28#include "llvm/IR/IntrinsicsAArch64.h"
31#include <initializer_list>
33#define DEBUG_TYPE "aarch64-legalinfo"
36using namespace LegalizeActions;
37using namespace LegalizeMutations;
38using namespace LegalityPredicates;
39using namespace MIPatternMatch;
43 using namespace TargetOpcode;
67 std::initializer_list<LLT> PackedVectorAllTypeList = {
73 std::initializer_list<LLT> ScalarAndPtrTypesList = {s8, s16, s32, s64, p0};
77 const TargetMachine &TM = ST.getTargetLowering()->getTargetMachine();
80 if (!ST.hasNEON() || !ST.hasFPARMv8()) {
87 const bool HasFP16 = ST.hasFullFP16();
88 const LLT &MinFPScalar = HasFP16 ? s16 : s32;
90 const bool HasCSSC = ST.hasCSSC();
91 const bool HasRCPC3 = ST.hasRCPC3();
92 const bool HasSVE = ST.hasSVE();
95 {G_IMPLICIT_DEF, G_FREEZE, G_CONSTANT_FOLD_BARRIER})
96 .legalFor({p0, s8, s16, s32, s64})
97 .legalFor({v16s8, v8s16, v4s32, v2s64, v2p0, v8s8, v4s16, v2s32, v4s8,
99 .widenScalarToNextPow2(0)
112 .legalFor(PackedVectorAllTypeList)
124 .
legalFor({s32, s64, v4s16, v8s16, v2s32, v4s32, v2s64})
126 .clampScalar(0, s32, s64)
127 .clampNumElements(0, v4s16, v8s16)
128 .clampNumElements(0, v2s32, v4s32)
129 .clampNumElements(0, v2s64, v2s64)
130 .moreElementsToNextPow2(0);
133 .legalFor({s32, s64, v2s32, v2s64, v4s32, v4s16, v8s16, v16s8, v8s8})
134 .legalFor(HasSVE, {nxv16s8, nxv8s16, nxv4s32, nxv2s64})
135 .widenScalarToNextPow2(0)
143 return Query.
Types[0].getNumElements() <= 2;
148 return Query.
Types[0].getNumElements() <= 4;
153 return Query.
Types[0].getNumElements() <= 16;
160 .
legalFor({s32, s64, v2s32, v2s64, v4s32, v4s16, v8s16, v16s8, v8s8})
161 .widenScalarToNextPow2(0)
169 return Query.
Types[0].getNumElements() <= 2;
174 return Query.
Types[0].getNumElements() <= 4;
179 return Query.
Types[0].getNumElements() <= 16;
187 const auto &SrcTy = Query.
Types[0];
188 const auto &AmtTy = Query.
Types[1];
189 return !SrcTy.isVector() && SrcTy.getSizeInBits() == 32 &&
190 AmtTy.getSizeInBits() == 32;
204 .widenScalarToNextPow2(0)
216 .
legalFor({{p0, s64}, {v2p0, v2s64}})
217 .clampScalarOrElt(1, s64, s64)
223 .legalFor({s32, s64})
225 .clampScalar(0, s32, s64)
230 .lowerFor({s8, s16, s32, s64, v2s64, v4s32, v2s32})
233 .minScalarOrElt(0, s32)
234 .clampNumElements(0, v2s32, v4s32)
235 .clampNumElements(0, v2s64, v2s64)
239 .widenScalarToNextPow2(0, 32)
244 .legalFor({s64, v8s16, v16s8, v4s32})
248 .legalFor({v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
249 .legalFor(HasCSSC, {s32, s64})
250 .minScalar(HasCSSC, 0, s32)
260 {G_SADDE, G_SSUBE, G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_UADDO, G_USUBO})
261 .legalFor({{s32, s32}, {s64, s32}})
262 .clampScalar(0, s32, s64)
267 {G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FMA, G_FSQRT, G_FMAXNUM, G_FMINNUM,
268 G_FMAXIMUM, G_FMINIMUM, G_FCEIL, G_FFLOOR, G_FRINT, G_FNEARBYINT,
269 G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND, G_INTRINSIC_ROUNDEVEN})
270 .legalFor({s32, s64, v2s32, v4s32, v2s64})
271 .legalFor(HasFP16, {s16, v4s16, v8s16})
281 .legalFor({s32, s64, v2s32, v4s32, v2s64})
282 .legalFor(HasFP16, {s16, v4s16, v8s16})
297 .legalFor({{s64, MinFPScalar}, {s64, s32}, {s64, s64}})
298 .libcallFor({{s64, s128}})
299 .minScalarOrElt(1, MinFPScalar);
302 G_FLOG10, G_FTAN, G_FEXP, G_FEXP2, G_FEXP10,
303 G_FACOS, G_FASIN, G_FATAN, G_FATAN2, G_FCOSH,
309 .libcallFor({s32, s64, s128});
313 .
libcallFor({{s32, s32}, {s64, s32}, {s128, s32}});
337 for (
unsigned Op : {G_SEXTLOAD, G_ZEXTLOAD}) {
340 if (
Op == G_SEXTLOAD)
345 .legalForTypesWithMemDesc({{s32, p0, s8, 8},
353 {v2s32, p0, s64, 8}})
354 .widenScalarToNextPow2(0)
355 .clampScalar(0, s32, s64)
358 .unsupportedIfMemSizeNotPow2()
370 return HasRCPC3 && Query.
Types[0] == s128 &&
374 return Query.
Types[0] == s128 &&
377 .legalForTypesWithMemDesc({{s8, p0, s8, 8},
384 {v16s8, p0, s128, 8},
386 {v8s16, p0, s128, 8},
388 {v4s32, p0, s128, 8},
389 {v2s64, p0, s128, 8}})
391 .legalForTypesWithMemDesc(
392 {{s32, p0, s8, 8}, {s32, p0, s16, 8}, {s64, p0, s32, 8}})
393 .legalForTypesWithMemDesc({
395 {nxv16s8, p0, nxv16s8, 8},
396 {nxv8s16, p0, nxv8s16, 8},
397 {nxv4s32, p0, nxv4s32, 8},
398 {nxv2s64, p0, nxv2s64, 8},
400 .widenScalarToNextPow2(0, 8)
411 return Query.
Types[0].isScalar() &&
413 Query.
Types[0].getSizeInBits() > 32;
422 .customIf(IsPtrVecPred)
428 return HasRCPC3 && Query.
Types[0] == s128 &&
432 return Query.
Types[0] == s128 &&
435 .legalForTypesWithMemDesc(
436 {{s8, p0, s8, 8}, {s16, p0, s8, 8},
439 {s16, p0, s16, 8}, {s32, p0, s16, 8},
441 {s32, p0, s8, 8}, {s32, p0, s16, 8}, {s32, p0, s32, 8},
442 {s64, p0, s64, 8}, {s64, p0, s32, 8},
443 {p0, p0, s64, 8}, {s128, p0, s128, 8}, {v16s8, p0, s128, 8},
444 {v8s8, p0, s64, 8}, {v4s16, p0, s64, 8}, {v8s16, p0, s128, 8},
445 {v2s32, p0, s64, 8}, {v4s32, p0, s128, 8}, {v2s64, p0, s128, 8}})
446 .legalForTypesWithMemDesc({
451 {nxv16s8, p0, nxv16s8, 8},
452 {nxv8s16, p0, nxv8s16, 8},
453 {nxv4s32, p0, nxv4s32, 8},
454 {nxv2s64, p0, nxv2s64, 8},
456 .clampScalar(0, s8, s64)
458 return Query.
Types[0].isScalar() &&
462 .clampMaxNumElements(0, s8, 16)
474 .customIf(IsPtrVecPred)
491 {p0, v16s8, v16s8, 8},
492 {p0, v4s16, v4s16, 8},
493 {p0, v8s16, v8s16, 8},
494 {p0, v2s32, v2s32, 8},
495 {p0, v4s32, v4s32, 8},
496 {p0, v2s64, v2s64, 8},
502 auto IndexedLoadBasicPred = [=](
const LegalityQuery &Query) {
530 return MemTy == s8 || MemTy == s16;
532 return MemTy == s8 || MemTy == s16 || MemTy == s32;
540 .widenScalarToNextPow2(0)
544 .legalFor(HasFP16, {s16})
545 .clampScalar(0, MinFPScalar, s128);
549 .
legalFor({{s32, s32}, {s32, s64}, {s32, p0}})
551 .clampScalar(1, s32, s64)
552 .clampScalar(0, s32, s32)
554 .minScalarEltSameAsIf(
567 return Query.
Types[1].isPointerVector();
571 .clampNumElements(1, v8s8, v16s8)
572 .clampNumElements(1, v4s16, v8s16)
573 .clampNumElements(1, v2s32, v4s32)
574 .clampNumElements(1, v2s64, v2s64)
575 .clampNumElements(1, v2p0, v2p0)
584 .legalFor(HasFP16, {{s32, s16}, {v4s16, v4s16}, {v8s16, v8s16}})
586 .clampScalar(0, s32, s32)
587 .minScalarOrElt(1, MinFPScalar)
589 .minScalarEltSameAsIf(
597 .clampNumElements(1, v4s16, v8s16)
598 .clampNumElements(1, v2s32, v4s32)
599 .clampMaxNumElements(1, s64, 2)
600 .moreElementsToNextPow2(1)
601 .libcallFor({{s32, s128}});
605 unsigned DstSize = Query.
Types[0].getSizeInBits();
608 if (Query.
Types[0].isVector())
611 if (DstSize < 8 || DstSize >= 128 || !
isPowerOf2_32(DstSize))
626 .legalIf(ExtLegalFunc)
627 .
legalFor({{v2s64, v2s32}, {v4s32, v4s16}, {v8s16, v8s8}})
628 .clampScalar(0, s64, s64)
635 return (Query.
Types[0].getScalarSizeInBits() >
636 Query.
Types[1].getScalarSizeInBits() * 2) &&
637 Query.
Types[0].isVector() &&
638 (Query.
Types[1].getScalarSizeInBits() == 8 ||
639 Query.
Types[1].getScalarSizeInBits() == 16);
641 .clampMinNumElements(1, s8, 8)
645 .
legalFor({{v2s32, v2s64}, {v4s16, v4s32}, {v8s8, v8s16}})
647 .clampMaxNumElements(0, s8, 8)
648 .clampMaxNumElements(0, s16, 4)
649 .clampMaxNumElements(0, s32, 2)
659 .clampMinNumElements(0, s8, 8)
660 .clampMinNumElements(0, s16, 4)
665 .legalFor(PackedVectorAllTypeList)
676 {{s16, s32}, {s16, s64}, {s32, s64}, {v4s16, v4s32}, {v2s32, v2s64}})
677 .libcallFor({{s16, s128}, {s32, s128}, {s64, s128}})
678 .clampNumElements(0, v4s16, v4s16)
684 {{s32, s16}, {s64, s16}, {s64, s32}, {v4s32, v4s16}, {v2s64, v2s32}})
685 .libcallFor({{s128, s64}, {s128, s32}, {s128, s16}})
686 .clampNumElements(0, v4s32, v4s32)
692 .legalFor({{s32, s32},
700 {{s32, s16}, {s64, s16}, {v4s16, v4s16}, {v8s16, v8s16}})
707 return Query.
Types[1] == s16 && Query.
Types[0].getSizeInBits() > 64;
711 .widenScalarOrEltToNextPow2OrMinSize(0)
713 .widenScalarOrEltToNextPow2OrMinSize(1, HasFP16 ? 16 : 32)
716 return Query.
Types[0].getScalarSizeInBits() <= 64 &&
717 Query.
Types[0].getScalarSizeInBits() >
718 Query.
Types[1].getScalarSizeInBits();
723 return Query.
Types[1].getScalarSizeInBits() <= 64 &&
724 Query.
Types[0].getScalarSizeInBits() <
725 Query.
Types[1].getScalarSizeInBits();
728 .clampNumElements(0, v4s16, v8s16)
729 .clampNumElements(0, v2s32, v4s32)
730 .clampMaxNumElements(0, s64, 2)
732 {{s32, s128}, {s64, s128}, {s128, s128}, {s128, s32}, {s128, s64}});
735 .legalFor({{s32, s32},
743 {{s32, s16}, {s64, s16}, {v4s16, v4s16}, {v8s16, v8s16}})
751 return Query.
Types[1] == s16 && Query.
Types[0].getSizeInBits() > 64;
756 .widenScalarToNextPow2(0, 32)
758 .widenScalarOrEltToNextPow2OrMinSize(1, HasFP16 ? 16 : 32)
761 unsigned ITySize = Query.
Types[0].getScalarSizeInBits();
762 return (ITySize == 16 || ITySize == 32 || ITySize == 64) &&
763 ITySize > Query.
Types[1].getScalarSizeInBits();
768 unsigned FTySize = Query.
Types[1].getScalarSizeInBits();
769 return (FTySize == 16 || FTySize == 32 || FTySize == 64) &&
770 Query.
Types[0].getScalarSizeInBits() < FTySize;
774 .clampNumElements(0, v4s16, v8s16)
775 .clampNumElements(0, v2s32, v4s32)
776 .clampMaxNumElements(0, s64, 2);
779 .legalFor({{s32, s32},
787 {{s16, s32}, {s16, s64}, {v4s16, v4s16}, {v8s16, v8s16}})
796 return Query.
Types[1].getScalarSizeInBits() <= 64 &&
797 Query.
Types[0].getScalarSizeInBits() <
798 Query.
Types[1].getScalarSizeInBits();
803 return Query.
Types[0].getScalarSizeInBits() <= 64 &&
804 Query.
Types[0].getScalarSizeInBits() >
805 Query.
Types[1].getScalarSizeInBits();
808 .clampNumElements(0, v4s16, v8s16)
821 .clampScalar(0, s32, s32);
825 .
legalFor({{s32, s32}, {s64, s32}, {p0, s32}})
826 .widenScalarToNextPow2(0)
845 .
legalFor({{s64, p0}, {v2s64, v2p0}})
846 .widenScalarToNextPow2(0, 64)
852 return Query.
Types[0].getSizeInBits() != Query.
Types[1].getSizeInBits();
854 .legalFor({{p0, s64}, {v2p0, v2s64}})
855 .clampMaxNumElements(1, s64, 2);
862 .legalForCartesianProduct({s64, v8s8, v4s16, v2s32})
863 .legalForCartesianProduct({s128, v16s8, v8s16, v4s32, v2s64, v2p0})
865 return Query.
Types[0].isVector() != Query.
Types[1].isVector();
868 .clampNumElements(0, v8s8, v16s8)
869 .clampNumElements(0, v4s16, v8s16)
870 .clampNumElements(0, v2s32, v4s32)
879 .clampScalar(0, s8, s64)
886 bool UseOutlineAtomics = ST.outlineAtomics() && !ST.hasLSE();
889 .
legalFor(!UseOutlineAtomics, {{s32, p0}, {s64, p0}})
890 .customFor(!UseOutlineAtomics, {{s128, p0}})
891 .libcallFor(UseOutlineAtomics,
892 {{s8, p0}, {s16, p0}, {s32, p0}, {s64, p0}, {s128, p0}})
893 .clampScalar(0, s32, s64);
896 G_ATOMICRMW_SUB, G_ATOMICRMW_AND, G_ATOMICRMW_OR,
898 .legalFor(!UseOutlineAtomics, {{s32, p0}, {s64, p0}})
899 .libcallFor(UseOutlineAtomics,
900 {{s8, p0}, {s16, p0}, {s32, p0}, {s64, p0}})
901 .clampScalar(0, s32, s64);
906 {G_ATOMICRMW_MIN, G_ATOMICRMW_MAX, G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX})
913 for (
unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
914 unsigned BigTyIdx =
Op == G_MERGE_VALUES ? 0 : 1;
915 unsigned LitTyIdx =
Op == G_MERGE_VALUES ? 1 : 0;
922 switch (Q.
Types[BigTyIdx].getSizeInBits()) {
930 switch (Q.
Types[LitTyIdx].getSizeInBits()) {
944 .
legalFor(HasSVE, {{s16, nxv16s8, s64},
947 {s64, nxv2s64, s64}})
949 const LLT &EltTy = Query.
Types[1].getElementType();
950 if (Query.
Types[1].isScalableVector())
952 return Query.
Types[0] != EltTy;
957 return VecTy == v2s16 || VecTy == v4s16 || VecTy == v8s16 ||
958 VecTy == v4s32 || VecTy == v2s64 || VecTy == v2s32 ||
959 VecTy == v8s8 || VecTy == v16s8 || VecTy == v2p0;
965 return Query.
Types[1].isFixedVector() &&
966 Query.
Types[1].getNumElements() <= 2;
971 return Query.
Types[1].isFixedVector() &&
972 Query.
Types[1].getNumElements() <= 4;
977 return Query.
Types[1].isFixedVector() &&
978 Query.
Types[1].getNumElements() <= 8;
983 return Query.
Types[1].isFixedVector() &&
984 Query.
Types[1].getNumElements() <= 16;
987 .minScalarOrElt(0, s8)
997 typeInSet(0, {v16s8, v8s8, v8s16, v4s16, v4s32, v2s32, v2s64, v2p0}))
998 .
legalFor(HasSVE, {{nxv16s8, s32, s64},
1000 {nxv4s32, s32, s64},
1001 {nxv2s64, s64, s64}})
1003 .widenVectorEltsToVectorMinSize(0, 64)
1004 .clampNumElements(0, v8s8, v16s8)
1005 .clampNumElements(0, v4s16, v8s16)
1006 .clampNumElements(0, v2s32, v4s32)
1007 .clampMaxNumElements(0, s64, 2)
1008 .clampMaxNumElements(0, p0, 2);
1019 .clampNumElements(0, v4s32, v4s32)
1030 {s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32})
1032 .widenScalarToNextPow2(1, 32)
1033 .clampScalar(1, s32, s64)
1034 .scalarSameSizeAs(0, 1);
1040 .widenScalarToNextPow2(0, 32)
1052 .customFor(!HasCSSC, {s32, s64});
1063 {v2s64, v2s32, v4s32, v4s16, v16s8, v8s8, v8s16}, DstTy);
1068 return !Query.
Types[1].isVector();
1072 return Query.
Types[0].isVector() && Query.
Types[1].isVector() &&
1073 Query.
Types[0].getNumElements() >
1074 Query.
Types[1].getNumElements();
1080 return Query.
Types[0].isVector() && Query.
Types[1].isVector() &&
1081 Query.
Types[0].getNumElements() <
1082 Query.
Types[1].getNumElements();
1085 .widenScalarOrEltToNextPow2OrMinSize(0, 8)
1086 .clampNumElements(0, v8s8, v16s8)
1087 .clampNumElements(0, v4s16, v8s16)
1088 .clampNumElements(0, v4s32, v4s32)
1089 .clampNumElements(0, v2s64, v2s64)
1098 .
legalFor({{v4s32, v2s32}, {v8s16, v4s16}, {v16s8, v8s8}})
1101 return Query.
Types[0].getSizeInBits() <= 128 &&
1102 Query.
Types[1].getSizeInBits() <= 64;
1129 .customForCartesianProduct({p0}, {s8}, {s64})
1133 .legalForCartesianProduct({p0}, {p0}, {s64})
1148 .legalFor(PackedVectorAllTypeList)
1156 [=](
const LegalityQuery &Query) {
return std::make_pair(0, v4s16); })
1159 [=](
const LegalityQuery &Query) {
return std::make_pair(0, v2s32); })
1160 .clampNumElements(0, v8s8, v16s8)
1171 .
legalFor({{s32, v2s32}, {s32, v4s32}, {s64, v2s64}})
1172 .legalFor(HasFP16, {{s16, v4s16}, {s16, v8s16}})
1173 .minScalarOrElt(0, MinFPScalar)
1204 .clampMaxNumElements(1, s64, 2)
1211 G_VECREDUCE_FMINIMUM, G_VECREDUCE_FMAXIMUM})
1212 .legalFor({{s32, v4s32}, {s32, v2s32}, {s64, v2s64}})
1213 .legalFor(HasFP16, {{s16, v4s16}, {s16, v8s16}})
1214 .minScalarOrElt(0, MinFPScalar)
1228 {G_VECREDUCE_SMIN, G_VECREDUCE_SMAX, G_VECREDUCE_UMIN, G_VECREDUCE_UMAX})
1229 .legalFor({{s8, v8s8},
1237 return Query.
Types[1].isVector() &&
1238 Query.
Types[1].getElementType() != s8 &&
1239 Query.
Types[1].getNumElements() & 1;
1242 .clampMaxNumElements(1, s64, 2)
1250 {G_VECREDUCE_OR, G_VECREDUCE_AND, G_VECREDUCE_XOR})
1266 return std::make_pair(1, SrcTy.
divide(2));
1275 .customFor({{s32, s32}, {s32, s64}, {s64, s64}})
1279 .
legalFor({{s32, s64}, {s64, s64}})
1281 return Q.
Types[0].isScalar() && Q.
Types[1].getScalarSizeInBits() < 64;
1287 .customFor({{s32, s32}, {s64, s64}});
1291 .
legalFor(HasCSSC, {{s32, s32}, {s64, s64}})
1292 .legalFor({{v8s8, v8s8}, {v16s8, v16s8}})
1293 .customFor(!HasCSSC, {{s32, s32}, {s64, s64}})
1294 .customFor({{s128, s128},
1300 .clampScalar(0, s32, s128)
1306 .legalFor({v2s64, v2s32, v4s32, v4s16, v8s16, v8s8, v16s8})
1307 .legalFor(HasSVE, {nxv2s64, nxv4s32, nxv8s16, nxv16s8})
1308 .clampNumElements(0, v8s8, v16s8)
1319 .legalFor({{s64, s32}, {s64, s64}});
1335 G_GET_FPMODE, G_SET_FPMODE, G_RESET_FPMODE})
1345 .
legalFor({{v8s8, v16s8}, {v4s16, v8s16}, {v2s32, v4s32}})
1351 .
legalFor(HasSVE, {{nxv4s32, s32}, {nxv2s64, s64}});
1354 verify(*ST.getInstrInfo());
1363 switch (
MI.getOpcode()) {
1367 case TargetOpcode::G_VAARG:
1368 return legalizeVaArg(
MI,
MRI, MIRBuilder);
1369 case TargetOpcode::G_LOAD:
1370 case TargetOpcode::G_STORE:
1371 return legalizeLoadStore(
MI,
MRI, MIRBuilder, Observer);
1372 case TargetOpcode::G_SHL:
1373 case TargetOpcode::G_ASHR:
1374 case TargetOpcode::G_LSHR:
1375 return legalizeShlAshrLshr(
MI,
MRI, MIRBuilder, Observer);
1376 case TargetOpcode::G_GLOBAL_VALUE:
1377 return legalizeSmallCMGlobalValue(
MI,
MRI, MIRBuilder, Observer);
1378 case TargetOpcode::G_SBFX:
1379 case TargetOpcode::G_UBFX:
1380 return legalizeBitfieldExtract(
MI,
MRI, Helper);
1381 case TargetOpcode::G_FSHL:
1382 case TargetOpcode::G_FSHR:
1383 return legalizeFunnelShift(
MI,
MRI, MIRBuilder, Observer, Helper);
1384 case TargetOpcode::G_ROTR:
1385 return legalizeRotate(
MI,
MRI, Helper);
1386 case TargetOpcode::G_CTPOP:
1387 return legalizeCTPOP(
MI,
MRI, Helper);
1388 case TargetOpcode::G_ATOMIC_CMPXCHG:
1389 return legalizeAtomicCmpxchg128(
MI,
MRI, Helper);
1390 case TargetOpcode::G_CTTZ:
1391 return legalizeCTTZ(
MI, Helper);
1392 case TargetOpcode::G_BZERO:
1393 case TargetOpcode::G_MEMCPY:
1394 case TargetOpcode::G_MEMMOVE:
1395 case TargetOpcode::G_MEMSET:
1396 return legalizeMemOps(
MI, Helper);
1397 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1398 return legalizeExtractVectorElt(
MI,
MRI, Helper);
1399 case TargetOpcode::G_DYN_STACKALLOC:
1400 return legalizeDynStackAlloc(
MI, Helper);
1401 case TargetOpcode::G_PREFETCH:
1402 return legalizePrefetch(
MI, Helper);
1403 case TargetOpcode::G_ABS:
1405 case TargetOpcode::G_ICMP:
1406 return legalizeICMP(
MI,
MRI, MIRBuilder);
1417 assert(
MI.getOpcode() == TargetOpcode::G_FSHL ||
1418 MI.getOpcode() == TargetOpcode::G_FSHR);
1422 Register ShiftNo =
MI.getOperand(3).getReg();
1423 LLT ShiftTy =
MRI.getType(ShiftNo);
1428 LLT OperationTy =
MRI.getType(
MI.getOperand(0).getReg());
1432 if (!VRegAndVal || VRegAndVal->Value.urem(
BitWidth) == 0)
1438 Amount =
MI.getOpcode() == TargetOpcode::G_FSHL ?
BitWidth - Amount : Amount;
1442 if (ShiftTy.
getSizeInBits() == 64 &&
MI.getOpcode() == TargetOpcode::G_FSHR &&
1449 if (
MI.getOpcode() == TargetOpcode::G_FSHR) {
1451 MI.getOperand(3).setReg(Cast64.getReg(0));
1456 else if (
MI.getOpcode() == TargetOpcode::G_FSHL) {
1458 {
MI.getOperand(1).
getReg(),
MI.getOperand(2).getReg(),
1460 MI.eraseFromParent();
1469 Register SrcReg1 =
MI.getOperand(2).getReg();
1470 Register SrcReg2 =
MI.getOperand(3).getReg();
1471 LLT DstTy =
MRI.getType(DstReg);
1472 LLT SrcTy =
MRI.getType(SrcReg1);
1489 MIRBuilder.
buildNot(DstReg, CmpReg);
1491 MI.eraseFromParent();
1501 LLT AmtTy =
MRI.getType(AmtReg);
1507 MI.getOperand(2).setReg(NewAmt.getReg(0));
1512bool AArch64LegalizerInfo::legalizeSmallCMGlobalValue(
1515 assert(
MI.getOpcode() == TargetOpcode::G_GLOBAL_VALUE);
1520 auto &GlobalOp =
MI.getOperand(1);
1522 if (GlobalOp.isSymbol())
1524 const auto* GV = GlobalOp.getGlobal();
1525 if (GV->isThreadLocal())
1534 auto Offset = GlobalOp.getOffset();
1539 MRI.setRegClass(
ADRP.getReg(0), &AArch64::GPR64RegClass);
1556 "Should not have folded in an offset for a tagged global!");
1558 .addGlobalAddress(GV, 0x100000000,
1561 MRI.setRegClass(
ADRP.getReg(0), &AArch64::GPR64RegClass);
1565 .addGlobalAddress(GV,
Offset,
1567 MI.eraseFromParent();
1573 auto LowerBinOp = [&
MI](
unsigned Opcode) {
1576 {
MI.getOperand(2),
MI.getOperand(3)});
1577 MI.eraseFromParent();
1582 switch (IntrinsicID) {
1583 case Intrinsic::vacopy: {
1585 unsigned VaListSize =
1597 VaListSize,
Align(PtrSize)));
1601 VaListSize,
Align(PtrSize)));
1602 MI.eraseFromParent();
1605 case Intrinsic::get_dynamic_area_offset: {
1608 MI.eraseFromParent();
1611 case Intrinsic::aarch64_mops_memset_tag: {
1612 assert(
MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS);
1616 auto &
Value =
MI.getOperand(3);
1618 Value.setReg(ExtValueReg);
1621 case Intrinsic::aarch64_prefetch: {
1623 auto &AddrVal =
MI.getOperand(1);
1625 int64_t IsWrite =
MI.getOperand(2).getImm();
1626 int64_t
Target =
MI.getOperand(3).getImm();
1627 int64_t IsStream =
MI.getOperand(4).getImm();
1628 int64_t IsData =
MI.getOperand(5).getImm();
1630 unsigned PrfOp = (IsWrite << 4) |
1636 MI.eraseFromParent();
1639 case Intrinsic::aarch64_neon_uaddv:
1640 case Intrinsic::aarch64_neon_saddv:
1641 case Intrinsic::aarch64_neon_umaxv:
1642 case Intrinsic::aarch64_neon_smaxv:
1643 case Intrinsic::aarch64_neon_uminv:
1644 case Intrinsic::aarch64_neon_sminv: {
1647 bool IsSigned = IntrinsicID == Intrinsic::aarch64_neon_saddv ||
1648 IntrinsicID == Intrinsic::aarch64_neon_smaxv ||
1649 IntrinsicID == Intrinsic::aarch64_neon_sminv;
1651 auto OldDst =
MI.getOperand(0).getReg();
1652 auto OldDstTy =
MRI.getType(OldDst);
1653 LLT NewDstTy =
MRI.getType(
MI.getOperand(2).getReg()).getElementType();
1654 if (OldDstTy == NewDstTy)
1657 auto NewDst =
MRI.createGenericVirtualRegister(NewDstTy);
1660 MI.getOperand(0).setReg(NewDst);
1664 MIB.
buildExtOrTrunc(IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT,
1669 case Intrinsic::aarch64_neon_uaddlp:
1670 case Intrinsic::aarch64_neon_saddlp: {
1673 unsigned Opc = IntrinsicID == Intrinsic::aarch64_neon_uaddlp
1675 : AArch64::G_SADDLP;
1677 MI.eraseFromParent();
1681 case Intrinsic::aarch64_neon_uaddlv:
1682 case Intrinsic::aarch64_neon_saddlv: {
1686 unsigned Opc = IntrinsicID == Intrinsic::aarch64_neon_uaddlv
1688 : AArch64::G_SADDLV;
1691 LLT DstTy =
MRI.getType(DstReg);
1715 MI.eraseFromParent();
1719 case Intrinsic::aarch64_neon_smax:
1720 return LowerBinOp(TargetOpcode::G_SMAX);
1721 case Intrinsic::aarch64_neon_smin:
1722 return LowerBinOp(TargetOpcode::G_SMIN);
1723 case Intrinsic::aarch64_neon_umax:
1724 return LowerBinOp(TargetOpcode::G_UMAX);
1725 case Intrinsic::aarch64_neon_umin:
1726 return LowerBinOp(TargetOpcode::G_UMIN);
1727 case Intrinsic::aarch64_neon_fmax:
1728 return LowerBinOp(TargetOpcode::G_FMAXIMUM);
1729 case Intrinsic::aarch64_neon_fmin:
1730 return LowerBinOp(TargetOpcode::G_FMINIMUM);
1731 case Intrinsic::aarch64_neon_fmaxnm:
1732 return LowerBinOp(TargetOpcode::G_FMAXNUM);
1733 case Intrinsic::aarch64_neon_fminnm:
1734 return LowerBinOp(TargetOpcode::G_FMINNUM);
1735 case Intrinsic::aarch64_neon_smull:
1736 return LowerBinOp(AArch64::G_SMULL);
1737 case Intrinsic::aarch64_neon_umull:
1738 return LowerBinOp(AArch64::G_UMULL);
1739 case Intrinsic::aarch64_neon_abs: {
1742 MIB.
buildInstr(TargetOpcode::G_ABS, {
MI.getOperand(0)}, {
MI.getOperand(2)});
1743 MI.eraseFromParent();
1747 case Intrinsic::vector_reverse:
1755bool AArch64LegalizerInfo::legalizeShlAshrLshr(
1758 assert(
MI.getOpcode() == TargetOpcode::G_ASHR ||
1759 MI.getOpcode() == TargetOpcode::G_LSHR ||
1760 MI.getOpcode() == TargetOpcode::G_SHL);
1773 MI.getOperand(2).setReg(ExtCst.getReg(0));
1786 isShiftedInt<7, 3>(NewOffset)) {
1794bool AArch64LegalizerInfo::legalizeLoadStore(
1797 assert(
MI.getOpcode() == TargetOpcode::G_STORE ||
1798 MI.getOpcode() == TargetOpcode::G_LOAD);
1809 const LLT ValTy =
MRI.getType(ValReg);
1814 bool IsLoad =
MI.getOpcode() == TargetOpcode::G_LOAD;
1818 ST->hasLSE2() && ST->hasRCPC3() && (IsLoadAcquire || IsStoreRelease);
1824 Opcode = IsLoad ? AArch64::LDIAPPX : AArch64::STILPX;
1830 assert(ST->hasLSE2() &&
"ldp/stp not single copy atomic without +lse2");
1832 Opcode = IsLoad ? AArch64::LDPXi : AArch64::STPXi;
1837 NewI = MIRBuilder.
buildInstr(Opcode, {s64, s64}, {});
1843 Opcode, {}, {
Split->getOperand(0),
Split->getOperand(1)});
1847 NewI.
addUse(
MI.getOperand(1).getReg());
1858 *
MRI.getTargetRegisterInfo(),
1860 MI.eraseFromParent();
1866 LLVM_DEBUG(
dbgs() <<
"Tried to do custom legalization on wrong load/store");
1872 auto &MMO = **
MI.memoperands_begin();
1875 if (
MI.getOpcode() == TargetOpcode::G_STORE) {
1879 auto NewLoad = MIRBuilder.
buildLoad(NewTy,
MI.getOperand(1), MMO);
1882 MI.eraseFromParent();
1890 Align Alignment(
MI.getOperand(2).getImm());
1892 Register ListPtr =
MI.getOperand(1).getReg();
1894 LLT PtrTy =
MRI.getType(ListPtr);
1905 if (Alignment > PtrAlign) {
1909 auto ListTmp = MIRBuilder.
buildPtrAdd(PtrTy,
List, AlignMinus1.getReg(0));
1914 LLT ValTy =
MRI.getType(Dst);
1919 ValTy, std::max(Alignment, PtrAlign)));
1930 MI.eraseFromParent();
1934bool AArch64LegalizerInfo::legalizeBitfieldExtract(
1968 LLT Ty =
MRI.getType(Val);
1972 "Expected src and dst to have the same type!");
1980 auto Add = MIRBuilder.
buildAdd(s64, CTPOP1, CTPOP2);
1983 MI.eraseFromParent();
1987 if (!ST->hasNEON() ||
1988 MI.getMF()->getFunction().hasFnAttribute(Attribute::NoImplicitFloat)) {
2000 assert((
Size == 32 ||
Size == 64 ||
Size == 128) &&
"Expected only 32, 64, or 128 bit scalars!");
2024 Sum = MIRBuilder.
buildInstr(AArch64::G_UDOT, {Dt}, {Zeros, Ones,
CTPOP});
2026 Sum = MIRBuilder.
buildInstr(AArch64::G_UDOT, {Dt}, {Zeros, Ones,
CTPOP});
2032 MI.eraseFromParent();
2040 Opc = Intrinsic::aarch64_neon_uaddlv;
2043 Opc = Intrinsic::aarch64_neon_uaddlp;
2046 Opc = Intrinsic::aarch64_neon_uaddlp;
2050 Opc = Intrinsic::aarch64_neon_uaddlp;
2055 Opc = Intrinsic::aarch64_neon_uaddlp;
2058 Opc = Intrinsic::aarch64_neon_uaddlp;
2064 for (
LLT HTy : HAddTys) {
2074 MI.eraseFromParent();
2078bool AArch64LegalizerInfo::legalizeAtomicCmpxchg128(
2082 auto Addr =
MI.getOperand(1).getReg();
2083 auto DesiredI = MIRBuilder.
buildUnmerge({s64, s64},
MI.getOperand(2));
2084 auto NewI = MIRBuilder.
buildUnmerge({s64, s64},
MI.getOperand(3));
2085 auto DstLo =
MRI.createGenericVirtualRegister(s64);
2086 auto DstHi =
MRI.createGenericVirtualRegister(s64);
2099 auto Ordering = (*
MI.memoperands_begin())->getMergedOrdering();
2103 Opcode = AArch64::CASPAX;
2106 Opcode = AArch64::CASPLX;
2110 Opcode = AArch64::CASPALX;
2113 Opcode = AArch64::CASPX;
2118 auto CASDst =
MRI.createGenericVirtualRegister(s128);
2119 auto CASDesired =
MRI.createGenericVirtualRegister(s128);
2120 auto CASNew =
MRI.createGenericVirtualRegister(s128);
2121 MIRBuilder.
buildInstr(TargetOpcode::REG_SEQUENCE, {CASDesired}, {})
2122 .addUse(DesiredI->getOperand(0).getReg())
2124 .
addUse(DesiredI->getOperand(1).getReg())
2125 .
addImm(AArch64::subo64);
2126 MIRBuilder.
buildInstr(TargetOpcode::REG_SEQUENCE, {CASNew}, {})
2130 .
addImm(AArch64::subo64);
2132 CAS = MIRBuilder.
buildInstr(Opcode, {CASDst}, {CASDesired, CASNew,
Addr});
2140 auto Ordering = (*
MI.memoperands_begin())->getMergedOrdering();
2144 Opcode = AArch64::CMP_SWAP_128_ACQUIRE;
2147 Opcode = AArch64::CMP_SWAP_128_RELEASE;
2151 Opcode = AArch64::CMP_SWAP_128;
2154 Opcode = AArch64::CMP_SWAP_128_MONOTONIC;
2158 auto Scratch =
MRI.createVirtualRegister(&AArch64::GPR64RegClass);
2159 CAS = MIRBuilder.
buildInstr(Opcode, {DstLo, DstHi, Scratch},
2160 {
Addr, DesiredI->getOperand(0),
2161 DesiredI->getOperand(1), NewI->
getOperand(0),
2167 *
MRI.getTargetRegisterInfo(),
2171 MI.eraseFromParent();
2179 LLT Ty =
MRI.getType(
MI.getOperand(1).getReg());
2181 MIRBuilder.
buildCTLZ(
MI.getOperand(0).getReg(), BitReverse);
2182 MI.eraseFromParent();
2191 if (
MI.getOpcode() == TargetOpcode::G_MEMSET) {
2194 auto &
Value =
MI.getOperand(1);
2197 Value.setReg(ExtValueReg);
2204bool AArch64LegalizerInfo::legalizeExtractVectorElt(
2218bool AArch64LegalizerInfo::legalizeDynStackAlloc(
2234 Register AllocSize =
MI.getOperand(1).getReg();
2238 "Unexpected type for dynamic alloca");
2240 "Unexpected type for dynamic alloca");
2242 LLT PtrTy =
MRI.getType(Dst);
2248 MIRBuilder.
buildInstr(AArch64::PROBED_STACKALLOC_DYN, {}, {SPTmp});
2249 MRI.setRegClass(NewMI.getReg(0), &AArch64::GPR64commonRegClass);
2250 MIRBuilder.
setInsertPt(*NewMI->getParent(), NewMI);
2253 MI.eraseFromParent();
2260 auto &AddrVal =
MI.getOperand(0);
2262 int64_t IsWrite =
MI.getOperand(1).getImm();
2263 int64_t Locality =
MI.getOperand(2).getImm();
2264 int64_t
IsData =
MI.getOperand(3).getImm();
2266 bool IsStream = Locality == 0;
2267 if (Locality != 0) {
2268 assert(Locality <= 3 &&
"Prefetch locality out-of-range");
2272 Locality = 3 - Locality;
2275 unsigned PrfOp = (IsWrite << 4) | (!IsData << 3) | (Locality << 1) | IsStream;
2278 MI.eraseFromParent();
unsigned const MachineRegisterInfo * MRI
static void matchLDPSTPAddrMode(Register Root, Register &Base, int &Offset, MachineRegisterInfo &MRI)
This file declares the targeting of the Machinelegalizer class for AArch64.
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
Interface for Targets to specify which operations they can successfully select and how the others sho...
Contains matchers for matching SSA Machine Instructions.
This file declares the MachineIRBuilder class.
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static constexpr Register SPReg
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
bool legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI, LostDebugLocObserver &LocObserver) const override
Called for instructions with the Custom LegalizationAction.
bool legalizeIntrinsic(LegalizerHelper &Helper, MachineInstr &MI) const override
AArch64LegalizerInfo(const AArch64Subtarget &ST)
bool isTargetWindows() const
const AArch64InstrInfo * getInstrInfo() const override
bool isTargetDarwin() const
bool isTargetILP32() const
const AArch64TargetLowering * getTargetLowering() const override
unsigned ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const
ClassifyGlobalReference - Find the target operand flags that describe how a global value should be re...
const RegisterBankInfo * getRegBankInfo() const override
Class for arbitrary precision integers.
APInt zext(unsigned width) const
Zero extend to a new width.
APInt urem(const APInt &RHS) const
Unsigned remainder operation.
int64_t getSExtValue() const
Get sign extended value.
StringRef getValueAsString() const
Return the attribute's value as a string.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
This class represents an Operation in the Expression.
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Abstract class that contains various methods for clients to notify about changes.
virtual void changingInstr(MachineInstr &MI)=0
This instruction is about to be mutated in some way.
virtual void changedInstr(MachineInstr &MI)=0
This instruction was mutated in some way.
constexpr bool isScalableVector() const
Returns true if the LLT is a scalable vector.
constexpr unsigned getScalarSizeInBits() const
constexpr bool isScalar() const
static constexpr LLT scalable_vector(unsigned MinNumElements, unsigned ScalarSizeInBits)
Get a low-level scalable vector of some number of elements and element width.
static constexpr LLT vector(ElementCount EC, unsigned ScalarSizeInBits)
Get a low-level vector of some number of elements and element width.
constexpr bool isPointerVector() const
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
constexpr bool isVector() const
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
constexpr ElementCount getElementCount() const
constexpr LLT changeElementSize(unsigned NewEltSize) const
If this type is a vector, return a vector with the same number of elements but the new element size.
constexpr unsigned getAddressSpace() const
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
constexpr LLT changeElementCount(ElementCount EC) const
Return a vector or scalar with the same element type and the new element count.
constexpr LLT divide(int Factor) const
Return a type that is Factor times smaller.
void computeTables()
Compute any ancillary tables needed to quickly decide how an operation should be handled.
LegalizeRuleSet & minScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at least as wide as Ty.
LegalizeRuleSet & widenScalarOrEltToNextPow2OrMinSize(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar or vector element type to the next power of two that is at least MinSize.
LegalizeRuleSet & legalFor(std::initializer_list< LLT > Types)
The instruction is legal when type index 0 is any type in the given list.
LegalizeRuleSet & maxScalarEltSameAsIf(LegalityPredicate Predicate, unsigned TypeIdx, unsigned SmallTypeIdx)
Conditionally narrow the scalar or elt to match the size of another.
LegalizeRuleSet & unsupported()
The instruction is unsupported.
LegalizeRuleSet & scalarSameSizeAs(unsigned TypeIdx, unsigned SameSizeIdx)
Change the type TypeIdx to have the same scalar size as type SameSizeIdx.
LegalizeRuleSet & bitcastIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
The specified type index is coerced if predicate is true.
LegalizeRuleSet & libcallFor(std::initializer_list< LLT > Types)
LegalizeRuleSet & maxScalar(unsigned TypeIdx, const LLT Ty)
Ensure the scalar is at most as wide as Ty.
LegalizeRuleSet & minScalarOrElt(unsigned TypeIdx, const LLT Ty)
Ensure the scalar or element is at least as wide as Ty.
LegalizeRuleSet & clampMaxNumElements(unsigned TypeIdx, const LLT EltTy, unsigned MaxElements)
Limit the number of elements in EltTy vectors to at most MaxElements.
LegalizeRuleSet & clampMinNumElements(unsigned TypeIdx, const LLT EltTy, unsigned MinElements)
Limit the number of elements in EltTy vectors to at least MinElements.
LegalizeRuleSet & widenVectorEltsToVectorMinSize(unsigned TypeIdx, unsigned VectorSize)
Ensure the vector size is at least as wide as VectorSize by promoting the element.
LegalizeRuleSet & lowerIfMemSizeNotPow2()
Lower a memory operation if the memory size, rounded to bytes, is not a power of 2.
LegalizeRuleSet & minScalarEltSameAsIf(LegalityPredicate Predicate, unsigned TypeIdx, unsigned LargeTypeIdx)
Conditionally widen the scalar or elt to match the size of another.
LegalizeRuleSet & customForCartesianProduct(std::initializer_list< LLT > Types)
LegalizeRuleSet & lowerIfMemSizeNotByteSizePow2()
Lower a memory operation if the memory access size is not a round power of 2 byte size.
LegalizeRuleSet & moreElementsToNextPow2(unsigned TypeIdx)
Add more elements to the vector to reach the next power of two.
LegalizeRuleSet & narrowScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Narrow the scalar to the one selected by the mutation if the predicate is true.
LegalizeRuleSet & lower()
The instruction is lowered.
LegalizeRuleSet & moreElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Add more elements to reach the type selected by the mutation if the predicate is true.
LegalizeRuleSet & lowerFor(std::initializer_list< LLT > Types)
The instruction is lowered when type index 0 is any type in the given list.
LegalizeRuleSet & scalarizeIf(LegalityPredicate Predicate, unsigned TypeIdx)
LegalizeRuleSet & lowerIf(LegalityPredicate Predicate)
The instruction is lowered if predicate is true.
LegalizeRuleSet & clampScalar(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the range of scalar sizes to MinTy and MaxTy.
LegalizeRuleSet & custom()
Unconditionally custom lower.
LegalizeRuleSet & minScalarSameAs(unsigned TypeIdx, unsigned LargeTypeIdx)
Widen the scalar to match the size of another.
LegalizeRuleSet & unsupportedIf(LegalityPredicate Predicate)
LegalizeRuleSet & minScalarOrEltIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty)
Ensure the scalar or element is at least as wide as Ty.
LegalizeRuleSet & widenScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation)
Widen the scalar to the one selected by the mutation if the predicate is true.
LegalizeRuleSet & clampNumElements(unsigned TypeIdx, const LLT MinTy, const LLT MaxTy)
Limit the number of elements for the given vectors to at least MinTy's number of elements and at most...
LegalizeRuleSet & maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT Ty)
Conditionally limit the maximum size of the scalar.
LegalizeRuleSet & customIf(LegalityPredicate Predicate)
LegalizeRuleSet & widenScalarToNextPow2(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar to the next power of two that is at least MinSize.
LegalizeRuleSet & scalarize(unsigned TypeIdx)
LegalizeRuleSet & legalForCartesianProduct(std::initializer_list< LLT > Types)
The instruction is legal when type indexes 0 and 1 are both in the given list.
LegalizeRuleSet & legalForTypesWithMemDesc(std::initializer_list< LegalityPredicates::TypePairAndMemDesc > TypesAndMemDesc)
The instruction is legal when type indexes 0 and 1 along with the memory size and minimum alignment i...
LegalizeRuleSet & widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned MinSize=0)
Widen the scalar or vector element type to the next power of two that is at least MinSize.
LegalizeRuleSet & legalIf(LegalityPredicate Predicate)
The instruction is legal if predicate is true.
LegalizeResult lowerDynStackAlloc(MachineInstr &MI)
LegalizeResult lowerBitCount(MachineInstr &MI)
LegalizeResult lowerExtractInsertVectorElt(MachineInstr &MI)
Lower a vector extract or insert by writing the vector to a stack temporary and reloading the element...
LegalizeResult lowerAbsToCNeg(MachineInstr &MI)
const TargetLowering & getTargetLowering() const
LegalizeResult lowerFunnelShiftAsShifts(MachineInstr &MI)
@ Legalized
Instruction has been legalized and the MachineFunction changed.
@ UnableToLegalize
Some kind of error has occurred and we could not legalize this instruction.
GISelChangeObserver & Observer
To keep track of changes made by the LegalizerHelper.
Register getDynStackAllocTargetPtr(Register SPReg, Register AllocSize, Align Alignment, LLT PtrTy)
MachineIRBuilder & MIRBuilder
Expose MIRBuilder so clients can set their own RecordInsertInstruction functions.
LegalizeRuleSet & getActionDefinitionsBuilder(unsigned Opcode)
Get the action definition builder for the given opcode.
const LegacyLegalizerInfo & getLegacyLegalizerInfo() const
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Helper class to build MachineInstr.
void setInsertPt(MachineBasicBlock &MBB, MachineBasicBlock::iterator II)
Set the insertion point before the specified position.
MachineInstrBuilder buildAdd(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_ADD Op0, Op1.
MachineInstrBuilder buildNot(const DstOp &Dst, const SrcOp &Src0)
Build and insert a bitwise not, NegOne = G_CONSTANT -1 Res = G_OR Op0, NegOne.
MachineInstrBuilder buildUnmerge(ArrayRef< LLT > Res, const SrcOp &Op)
Build and insert Res0, ... = G_UNMERGE_VALUES Op.
MachineInstrBuilder buildExtract(const DstOp &Res, const SrcOp &Src, uint64_t Index)
Build and insert Res0, ... = G_EXTRACT Src, Idx0.
MachineInstrBuilder buildICmp(CmpInst::Predicate Pred, const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert a Res = G_ICMP Pred, Op0, Op1.
MachineBasicBlock::iterator getInsertPt()
Current insertion point for new instructions.
MachineInstrBuilder buildZExt(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_ZEXT Op.
MachineInstrBuilder buildIntrinsic(Intrinsic::ID ID, ArrayRef< Register > Res, bool HasSideEffects, bool isConvergent)
Build and insert a G_INTRINSIC instruction.
MachineInstrBuilder buildCTLZ(const DstOp &Dst, const SrcOp &Src0)
Build and insert Res = G_CTLZ Op0, Src0.
MachineInstrBuilder buildMergeLikeInstr(const DstOp &Res, ArrayRef< Register > Ops)
Build and insert Res = G_MERGE_VALUES Op0, ... or Res = G_BUILD_VECTOR Op0, ... or Res = G_CONCAT_VEC...
MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert Res = G_LOAD Addr, MMO.
MachineInstrBuilder buildPtrAdd(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_PTR_ADD Op0, Op1.
MachineInstrBuilder buildBitReverse(const DstOp &Dst, const SrcOp &Src)
Build and insert Dst = G_BITREVERSE Src.
MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert G_STORE Val, Addr, MMO.
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineInstrBuilder buildCTPOP(const DstOp &Dst, const SrcOp &Src0)
Build and insert Res = G_CTPOP Op0, Src0.
MachineFunction & getMF()
Getter for the function we currently build.
MachineInstrBuilder buildExtOrTrunc(unsigned ExtOpc, const DstOp &Res, const SrcOp &Op)
Build and insert Res = ExtOpc, Res = G_TRUNC Op, or Res = COPY Op depending on the differing sizes of...
MachineInstrBuilder buildTrunc(const DstOp &Res, const SrcOp &Op, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_TRUNC Op.
const MachineBasicBlock & getMBB() const
Getter for the basic block we currently build.
MachineInstrBuilder buildAnyExt(const DstOp &Res, const SrcOp &Op)
Build and insert Res = G_ANYEXT Op0.
MachineInstrBuilder buildBitcast(const DstOp &Dst, const SrcOp &Src)
Build and insert Dst = G_BITCAST Src.
MachineRegisterInfo * getMRI()
Getter for MRI.
MachineInstrBuilder buildCopy(const DstOp &Res, const SrcOp &Op)
Build and insert Res = COPY Op.
MachineInstrBuilder buildMaskLowPtrBits(const DstOp &Res, const SrcOp &Op0, uint32_t NumBits)
Build and insert Res = G_PTRMASK Op0, G_CONSTANT (1 << NumBits) - 1.
virtual MachineInstrBuilder buildConstant(const DstOp &Res, const ConstantInt &Val)
Build and insert Res = G_CONSTANT Val.
Register getReg(unsigned Idx) const
Get the register for the operand index.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
Representation of each machine instruction.
const MachineOperand & getOperand(unsigned i) const
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
void setReg(Register Reg)
Change the register this operand corresponds to.
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Register createGenericVirtualRegister(LLT Ty, StringRef Name="")
Create and return a new generic virtual register with low-level type Ty.
Wrapper class representing virtual and physical registers.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
const TargetMachine & getTargetMachine() const
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
Primary interface to the complete machine description for the target machine.
Target - Wrapper for Target specific information.
LLVM Value Representation.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ MO_NC
MO_NC - Indicates whether the linker is expected to check the symbol reference for overflow.
@ MO_PAGEOFF
MO_PAGEOFF - A symbol operand with this flag represents the offset of that symbol within a 4K page.
@ MO_GOT
MO_GOT - This flag indicates that a symbol operand represents the address of the GOT entry for the sy...
@ MO_PREL
MO_PREL - Indicates that the bits of the symbol operand represented by MO_G0 etc are PC relative.
@ MO_PAGE
MO_PAGE - A symbol operand with this flag represents the pc-relative offset of the 4K page containing...
@ MO_TAGGED
MO_TAGGED - With MO_PAGE, indicates that the page includes a memory tag in bits 56-63.
@ MO_G3
MO_G3 - A symbol operand with this flag (granule 3) represents the high 16-bits of a 64-bit address,...
LegalityPredicate scalarOrEltWiderThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar or a vector with an element type that's wider than the ...
LegalityPredicate isPointerVector(unsigned TypeIdx)
True iff the specified type index is a vector of pointers (with any address space).
LegalityPredicate typeInSet(unsigned TypeIdx, std::initializer_list< LLT > TypesInit)
True iff the given type index is one of the specified types.
LegalityPredicate smallerThan(unsigned TypeIdx0, unsigned TypeIdx1)
True iff the first type index has a smaller total bit size than second type index.
LegalityPredicate atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx, AtomicOrdering Ordering)
True iff the specified MMO index has at an atomic ordering of at Ordering or stronger.
Predicate any(Predicate P0, Predicate P1)
True iff P0 or P1 are true.
LegalityPredicate isVector(unsigned TypeIdx)
True iff the specified type index is a vector.
Predicate all(Predicate P0, Predicate P1)
True iff P0 and P1 are true.
LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit)
True iff the given type index is the specified type.
LegalityPredicate scalarWiderThan(unsigned TypeIdx, unsigned Size)
True iff the specified type index is a scalar that's wider than the given size.
@ Bitcast
Perform the operation on a different, but equivalently sized type.
LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min=0)
Add more elements to the type for the given type index to the next power of.
LegalizeMutation scalarize(unsigned TypeIdx)
Break up the vector type for the given type index into the element type.
LegalizeMutation widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min=0)
Widen the scalar type or vector element type for the given type index to the next power of 2.
LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty)
Select this specific type for the given type index.
LegalizeMutation changeElementSizeTo(unsigned TypeIdx, unsigned FromTypeIdx)
Change the scalar size or element size to have the same scalar size as type index FromIndex.
operand_type_match m_Reg()
ConstantMatch< APInt > m_ICst(APInt &Cst)
bool mi_match(Reg R, const MachineRegisterInfo &MRI, Pattern &&P)
BinaryOp_match< LHS, RHS, TargetOpcode::G_PTR_ADD, false > m_GPtrAdd(const LHS &L, const RHS &R)
This is an optimization pass for GlobalISel generic memory operations.
bool constrainSelectedInstRegOperands(MachineInstr &I, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const RegisterBankInfo &RBI)
Mutate the newly-selected instruction I to constrain its (possibly generic) virtual register operands...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
AtomicOrdering
Atomic ordering for LLVM's memory model.
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
constexpr unsigned BitWidth
std::optional< ValueAndVReg > getIConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_CONSTANT returns its...
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Align assumeAligned(uint64_t Value)
Treats the value 0 as a 1, so Align is always at least 1.
unsigned Log2(Align A)
Returns the log2 of the alignment.
std::function< bool(const LegalityQuery &)> LegalityPredicate
This struct is a compact representation of a valid (non-zero power of two) alignment.
The LegalityQuery object bundles together all the information that's needed to decide whether a given...
ArrayRef< MemDesc > MMODescrs
Operations which require memory can use this to place requirements on the memory type for each MMO.
This class contains a discriminated union of information about pointers in memory operands,...