18#include "llvm/IR/IntrinsicsRISCV.h"
25#define DEBUG_TYPE "riscvtti"
28 "riscv-v-register-bit-width-lmul",
30 "The LMUL to use for getRegisterBitWidth queries. Affects LMUL used "
31 "by autovectorized code. Fractional LMULs are not supported."),
37 "Overrides result used for getMaximumVF query which is used "
38 "exclusively by SLP vectorizer."),
43 cl::desc(
"Set the lower bound of a trip count to decide on "
44 "vectorization while tail-folding."),
53 size_t NumInstr = OpCodes.size();
58 return LMULCost * NumInstr;
60 for (
auto Op : OpCodes) {
62 case RISCV::VRGATHER_VI:
65 case RISCV::VRGATHER_VV:
68 case RISCV::VSLIDEUP_VI:
69 case RISCV::VSLIDEDOWN_VI:
72 case RISCV::VSLIDEUP_VX:
73 case RISCV::VSLIDEDOWN_VX:
76 case RISCV::VREDMAX_VS:
77 case RISCV::VREDMIN_VS:
78 case RISCV::VREDMAXU_VS:
79 case RISCV::VREDMINU_VS:
80 case RISCV::VREDSUM_VS:
81 case RISCV::VREDAND_VS:
82 case RISCV::VREDOR_VS:
83 case RISCV::VREDXOR_VS:
84 case RISCV::VFREDMAX_VS:
85 case RISCV::VFREDMIN_VS:
86 case RISCV::VFREDUSUM_VS: {
93 case RISCV::VFREDOSUM_VS: {
102 case RISCV::VFMV_F_S:
103 case RISCV::VFMV_S_F:
105 case RISCV::VMXOR_MM:
106 case RISCV::VMAND_MM:
107 case RISCV::VMANDN_MM:
108 case RISCV::VMNAND_MM:
110 case RISCV::VFIRST_M:
125 assert(Ty->isIntegerTy() &&
126 "getIntImmCost can only estimate cost of materialising integers");
149 if (!BO || !BO->hasOneUse())
152 if (BO->getOpcode() != Instruction::Shl)
163 if (ShAmt == Trailing)
180 if (!Cmp || !Cmp->isEquality())
196 if ((CmpC & Mask) != CmpC)
203 return NewCmpC >= -2048 && NewCmpC <= 2048;
210 assert(Ty->isIntegerTy() &&
211 "getIntImmCost can only estimate cost of materialising integers");
219 bool Takes12BitImm =
false;
220 unsigned ImmArgIdx = ~0U;
223 case Instruction::GetElementPtr:
228 case Instruction::Store: {
233 if (Idx == 1 || !Inst)
238 if (!getTLI()->allowsMemoryAccessForAlignment(
246 case Instruction::Load:
249 case Instruction::And:
251 if (Imm == UINT64_C(0xffff) && ST->hasStdExtZbb())
254 if (Imm == UINT64_C(0xffffffff) &&
255 ((ST->hasStdExtZba() && ST->isRV64()) || ST->isRV32()))
258 if (ST->hasStdExtZbs() && (~Imm).isPowerOf2())
260 if (Inst && Idx == 1 && Imm.getBitWidth() <= ST->getXLen() &&
263 if (Inst && Idx == 1 && Imm.getBitWidth() == 64 &&
266 Takes12BitImm =
true;
268 case Instruction::Add:
269 Takes12BitImm =
true;
271 case Instruction::Or:
272 case Instruction::Xor:
274 if (ST->hasStdExtZbs() && Imm.isPowerOf2())
276 Takes12BitImm =
true;
278 case Instruction::Mul:
280 if (Imm.isPowerOf2() || Imm.isNegatedPowerOf2())
283 if ((Imm + 1).isPowerOf2() || (Imm - 1).isPowerOf2())
286 Takes12BitImm =
true;
288 case Instruction::Sub:
289 case Instruction::Shl:
290 case Instruction::LShr:
291 case Instruction::AShr:
292 Takes12BitImm =
true;
303 if (Imm.getSignificantBits() <= 64 &&
326 return ST->hasVInstructions();
336 unsigned Opcode,
Type *InputTypeA,
Type *InputTypeB,
Type *AccumType,
343 if (!ST->hasStdExtZvqdotq() || ST->getELen() < 64 ||
344 Opcode != Instruction::Add || !BinOp || *BinOp != Instruction::Mul ||
345 InputTypeA != InputTypeB || !InputTypeA->
isIntegerTy(8) ||
353 getRISCVInstructionCost(RISCV::VQDOT_VV, LT.second,
CostKind);
360 switch (
II->getIntrinsicID()) {
364 case Intrinsic::vector_reduce_mul:
365 case Intrinsic::vector_reduce_fmul:
371 if (ST->hasVInstructions())
377 if (ST->hasVInstructions())
378 if (
unsigned MinVLen = ST->getRealMinVLen();
393 ST->useRVVForFixedLengthVectors() ? LMUL * ST->getRealMinVLen() : 0);
396 (ST->hasVInstructions() &&
406RISCVTTIImpl::getConstantPoolLoadCost(
Type *Ty,
416 unsigned Size = Mask.size();
419 for (
unsigned I = 0;
I !=
Size; ++
I) {
420 if (
static_cast<unsigned>(Mask[
I]) ==
I)
426 for (
unsigned J =
I + 1; J !=
Size; ++J)
428 if (
static_cast<unsigned>(Mask[J]) != J %
I)
456 "Expected fixed vector type and non-empty mask");
459 unsigned NumOfDests =
divideCeil(Mask.size(), LegalNumElts);
463 if (NumOfDests <= 1 ||
465 Tp->getElementType()->getPrimitiveSizeInBits() ||
466 LegalNumElts >= Tp->getElementCount().getFixedValue())
469 unsigned VecTySize =
TTI.getDataLayout().getTypeStoreSize(Tp);
472 unsigned NumOfSrcs =
divideCeil(VecTySize, LegalVTSize);
476 unsigned NormalizedVF = LegalNumElts * std::max(NumOfSrcs, NumOfDests);
477 unsigned NumOfSrcRegs = NormalizedVF / LegalNumElts;
478 unsigned NumOfDestRegs = NormalizedVF / LegalNumElts;
480 assert(NormalizedVF >= Mask.size() &&
481 "Normalized mask expected to be not shorter than original mask.");
486 NormalizedMask, NumOfSrcRegs, NumOfDestRegs, NumOfDestRegs, []() {},
487 [&](
ArrayRef<int> RegMask,
unsigned SrcReg,
unsigned DestReg) {
490 if (!ReusedSingleSrcShuffles.
insert(std::make_pair(RegMask, SrcReg))
493 Cost +=
TTI.getShuffleCost(
496 SingleOpTy, RegMask,
CostKind, 0,
nullptr);
498 [&](
ArrayRef<int> RegMask,
unsigned Idx1,
unsigned Idx2,
bool NewReg) {
499 Cost +=
TTI.getShuffleCost(
502 SingleOpTy, RegMask,
CostKind, 0,
nullptr);
525 if (!VLen || Mask.empty())
529 LegalVT =
TTI.getTypeLegalizationCost(
535 if (NumOfDests <= 1 ||
537 Tp->getElementType()->getPrimitiveSizeInBits() ||
541 unsigned VecTySize =
TTI.getDataLayout().getTypeStoreSize(Tp);
544 unsigned NumOfSrcs =
divideCeil(VecTySize, LegalVTSize);
550 unsigned NormalizedVF =
555 assert(NormalizedVF >= Mask.size() &&
556 "Normalized mask expected to be not shorter than original mask.");
562 NormalizedMask, NumOfSrcRegs, NumOfDestRegs, NumOfDestRegs, []() {},
563 [&](
ArrayRef<int> RegMask,
unsigned SrcReg,
unsigned DestReg) {
566 if (!ReusedSingleSrcShuffles.
insert(std::make_pair(RegMask, SrcReg))
571 SingleOpTy, RegMask,
CostKind, 0,
nullptr);
573 [&](
ArrayRef<int> RegMask,
unsigned Idx1,
unsigned Idx2,
bool NewReg) {
575 SingleOpTy, RegMask,
CostKind, 0,
nullptr);
582 if ((NumOfDestRegs > 2 && NumShuffles <=
static_cast<int>(NumOfDestRegs)) ||
583 (NumOfDestRegs <= 2 && NumShuffles < 4))
598 if (!
LT.second.isFixedLengthVector())
606 auto GetSlideOpcode = [&](
int SlideAmt) {
608 bool IsVI =
isUInt<5>(std::abs(SlideAmt));
610 return IsVI ? RISCV::VSLIDEDOWN_VI : RISCV::VSLIDEDOWN_VX;
611 return IsVI ? RISCV::VSLIDEUP_VI : RISCV::VSLIDEUP_VX;
614 std::array<std::pair<int, int>, 2> SrcInfo;
618 if (SrcInfo[1].second == 0)
622 if (SrcInfo[0].second != 0) {
623 unsigned Opcode = GetSlideOpcode(SrcInfo[0].second);
624 FirstSlideCost = getRISCVInstructionCost(Opcode,
LT.second,
CostKind);
627 if (SrcInfo[1].first == -1)
628 return FirstSlideCost;
631 if (SrcInfo[1].second != 0) {
632 unsigned Opcode = GetSlideOpcode(SrcInfo[1].second);
633 SecondSlideCost = getRISCVInstructionCost(Opcode,
LT.second,
CostKind);
636 getRISCVInstructionCost(RISCV::VMERGE_VVM,
LT.second,
CostKind);
643 return FirstSlideCost + SecondSlideCost + MaskCost;
654 "Expected the Mask to match the return size if given");
656 "Expected the same scalar types");
665 FVTp && ST->hasVInstructions() && LT.second.isFixedLengthVector()) {
667 *
this, LT.second, ST->getRealVLen(),
669 if (VRegSplittingCost.
isValid())
670 return VRegSplittingCost;
675 if (Mask.size() >= 2) {
676 MVT EltTp = LT.second.getVectorElementType();
687 return 2 * LT.first * TLI->getLMULCost(LT.second);
689 if (Mask[0] == 0 || Mask[0] == 1) {
693 if (
equal(DeinterleaveMask, Mask))
694 return LT.first * getRISCVInstructionCost(RISCV::VNSRL_WI,
699 if (LT.second.getScalarSizeInBits() != 1 &&
702 unsigned NumSlides =
Log2_32(Mask.size() / SubVectorSize);
704 for (
unsigned I = 0;
I != NumSlides; ++
I) {
705 unsigned InsertIndex = SubVectorSize * (1 <<
I);
710 std::pair<InstructionCost, MVT> DestLT =
715 Cost += DestLT.first * TLI->getLMULCost(DestLT.second);
729 if (LT.first == 1 && (LT.second.getScalarSizeInBits() != 8 ||
730 LT.second.getVectorNumElements() <= 256)) {
735 getRISCVInstructionCost(RISCV::VRGATHER_VV, LT.second,
CostKind);
749 if (LT.first == 1 && (LT.second.getScalarSizeInBits() != 8 ||
750 LT.second.getVectorNumElements() <= 256)) {
751 auto &
C = SrcTy->getContext();
752 auto EC = SrcTy->getElementCount();
757 return 2 * IndexCost +
758 getRISCVInstructionCost({RISCV::VRGATHER_VV, RISCV::VRGATHER_VV},
777 if (!Mask.empty() && LT.first.isValid() && LT.first != 1 &&
805 SubLT.second.isValid() && SubLT.second.isFixedLengthVector()) {
806 if (std::optional<unsigned> VLen = ST->getRealVLen();
807 VLen && SubLT.second.getScalarSizeInBits() * Index % *VLen == 0 &&
808 SubLT.second.getSizeInBits() <= *VLen)
816 getRISCVInstructionCost(RISCV::VSLIDEDOWN_VI, LT.second,
CostKind);
823 getRISCVInstructionCost(RISCV::VSLIDEUP_VI, LT.second,
CostKind);
835 (1 + getRISCVInstructionCost({RISCV::VMV_S_X, RISCV::VMERGE_VVM},
840 Instruction::InsertElement);
841 if (LT.second.getScalarSizeInBits() == 1) {
849 (1 + getRISCVInstructionCost({RISCV::VMV_V_X, RISCV::VMSNE_VI},
862 (1 + getRISCVInstructionCost({RISCV::VMV_V_I, RISCV::VMERGE_VIM,
863 RISCV::VMV_X_S, RISCV::VMV_V_X,
872 getRISCVInstructionCost(RISCV::VMV_V_X, LT.second,
CostKind);
878 getRISCVInstructionCost(RISCV::VRGATHER_VI, LT.second,
CostKind);
884 unsigned Opcodes[2] = {RISCV::VSLIDEDOWN_VX, RISCV::VSLIDEUP_VX};
885 if (Index >= 0 && Index < 32)
886 Opcodes[0] = RISCV::VSLIDEDOWN_VI;
887 else if (Index < 0 && Index > -32)
888 Opcodes[1] = RISCV::VSLIDEUP_VI;
889 return LT.first * getRISCVInstructionCost(Opcodes, LT.second,
CostKind);
893 if (!LT.second.isVector())
899 if (SrcTy->getElementType()->isIntegerTy(1)) {
911 MVT ContainerVT = LT.second;
912 if (LT.second.isFixedLengthVector())
913 ContainerVT = TLI->getContainerForFixedLengthVector(LT.second);
915 if (ContainerVT.
bitsLE(M1VT)) {
925 if (LT.second.isFixedLengthVector())
927 LenCost =
isInt<5>(LT.second.getVectorNumElements() - 1) ? 0 : 1;
928 unsigned Opcodes[] = {RISCV::VID_V, RISCV::VRSUB_VX, RISCV::VRGATHER_VV};
929 if (LT.second.isFixedLengthVector() &&
930 isInt<5>(LT.second.getVectorNumElements() - 1))
931 Opcodes[1] = RISCV::VRSUB_VI;
933 getRISCVInstructionCost(Opcodes, LT.second,
CostKind);
934 return LT.first * (LenCost + GatherCost);
941 unsigned M1Opcodes[] = {RISCV::VID_V, RISCV::VRSUB_VX};
943 getRISCVInstructionCost(M1Opcodes, M1VT,
CostKind) + 3;
947 getRISCVInstructionCost({RISCV::VRGATHER_VV}, M1VT,
CostKind) * Ratio;
949 getRISCVInstructionCost({RISCV::VSLIDEDOWN_VX}, LT.second,
CostKind);
950 return FixedCost + LT.first * (GatherCost + SlideCost);
984 Ty, DemandedElts, Insert, Extract,
CostKind);
986 if (Insert && !Extract && LT.first.isValid() && LT.second.isVector()) {
987 if (Ty->getScalarSizeInBits() == 1) {
997 assert(LT.second.isFixedLengthVector());
998 MVT ContainerVT = TLI->getContainerForFixedLengthVector(LT.second);
1002 getRISCVInstructionCost(RISCV::VSLIDE1DOWN_VX, LT.second,
CostKind);
1025 bool UseMaskForCond,
bool UseMaskForGaps)
const {
1031 if (!UseMaskForGaps && Factor <= TLI->getMaxSupportedInterleaveFactor()) {
1035 if (LT.second.isVector()) {
1038 VTy->getElementCount().divideCoefficientBy(Factor));
1039 if (VTy->getElementCount().isKnownMultipleOf(Factor) &&
1040 TLI->isLegalInterleavedAccessType(SubVecTy, Factor, Alignment,
1045 if (ST->hasOptimizedSegmentLoadStore(Factor)) {
1048 MVT SubVecVT = getTLI()->getValueType(
DL, SubVecTy).getSimpleVT();
1049 Cost += Factor * TLI->getLMULCost(SubVecVT);
1050 return LT.first *
Cost;
1057 CostKind, {TTI::OK_AnyValue, TTI::OP_None});
1058 unsigned NumLoads = getEstimatedVLFor(VTy);
1059 return NumLoads * MemOpCost;
1072 unsigned VF = FVTy->getNumElements() / Factor;
1079 if (Opcode == Instruction::Load) {
1081 for (
unsigned Index : Indices) {
1085 Mask.resize(VF * Factor, -1);
1089 Cost += ShuffleCost;
1107 UseMaskForCond, UseMaskForGaps);
1109 assert(Opcode == Instruction::Store &&
"Opcode must be a store");
1116 return MemCost + ShuffleCost;
1120 unsigned Opcode,
Type *DataTy,
const Value *
Ptr,
bool VariableMask,
1126 if ((Opcode == Instruction::Load &&
1128 (Opcode == Instruction::Store &&
1139 {TTI::OK_AnyValue, TTI::OP_None},
I);
1140 unsigned NumLoads = getEstimatedVLFor(&VTy);
1141 return NumLoads * MemOpCost;
1145 unsigned Opcode,
Type *DataTy,
bool VariableMask,
Align Alignment,
1147 bool IsLegal = (Opcode == Instruction::Store &&
1149 (Opcode == Instruction::Load &&
1174 if (Opcode == Instruction::Store)
1175 Opcodes.
append({RISCV::VCOMPRESS_VM});
1177 Opcodes.
append({RISCV::VSETIVLI, RISCV::VIOTA_M, RISCV::VRGATHER_VV});
1179 LT.first * getRISCVInstructionCost(Opcodes, LT.second,
CostKind);
1183 unsigned Opcode,
Type *DataTy,
const Value *
Ptr,
bool VariableMask,
1185 if (((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1187 (Opcode != Instruction::Load && Opcode != Instruction::Store))
1200 {TTI::OK_AnyValue, TTI::OP_None},
I);
1201 unsigned NumLoads = getEstimatedVLFor(&VTy);
1202 return NumLoads * MemOpCost;
1212 for (
auto *Ty : Tys) {
1213 if (!Ty->isVectorTy())
1227 {Intrinsic::floor, MVT::f32, 9},
1228 {Intrinsic::floor, MVT::f64, 9},
1229 {Intrinsic::ceil, MVT::f32, 9},
1230 {Intrinsic::ceil, MVT::f64, 9},
1231 {Intrinsic::trunc, MVT::f32, 7},
1232 {Intrinsic::trunc, MVT::f64, 7},
1233 {Intrinsic::round, MVT::f32, 9},
1234 {Intrinsic::round, MVT::f64, 9},
1235 {Intrinsic::roundeven, MVT::f32, 9},
1236 {Intrinsic::roundeven, MVT::f64, 9},
1237 {Intrinsic::rint, MVT::f32, 7},
1238 {Intrinsic::rint, MVT::f64, 7},
1239 {Intrinsic::nearbyint, MVT::f32, 9},
1240 {Intrinsic::nearbyint, MVT::f64, 9},
1241 {Intrinsic::bswap, MVT::i16, 3},
1242 {Intrinsic::bswap, MVT::i32, 12},
1243 {Intrinsic::bswap, MVT::i64, 31},
1244 {Intrinsic::vp_bswap, MVT::i16, 3},
1245 {Intrinsic::vp_bswap, MVT::i32, 12},
1246 {Intrinsic::vp_bswap, MVT::i64, 31},
1247 {Intrinsic::vp_fshl, MVT::i8, 7},
1248 {Intrinsic::vp_fshl, MVT::i16, 7},
1249 {Intrinsic::vp_fshl, MVT::i32, 7},
1250 {Intrinsic::vp_fshl, MVT::i64, 7},
1251 {Intrinsic::vp_fshr, MVT::i8, 7},
1252 {Intrinsic::vp_fshr, MVT::i16, 7},
1253 {Intrinsic::vp_fshr, MVT::i32, 7},
1254 {Intrinsic::vp_fshr, MVT::i64, 7},
1255 {Intrinsic::bitreverse, MVT::i8, 17},
1256 {Intrinsic::bitreverse, MVT::i16, 24},
1257 {Intrinsic::bitreverse, MVT::i32, 33},
1258 {Intrinsic::bitreverse, MVT::i64, 52},
1259 {Intrinsic::vp_bitreverse, MVT::i8, 17},
1260 {Intrinsic::vp_bitreverse, MVT::i16, 24},
1261 {Intrinsic::vp_bitreverse, MVT::i32, 33},
1262 {Intrinsic::vp_bitreverse, MVT::i64, 52},
1263 {Intrinsic::ctpop, MVT::i8, 12},
1264 {Intrinsic::ctpop, MVT::i16, 19},
1265 {Intrinsic::ctpop, MVT::i32, 20},
1266 {Intrinsic::ctpop, MVT::i64, 21},
1267 {Intrinsic::ctlz, MVT::i8, 19},
1268 {Intrinsic::ctlz, MVT::i16, 28},
1269 {Intrinsic::ctlz, MVT::i32, 31},
1270 {Intrinsic::ctlz, MVT::i64, 35},
1271 {Intrinsic::cttz, MVT::i8, 16},
1272 {Intrinsic::cttz, MVT::i16, 23},
1273 {Intrinsic::cttz, MVT::i32, 24},
1274 {Intrinsic::cttz, MVT::i64, 25},
1275 {Intrinsic::vp_ctpop, MVT::i8, 12},
1276 {Intrinsic::vp_ctpop, MVT::i16, 19},
1277 {Intrinsic::vp_ctpop, MVT::i32, 20},
1278 {Intrinsic::vp_ctpop, MVT::i64, 21},
1279 {Intrinsic::vp_ctlz, MVT::i8, 19},
1280 {Intrinsic::vp_ctlz, MVT::i16, 28},
1281 {Intrinsic::vp_ctlz, MVT::i32, 31},
1282 {Intrinsic::vp_ctlz, MVT::i64, 35},
1283 {Intrinsic::vp_cttz, MVT::i8, 16},
1284 {Intrinsic::vp_cttz, MVT::i16, 23},
1285 {Intrinsic::vp_cttz, MVT::i32, 24},
1286 {Intrinsic::vp_cttz, MVT::i64, 25},
1293 switch (ICA.
getID()) {
1294 case Intrinsic::lrint:
1295 case Intrinsic::llrint:
1296 case Intrinsic::lround:
1297 case Intrinsic::llround: {
1301 if (ST->hasVInstructions() && LT.second.isVector()) {
1303 unsigned SrcEltSz =
DL.getTypeSizeInBits(SrcTy->getScalarType());
1304 unsigned DstEltSz =
DL.getTypeSizeInBits(RetTy->getScalarType());
1305 if (LT.second.getVectorElementType() == MVT::bf16) {
1306 if (!ST->hasVInstructionsBF16Minimal())
1309 Ops = {RISCV::VFWCVTBF16_F_F_V, RISCV::VFCVT_X_F_V};
1311 Ops = {RISCV::VFWCVTBF16_F_F_V, RISCV::VFWCVT_X_F_V};
1312 }
else if (LT.second.getVectorElementType() == MVT::f16 &&
1313 !ST->hasVInstructionsF16()) {
1314 if (!ST->hasVInstructionsF16Minimal())
1317 Ops = {RISCV::VFWCVT_F_F_V, RISCV::VFCVT_X_F_V};
1319 Ops = {RISCV::VFWCVT_F_F_V, RISCV::VFWCVT_X_F_V};
1321 }
else if (SrcEltSz > DstEltSz) {
1322 Ops = {RISCV::VFNCVT_X_F_W};
1323 }
else if (SrcEltSz < DstEltSz) {
1324 Ops = {RISCV::VFWCVT_X_F_V};
1326 Ops = {RISCV::VFCVT_X_F_V};
1331 if (SrcEltSz > DstEltSz)
1332 return SrcLT.first *
1333 getRISCVInstructionCost(
Ops, SrcLT.second,
CostKind);
1334 return LT.first * getRISCVInstructionCost(
Ops, LT.second,
CostKind);
1338 case Intrinsic::ceil:
1339 case Intrinsic::floor:
1340 case Intrinsic::trunc:
1341 case Intrinsic::rint:
1342 case Intrinsic::round:
1343 case Intrinsic::roundeven: {
1346 if (!LT.second.isVector() && TLI->isOperationCustom(ISD::FCEIL, LT.second))
1347 return LT.first * 8;
1350 case Intrinsic::umin:
1351 case Intrinsic::umax:
1352 case Intrinsic::smin:
1353 case Intrinsic::smax: {
1355 if (LT.second.isScalarInteger() && ST->hasStdExtZbb())
1358 if (ST->hasVInstructions() && LT.second.isVector()) {
1360 switch (ICA.
getID()) {
1361 case Intrinsic::umin:
1362 Op = RISCV::VMINU_VV;
1364 case Intrinsic::umax:
1365 Op = RISCV::VMAXU_VV;
1367 case Intrinsic::smin:
1368 Op = RISCV::VMIN_VV;
1370 case Intrinsic::smax:
1371 Op = RISCV::VMAX_VV;
1374 return LT.first * getRISCVInstructionCost(
Op, LT.second,
CostKind);
1378 case Intrinsic::sadd_sat:
1379 case Intrinsic::ssub_sat:
1380 case Intrinsic::uadd_sat:
1381 case Intrinsic::usub_sat: {
1383 if (ST->hasVInstructions() && LT.second.isVector()) {
1385 switch (ICA.
getID()) {
1386 case Intrinsic::sadd_sat:
1387 Op = RISCV::VSADD_VV;
1389 case Intrinsic::ssub_sat:
1390 Op = RISCV::VSSUBU_VV;
1392 case Intrinsic::uadd_sat:
1393 Op = RISCV::VSADDU_VV;
1395 case Intrinsic::usub_sat:
1396 Op = RISCV::VSSUBU_VV;
1399 return LT.first * getRISCVInstructionCost(
Op, LT.second,
CostKind);
1403 case Intrinsic::fma:
1404 case Intrinsic::fmuladd: {
1407 if (ST->hasVInstructions() && LT.second.isVector())
1409 getRISCVInstructionCost(RISCV::VFMADD_VV, LT.second,
CostKind);
1412 case Intrinsic::fabs: {
1414 if (ST->hasVInstructions() && LT.second.isVector()) {
1420 if (LT.second.getVectorElementType() == MVT::bf16 ||
1421 (LT.second.getVectorElementType() == MVT::f16 &&
1422 !ST->hasVInstructionsF16()))
1423 return LT.first * getRISCVInstructionCost(RISCV::VAND_VX, LT.second,
1428 getRISCVInstructionCost(RISCV::VFSGNJX_VV, LT.second,
CostKind);
1432 case Intrinsic::sqrt: {
1434 if (ST->hasVInstructions() && LT.second.isVector()) {
1437 MVT ConvType = LT.second;
1438 MVT FsqrtType = LT.second;
1441 if (LT.second.getVectorElementType() == MVT::bf16) {
1442 if (LT.second == MVT::nxv32bf16) {
1443 ConvOp = {RISCV::VFWCVTBF16_F_F_V, RISCV::VFWCVTBF16_F_F_V,
1444 RISCV::VFNCVTBF16_F_F_W, RISCV::VFNCVTBF16_F_F_W};
1445 FsqrtOp = {RISCV::VFSQRT_V, RISCV::VFSQRT_V};
1446 ConvType = MVT::nxv16f16;
1447 FsqrtType = MVT::nxv16f32;
1449 ConvOp = {RISCV::VFWCVTBF16_F_F_V, RISCV::VFNCVTBF16_F_F_W};
1450 FsqrtOp = {RISCV::VFSQRT_V};
1451 FsqrtType = TLI->getTypeToPromoteTo(ISD::FSQRT, FsqrtType);
1453 }
else if (LT.second.getVectorElementType() == MVT::f16 &&
1454 !ST->hasVInstructionsF16()) {
1455 if (LT.second == MVT::nxv32f16) {
1456 ConvOp = {RISCV::VFWCVT_F_F_V, RISCV::VFWCVT_F_F_V,
1457 RISCV::VFNCVT_F_F_W, RISCV::VFNCVT_F_F_W};
1458 FsqrtOp = {RISCV::VFSQRT_V, RISCV::VFSQRT_V};
1459 ConvType = MVT::nxv16f16;
1460 FsqrtType = MVT::nxv16f32;
1462 ConvOp = {RISCV::VFWCVT_F_F_V, RISCV::VFNCVT_F_F_W};
1463 FsqrtOp = {RISCV::VFSQRT_V};
1464 FsqrtType = TLI->getTypeToPromoteTo(ISD::FSQRT, FsqrtType);
1467 FsqrtOp = {RISCV::VFSQRT_V};
1470 return LT.first * (getRISCVInstructionCost(FsqrtOp, FsqrtType,
CostKind) +
1471 getRISCVInstructionCost(ConvOp, ConvType,
CostKind));
1475 case Intrinsic::cttz:
1476 case Intrinsic::ctlz:
1477 case Intrinsic::ctpop: {
1479 if (ST->hasStdExtZvbb() && LT.second.isVector()) {
1481 switch (ICA.
getID()) {
1482 case Intrinsic::cttz:
1485 case Intrinsic::ctlz:
1488 case Intrinsic::ctpop:
1489 Op = RISCV::VCPOP_V;
1492 return LT.first * getRISCVInstructionCost(
Op, LT.second,
CostKind);
1496 case Intrinsic::abs: {
1498 if (ST->hasVInstructions() && LT.second.isVector()) {
1502 getRISCVInstructionCost({RISCV::VRSUB_VI, RISCV::VMAX_VV},
1507 case Intrinsic::get_active_lane_mask: {
1508 if (ST->hasVInstructions()) {
1517 getRISCVInstructionCost({RISCV::VSADDU_VX, RISCV::VMSLTU_VX},
1523 case Intrinsic::stepvector: {
1527 if (ST->hasVInstructions())
1528 return getRISCVInstructionCost(RISCV::VID_V, LT.second,
CostKind) +
1530 getRISCVInstructionCost(RISCV::VADD_VX, LT.second,
CostKind);
1531 return 1 + (LT.first - 1);
1533 case Intrinsic::experimental_cttz_elts: {
1535 EVT ArgType = TLI->getValueType(
DL, ArgTy,
true);
1536 if (getTLI()->shouldExpandCttzElements(ArgType))
1553 case Intrinsic::experimental_vp_splat: {
1556 if (!ST->hasVInstructions() || LT.second.getScalarType() == MVT::i1)
1558 return LT.first * getRISCVInstructionCost(LT.second.isFloatingPoint()
1563 case Intrinsic::experimental_vp_splice: {
1571 case Intrinsic::fptoui_sat:
1572 case Intrinsic::fptosi_sat: {
1574 bool IsSigned = ICA.
getID() == Intrinsic::fptosi_sat;
1579 if (!SrcTy->isVectorTy())
1582 if (!SrcLT.first.isValid() || !DstLT.first.isValid())
1601 if (ST->hasVInstructions() && RetTy->isVectorTy()) {
1603 LT.second.isVector()) {
1604 MVT EltTy = LT.second.getVectorElementType();
1606 ICA.
getID(), EltTy))
1607 return LT.first * Entry->Cost;
1620 if (ST->hasVInstructions() && PtrTy->
isVectorTy())
1638 if (ST->enablePExtCodeGen() &&
1646 if (!ST->hasVInstructions() || Src->getScalarSizeInBits() > ST->getELen() ||
1647 Dst->getScalarSizeInBits() > ST->getELen())
1650 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1665 if (Src->getScalarSizeInBits() == 1) {
1670 return getRISCVInstructionCost(RISCV::VMV_V_I, DstLT.second,
CostKind) +
1671 DstLT.first * getRISCVInstructionCost(RISCV::VMERGE_VIM,
1677 if (Dst->getScalarSizeInBits() == 1) {
1683 return SrcLT.first *
1684 getRISCVInstructionCost({RISCV::VAND_VI, RISCV::VMSNE_VI},
1696 if (!SrcLT.second.isVector() || !DstLT.second.isVector() ||
1697 !SrcLT.first.isValid() || !DstLT.first.isValid() ||
1699 SrcLT.second.getSizeInBits()) ||
1701 DstLT.second.getSizeInBits()) ||
1702 SrcLT.first > 1 || DstLT.first > 1)
1706 assert((SrcLT.first == 1) && (DstLT.first == 1) &&
"Illegal type");
1708 int PowDiff = (int)
Log2_32(DstLT.second.getScalarSizeInBits()) -
1709 (int)
Log2_32(SrcLT.second.getScalarSizeInBits());
1713 if ((PowDiff < 1) || (PowDiff > 3))
1715 unsigned SExtOp[] = {RISCV::VSEXT_VF2, RISCV::VSEXT_VF4, RISCV::VSEXT_VF8};
1716 unsigned ZExtOp[] = {RISCV::VZEXT_VF2, RISCV::VZEXT_VF4, RISCV::VZEXT_VF8};
1719 return getRISCVInstructionCost(
Op, DstLT.second,
CostKind);
1722 case ISD::FP_EXTEND:
1725 unsigned SrcEltSize = SrcLT.second.getScalarSizeInBits();
1726 unsigned DstEltSize = DstLT.second.getScalarSizeInBits();
1729 : (
ISD == ISD::FP_EXTEND) ? RISCV::VFWCVT_F_F_V
1730 : RISCV::VFNCVT_F_F_W;
1732 for (; SrcEltSize != DstEltSize;) {
1736 MVT DstMVT = DstLT.second.changeVectorElementType(ElementMVT);
1738 (DstEltSize > SrcEltSize) ? DstEltSize >> 1 : DstEltSize << 1;
1746 unsigned FCVT = IsSigned ? RISCV::VFCVT_RTZ_X_F_V : RISCV::VFCVT_RTZ_XU_F_V;
1748 IsSigned ? RISCV::VFWCVT_RTZ_X_F_V : RISCV::VFWCVT_RTZ_XU_F_V;
1750 IsSigned ? RISCV::VFNCVT_RTZ_X_F_W : RISCV::VFNCVT_RTZ_XU_F_W;
1751 unsigned SrcEltSize = Src->getScalarSizeInBits();
1752 unsigned DstEltSize = Dst->getScalarSizeInBits();
1754 if ((SrcEltSize == 16) &&
1755 (!ST->hasVInstructionsF16() || ((DstEltSize / 2) > SrcEltSize))) {
1761 std::pair<InstructionCost, MVT> VecF32LT =
1764 VecF32LT.first * getRISCVInstructionCost(RISCV::VFWCVT_F_F_V,
1769 if (DstEltSize == SrcEltSize)
1770 Cost += getRISCVInstructionCost(FCVT, DstLT.second,
CostKind);
1771 else if (DstEltSize > SrcEltSize)
1772 Cost += getRISCVInstructionCost(FWCVT, DstLT.second,
CostKind);
1777 MVT VecVT = DstLT.second.changeVectorElementType(ElementVT);
1778 Cost += getRISCVInstructionCost(FNCVT, VecVT,
CostKind);
1779 if ((SrcEltSize / 2) > DstEltSize) {
1790 unsigned FCVT = IsSigned ? RISCV::VFCVT_F_X_V : RISCV::VFCVT_F_XU_V;
1791 unsigned FWCVT = IsSigned ? RISCV::VFWCVT_F_X_V : RISCV::VFWCVT_F_XU_V;
1792 unsigned FNCVT = IsSigned ? RISCV::VFNCVT_F_X_W : RISCV::VFNCVT_F_XU_W;
1793 unsigned SrcEltSize = Src->getScalarSizeInBits();
1794 unsigned DstEltSize = Dst->getScalarSizeInBits();
1797 if ((DstEltSize == 16) &&
1798 (!ST->hasVInstructionsF16() || ((SrcEltSize / 2) > DstEltSize))) {
1804 std::pair<InstructionCost, MVT> VecF32LT =
1807 Cost += VecF32LT.first * getRISCVInstructionCost(RISCV::VFNCVT_F_F_W,
1812 if (DstEltSize == SrcEltSize)
1813 Cost += getRISCVInstructionCost(FCVT, DstLT.second,
CostKind);
1814 else if (DstEltSize > SrcEltSize) {
1815 if ((DstEltSize / 2) > SrcEltSize) {
1819 unsigned Op = IsSigned ? Instruction::SExt : Instruction::ZExt;
1822 Cost += getRISCVInstructionCost(FWCVT, DstLT.second,
CostKind);
1824 Cost += getRISCVInstructionCost(FNCVT, DstLT.second,
CostKind);
1831unsigned RISCVTTIImpl::getEstimatedVLFor(
VectorType *Ty)
const {
1833 const unsigned EltSize =
DL.getTypeSizeInBits(Ty->getElementType());
1834 const unsigned MinSize =
DL.getTypeSizeInBits(Ty).getKnownMinValue();
1849 if (Ty->getScalarSizeInBits() > ST->getELen())
1853 if (Ty->getElementType()->isIntegerTy(1)) {
1857 if (IID == Intrinsic::umax || IID == Intrinsic::smin)
1863 if (IID == Intrinsic::maximum || IID == Intrinsic::minimum) {
1867 case Intrinsic::maximum:
1869 Opcodes = {RISCV::VFREDMAX_VS, RISCV::VFMV_F_S};
1871 Opcodes = {RISCV::VMFNE_VV, RISCV::VCPOP_M, RISCV::VFREDMAX_VS,
1886 case Intrinsic::minimum:
1888 Opcodes = {RISCV::VFREDMIN_VS, RISCV::VFMV_F_S};
1890 Opcodes = {RISCV::VMFNE_VV, RISCV::VCPOP_M, RISCV::VFREDMIN_VS,
1896 const unsigned EltTyBits =
DL.getTypeSizeInBits(DstTy);
1905 return ExtraCost + getRISCVInstructionCost(Opcodes, LT.second,
CostKind);
1914 case Intrinsic::smax:
1915 SplitOp = RISCV::VMAX_VV;
1916 Opcodes = {RISCV::VREDMAX_VS, RISCV::VMV_X_S};
1918 case Intrinsic::smin:
1919 SplitOp = RISCV::VMIN_VV;
1920 Opcodes = {RISCV::VREDMIN_VS, RISCV::VMV_X_S};
1922 case Intrinsic::umax:
1923 SplitOp = RISCV::VMAXU_VV;
1924 Opcodes = {RISCV::VREDMAXU_VS, RISCV::VMV_X_S};
1926 case Intrinsic::umin:
1927 SplitOp = RISCV::VMINU_VV;
1928 Opcodes = {RISCV::VREDMINU_VS, RISCV::VMV_X_S};
1930 case Intrinsic::maxnum:
1931 SplitOp = RISCV::VFMAX_VV;
1932 Opcodes = {RISCV::VFREDMAX_VS, RISCV::VFMV_F_S};
1934 case Intrinsic::minnum:
1935 SplitOp = RISCV::VFMIN_VV;
1936 Opcodes = {RISCV::VFREDMIN_VS, RISCV::VFMV_F_S};
1941 (LT.first > 1) ? (LT.first - 1) *
1942 getRISCVInstructionCost(SplitOp, LT.second,
CostKind)
1944 return SplitCost + getRISCVInstructionCost(Opcodes, LT.second,
CostKind);
1949 std::optional<FastMathFlags> FMF,
1955 if (Ty->getScalarSizeInBits() > ST->getELen())
1958 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1966 Type *ElementTy = Ty->getElementType();
1971 if (LT.second == MVT::v1i1)
1972 return getRISCVInstructionCost(RISCV::VFIRST_M, LT.second,
CostKind) +
1990 return ((LT.first > 2) ? (LT.first - 2) : 0) *
1991 getRISCVInstructionCost(RISCV::VMAND_MM, LT.second,
CostKind) +
1992 getRISCVInstructionCost(RISCV::VMNAND_MM, LT.second,
CostKind) +
1993 getRISCVInstructionCost(RISCV::VCPOP_M, LT.second,
CostKind) +
2002 return (LT.first - 1) *
2003 getRISCVInstructionCost(RISCV::VMXOR_MM, LT.second,
CostKind) +
2004 getRISCVInstructionCost(RISCV::VCPOP_M, LT.second,
CostKind) + 1;
2012 return (LT.first - 1) *
2013 getRISCVInstructionCost(RISCV::VMOR_MM, LT.second,
CostKind) +
2014 getRISCVInstructionCost(RISCV::VCPOP_M, LT.second,
CostKind) +
2027 SplitOp = RISCV::VADD_VV;
2028 Opcodes = {RISCV::VMV_S_X, RISCV::VREDSUM_VS, RISCV::VMV_X_S};
2031 SplitOp = RISCV::VOR_VV;
2032 Opcodes = {RISCV::VREDOR_VS, RISCV::VMV_X_S};
2035 SplitOp = RISCV::VXOR_VV;
2036 Opcodes = {RISCV::VMV_S_X, RISCV::VREDXOR_VS, RISCV::VMV_X_S};
2039 SplitOp = RISCV::VAND_VV;
2040 Opcodes = {RISCV::VREDAND_VS, RISCV::VMV_X_S};
2044 if ((LT.second.getScalarType() == MVT::f16 && !ST->hasVInstructionsF16()) ||
2045 LT.second.getScalarType() == MVT::bf16)
2049 for (
unsigned i = 0; i < LT.first.getValue(); i++)
2052 return getRISCVInstructionCost(Opcodes, LT.second,
CostKind);
2054 SplitOp = RISCV::VFADD_VV;
2055 Opcodes = {RISCV::VFMV_S_F, RISCV::VFREDUSUM_VS, RISCV::VFMV_F_S};
2060 (LT.first > 1) ? (LT.first - 1) *
2061 getRISCVInstructionCost(SplitOp, LT.second,
CostKind)
2063 return SplitCost + getRISCVInstructionCost(Opcodes, LT.second,
CostKind);
2067 unsigned Opcode,
bool IsUnsigned,
Type *ResTy,
VectorType *ValTy,
2078 if (Opcode != Instruction::Add && Opcode != Instruction::FAdd)
2084 if (IsUnsigned && Opcode == Instruction::Add &&
2085 LT.second.isFixedLengthVector() && LT.second.getScalarType() == MVT::i1) {
2089 getRISCVInstructionCost(RISCV::VCPOP_M, LT.second,
CostKind);
2096 return (LT.first - 1) +
2103 assert(OpInfo.isConstant() &&
"non constant operand?");
2110 if (OpInfo.isUniform())
2116 return getConstantPoolLoadCost(Ty,
CostKind);
2125 EVT VT = TLI->getValueType(
DL, Src,
true);
2127 if (VT == MVT::Other)
2132 if (Opcode == Instruction::Store && OpInfo.isConstant())
2147 if (Src->
isVectorTy() && LT.second.isVector() &&
2149 LT.second.getSizeInBits()))
2159 if (ST->hasVInstructions() && LT.second.isVector() &&
2161 BaseCost *= TLI->getLMULCost(LT.second);
2162 return Cost + BaseCost;
2171 Op1Info, Op2Info,
I);
2175 Op1Info, Op2Info,
I);
2178 if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() > ST->getELen())
2180 Op1Info, Op2Info,
I);
2182 auto GetConstantMatCost =
2184 if (OpInfo.isUniform())
2189 return getConstantPoolLoadCost(ValTy,
CostKind);
2194 ConstantMatCost += GetConstantMatCost(Op1Info);
2196 ConstantMatCost += GetConstantMatCost(Op2Info);
2199 if (Opcode == Instruction::Select && ValTy->isVectorTy()) {
2201 if (ValTy->getScalarSizeInBits() == 1) {
2205 return ConstantMatCost +
2207 getRISCVInstructionCost(
2208 {RISCV::VMANDN_MM, RISCV::VMAND_MM, RISCV::VMOR_MM},
2212 return ConstantMatCost +
2213 LT.first * getRISCVInstructionCost(RISCV::VMERGE_VVM, LT.second,
2217 if (ValTy->getScalarSizeInBits() == 1) {
2223 MVT InterimVT = LT.second.changeVectorElementType(MVT::i8);
2224 return ConstantMatCost +
2226 getRISCVInstructionCost({RISCV::VMV_V_X, RISCV::VMSNE_VI},
2228 LT.first * getRISCVInstructionCost(
2229 {RISCV::VMANDN_MM, RISCV::VMAND_MM, RISCV::VMOR_MM},
2236 return ConstantMatCost +
2237 LT.first * getRISCVInstructionCost(
2238 {RISCV::VMV_V_X, RISCV::VMSNE_VI, RISCV::VMERGE_VVM},
2242 if ((Opcode == Instruction::ICmp) && ValTy->isVectorTy() &&
2246 return ConstantMatCost + LT.first * getRISCVInstructionCost(RISCV::VMSLT_VV,
2251 if ((Opcode == Instruction::FCmp) && ValTy->isVectorTy() &&
2256 return ConstantMatCost +
2257 getRISCVInstructionCost(RISCV::VMXOR_MM, LT.second,
CostKind);
2263 if ((ValTy->getScalarSizeInBits() == 16 && !ST->hasVInstructionsF16()) ||
2264 (ValTy->getScalarSizeInBits() == 32 && !ST->hasVInstructionsF32()) ||
2265 (ValTy->getScalarSizeInBits() == 64 && !ST->hasVInstructionsF64()))
2267 Op1Info, Op2Info,
I);
2276 return ConstantMatCost +
2277 LT.first * getRISCVInstructionCost(
2278 {RISCV::VMFLT_VV, RISCV::VMFLT_VV, RISCV::VMOR_MM},
2285 return ConstantMatCost +
2287 getRISCVInstructionCost({RISCV::VMFLT_VV, RISCV::VMNAND_MM},
2296 return ConstantMatCost +
2298 getRISCVInstructionCost(RISCV::VMFLT_VV, LT.second,
CostKind);
2309 ValTy->isIntegerTy() && !
I->user_empty()) {
2311 return match(U, m_Select(m_Specific(I), m_Value(), m_Value())) &&
2312 U->getType()->isIntegerTy() &&
2313 !isa<ConstantData>(U->getOperand(1)) &&
2314 !isa<ConstantData>(U->getOperand(2));
2322 Op1Info, Op2Info,
I);
2329 return Opcode == Instruction::PHI ? 0 : 1;
2338 const Value *Op1)
const {
2348 if (Opcode != Instruction::ExtractElement &&
2349 Opcode != Instruction::InsertElement)
2356 if (!LT.second.isVector()) {
2365 Type *ElemTy = FixedVecTy->getElementType();
2366 auto NumElems = FixedVecTy->getNumElements();
2367 auto Align =
DL.getPrefTypeAlign(ElemTy);
2372 return Opcode == Instruction::ExtractElement
2373 ? StoreCost * NumElems + LoadCost
2374 : (StoreCost + LoadCost) * NumElems + StoreCost;
2378 if (LT.second.isScalableVector() && !LT.first.isValid())
2386 if (Opcode == Instruction::ExtractElement) {
2392 return ExtendCost + ExtractCost;
2402 return ExtendCost + InsertCost + TruncCost;
2408 unsigned BaseCost = 1;
2410 unsigned SlideCost = Opcode == Instruction::InsertElement ? 2 : 1;
2415 if (LT.second.isFixedLengthVector()) {
2416 unsigned Width = LT.second.getVectorNumElements();
2417 Index = Index % Width;
2422 if (
auto VLEN = ST->getRealVLen()) {
2423 unsigned EltSize = LT.second.getScalarSizeInBits();
2424 unsigned M1Max = *VLEN / EltSize;
2425 Index = Index % M1Max;
2431 else if (ST->hasVendorXRivosVisni() &&
isUInt<5>(Index) &&
2434 else if (Opcode == Instruction::InsertElement)
2442 ((Index == -1U) || (Index >= LT.second.getVectorMinNumElements() &&
2443 LT.second.isScalableVector()))) {
2445 Align VecAlign =
DL.getPrefTypeAlign(Val);
2446 Align SclAlign =
DL.getPrefTypeAlign(ScalarType);
2451 if (Opcode == Instruction::ExtractElement)
2487 BaseCost = Opcode == Instruction::InsertElement ? 3 : 4;
2489 return BaseCost + SlideCost;
2495 unsigned Index)
const {
2504 assert(Index < EC.getKnownMinValue() &&
"Unexpected reverse index");
2506 EC.getKnownMinValue() - 1 - Index,
nullptr,
2533 if (!LT.second.isVector())
2539 unsigned ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
2541 if ((LT.second.getVectorElementType() == MVT::f16 ||
2542 LT.second.getVectorElementType() == MVT::bf16) &&
2543 TLI->getOperationAction(ISDOpcode, LT.second) ==
2545 MVT PromotedVT = TLI->getTypeToPromoteTo(ISDOpcode, LT.second);
2549 CastCost += LT.first * Args.size() *
2557 LT.second = PromotedVT;
2560 auto getConstantMatCost =
2570 return getConstantPoolLoadCost(Ty,
CostKind);
2576 ConstantMatCost += getConstantMatCost(0, Op1Info);
2578 ConstantMatCost += getConstantMatCost(1, Op2Info);
2581 switch (ISDOpcode) {
2584 Op = RISCV::VADD_VV;
2589 Op = RISCV::VSLL_VV;
2594 Op = (Ty->getScalarSizeInBits() == 1) ? RISCV::VMAND_MM : RISCV::VAND_VV;
2599 Op = RISCV::VMUL_VV;
2603 Op = RISCV::VDIV_VV;
2607 Op = RISCV::VREM_VV;
2611 Op = RISCV::VFADD_VV;
2614 Op = RISCV::VFMUL_VV;
2617 Op = RISCV::VFDIV_VV;
2620 Op = RISCV::VFSGNJN_VV;
2625 return CastCost + ConstantMatCost +
2634 if (Ty->isFPOrFPVectorTy())
2636 return CastCost + ConstantMatCost + LT.first *
InstrCost;
2659 if (Info.isSameBase() && V !=
Base) {
2660 if (
GEP->hasAllConstantIndices())
2666 unsigned Stride =
DL.getTypeStoreSize(AccessTy);
2667 if (Info.isUnitStride() &&
2673 GEP->getType()->getPointerAddressSpace()))
2676 {TTI::OK_AnyValue, TTI::OP_None},
2677 {TTI::OK_AnyValue, TTI::OP_None}, {});
2694 if (ST->enableDefaultUnroll())
2704 if (L->getHeader()->getParent()->hasOptSize())
2708 L->getExitingBlocks(ExitingBlocks);
2710 <<
"Blocks: " << L->getNumBlocks() <<
"\n"
2711 <<
"Exit blocks: " << ExitingBlocks.
size() <<
"\n");
2715 if (ExitingBlocks.
size() > 2)
2720 if (L->getNumBlocks() > 4)
2728 for (
auto *BB : L->getBlocks()) {
2729 for (
auto &
I : *BB) {
2733 if (IsVectorized &&
I.getType()->isVectorTy())
2773 bool HasMask =
false;
2776 bool IsWrite) -> int64_t {
2777 if (
auto *TarExtTy =
2779 return TarExtTy->getIntParameter(0);
2785 case Intrinsic::riscv_vle_mask:
2786 case Intrinsic::riscv_vse_mask:
2787 case Intrinsic::riscv_vlseg2_mask:
2788 case Intrinsic::riscv_vlseg3_mask:
2789 case Intrinsic::riscv_vlseg4_mask:
2790 case Intrinsic::riscv_vlseg5_mask:
2791 case Intrinsic::riscv_vlseg6_mask:
2792 case Intrinsic::riscv_vlseg7_mask:
2793 case Intrinsic::riscv_vlseg8_mask:
2794 case Intrinsic::riscv_vsseg2_mask:
2795 case Intrinsic::riscv_vsseg3_mask:
2796 case Intrinsic::riscv_vsseg4_mask:
2797 case Intrinsic::riscv_vsseg5_mask:
2798 case Intrinsic::riscv_vsseg6_mask:
2799 case Intrinsic::riscv_vsseg7_mask:
2800 case Intrinsic::riscv_vsseg8_mask:
2803 case Intrinsic::riscv_vle:
2804 case Intrinsic::riscv_vse:
2805 case Intrinsic::riscv_vlseg2:
2806 case Intrinsic::riscv_vlseg3:
2807 case Intrinsic::riscv_vlseg4:
2808 case Intrinsic::riscv_vlseg5:
2809 case Intrinsic::riscv_vlseg6:
2810 case Intrinsic::riscv_vlseg7:
2811 case Intrinsic::riscv_vlseg8:
2812 case Intrinsic::riscv_vsseg2:
2813 case Intrinsic::riscv_vsseg3:
2814 case Intrinsic::riscv_vsseg4:
2815 case Intrinsic::riscv_vsseg5:
2816 case Intrinsic::riscv_vsseg6:
2817 case Intrinsic::riscv_vsseg7:
2818 case Intrinsic::riscv_vsseg8: {
2835 Ty = TarExtTy->getTypeParameter(0U);
2840 const auto *RVVIInfo = RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IID);
2841 unsigned VLIndex = RVVIInfo->VLOperand;
2842 unsigned PtrOperandNo = VLIndex - 1 - HasMask;
2850 unsigned SegNum = getSegNum(Inst, PtrOperandNo, IsWrite);
2853 unsigned ElemSize = Ty->getScalarSizeInBits();
2857 Info.InterestingOperands.emplace_back(Inst, PtrOperandNo, IsWrite, Ty,
2858 Alignment, Mask, EVL);
2861 case Intrinsic::riscv_vlse_mask:
2862 case Intrinsic::riscv_vsse_mask:
2863 case Intrinsic::riscv_vlsseg2_mask:
2864 case Intrinsic::riscv_vlsseg3_mask:
2865 case Intrinsic::riscv_vlsseg4_mask:
2866 case Intrinsic::riscv_vlsseg5_mask:
2867 case Intrinsic::riscv_vlsseg6_mask:
2868 case Intrinsic::riscv_vlsseg7_mask:
2869 case Intrinsic::riscv_vlsseg8_mask:
2870 case Intrinsic::riscv_vssseg2_mask:
2871 case Intrinsic::riscv_vssseg3_mask:
2872 case Intrinsic::riscv_vssseg4_mask:
2873 case Intrinsic::riscv_vssseg5_mask:
2874 case Intrinsic::riscv_vssseg6_mask:
2875 case Intrinsic::riscv_vssseg7_mask:
2876 case Intrinsic::riscv_vssseg8_mask:
2879 case Intrinsic::riscv_vlse:
2880 case Intrinsic::riscv_vsse:
2881 case Intrinsic::riscv_vlsseg2:
2882 case Intrinsic::riscv_vlsseg3:
2883 case Intrinsic::riscv_vlsseg4:
2884 case Intrinsic::riscv_vlsseg5:
2885 case Intrinsic::riscv_vlsseg6:
2886 case Intrinsic::riscv_vlsseg7:
2887 case Intrinsic::riscv_vlsseg8:
2888 case Intrinsic::riscv_vssseg2:
2889 case Intrinsic::riscv_vssseg3:
2890 case Intrinsic::riscv_vssseg4:
2891 case Intrinsic::riscv_vssseg5:
2892 case Intrinsic::riscv_vssseg6:
2893 case Intrinsic::riscv_vssseg7:
2894 case Intrinsic::riscv_vssseg8: {
2911 Ty = TarExtTy->getTypeParameter(0U);
2916 const auto *RVVIInfo = RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IID);
2917 unsigned VLIndex = RVVIInfo->VLOperand;
2918 unsigned PtrOperandNo = VLIndex - 2 - HasMask;
2930 Alignment =
Align(1);
2937 unsigned SegNum = getSegNum(Inst, PtrOperandNo, IsWrite);
2940 unsigned ElemSize = Ty->getScalarSizeInBits();
2944 Info.InterestingOperands.emplace_back(Inst, PtrOperandNo, IsWrite, Ty,
2945 Alignment, Mask, EVL, Stride);
2948 case Intrinsic::riscv_vloxei_mask:
2949 case Intrinsic::riscv_vluxei_mask:
2950 case Intrinsic::riscv_vsoxei_mask:
2951 case Intrinsic::riscv_vsuxei_mask:
2952 case Intrinsic::riscv_vloxseg2_mask:
2953 case Intrinsic::riscv_vloxseg3_mask:
2954 case Intrinsic::riscv_vloxseg4_mask:
2955 case Intrinsic::riscv_vloxseg5_mask:
2956 case Intrinsic::riscv_vloxseg6_mask:
2957 case Intrinsic::riscv_vloxseg7_mask:
2958 case Intrinsic::riscv_vloxseg8_mask:
2959 case Intrinsic::riscv_vluxseg2_mask:
2960 case Intrinsic::riscv_vluxseg3_mask:
2961 case Intrinsic::riscv_vluxseg4_mask:
2962 case Intrinsic::riscv_vluxseg5_mask:
2963 case Intrinsic::riscv_vluxseg6_mask:
2964 case Intrinsic::riscv_vluxseg7_mask:
2965 case Intrinsic::riscv_vluxseg8_mask:
2966 case Intrinsic::riscv_vsoxseg2_mask:
2967 case Intrinsic::riscv_vsoxseg3_mask:
2968 case Intrinsic::riscv_vsoxseg4_mask:
2969 case Intrinsic::riscv_vsoxseg5_mask:
2970 case Intrinsic::riscv_vsoxseg6_mask:
2971 case Intrinsic::riscv_vsoxseg7_mask:
2972 case Intrinsic::riscv_vsoxseg8_mask:
2973 case Intrinsic::riscv_vsuxseg2_mask:
2974 case Intrinsic::riscv_vsuxseg3_mask:
2975 case Intrinsic::riscv_vsuxseg4_mask:
2976 case Intrinsic::riscv_vsuxseg5_mask:
2977 case Intrinsic::riscv_vsuxseg6_mask:
2978 case Intrinsic::riscv_vsuxseg7_mask:
2979 case Intrinsic::riscv_vsuxseg8_mask:
2982 case Intrinsic::riscv_vloxei:
2983 case Intrinsic::riscv_vluxei:
2984 case Intrinsic::riscv_vsoxei:
2985 case Intrinsic::riscv_vsuxei:
2986 case Intrinsic::riscv_vloxseg2:
2987 case Intrinsic::riscv_vloxseg3:
2988 case Intrinsic::riscv_vloxseg4:
2989 case Intrinsic::riscv_vloxseg5:
2990 case Intrinsic::riscv_vloxseg6:
2991 case Intrinsic::riscv_vloxseg7:
2992 case Intrinsic::riscv_vloxseg8:
2993 case Intrinsic::riscv_vluxseg2:
2994 case Intrinsic::riscv_vluxseg3:
2995 case Intrinsic::riscv_vluxseg4:
2996 case Intrinsic::riscv_vluxseg5:
2997 case Intrinsic::riscv_vluxseg6:
2998 case Intrinsic::riscv_vluxseg7:
2999 case Intrinsic::riscv_vluxseg8:
3000 case Intrinsic::riscv_vsoxseg2:
3001 case Intrinsic::riscv_vsoxseg3:
3002 case Intrinsic::riscv_vsoxseg4:
3003 case Intrinsic::riscv_vsoxseg5:
3004 case Intrinsic::riscv_vsoxseg6:
3005 case Intrinsic::riscv_vsoxseg7:
3006 case Intrinsic::riscv_vsoxseg8:
3007 case Intrinsic::riscv_vsuxseg2:
3008 case Intrinsic::riscv_vsuxseg3:
3009 case Intrinsic::riscv_vsuxseg4:
3010 case Intrinsic::riscv_vsuxseg5:
3011 case Intrinsic::riscv_vsuxseg6:
3012 case Intrinsic::riscv_vsuxseg7:
3013 case Intrinsic::riscv_vsuxseg8: {
3030 Ty = TarExtTy->getTypeParameter(0U);
3035 const auto *RVVIInfo = RISCVVIntrinsicsTable::getRISCVVIntrinsicInfo(IID);
3036 unsigned VLIndex = RVVIInfo->VLOperand;
3037 unsigned PtrOperandNo = VLIndex - 2 - HasMask;
3050 unsigned SegNum = getSegNum(Inst, PtrOperandNo, IsWrite);
3053 unsigned ElemSize = Ty->getScalarSizeInBits();
3058 Info.InterestingOperands.emplace_back(Inst, PtrOperandNo, IsWrite, Ty,
3059 Align(1), Mask, EVL,
3068 if (Ty->isVectorTy()) {
3071 if ((EltTy->
isHalfTy() && !ST->hasVInstructionsF16()) ||
3077 if (
Size.isScalable() && ST->hasVInstructions())
3080 if (ST->useRVVForFixedLengthVectors())
3100 return std::max<unsigned>(1U, RegWidth.
getFixedValue() / ElemWidth);
3108 return ST->enableUnalignedVectorMem();
3114 if (ST->hasVendorXCVmem() && !ST->is64Bit())
3136 Align Alignment)
const {
3138 if (!VTy || VTy->isScalableTy())
3146 if (VTy->getElementType()->isIntegerTy(8))
3147 if (VTy->getElementCount().getFixedValue() > 256)
3148 return VTy->getPrimitiveSizeInBits() / ST->getRealMinVLen() <
3149 ST->getMaxLMULForFixedLengthVectors();
3154 Align Alignment)
const {
3156 if (!VTy || VTy->isScalableTy())
3170 const Instruction &
I,
bool &AllowPromotionWithoutCommonHeader)
const {
3171 bool Considerable =
false;
3172 AllowPromotionWithoutCommonHeader =
false;
3175 Type *ConsideredSExtType =
3177 if (
I.getType() != ConsideredSExtType)
3181 for (
const User *U :
I.users()) {
3183 Considerable =
true;
3187 if (GEPInst->getNumOperands() > 2) {
3188 AllowPromotionWithoutCommonHeader =
true;
3193 return Considerable;
3198 case Instruction::Add:
3199 case Instruction::Sub:
3200 case Instruction::Mul:
3201 case Instruction::And:
3202 case Instruction::Or:
3203 case Instruction::Xor:
3204 case Instruction::FAdd:
3205 case Instruction::FSub:
3206 case Instruction::FMul:
3207 case Instruction::FDiv:
3208 case Instruction::ICmp:
3209 case Instruction::FCmp:
3211 case Instruction::Shl:
3212 case Instruction::LShr:
3213 case Instruction::AShr:
3214 case Instruction::UDiv:
3215 case Instruction::SDiv:
3216 case Instruction::URem:
3217 case Instruction::SRem:
3218 case Instruction::Select:
3219 return Operand == 1;
3226 if (!
I->getType()->isVectorTy() || !ST->hasVInstructions())
3236 switch (
II->getIntrinsicID()) {
3237 case Intrinsic::fma:
3238 case Intrinsic::vp_fma:
3239 case Intrinsic::fmuladd:
3240 case Intrinsic::vp_fmuladd:
3241 return Operand == 0 || Operand == 1;
3242 case Intrinsic::vp_shl:
3243 case Intrinsic::vp_lshr:
3244 case Intrinsic::vp_ashr:
3245 case Intrinsic::vp_udiv:
3246 case Intrinsic::vp_sdiv:
3247 case Intrinsic::vp_urem:
3248 case Intrinsic::vp_srem:
3249 case Intrinsic::ssub_sat:
3250 case Intrinsic::vp_ssub_sat:
3251 case Intrinsic::usub_sat:
3252 case Intrinsic::vp_usub_sat:
3253 case Intrinsic::vp_select:
3254 return Operand == 1;
3256 case Intrinsic::vp_add:
3257 case Intrinsic::vp_mul:
3258 case Intrinsic::vp_and:
3259 case Intrinsic::vp_or:
3260 case Intrinsic::vp_xor:
3261 case Intrinsic::vp_fadd:
3262 case Intrinsic::vp_fmul:
3263 case Intrinsic::vp_icmp:
3264 case Intrinsic::vp_fcmp:
3265 case Intrinsic::smin:
3266 case Intrinsic::vp_smin:
3267 case Intrinsic::umin:
3268 case Intrinsic::vp_umin:
3269 case Intrinsic::smax:
3270 case Intrinsic::vp_smax:
3271 case Intrinsic::umax:
3272 case Intrinsic::vp_umax:
3273 case Intrinsic::sadd_sat:
3274 case Intrinsic::vp_sadd_sat:
3275 case Intrinsic::uadd_sat:
3276 case Intrinsic::vp_uadd_sat:
3278 case Intrinsic::vp_sub:
3279 case Intrinsic::vp_fsub:
3280 case Intrinsic::vp_fdiv:
3281 return Operand == 0 || Operand == 1;
3294 if (
I->isBitwiseLogicOp()) {
3295 if (!
I->getType()->isVectorTy()) {
3296 if (ST->hasStdExtZbb() || ST->hasStdExtZbkb()) {
3297 for (
auto &
Op :
I->operands()) {
3305 }
else if (
I->getOpcode() == Instruction::And && ST->hasStdExtZvkb()) {
3306 for (
auto &
Op :
I->operands()) {
3318 Ops.push_back(&Not);
3319 Ops.push_back(&InsertElt);
3327 if (!
I->getType()->isVectorTy() || !ST->hasVInstructions())
3335 if (!ST->sinkSplatOperands())
3361 for (
Use &U :
Op->uses()) {
3370 Ops.push_back(&
Op->getOperandUse(0));
3372 Use *InsertEltUse = &
Op->getOperandUse(0);
3375 Ops.push_back(&InsertElt->getOperandUse(1));
3376 Ops.push_back(InsertEltUse);
3388 if (!ST->enableUnalignedScalarMem())
3391 if (!ST->hasStdExtZbb() && !ST->hasStdExtZbkb() && !IsZeroCmp)
3394 Options.AllowOverlappingLoads =
true;
3395 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
3397 if (ST->is64Bit()) {
3398 Options.LoadSizes = {8, 4, 2, 1};
3399 Options.AllowedTailExpansions = {3, 5, 6};
3401 Options.LoadSizes = {4, 2, 1};
3402 Options.AllowedTailExpansions = {3};
3405 if (IsZeroCmp && ST->hasVInstructions()) {
3406 unsigned VLenB = ST->getRealMinVLen() / 8;
3409 unsigned MinSize = ST->getXLen() / 8 + 1;
3410 unsigned MaxSize = VLenB * ST->getMaxLMULForFixedLengthVectors();
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file provides a helper that implements much of the TTI interface in terms of the target-independ...
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static bool shouldSplit(Instruction *InsertPoint, DenseSet< Value * > &PrevConditionValues, DenseSet< Value * > &ConditionValues, DominatorTree &DT, DenseSet< Instruction * > &Unhoistables)
static cl::opt< OutputCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(OutputCostKind::RecipThroughput), cl::values(clEnumValN(OutputCostKind::RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(OutputCostKind::Latency, "latency", "Instruction latency"), clEnumValN(OutputCostKind::CodeSize, "code-size", "Code size"), clEnumValN(OutputCostKind::SizeAndLatency, "size-latency", "Code size and latency"), clEnumValN(OutputCostKind::All, "all", "Print all cost kinds")))
Cost tables and simple lookup functions.
static cl::opt< int > InstrCost("inline-instr-cost", cl::Hidden, cl::init(5), cl::desc("Cost of a single instruction when inlining"))
std::pair< Instruction::BinaryOps, Value * > OffsetOp
Find all possible pairs (BinOp, RHS) that BinOp V, RHS can be simplified.
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
static const Function * getCalledFunction(const Value *V)
MachineInstr unsigned OpIdx
uint64_t IntrinsicInst * II
static Type * getValueType(Value *V)
Returns the type of the given value/instruction V.
This file describes how to lower LLVM code to machine code.
Class for arbitrary precision integers.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
size_t size() const
size - Get the array size.
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false) const override
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1) const override
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) const override
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef< const Value * > Operands, Type *AccessType, TTI::TargetCostKind CostKind) const override
InstructionCost getScalarizationOverhead(VectorType *InTy, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const override
InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const override
TTI::ShuffleKind improveShuffleKindFromMask(TTI::ShuffleKind Kind, ArrayRef< int > Mask, VectorType *SrcTy, int &Index, VectorType *&SubTy) const
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I=nullptr, int64_t ScalableOffset=0) const override
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
InstructionCost getExpandCompressMemoryOpCost(unsigned Opcode, Type *DataTy, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
std::optional< unsigned > getMaxVScale() const override
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const override
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) const override
InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const override
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
std::pair< InstructionCost, MVT > getTypeLegalizationCost(Type *Ty) const
bool isLegalAddImmediate(int64_t imm) const override
std::optional< unsigned > getVScaleForTuning() const override
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const override
InstructionCost getAddressComputationCost(Type *PtrTy, ScalarEvolution *, const SCEV *, TTI::TargetCostKind) const override
unsigned getRegUsageForType(Type *Ty) const override
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *DataTy, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind) const override
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
@ ICMP_SLT
signed less than
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ FCMP_ULT
1 1 0 0 True if unordered or less than
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
static bool isFPPredicate(Predicate P)
static bool isIntPredicate(Predicate P)
static LLVM_ABI ConstantInt * getTrue(LLVMContext &Context)
A parsed version of the target data layout string in and methods for querying it.
Convenience struct for specifying and reasoning about fast-math flags.
Class to represent fixed width SIMD vectors.
unsigned getNumElements() const
static FixedVectorType * getDoubleElementsVectorType(FixedVectorType *VTy)
static LLVM_ABI FixedVectorType * get(Type *ElementType, unsigned NumElts)
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
static InstructionCost getInvalid(CostType Val=0)
CostType getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
LLVM_ABI bool isCommutative() const LLVM_READONLY
Return true if the instruction is commutative:
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
const SmallVectorImpl< Type * > & getArgTypes() const
Type * getReturnType() const
const SmallVectorImpl< const Value * > & getArgs() const
Intrinsic::ID getID() const
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
Represents a single loop in the control flow graph.
static MVT getFloatingPointVT(unsigned BitWidth)
unsigned getVectorMinNumElements() const
Given a vector type, return the minimum number of elements it contains.
uint64_t getScalarSizeInBits() const
MVT changeVectorElementType(MVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
bool bitsLE(MVT VT) const
Return true if this has no more bits than VT.
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
MVT changeTypeToInteger()
Return the type converted to an equivalently sized integer or vector with integer element type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool bitsGT(MVT VT) const
Return true if this has more bits than VT.
bool isFixedLengthVector() const
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
MVT getVectorElementType() const
static MVT getIntegerVT(unsigned BitWidth)
MVT getScalarType() const
If this is a vector, return the element type, otherwise return this.
unsigned getOpcode() const
Return the opcode for this Instruction or ConstantExpr.
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const override
bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) const
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) const override
unsigned getMinTripCountTailFoldingThreshold() const override
TTI::AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const override
InstructionCost getAddressComputationCost(Type *PTy, ScalarEvolution *SE, const SCEV *Ptr, TTI::TargetCostKind CostKind) const override
InstructionCost getStoreImmCost(Type *VecTy, TTI::OperandValueInfo OpInfo, TTI::TargetCostKind CostKind) const
Return the cost of materializing an immediate for a value operand of a store instruction.
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const override
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys) const override
bool hasActiveVectorLength() const override
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
InstructionCost getIndexedVectorInstrCostFromEnd(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index) const override
InstructionCost getExpandCompressMemoryOpCost(unsigned Opcode, Type *Src, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr) const override
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE) const override
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind) const override
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const override
InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind, Instruction *Inst=nullptr) const override
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind) const override
Try to calculate op costs for min/max reduction operations.
bool canSplatOperand(Instruction *I, int Operand) const
Return true if the (vector) instruction I will be lowered to an instruction with a scalar splat opera...
bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2) const override
bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const override
unsigned getRegUsageForType(Type *Ty) const override
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false) const override
InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, bool ForPoisonSrc=true, ArrayRef< Value * > VL={}) const override
Estimate the overhead of scalarizing an instruction.
bool isLegalMaskedScatter(Type *DataType, Align Alignment) const override
bool isLegalMaskedCompressStore(Type *DataTy, Align Alignment) const override
bool preferAlternateOpcodeVectorization() const override
bool isProfitableToSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const override
Check if sinking I's operands to I's basic block is profitable, because the operands can be folded in...
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, const Value *Op0, const Value *Op1) const override
std::optional< unsigned > getMaxVScale() const override
bool shouldExpandReduction(const IntrinsicInst *II) const override
std::optional< unsigned > getVScaleForTuning() const override
bool isLegalMaskedGather(Type *DataType, Align Alignment) const override
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const override
unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override
InstructionCost getPointersChainCost(ArrayRef< const Value * > Ptrs, const Value *Base, const TTI::PointersChainInfo &Info, Type *AccessTy, TTI::TargetCostKind CostKind) const override
TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const override
InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, TTI::PartialReductionExtendKind OpAExtend, TTI::PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp, TTI::TargetCostKind CostKind) const override
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpdInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr) const override
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const override
Get intrinsic cost based on arguments.
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind) const override
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const override
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP) const override
bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const override
See if I should be considered for address type promotion.
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) const override
InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const override
TargetTransformInfo::PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override
static MVT getM1VT(MVT VT)
Given a vector (either fixed or scalable), return the scalable vector corresponding to a vector regis...
InstructionCost getVRGatherVVCost(MVT VT) const
Return the cost of a vrgather.vv instruction for the type VT.
InstructionCost getVRGatherVICost(MVT VT) const
Return the cost of a vrgather.vi (or vx) instruction for the type VT.
static unsigned computeVLMAX(unsigned VectorBits, unsigned EltSize, unsigned MinSize)
InstructionCost getLMULCost(MVT VT) const
Return the cost of LMUL for linear operations.
InstructionCost getVSlideVICost(MVT VT) const
Return the cost of a vslidedown.vi or vslideup.vi instruction for the type VT.
InstructionCost getVSlideVXCost(MVT VT) const
Return the cost of a vslidedown.vx or vslideup.vx instruction for the type VT.
static RISCVVType::VLMUL getLMUL(MVT VT)
This class represents an analyzed expression in the program.
static LLVM_ABI ScalableVectorType * get(Type *ElementType, unsigned MinNumElts)
The main scalar evolution driver.
static LLVM_ABI bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static LLVM_ABI bool isInterleaveMask(ArrayRef< int > Mask, unsigned Factor, unsigned NumInputElts, SmallVectorImpl< unsigned > &StartIndexes)
Return true if the mask interleaves one or more input vectors together.
Implements a dense probed hash-table based set with some number of buckets stored inline.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
An instruction for storing to memory.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
static constexpr TypeSize getScalable(ScalarTy MinimumSize)
The instances of the Type class are immutable: once they are created, they are never changed.
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
bool isVectorTy() const
True if this is an instance of VectorType.
LLVM_ABI bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
bool isBFloatTy() const
Return true if this is 'bfloat', a 16-bit bfloat type.
LLVM_ABI unsigned getPointerAddressSpace() const
Get the address space of this pointer or pointer vector type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
LLVM_ABI Type * getWithNewBitWidth(unsigned NewBitWidth) const
Given an integer or vector type, change the lane bitwidth to NewBitwidth, whilst keeping the old numb...
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
LLVM_ABI Type * getWithNewType(Type *EltTy) const
Given vector type, change the element type, whilst keeping the old number of elements.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
LLVM_ABI unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
static LLVM_ABI IntegerType * getInt1Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
static LLVM_ABI IntegerType * getIntNTy(LLVMContext &C, unsigned N)
static LLVM_ABI Type * getFloatTy(LLVMContext &C)
bool isVoidTy() const
Return true if this is 'void'.
A Use represents the edge between a Value definition and its users.
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
user_iterator user_begin()
bool hasOneUse() const
Return true if there is exactly one use of this value.
LLVM_ABI Align getPointerAlignment(const DataLayout &DL) const
Returns an alignment of the pointer value.
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static LLVM_ABI VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
std::pair< iterator, bool > insert(const ValueT &V)
constexpr bool isKnownMultipleOf(ScalarTy RHS) const
This function tells the caller whether the element count is known at compile time to be a multiple of...
constexpr ScalarTy getFixedValue() const
static constexpr bool isKnownLE(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
static constexpr bool isKnownLT(const FixedOrScalableQuantity &LHS, const FixedOrScalableQuantity &RHS)
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ C
The default llvm calling convention, compatible with C.
ISD namespace - This namespace contains an enum which represents all of the SelectionDAG node types a...
@ ADD
Simple integer binary arithmetic operators.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ FADD
Simple binary floating point operators.
@ SIGN_EXTEND
Conversion operators.
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
SpecificConstantMatch m_ZeroInt()
Convenience matchers for specific integer values.
BinaryOp_match< SrcTy, SpecificConstantMatch, TargetOpcode::G_XOR, true > m_Not(const SrcTy &&Src)
Matches a register not-ed by a G_XOR.
bool match(Val *V, const Pattern &P)
IntrinsicID_match m_Intrinsic()
Match intrinsic calls like this: m_Intrinsic<Intrinsic::fabs>(m_Value(X))
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
int getIntMatCost(const APInt &Val, unsigned Size, const MCSubtargetInfo &STI, bool CompressionCost, bool FreeZeroes)
static constexpr unsigned RVVBitsPerBlock
initializer< Ty > init(const Ty &Val)
This is an optimization pass for GlobalISel generic memory operations.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
const CostTblEntryT< CostType > * CostTableLookup(ArrayRef< CostTblEntryT< CostType > > Tbl, int ISD, MVT Ty)
Find in cost table.
LLVM_ABI bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name)
Returns true if Name is applied to TheLoop and enabled.
constexpr bool isInt(int64_t x)
Checks if an integer fits into the given bit width.
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
LLVM_ABI llvm::SmallVector< int, 16 > createStrideMask(unsigned Start, unsigned Stride, unsigned VF)
Create a stride shuffle mask.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
constexpr bool isUInt(uint64_t x)
Checks if an unsigned integer fits into the given bit width.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
constexpr int PoisonMaskElem
constexpr T divideCeil(U Numerator, V Denominator)
Returns the integer ceil(Numerator / Denominator).
LLVM_ABI bool isMaskedSlidePair(ArrayRef< int > Mask, int NumElts, std::array< std::pair< int, int >, 2 > &SrcInfo)
Does this shuffle mask represent either one slide shuffle or a pair of two slide shuffles,...
LLVM_ABI llvm::SmallVector< int, 16 > createInterleaveMask(unsigned VF, unsigned NumVecs)
Create an interleave shuffle mask.
DWARFExpression::Operation Op
CostTblEntryT< unsigned > CostTblEntry
OutputIt copy(R &&Range, OutputIt Out)
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
LLVM_ABI void processShuffleMasks(ArrayRef< int > Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs, unsigned NumOfUsedRegs, function_ref< void()> NoInputAction, function_ref< void(ArrayRef< int >, unsigned, unsigned)> SingleInputAction, function_ref< void(ArrayRef< int >, unsigned, unsigned, bool)> ManyInputsAction)
Splits and processes shuffle mask depending on the number of input and output registers.
bool equal(L &&LRange, R &&RRange)
Wrapper function around std::equal to detect if pair-wise elements between two ranges are the same.
T bit_floor(T Value)
Returns the largest integral power of two no greater than Value if Value is nonzero.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Align valueOrOne() const
For convenience, returns a valid alignment or 1 if undefined.
Information about a load/store intrinsic defined by the target.