NumOut,
1214 SmallVectorImpl<StackEntry> &DFSInStack) {
1215 // If the constraint has a pre-condition, skip the constraint if it does not
1216 // hold.
1217 SmallVector<Value *> NewVariables;
1218 auto R = getConstraint(Pred, A, B, NewVariables);
1219
1220 // TODO: Support non-equality for facts as well.
1221 if (!R.isValid(*this) || R.isNe())
1222 return;
1223
1224 LLVM_DEBUG(dbgs() << "Adding '" << Pred << " ";
1225 A->printAsOperand(dbgs(), false); dbgs() << ", ";
1226 B->printAsOperand(dbgs(), false); dbgs() << "'\n");
1227 bool Added = false;
1228 auto &CSToUse = getCS(R.IsSigned);
1229 if (R.Coefficients.empty())
1230 return;
1231
1232 Added |= CSToUse.addVariableRowFill(R.Coefficients);
1233
1234 // If R has been added to the system, add the new variables and queue it for
1235 // removal once it goes out-of-scope.
1236 if (Added) {
1237 SmallVector<Value *, 2> ValuesToRelease;
1238 auto &Value2Index = getValue2Index(R.IsSigned);
1239 for (Value *V : NewVariables) {
1240 Value2Index.insert({V, Value2Index.size() + 1});
1241 ValuesToRelease.push_back(V);
1242 }
1243
1244 LLVM_DEBUG({
1245 dbgs() << " constraint: ";
1246 dumpConstraint(R.Coefficients, getValue2Index(R.IsSigned));
1247 dbgs() << "\n";
1248 });
1249
1250 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1251 std::move(ValuesToRelease));
1252
1253 if (R.isEq()) {
1254 // Also add the inverted constraint for equality constraints.
1255 for (auto &Coeff : R.Coefficients)
1256 Coeff *= -1;
1257 CSToUse.addVariableRowFill(R.Coefficients);
1258
1259 DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
1261 }
1262 }
1263}
1264
1267 bool Changed = false;
1269 Value *Sub = nullptr;
1270 for (User *U : make_early_inc_range(II->users())) {
1271 if (match(U, m_ExtractValue<0>(m_Value()))) {
1272 if (!Sub)
1273 Sub = Builder.CreateSub(A, B);
1274 U->replaceAllUsesWith(Sub);
1275 Changed = true;
1276 } else if (match(U, m_ExtractValue<1>(m_Value()))) {
1277 U->replaceAllUsesWith(Builder.getFalse());
1278 Changed = true;
1279 } else
1280 continue;
1281
1282 if (U->use_empty()) {
1283 auto *I = cast<Instruction>(U);
1284 ToRemove.push_back(I);
1285 I->setOperand(0, PoisonValue::get(II->getType()));
1286 Changed = true;
1287 }
1288 }
1289
1290 if (II->use_empty()) {
1291 II->eraseFromParent();
1292 Changed = true;
1293 }
1294 return Changed;
1295}
1296
1297static bool
1300 auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
1301 ConstraintInfo &Info) {
1302 auto R = Info.getConstraintForSolving(Pred, A, B);
1303 if (R.size() < 2 || !R.isValid(Info))
1304 return false;
1305
1306 auto &CSToUse = Info.getCS(R.IsSigned);
1307 return CSToUse.isConditionImplied(R.Coefficients);
1308 };
1309
1310 bool Changed = false;
1311 if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
1312 // If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
1313 // can be simplified to a regular sub.
1314 Value *A = II->getArgOperand(0);
1315 Value *B = II->getArgOperand(1);
1316 if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
1317 !DoesConditionHold(CmpInst::ICMP_SGE, B,
1318 ConstantInt::get(A->getType(), 0), Info))
1319 return false;
1320 Changed = replaceSubOverflowUses(II, A, B, ToRemove);
1321 }
1322 return Changed;
1323}
1324
1327 bool Changed = false;
1328 DT.updateDFSNumbers();
1329 SmallVector<Value *> FunctionArgs;
1330 for (Value &Arg : F.args())
1331 FunctionArgs.push_back(&Arg);
1332 ConstraintInfo Info(F.getParent()->getDataLayout(), FunctionArgs);
1333 State S(DT);
1334 std::unique_ptr<Module> ReproducerModule(
1335 DumpReproducers ? new Module(F.getName(), F.getContext()) : nullptr);
1336
1337 // First, collect conditions implied by branches and blocks with their
1338 // Dominator DFS in and out numbers.
1339 for (BasicBlock &BB : F) {
1340 if (!DT.getNode(&BB))
1341 continue;
1342 S.addInfoFor(BB);
1343 }
1344
1345 // Next, sort worklist by dominance, so that dominating conditions to check
1346 // and facts come before conditions and facts dominated by them. If a
1347 // condition to check and a fact have the same numbers, conditional facts come
1348 // first. Assume facts and checks are ordered according to their relative
1349 // order in the containing basic block. Also make sure conditions with
1350 // constant operands come before conditions without constant operands. This
1351 // increases the effectiveness of the current signed <-> unsigned fact
1352 // transfer logic.
1353 stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
1354 auto HasNoConstOp = [](const FactOrCheck &B) {
1355 Value *V0 = B.isConditionFact() ? B.Cond.Op0 : B.Inst->getOperand(0);
1356 Value *V1 = B.isConditionFact() ? B.Cond.Op1 : B.Inst->getOperand(1);
1357 return !isa<ConstantInt>(V0) && !isa<ConstantInt>(V1);
1358 };
1359 // If both entries have the same In numbers, conditional facts come first.
1360 // Otherwise use the relative order in the basic block.
1361 if (A.NumIn == B.NumIn) {
1362 if (A.isConditionFact() && B.isConditionFact()) {
1363 bool NoConstOpA = HasNoConstOp(A);
1364 bool NoConstOpB = HasNoConstOp(B);
1365 return NoConstOpA < NoConstOpB;
1366 }
1367 if (A.isConditionFact())
1368 return true;
1369 if (B.isConditionFact())
1370 return false;
1371 auto *InstA = A.getContextInst();
1372 auto *InstB = B.getContextInst();
1373 return InstA->comesBefore(InstB);
1374 }
1375 return A.NumIn < B.NumIn;
1376 });
1377
1379
1380 // Finally, process ordered worklist and eliminate implied conditions.
1381 SmallVector<StackEntry, 16> DFSInStack;
1382 SmallVector<ReproducerEntry> ReproducerCondStack;
1383 for (FactOrCheck &CB : S.WorkList) {
1384 // First, pop entries from the stack that are out-of-scope for CB. Remove
1385 // the corresponding entry from the constraint system.
1386 while (!DFSInStack.empty()) {
1387 auto &E = DFSInStack.back();
1388 LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
1389 << "\n");
1390 LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
1391 assert(E.NumIn <= CB.NumIn);
1392 if (CB.NumOut <= E.NumOut)
1393 break;
1394 LLVM_DEBUG({
1395 dbgs() << "Removing ";
1396 dumpConstraint(Info.getCS(E.IsSigned).getLastConstraint(),
1397 Info.getValue2Index(E.IsSigned));
1398 dbgs() << "\n";
1399 });
1400 removeEntryFromStack(E, Info, ReproducerModule.get(), ReproducerCondStack,
1401 DFSInStack);
1402 }
1403
1404 LLVM_DEBUG(dbgs() << "Processing ");
1405
1406 // For a block, check if any CmpInsts become known based on the current set
1407 // of constraints.
1408 if (CB.isCheck()) {
1409 Instruction *Inst = CB.getInstructionToSimplify();
1410 if (!Inst)
1411 continue;
1412 LLVM_DEBUG(dbgs() << "condition to simplify: " << *Inst << "\n");
1413 if (auto *II = dyn_cast<WithOverflowInst>(Inst)) {
1414 Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
1415 } else if (auto *Cmp = dyn_cast<ICmpInst>(Inst)) {
1417 Cmp, Info, CB.NumIn, CB.NumOut, CB.getContextInst(),
1418 ReproducerModule.get(), ReproducerCondStack, S.DT, ToRemove);
1419 if (!Simplified && match(CB.getContextInst(),
1420 m_LogicalAnd(m_Value(), m_Specific(Inst)))) {
1421 Simplified =
1422 checkAndSecondOpImpliedByFirst(CB, Info, ReproducerModule.get(),
1423 ReproducerCondStack, DFSInStack);
1424 }
1425 Changed |= Simplified;
1426 }
1427 continue;
1428 }
1429
1430 auto AddFact = [&](CmpInst::Predicate Pred, Value *A, Value *B) {
1431 if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
1432 LLVM_DEBUG(
1433 dbgs()
1434 << "Skip adding constraint because system has too many rows.\n");
1435 return;
1436 }
1437
1438 LLVM_DEBUG({
1439 dbgs() << "Processing fact to add to the system: " << Pred << " ";
1440 A->printAsOperand(dbgs());
1441 dbgs() << ", ";
1442 B->printAsOperand(dbgs(), false);
1443 dbgs() << "\n";
1444 });
1445
1446 Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1447 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size())
1448 ReproducerCondStack.emplace_back(Pred, A, B);
1449
1450 Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
1451 if (ReproducerModule && DFSInStack.size() > ReproducerCondStack.size()) {
1452 // Add dummy entries to ReproducerCondStack to keep it in sync with
1453 // DFSInStack.
1454 for (unsigned I = 0,
1455 E = (DFSInStack.size() - ReproducerCondStack.size());
1456 I < E; ++I) {
1457 ReproducerCondStack.emplace_back(ICmpInst::BAD_ICMP_PREDICATE,
1458 nullptr, nullptr);
1459 }
1460 }
1461 };
1462
1464 if (!CB.isConditionFact()) {
1465 if (auto *MinMax = dyn_cast<MinMaxIntrinsic>(CB.Inst)) {
1466 Pred = ICmpInst::getNonStrictPredicate(MinMax->getPredicate());
1467 AddFact(Pred, MinMax, MinMax->getLHS());
1468 AddFact(Pred, MinMax, MinMax->getRHS());
1469 continue;
1470 }
1471 }
1472
1473 Value *A = nullptr, *B = nullptr;
1474 if (CB.isConditionFact()) {
1475 Pred = CB.Cond.Pred;
1476 A = CB.Cond.Op0;
1477 B = CB.Cond.Op1;
1478 } else {
1479 bool Matched = match(CB.Inst, m_Intrinsic<Intrinsic::assume>(
1480 m_ICmp(Pred, m_Value(A), m_Value(B))));
1481 (void)Matched;
1482 assert(Matched && "Must have an assume intrinsic with a icmp operand");
1483 }
1484 AddFact(Pred, A, B);
1485 }
1486
1487 if (ReproducerModule && !ReproducerModule->functions().empty()) {
1488 std::string S;
1489 raw_string_ostream StringS(S);
1490 ReproducerModule->print(StringS, nullptr);
1491 StringS.flush();
1492 OptimizationRemark Rem(DEBUG_TYPE, "Reproducer", &F);
1493 Rem << ore::NV("module") << S;
1494 ORE.emit(Rem);
1495 }
1496
1497#ifndef NDEBUG
1498 unsigned SignedEntries =
1499 count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
1500 assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
1501 "updates to CS and DFSInStack are out of sync");
1502 assert(Info.getCS(true).size() == SignedEntries &&
1503 "updates to CS and DFSInStack are out of sync");
1504#endif
1505
1506 for (Instruction *I : ToRemove)
1507 I->eraseFromParent();
1508 return Changed;
1509}
1510
1513 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1515 if (!eliminateConstraints(F, DT, ORE))
1516 return PreservedAnalyses::all();
1517
1521 return PA;
1522}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
ReachingDefAnalysis InstSet & ToRemove
assume Assume Builder
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
std::pair< ICmpInst *, unsigned > ConditionTy
static int64_t MaxConstraintValue
static int64_t MinSignedConstraintValue
static Instruction * getContextInstForUse(Use &U)
static bool checkAndSecondOpImpliedByFirst(FactOrCheck &CB, ConstraintInfo &Info, Module *ReproducerModule, SmallVectorImpl< ReproducerEntry > &ReproducerCondStack, SmallVectorImpl< StackEntry > &DFSInStack)
Check if the first condition for an AND implies the second.
static Decomposition decomposeGEP(GEPOperator &GEP, SmallVectorImpl< ConditionTy > &Preconditions, bool IsSigned, const DataLayout &DL)
static bool canUseSExt(ConstantInt *CI)
static int64_t multiplyWithOverflow(int64_t A, int64_t B)
static void dumpConstraint(ArrayRef< int64_t > C, const DenseMap< Value *, unsigned > &Value2Index)
static void removeEntryFromStack(const StackEntry &E, ConstraintInfo &Info, Module *ReproducerModule, SmallVectorImpl< ReproducerEntry > &ReproducerCondStack, SmallVectorImpl< StackEntry > &DFSInStack)
static cl::opt< unsigned > MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden, cl::desc("Maximum number of rows to keep in constraint system"))
static int64_t addWithOverflow(int64_t A, int64_t B)
static cl::opt< bool > DumpReproducers("constraint-elimination-dump-reproducers", cl::init(false), cl::Hidden, cl::desc("Dump IR to reproduce successful transformations."))
static void generateReproducer(CmpInst *Cond, Module *M, ArrayRef< ReproducerEntry > Stack, ConstraintInfo &Info, DominatorTree &DT)
Helper function to generate a reproducer function for simplifying Cond.
static bool eliminateConstraints(Function &F, DominatorTree &DT, OptimizationRemarkEmitter &ORE)
static Decomposition decompose(Value *V, SmallVectorImpl< ConditionTy > &Preconditions, bool IsSigned, const DataLayout &DL)
static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B, SmallVectorImpl< Instruction * > &ToRemove)
static std::optional< bool > checkCondition(CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, Instruction *ContextInst)
static bool tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info, SmallVectorImpl< Instruction * > &ToRemove)
#define DEBUG_TYPE
static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info, unsigned NumIn, unsigned NumOut, Instruction *ContextInst, Module *ReproducerModule, ArrayRef< ReproducerEntry > ReproducerCondStack, DominatorTree &DT, SmallVectorImpl< Instruction * > &ToRemove)
This file provides an implementation of debug counters.
#define DEBUG_COUNTER(VARNAME, COUNTERNAME, DESC)
Definition: DebugCounter.h:182
#define LLVM_DEBUG(X)
Definition: Debug.h:101
std::optional< std::vector< StOtherPiece > > Other
Definition: ELFYAML.cpp:1272
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define P(N)
if(VerifyEach)
static StringRef getName(Value *V)
const SmallVectorImpl< MachineOperand > & Cond
static bool isValid(const char C)
Returns true if C is a valid mangled character: <0-9a-zA-Z_>.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:167
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:76
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition: APInt.h:1173
bool isNegative() const
Determine sign of this APInt.
Definition: APInt.h:307
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition: APInt.h:1102
int64_t getSExtValue() const
Get sign extended value.
Definition: APInt.h:1507
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:620
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:774
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
LLVM Basic Block Representation.
Definition: BasicBlock.h:56
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:105
Represents analyses that only rely on functions' control flow.
Definition: PassManager.h:113
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1357
This class represents a function call, abstracting a target machine's calling convention.
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:701
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition: InstrTypes.h:1058
Predicate getSignedPredicate()
For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert.
Definition: InstrTypes.h:980
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:711
@ ICMP_SLT
signed less than
Definition: InstrTypes.h:740
@ ICMP_SLE
signed less or equal
Definition: InstrTypes.h:741
@ ICMP_UGE
unsigned greater or equal
Definition: InstrTypes.h:735
@ ICMP_UGT
unsigned greater than
Definition: InstrTypes.h:734
@ ICMP_SGT
signed greater than
Definition: InstrTypes.h:738
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:736
@ ICMP_EQ
equal
Definition: InstrTypes.h:732
@ ICMP_NE
not equal
Definition: InstrTypes.h:733
@ ICMP_SGE
signed greater or equal
Definition: InstrTypes.h:739
@ ICMP_ULE
unsigned less or equal
Definition: InstrTypes.h:737
bool isSigned() const
Definition: InstrTypes.h:961
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition: InstrTypes.h:863
Predicate getUnsignedPredicate()
For example, SLT->ULT, SLE->ULE, SGT->UGT, SGE->UGE, ULT->Failed assert.
Definition: InstrTypes.h:992
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition: InstrTypes.h:825
static StringRef getPredicateName(Predicate P)
This is the shared class of boolean and integer constants.
Definition: Constants.h:78
bool isNegative() const
Definition: Constants.h:192
static Constant * get(Type *Ty, uint64_t V, bool IsSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:888
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition: Constants.h:151
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:136
static ConstantInt * getBool(LLVMContext &Context, bool V)
Definition: Constants.cpp:847
This is an important base class in LLVM.
Definition: Constant.h:41
PreservedAnalyses run(Function &F, FunctionAnalysisManager &)
DenseMap< Value *, unsigned > & getValue2Index()
static SmallVector< int64_t, 8 > negate(SmallVector< int64_t, 8 > R)
bool isConditionImplied(SmallVector< int64_t, 8 > R) const
static SmallVector< int64_t, 8 > toStrictLessThan(SmallVector< int64_t, 8 > R)
Converts the given vector to form a strict less than inequality.
static SmallVector< int64_t, 8 > negateOrEqual(SmallVector< int64_t, 8 > R)
Multiplies each coefficient in the given vector by -1.
bool addVariableRowFill(ArrayRef< int64_t > R)
void dump() const
Print the constraints in the system.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
static bool shouldExecute(unsigned CounterName)
Definition: DebugCounter.h:72
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
bool erase(const KeyT &Val)
Definition: DenseMap.h:329
bool contains(const_arg_type_t< KeyT > Val) const
Return true if the specified key is in the map, false otherwise.
Definition: DenseMap.h:145
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:220
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
void updateDFSNumbers() const
updateDFSNumbers - Assign In and Out numbers to the nodes while walking dominator tree in dfs order.
DomTreeNodeBase< NodeT > * getNode(const NodeT *BB) const
getNode - return the (Post)DominatorTree node for the specified basic block.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:166
bool dominates(const BasicBlock *BB, const Use &U) const
Return true if the (end of the) basic block BB dominates the use U.
Definition: Dominators.cpp:122
static Function * Create(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, const Twine &N="", Module *M=nullptr)
Definition: Function.h:138
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2628
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction.
Definition: Instruction.cpp:89
const BasicBlock * getParent() const
Definition: Instruction.h:90
SymbolTableList< Instruction >::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:83
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:389
void dropUnknownNonDebugMetadata(ArrayRef< unsigned > KnownIDs)
Drop all unknown metadata except for debug locations.
Definition: Metadata.cpp:1467
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:47
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Definition: IntrinsicInst.h:54
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
bool empty() const
Definition: MapVector.h:79
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
The optimization diagnostic interface.
Diagnostic information for applied optimization remarks.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1743
A set of analyses that are preserved following a run of a transformation pass.
Definition: PassManager.h:152
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: PassManager.h:158
void preserveSet()
Mark an analysis set as preserved.
Definition: PassManager.h:188
void preserve()
Mark an analysis as preserved.
Definition: PassManager.h:173
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:366
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:451
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:577
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:941
void push_back(const T &Elt)
Definition: SmallVector.h:416
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
iterator find(const KeyT &Val)
Definition: ValueMap.h:155
iterator end()
Definition: ValueMap.h:135
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
iterator_range< user_iterator > users()
Definition: Value.h:421
const Value * stripPointerCastsSameRepresentation() const
Strip off pointer casts, all-zero GEPs and address space casts but ensures the representation of the ...
Definition: Value.cpp:696
bool use_empty() const
Definition: Value.h:344
self_iterator getIterator()
Definition: ilist_node.h:82
A raw_ostream that writes to an std::string.
Definition: raw_ostream.h:642
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
Definition: PatternMatch.h:982
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWAdd(const LHS &L, const RHS &R)
CastClass_match< OpTy, Instruction::ZExt > m_ZExt(const OpTy &Op)
Matches ZExt.
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:780
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:147
CmpClass_match< LHS, RHS, ICmpInst, ICmpInst::Predicate > m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R)
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
OverflowingBinaryOp_match< LHS, RHS, Instruction::Shl, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWShl(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWMul(const LHS &L, const RHS &R)
OverflowingBinaryOp_match< LHS, RHS, Instruction::Sub, OverflowingBinaryOperator::NoUnsignedWrap > m_NUWSub(const LHS &L, const RHS &R)
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:76
OverflowingBinaryOp_match< LHS, RHS, Instruction::Add, OverflowingBinaryOperator::NoSignedWrap > m_NSWAdd(const LHS &L, const RHS &R)
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
BinaryOp_match< LHS, RHS, Instruction::Or > m_Or(const LHS &L, const RHS &R)
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:545
OverflowingBinaryOp_match< LHS, RHS, Instruction::Mul, OverflowingBinaryOperator::NoSignedWrap > m_NSWMul(const LHS &L, const RHS &R)
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:445
@ Switch
The "resume-switch" lowering, where there are separate resume and destroy functions that are shared b...
DiagnosticInfoOptimizationBase::Argument NV
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
std::enable_if_t< std::is_signed_v< T >, T > MulOverflow(T X, T Y, T &Result)
Multiply two signed integers, computing the two's complement truncated result, returning true if an o...
Definition: MathExtras.h:620
void stable_sort(R &&Range)
Definition: STLExtras.h:1971
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1727
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
Definition: STLExtras.h:1685
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
Definition: ScopeExit.h:59
bool verifyFunction(const Function &F, raw_ostream *OS=nullptr)
Check a function for errors, useful for use when debugging a pass.
Definition: Verifier.cpp:6570
void append_range(Container &C, Range &&R)
Wrapper function to append a range to a container.
Definition: STLExtras.h:2037
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:666
constexpr unsigned MaxAnalysisRecursionDepth
Definition: ValueTracking.h:47
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1652
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS, const DataLayout &DL, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Return true if LHS and RHS have no common bits set.
@ And
Bitwise or logical AND of integers.
void remapInstructionsInBlocks(ArrayRef< BasicBlock * > Blocks, ValueToValueMapTy &VMap)
Remaps instructions in Blocks using the mapping in VMap.
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:184
bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
bool isKnownNonNegative(const Value *V, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Returns true if the give value is known to be non-negative.
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1926
std::enable_if_t< std::is_signed_v< T >, T > AddOverflow(T X, T Y, T &Result)
Add two signed integers, computing the two's complement truncated result, returning true if overflow ...
Definition: MathExtras.h:568
std::enable_if_t< std::is_signed_v< T >, T > SubOverflow(T X, T Y, T &Result)
Subtract two signed integers, computing the two's complement truncated result, returning true if an o...
Definition: MathExtras.h:594
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
#define N