LLVM 20.0.0git
VectorCombine.cpp
Go to the documentation of this file.
1//===------- VectorCombine.cpp - Optimize partial vector operations -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass optimizes scalar/vector interactions using target cost models. The
10// transforms implemented here may not fit in traditional loop-based or SLP
11// vectorization passes.
12//
13//===----------------------------------------------------------------------===//
14
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/ScopeExit.h"
19#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/Loads.h"
27#include "llvm/IR/Dominators.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/IRBuilder.h"
34#include <numeric>
35#include <queue>
36
37#define DEBUG_TYPE "vector-combine"
39
40using namespace llvm;
41using namespace llvm::PatternMatch;
42
43STATISTIC(NumVecLoad, "Number of vector loads formed");
44STATISTIC(NumVecCmp, "Number of vector compares formed");
45STATISTIC(NumVecBO, "Number of vector binops formed");
46STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
47STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
48STATISTIC(NumScalarBO, "Number of scalar binops formed");
49STATISTIC(NumScalarCmp, "Number of scalar compares formed");
50
52 "disable-vector-combine", cl::init(false), cl::Hidden,
53 cl::desc("Disable all vector combine transforms"));
54
56 "disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
57 cl::desc("Disable binop extract to shuffle transforms"));
58
60 "vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
61 cl::desc("Max number of instructions to scan for vector combining."));
62
63static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
64
65namespace {
66class VectorCombine {
67public:
68 VectorCombine(Function &F, const TargetTransformInfo &TTI,
69 const DominatorTree &DT, AAResults &AA, AssumptionCache &AC,
70 const DataLayout *DL, TTI::TargetCostKind CostKind,
71 bool TryEarlyFoldsOnly)
72 : F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC), DL(DL),
73 CostKind(CostKind), TryEarlyFoldsOnly(TryEarlyFoldsOnly) {}
74
75 bool run();
76
77private:
78 Function &F;
79 IRBuilder<> Builder;
81 const DominatorTree &DT;
82 AAResults &AA;
84 const DataLayout *DL;
85 TTI::TargetCostKind CostKind;
86
87 /// If true, only perform beneficial early IR transforms. Do not introduce new
88 /// vector operations.
89 bool TryEarlyFoldsOnly;
90
91 InstructionWorklist Worklist;
92
93 // TODO: Direct calls from the top-level "run" loop use a plain "Instruction"
94 // parameter. That should be updated to specific sub-classes because the
95 // run loop was changed to dispatch on opcode.
96 bool vectorizeLoadInsert(Instruction &I);
97 bool widenSubvectorLoad(Instruction &I);
98 ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
100 unsigned PreferredExtractIndex) const;
101 bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
102 const Instruction &I,
103 ExtractElementInst *&ConvertToShuffle,
104 unsigned PreferredExtractIndex);
105 void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
106 Instruction &I);
107 void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
108 Instruction &I);
109 bool foldExtractExtract(Instruction &I);
110 bool foldInsExtFNeg(Instruction &I);
111 bool foldInsExtVectorToShuffle(Instruction &I);
112 bool foldBitcastShuffle(Instruction &I);
113 bool scalarizeBinopOrCmp(Instruction &I);
114 bool scalarizeVPIntrinsic(Instruction &I);
115 bool foldExtractedCmps(Instruction &I);
116 bool foldSingleElementStore(Instruction &I);
117 bool scalarizeLoadExtract(Instruction &I);
118 bool foldConcatOfBoolMasks(Instruction &I);
119 bool foldPermuteOfBinops(Instruction &I);
120 bool foldShuffleOfBinops(Instruction &I);
121 bool foldShuffleOfCastops(Instruction &I);
122 bool foldShuffleOfShuffles(Instruction &I);
123 bool foldShuffleOfIntrinsics(Instruction &I);
124 bool foldShuffleToIdentity(Instruction &I);
125 bool foldShuffleFromReductions(Instruction &I);
126 bool foldCastFromReductions(Instruction &I);
127 bool foldSelectShuffle(Instruction &I, bool FromReduction = false);
128 bool shrinkType(Instruction &I);
129
130 void replaceValue(Value &Old, Value &New) {
131 Old.replaceAllUsesWith(&New);
132 if (auto *NewI = dyn_cast<Instruction>(&New)) {
133 New.takeName(&Old);
134 Worklist.pushUsersToWorkList(*NewI);
135 Worklist.pushValue(NewI);
136 }
137 Worklist.pushValue(&Old);
138 }
139
141 LLVM_DEBUG(dbgs() << "VC: Erasing: " << I << '\n');
142 for (Value *Op : I.operands())
143 Worklist.pushValue(Op);
144 Worklist.remove(&I);
145 I.eraseFromParent();
146 }
147};
148} // namespace
149
150/// Return the source operand of a potentially bitcasted value. If there is no
151/// bitcast, return the input value itself.
153 while (auto *BitCast = dyn_cast<BitCastInst>(V))
154 V = BitCast->getOperand(0);
155 return V;
156}
157
158static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI) {
159 // Do not widen load if atomic/volatile or under asan/hwasan/memtag/tsan.
160 // The widened load may load data from dirty regions or create data races
161 // non-existent in the source.
162 if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
163 Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
165 return false;
166
167 // We are potentially transforming byte-sized (8-bit) memory accesses, so make
168 // sure we have all of our type-based constraints in place for this target.
169 Type *ScalarTy = Load->getType()->getScalarType();
170 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
171 unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
172 if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
173 ScalarSize % 8 != 0)
174 return false;
175
176 return true;
177}
178
179bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
180 // Match insert into fixed vector of scalar value.
181 // TODO: Handle non-zero insert index.
182 Value *Scalar;
183 if (!match(&I,
185 return false;
186
187 // Optionally match an extract from another vector.
188 Value *X;
189 bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
190 if (!HasExtract)
191 X = Scalar;
192
193 auto *Load = dyn_cast<LoadInst>(X);
194 if (!canWidenLoad(Load, TTI))
195 return false;
196
197 Type *ScalarTy = Scalar->getType();
198 uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
199 unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
200
201 // Check safety of replacing the scalar load with a larger vector load.
202 // We use minimal alignment (maximum flexibility) because we only care about
203 // the dereferenceable region. When calculating cost and creating a new op,
204 // we may use a larger value based on alignment attributes.
205 Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
206 assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
207
208 unsigned MinVecNumElts = MinVectorSize / ScalarSize;
209 auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
210 unsigned OffsetEltIndex = 0;
211 Align Alignment = Load->getAlign();
212 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), *DL, Load, &AC,
213 &DT)) {
214 // It is not safe to load directly from the pointer, but we can still peek
215 // through gep offsets and check if it safe to load from a base address with
216 // updated alignment. If it is, we can shuffle the element(s) into place
217 // after loading.
218 unsigned OffsetBitWidth = DL->getIndexTypeSizeInBits(SrcPtr->getType());
219 APInt Offset(OffsetBitWidth, 0);
221
222 // We want to shuffle the result down from a high element of a vector, so
223 // the offset must be positive.
224 if (Offset.isNegative())
225 return false;
226
227 // The offset must be a multiple of the scalar element to shuffle cleanly
228 // in the element's size.
229 uint64_t ScalarSizeInBytes = ScalarSize / 8;
230 if (Offset.urem(ScalarSizeInBytes) != 0)
231 return false;
232
233 // If we load MinVecNumElts, will our target element still be loaded?
234 OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
235 if (OffsetEltIndex >= MinVecNumElts)
236 return false;
237
238 if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), *DL, Load, &AC,
239 &DT))
240 return false;
241
242 // Update alignment with offset value. Note that the offset could be negated
243 // to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
244 // negation does not change the result of the alignment calculation.
245 Alignment = commonAlignment(Alignment, Offset.getZExtValue());
246 }
247
248 // Original pattern: insertelt undef, load [free casts of] PtrOp, 0
249 // Use the greater of the alignment on the load or its source pointer.
250 Alignment = std::max(SrcPtr->getPointerAlignment(*DL), Alignment);
251 Type *LoadTy = Load->getType();
252 unsigned AS = Load->getPointerAddressSpace();
253 InstructionCost OldCost =
254 TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS, CostKind);
255 APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
256 OldCost +=
257 TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
258 /* Insert */ true, HasExtract, CostKind);
259
260 // New pattern: load VecPtr
261 InstructionCost NewCost =
262 TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS, CostKind);
263 // Optionally, we are shuffling the loaded vector element(s) into place.
264 // For the mask set everything but element 0 to undef to prevent poison from
265 // propagating from the extra loaded memory. This will also optionally
266 // shrink/grow the vector from the loaded size to the output size.
267 // We assume this operation has no cost in codegen if there was no offset.
268 // Note that we could use freeze to avoid poison problems, but then we might
269 // still need a shuffle to change the vector size.
270 auto *Ty = cast<FixedVectorType>(I.getType());
271 unsigned OutputNumElts = Ty->getNumElements();
273 assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
274 Mask[0] = OffsetEltIndex;
275 if (OffsetEltIndex)
276 NewCost +=
278
279 // We can aggressively convert to the vector form because the backend can
280 // invert this transform if it does not result in a performance win.
281 if (OldCost < NewCost || !NewCost.isValid())
282 return false;
283
284 // It is safe and potentially profitable to load a vector directly:
285 // inselt undef, load Scalar, 0 --> load VecPtr
286 IRBuilder<> Builder(Load);
287 Value *CastedPtr =
288 Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
289 Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
290 VecLd = Builder.CreateShuffleVector(VecLd, Mask);
291
292 replaceValue(I, *VecLd);
293 ++NumVecLoad;
294 return true;
295}
296
297/// If we are loading a vector and then inserting it into a larger vector with
298/// undefined elements, try to load the larger vector and eliminate the insert.
299/// This removes a shuffle in IR and may allow combining of other loaded values.
300bool VectorCombine::widenSubvectorLoad(Instruction &I) {
301 // Match subvector insert of fixed vector.
302 auto *Shuf = cast<ShuffleVectorInst>(&I);
303 if (!Shuf->isIdentityWithPadding())
304 return false;
305
306 // Allow a non-canonical shuffle mask that is choosing elements from op1.
307 unsigned NumOpElts =
308 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
309 unsigned OpIndex = any_of(Shuf->getShuffleMask(), [&NumOpElts](int M) {
310 return M >= (int)(NumOpElts);
311 });
312
313 auto *Load = dyn_cast<LoadInst>(Shuf->getOperand(OpIndex));
314 if (!canWidenLoad(Load, TTI))
315 return false;
316
317 // We use minimal alignment (maximum flexibility) because we only care about
318 // the dereferenceable region. When calculating cost and creating a new op,
319 // we may use a larger value based on alignment attributes.
320 auto *Ty = cast<FixedVectorType>(I.getType());
321 Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
322 assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
323 Align Alignment = Load->getAlign();
324 if (!isSafeToLoadUnconditionally(SrcPtr, Ty, Align(1), *DL, Load, &AC, &DT))
325 return false;
326
327 Alignment = std::max(SrcPtr->getPointerAlignment(*DL), Alignment);
328 Type *LoadTy = Load->getType();
329 unsigned AS = Load->getPointerAddressSpace();
330
331 // Original pattern: insert_subvector (load PtrOp)
332 // This conservatively assumes that the cost of a subvector insert into an
333 // undef value is 0. We could add that cost if the cost model accurately
334 // reflects the real cost of that operation.
335 InstructionCost OldCost =
336 TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS, CostKind);
337
338 // New pattern: load PtrOp
339 InstructionCost NewCost =
340 TTI.getMemoryOpCost(Instruction::Load, Ty, Alignment, AS, CostKind);
341
342 // We can aggressively convert to the vector form because the backend can
343 // invert this transform if it does not result in a performance win.
344 if (OldCost < NewCost || !NewCost.isValid())
345 return false;
346
347 IRBuilder<> Builder(Load);
348 Value *CastedPtr =
349 Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
350 Value *VecLd = Builder.CreateAlignedLoad(Ty, CastedPtr, Alignment);
351 replaceValue(I, *VecLd);
352 ++NumVecLoad;
353 return true;
354}
355
356/// Determine which, if any, of the inputs should be replaced by a shuffle
357/// followed by extract from a different index.
358ExtractElementInst *VectorCombine::getShuffleExtract(
360 unsigned PreferredExtractIndex = InvalidIndex) const {
361 auto *Index0C = dyn_cast<ConstantInt>(Ext0->getIndexOperand());
362 auto *Index1C = dyn_cast<ConstantInt>(Ext1->getIndexOperand());
363 assert(Index0C && Index1C && "Expected constant extract indexes");
364
365 unsigned Index0 = Index0C->getZExtValue();
366 unsigned Index1 = Index1C->getZExtValue();
367
368 // If the extract indexes are identical, no shuffle is needed.
369 if (Index0 == Index1)
370 return nullptr;
371
372 Type *VecTy = Ext0->getVectorOperand()->getType();
373 assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
374 InstructionCost Cost0 =
375 TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
376 InstructionCost Cost1 =
377 TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
378
379 // If both costs are invalid no shuffle is needed
380 if (!Cost0.isValid() && !Cost1.isValid())
381 return nullptr;
382
383 // We are extracting from 2 different indexes, so one operand must be shuffled
384 // before performing a vector operation and/or extract. The more expensive
385 // extract will be replaced by a shuffle.
386 if (Cost0 > Cost1)
387 return Ext0;
388 if (Cost1 > Cost0)
389 return Ext1;
390
391 // If the costs are equal and there is a preferred extract index, shuffle the
392 // opposite operand.
393 if (PreferredExtractIndex == Index0)
394 return Ext1;
395 if (PreferredExtractIndex == Index1)
396 return Ext0;
397
398 // Otherwise, replace the extract with the higher index.
399 return Index0 > Index1 ? Ext0 : Ext1;
400}
401
402/// Compare the relative costs of 2 extracts followed by scalar operation vs.
403/// vector operation(s) followed by extract. Return true if the existing
404/// instructions are cheaper than a vector alternative. Otherwise, return false
405/// and if one of the extracts should be transformed to a shufflevector, set
406/// \p ConvertToShuffle to that extract instruction.
407bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
408 ExtractElementInst *Ext1,
409 const Instruction &I,
410 ExtractElementInst *&ConvertToShuffle,
411 unsigned PreferredExtractIndex) {
412 auto *Ext0IndexC = dyn_cast<ConstantInt>(Ext0->getIndexOperand());
413 auto *Ext1IndexC = dyn_cast<ConstantInt>(Ext1->getIndexOperand());
414 assert(Ext0IndexC && Ext1IndexC && "Expected constant extract indexes");
415
416 unsigned Opcode = I.getOpcode();
417 Value *Ext0Src = Ext0->getVectorOperand();
418 Value *Ext1Src = Ext1->getVectorOperand();
419 Type *ScalarTy = Ext0->getType();
420 auto *VecTy = cast<VectorType>(Ext0Src->getType());
421 InstructionCost ScalarOpCost, VectorOpCost;
422
423 // Get cost estimates for scalar and vector versions of the operation.
424 bool IsBinOp = Instruction::isBinaryOp(Opcode);
425 if (IsBinOp) {
426 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy, CostKind);
427 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy, CostKind);
428 } else {
429 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
430 "Expected a compare");
431 CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
432 ScalarOpCost = TTI.getCmpSelInstrCost(
433 Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred, CostKind);
434 VectorOpCost = TTI.getCmpSelInstrCost(
435 Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred, CostKind);
436 }
437
438 // Get cost estimates for the extract elements. These costs will factor into
439 // both sequences.
440 unsigned Ext0Index = Ext0IndexC->getZExtValue();
441 unsigned Ext1Index = Ext1IndexC->getZExtValue();
442
443 InstructionCost Extract0Cost =
444 TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Ext0Index);
445 InstructionCost Extract1Cost =
446 TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Ext1Index);
447
448 // A more expensive extract will always be replaced by a splat shuffle.
449 // For example, if Ext0 is more expensive:
450 // opcode (extelt V0, Ext0), (ext V1, Ext1) -->
451 // extelt (opcode (splat V0, Ext0), V1), Ext1
452 // TODO: Evaluate whether that always results in lowest cost. Alternatively,
453 // check the cost of creating a broadcast shuffle and shuffling both
454 // operands to element 0.
455 unsigned BestExtIndex = Extract0Cost > Extract1Cost ? Ext0Index : Ext1Index;
456 unsigned BestInsIndex = Extract0Cost > Extract1Cost ? Ext1Index : Ext0Index;
457 InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
458
459 // Extra uses of the extracts mean that we include those costs in the
460 // vector total because those instructions will not be eliminated.
461 InstructionCost OldCost, NewCost;
462 if (Ext0Src == Ext1Src && Ext0Index == Ext1Index) {
463 // Handle a special case. If the 2 extracts are identical, adjust the
464 // formulas to account for that. The extra use charge allows for either the
465 // CSE'd pattern or an unoptimized form with identical values:
466 // opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
467 bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
468 : !Ext0->hasOneUse() || !Ext1->hasOneUse();
469 OldCost = CheapExtractCost + ScalarOpCost;
470 NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
471 } else {
472 // Handle the general case. Each extract is actually a different value:
473 // opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
474 OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
475 NewCost = VectorOpCost + CheapExtractCost +
476 !Ext0->hasOneUse() * Extract0Cost +
477 !Ext1->hasOneUse() * Extract1Cost;
478 }
479
480 ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
481 if (ConvertToShuffle) {
482 if (IsBinOp && DisableBinopExtractShuffle)
483 return true;
484
485 // If we are extracting from 2 different indexes, then one operand must be
486 // shuffled before performing the vector operation. The shuffle mask is
487 // poison except for 1 lane that is being translated to the remaining
488 // extraction lane. Therefore, it is a splat shuffle. Ex:
489 // ShufMask = { poison, poison, 0, poison }
490 // TODO: The cost model has an option for a "broadcast" shuffle
491 // (splat-from-element-0), but no option for a more general splat.
492 if (auto *FixedVecTy = dyn_cast<FixedVectorType>(VecTy)) {
493 SmallVector<int> ShuffleMask(FixedVecTy->getNumElements(),
495 ShuffleMask[BestInsIndex] = BestExtIndex;
497 VecTy, ShuffleMask, CostKind, 0, nullptr,
498 {ConvertToShuffle});
499 } else {
500 NewCost +=
502 {}, CostKind, 0, nullptr, {ConvertToShuffle});
503 }
504 }
505
506 // Aggressively form a vector op if the cost is equal because the transform
507 // may enable further optimization.
508 // Codegen can reverse this transform (scalarize) if it was not profitable.
509 return OldCost < NewCost;
510}
511
512/// Create a shuffle that translates (shifts) 1 element from the input vector
513/// to a new element location.
514static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
515 unsigned NewIndex, IRBuilder<> &Builder) {
516 // The shuffle mask is poison except for 1 lane that is being translated
517 // to the new element index. Example for OldIndex == 2 and NewIndex == 0:
518 // ShufMask = { 2, poison, poison, poison }
519 auto *VecTy = cast<FixedVectorType>(Vec->getType());
520 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
521 ShufMask[NewIndex] = OldIndex;
522 return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
523}
524
525/// Given an extract element instruction with constant index operand, shuffle
526/// the source vector (shift the scalar element) to a NewIndex for extraction.
527/// Return null if the input can be constant folded, so that we are not creating
528/// unnecessary instructions.
530 unsigned NewIndex,
531 IRBuilder<> &Builder) {
532 // Shufflevectors can only be created for fixed-width vectors.
533 Value *X = ExtElt->getVectorOperand();
534 if (!isa<FixedVectorType>(X->getType()))
535 return nullptr;
536
537 // If the extract can be constant-folded, this code is unsimplified. Defer
538 // to other passes to handle that.
539 Value *C = ExtElt->getIndexOperand();
540 assert(isa<ConstantInt>(C) && "Expected a constant index operand");
541 if (isa<Constant>(X))
542 return nullptr;
543
544 Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
545 NewIndex, Builder);
546 return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
547}
548
549/// Try to reduce extract element costs by converting scalar compares to vector
550/// compares followed by extract.
551/// cmp (ext0 V0, C), (ext1 V1, C)
552void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
554 assert(isa<CmpInst>(&I) && "Expected a compare");
555 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
556 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
557 "Expected matching constant extract indexes");
558
559 // cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
560 ++NumVecCmp;
561 CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
562 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
563 Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
564 Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
565 replaceValue(I, *NewExt);
566}
567
568/// Try to reduce extract element costs by converting scalar binops to vector
569/// binops followed by extract.
570/// bo (ext0 V0, C), (ext1 V1, C)
571void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
573 assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
574 assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
575 cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
576 "Expected matching constant extract indexes");
577
578 // bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
579 ++NumVecBO;
580 Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
581 Value *VecBO =
582 Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
583
584 // All IR flags are safe to back-propagate because any potential poison
585 // created in unused vector elements is discarded by the extract.
586 if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
587 VecBOInst->copyIRFlags(&I);
588
589 Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
590 replaceValue(I, *NewExt);
591}
592
593/// Match an instruction with extracted vector operands.
594bool VectorCombine::foldExtractExtract(Instruction &I) {
595 // It is not safe to transform things like div, urem, etc. because we may
596 // create undefined behavior when executing those on unknown vector elements.
598 return false;
599
600 Instruction *I0, *I1;
602 if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
604 return false;
605
606 Value *V0, *V1;
607 uint64_t C0, C1;
608 if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
609 !match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
610 V0->getType() != V1->getType())
611 return false;
612
613 // If the scalar value 'I' is going to be re-inserted into a vector, then try
614 // to create an extract to that same element. The extract/insert can be
615 // reduced to a "select shuffle".
616 // TODO: If we add a larger pattern match that starts from an insert, this
617 // probably becomes unnecessary.
618 auto *Ext0 = cast<ExtractElementInst>(I0);
619 auto *Ext1 = cast<ExtractElementInst>(I1);
620 uint64_t InsertIndex = InvalidIndex;
621 if (I.hasOneUse())
622 match(I.user_back(),
623 m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
624
625 ExtractElementInst *ExtractToChange;
626 if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
627 return false;
628
629 if (ExtractToChange) {
630 unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
631 ExtractElementInst *NewExtract =
632 translateExtract(ExtractToChange, CheapExtractIdx, Builder);
633 if (!NewExtract)
634 return false;
635 if (ExtractToChange == Ext0)
636 Ext0 = NewExtract;
637 else
638 Ext1 = NewExtract;
639 }
640
641 if (Pred != CmpInst::BAD_ICMP_PREDICATE)
642 foldExtExtCmp(Ext0, Ext1, I);
643 else
644 foldExtExtBinop(Ext0, Ext1, I);
645
646 Worklist.push(Ext0);
647 Worklist.push(Ext1);
648 return true;
649}
650
651/// Try to replace an extract + scalar fneg + insert with a vector fneg +
652/// shuffle.
653bool VectorCombine::foldInsExtFNeg(Instruction &I) {
654 // Match an insert (op (extract)) pattern.
655 Value *DestVec;
657 Instruction *FNeg;
658 if (!match(&I, m_InsertElt(m_Value(DestVec), m_OneUse(m_Instruction(FNeg)),
659 m_ConstantInt(Index))))
660 return false;
661
662 // Note: This handles the canonical fneg instruction and "fsub -0.0, X".
663 Value *SrcVec;
664 Instruction *Extract;
665 if (!match(FNeg, m_FNeg(m_CombineAnd(
666 m_Instruction(Extract),
667 m_ExtractElt(m_Value(SrcVec), m_SpecificInt(Index))))))
668 return false;
669
670 auto *VecTy = cast<FixedVectorType>(I.getType());
671 auto *ScalarTy = VecTy->getScalarType();
672 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcVec->getType());
673 if (!SrcVecTy || ScalarTy != SrcVecTy->getScalarType())
674 return false;
675
676 // Ignore bogus insert/extract index.
677 unsigned NumElts = VecTy->getNumElements();
678 if (Index >= NumElts)
679 return false;
680
681 // We are inserting the negated element into the same lane that we extracted
682 // from. This is equivalent to a select-shuffle that chooses all but the
683 // negated element from the destination vector.
684 SmallVector<int> Mask(NumElts);
685 std::iota(Mask.begin(), Mask.end(), 0);
686 Mask[Index] = Index + NumElts;
687 InstructionCost OldCost =
688 TTI.getArithmeticInstrCost(Instruction::FNeg, ScalarTy, CostKind) +
689 TTI.getVectorInstrCost(I, VecTy, CostKind, Index);
690
691 // If the extract has one use, it will be eliminated, so count it in the
692 // original cost. If it has more than one use, ignore the cost because it will
693 // be the same before/after.
694 if (Extract->hasOneUse())
695 OldCost += TTI.getVectorInstrCost(*Extract, VecTy, CostKind, Index);
696
697 InstructionCost NewCost =
698 TTI.getArithmeticInstrCost(Instruction::FNeg, VecTy, CostKind) +
700
701 bool NeedLenChg = SrcVecTy->getNumElements() != NumElts;
702 // If the lengths of the two vectors are not equal,
703 // we need to add a length-change vector. Add this cost.
704 SmallVector<int> SrcMask;
705 if (NeedLenChg) {
706 SrcMask.assign(NumElts, PoisonMaskElem);
707 SrcMask[Index] = Index;
709 SrcVecTy, SrcMask, CostKind);
710 }
711
712 if (NewCost > OldCost)
713 return false;
714
715 Value *NewShuf;
716 // insertelt DestVec, (fneg (extractelt SrcVec, Index)), Index
717 Value *VecFNeg = Builder.CreateFNegFMF(SrcVec, FNeg);
718 if (NeedLenChg) {
719 // shuffle DestVec, (shuffle (fneg SrcVec), poison, SrcMask), Mask
720 Value *LenChgShuf = Builder.CreateShuffleVector(VecFNeg, SrcMask);
721 NewShuf = Builder.CreateShuffleVector(DestVec, LenChgShuf, Mask);
722 } else {
723 // shuffle DestVec, (fneg SrcVec), Mask
724 NewShuf = Builder.CreateShuffleVector(DestVec, VecFNeg, Mask);
725 }
726
727 replaceValue(I, *NewShuf);
728 return true;
729}
730
731/// If this is a bitcast of a shuffle, try to bitcast the source vector to the
732/// destination type followed by shuffle. This can enable further transforms by
733/// moving bitcasts or shuffles together.
734bool VectorCombine::foldBitcastShuffle(Instruction &I) {
735 Value *V0, *V1;
737 if (!match(&I, m_BitCast(m_OneUse(
738 m_Shuffle(m_Value(V0), m_Value(V1), m_Mask(Mask))))))
739 return false;
740
741 // 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
742 // scalable type is unknown; Second, we cannot reason if the narrowed shuffle
743 // mask for scalable type is a splat or not.
744 // 2) Disallow non-vector casts.
745 // TODO: We could allow any shuffle.
746 auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
747 auto *SrcTy = dyn_cast<FixedVectorType>(V0->getType());
748 if (!DestTy || !SrcTy)
749 return false;
750
751 unsigned DestEltSize = DestTy->getScalarSizeInBits();
752 unsigned SrcEltSize = SrcTy->getScalarSizeInBits();
753 if (SrcTy->getPrimitiveSizeInBits() % DestEltSize != 0)
754 return false;
755
756 bool IsUnary = isa<UndefValue>(V1);
757
758 // For binary shuffles, only fold bitcast(shuffle(X,Y))
759 // if it won't increase the number of bitcasts.
760 if (!IsUnary) {
761 auto *BCTy0 = dyn_cast<FixedVectorType>(peekThroughBitcasts(V0)->getType());
762 auto *BCTy1 = dyn_cast<FixedVectorType>(peekThroughBitcasts(V1)->getType());
763 if (!(BCTy0 && BCTy0->getElementType() == DestTy->getElementType()) &&
764 !(BCTy1 && BCTy1->getElementType() == DestTy->getElementType()))
765 return false;
766 }
767
768 SmallVector<int, 16> NewMask;
769 if (DestEltSize <= SrcEltSize) {
770 // The bitcast is from wide to narrow/equal elements. The shuffle mask can
771 // always be expanded to the equivalent form choosing narrower elements.
772 assert(SrcEltSize % DestEltSize == 0 && "Unexpected shuffle mask");
773 unsigned ScaleFactor = SrcEltSize / DestEltSize;
774 narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
775 } else {
776 // The bitcast is from narrow elements to wide elements. The shuffle mask
777 // must choose consecutive elements to allow casting first.
778 assert(DestEltSize % SrcEltSize == 0 && "Unexpected shuffle mask");
779 unsigned ScaleFactor = DestEltSize / SrcEltSize;
780 if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
781 return false;
782 }
783
784 // Bitcast the shuffle src - keep its original width but using the destination
785 // scalar type.
786 unsigned NumSrcElts = SrcTy->getPrimitiveSizeInBits() / DestEltSize;
787 auto *NewShuffleTy =
788 FixedVectorType::get(DestTy->getScalarType(), NumSrcElts);
789 auto *OldShuffleTy =
790 FixedVectorType::get(SrcTy->getScalarType(), Mask.size());
791 unsigned NumOps = IsUnary ? 1 : 2;
792
793 // The new shuffle must not cost more than the old shuffle.
797
798 InstructionCost NewCost =
799 TTI.getShuffleCost(SK, NewShuffleTy, NewMask, CostKind) +
800 (NumOps * TTI.getCastInstrCost(Instruction::BitCast, NewShuffleTy, SrcTy,
801 TargetTransformInfo::CastContextHint::None,
802 CostKind));
803 InstructionCost OldCost =
804 TTI.getShuffleCost(SK, SrcTy, Mask, CostKind) +
805 TTI.getCastInstrCost(Instruction::BitCast, DestTy, OldShuffleTy,
806 TargetTransformInfo::CastContextHint::None,
807 CostKind);
808
809 LLVM_DEBUG(dbgs() << "Found a bitcasted shuffle: " << I << "\n OldCost: "
810 << OldCost << " vs NewCost: " << NewCost << "\n");
811
812 if (NewCost > OldCost || !NewCost.isValid())
813 return false;
814
815 // bitcast (shuf V0, V1, MaskC) --> shuf (bitcast V0), (bitcast V1), MaskC'
816 ++NumShufOfBitcast;
817 Value *CastV0 = Builder.CreateBitCast(peekThroughBitcasts(V0), NewShuffleTy);
818 Value *CastV1 = Builder.CreateBitCast(peekThroughBitcasts(V1), NewShuffleTy);
819 Value *Shuf = Builder.CreateShuffleVector(CastV0, CastV1, NewMask);
820 replaceValue(I, *Shuf);
821 return true;
822}
823
824/// VP Intrinsics whose vector operands are both splat values may be simplified
825/// into the scalar version of the operation and the result splatted. This
826/// can lead to scalarization down the line.
827bool VectorCombine::scalarizeVPIntrinsic(Instruction &I) {
828 if (!isa<VPIntrinsic>(I))
829 return false;
830 VPIntrinsic &VPI = cast<VPIntrinsic>(I);
831 Value *Op0 = VPI.getArgOperand(0);
832 Value *Op1 = VPI.getArgOperand(1);
833
834 if (!isSplatValue(Op0) || !isSplatValue(Op1))
835 return false;
836
837 // Check getSplatValue early in this function, to avoid doing unnecessary
838 // work.
839 Value *ScalarOp0 = getSplatValue(Op0);
840 Value *ScalarOp1 = getSplatValue(Op1);
841 if (!ScalarOp0 || !ScalarOp1)
842 return false;
843
844 // For the binary VP intrinsics supported here, the result on disabled lanes
845 // is a poison value. For now, only do this simplification if all lanes
846 // are active.
847 // TODO: Relax the condition that all lanes are active by using insertelement
848 // on inactive lanes.
849 auto IsAllTrueMask = [](Value *MaskVal) {
850 if (Value *SplattedVal = getSplatValue(MaskVal))
851 if (auto *ConstValue = dyn_cast<Constant>(SplattedVal))
852 return ConstValue->isAllOnesValue();
853 return false;
854 };
855 if (!IsAllTrueMask(VPI.getArgOperand(2)))
856 return false;
857
858 // Check to make sure we support scalarization of the intrinsic
859 Intrinsic::ID IntrID = VPI.getIntrinsicID();
860 if (!VPBinOpIntrinsic::isVPBinOp(IntrID))
861 return false;
862
863 // Calculate cost of splatting both operands into vectors and the vector
864 // intrinsic
865 VectorType *VecTy = cast<VectorType>(VPI.getType());
867 if (auto *FVTy = dyn_cast<FixedVectorType>(VecTy))
868 Mask.resize(FVTy->getNumElements(), 0);
869 InstructionCost SplatCost =
870 TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind, 0) +
872 CostKind);
873
874 // Calculate the cost of the VP Intrinsic
876 for (Value *V : VPI.args())
877 Args.push_back(V->getType());
878 IntrinsicCostAttributes Attrs(IntrID, VecTy, Args);
879 InstructionCost VectorOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
880 InstructionCost OldCost = 2 * SplatCost + VectorOpCost;
881
882 // Determine scalar opcode
883 std::optional<unsigned> FunctionalOpcode =
885 std::optional<Intrinsic::ID> ScalarIntrID = std::nullopt;
886 if (!FunctionalOpcode) {
887 ScalarIntrID = VPI.getFunctionalIntrinsicID();
888 if (!ScalarIntrID)
889 return false;
890 }
891
892 // Calculate cost of scalarizing
893 InstructionCost ScalarOpCost = 0;
894 if (ScalarIntrID) {
895 IntrinsicCostAttributes Attrs(*ScalarIntrID, VecTy->getScalarType(), Args);
896 ScalarOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
897 } else {
898 ScalarOpCost = TTI.getArithmeticInstrCost(*FunctionalOpcode,
899 VecTy->getScalarType(), CostKind);
900 }
901
902 // The existing splats may be kept around if other instructions use them.
903 InstructionCost CostToKeepSplats =
904 (SplatCost * !Op0->hasOneUse()) + (SplatCost * !Op1->hasOneUse());
905 InstructionCost NewCost = ScalarOpCost + SplatCost + CostToKeepSplats;
906
907 LLVM_DEBUG(dbgs() << "Found a VP Intrinsic to scalarize: " << VPI
908 << "\n");
909 LLVM_DEBUG(dbgs() << "Cost of Intrinsic: " << OldCost
910 << ", Cost of scalarizing:" << NewCost << "\n");
911
912 // We want to scalarize unless the vector variant actually has lower cost.
913 if (OldCost < NewCost || !NewCost.isValid())
914 return false;
915
916 // Scalarize the intrinsic
917 ElementCount EC = cast<VectorType>(Op0->getType())->getElementCount();
918 Value *EVL = VPI.getArgOperand(3);
919
920 // If the VP op might introduce UB or poison, we can scalarize it provided
921 // that we know the EVL > 0: If the EVL is zero, then the original VP op
922 // becomes a no-op and thus won't be UB, so make sure we don't introduce UB by
923 // scalarizing it.
924 bool SafeToSpeculate;
925 if (ScalarIntrID)
926 SafeToSpeculate = Intrinsic::getAttributes(I.getContext(), *ScalarIntrID)
927 .hasFnAttr(Attribute::AttrKind::Speculatable);
928 else
930 *FunctionalOpcode, &VPI, nullptr, &AC, &DT);
931 if (!SafeToSpeculate &&
932 !isKnownNonZero(EVL, SimplifyQuery(*DL, &DT, &AC, &VPI)))
933 return false;
934
935 Value *ScalarVal =
936 ScalarIntrID
937 ? Builder.CreateIntrinsic(VecTy->getScalarType(), *ScalarIntrID,
938 {ScalarOp0, ScalarOp1})
939 : Builder.CreateBinOp((Instruction::BinaryOps)(*FunctionalOpcode),
940 ScalarOp0, ScalarOp1);
941
942 replaceValue(VPI, *Builder.CreateVectorSplat(EC, ScalarVal));
943 return true;
944}
945
946/// Match a vector binop or compare instruction with at least one inserted
947/// scalar operand and convert to scalar binop/cmp followed by insertelement.
948bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
950 Value *Ins0, *Ins1;
951 if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
952 !match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
953 return false;
954
955 // Do not convert the vector condition of a vector select into a scalar
956 // condition. That may cause problems for codegen because of differences in
957 // boolean formats and register-file transfers.
958 // TODO: Can we account for that in the cost model?
959 bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
960 if (IsCmp)
961 for (User *U : I.users())
962 if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
963 return false;
964
965 // Match against one or both scalar values being inserted into constant
966 // vectors:
967 // vec_op VecC0, (inselt VecC1, V1, Index)
968 // vec_op (inselt VecC0, V0, Index), VecC1
969 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
970 // TODO: Deal with mismatched index constants and variable indexes?
971 Constant *VecC0 = nullptr, *VecC1 = nullptr;
972 Value *V0 = nullptr, *V1 = nullptr;
973 uint64_t Index0 = 0, Index1 = 0;
974 if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
975 m_ConstantInt(Index0))) &&
976 !match(Ins0, m_Constant(VecC0)))
977 return false;
978 if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
979 m_ConstantInt(Index1))) &&
980 !match(Ins1, m_Constant(VecC1)))
981 return false;
982
983 bool IsConst0 = !V0;
984 bool IsConst1 = !V1;
985 if (IsConst0 && IsConst1)
986 return false;
987 if (!IsConst0 && !IsConst1 && Index0 != Index1)
988 return false;
989
990 auto *VecTy0 = cast<VectorType>(Ins0->getType());
991 auto *VecTy1 = cast<VectorType>(Ins1->getType());
992 if (VecTy0->getElementCount().getKnownMinValue() <= Index0 ||
993 VecTy1->getElementCount().getKnownMinValue() <= Index1)
994 return false;
995
996 // Bail for single insertion if it is a load.
997 // TODO: Handle this once getVectorInstrCost can cost for load/stores.
998 auto *I0 = dyn_cast_or_null<Instruction>(V0);
999 auto *I1 = dyn_cast_or_null<Instruction>(V1);
1000 if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
1001 (IsConst1 && I0 && I0->mayReadFromMemory()))
1002 return false;
1003
1004 uint64_t Index = IsConst0 ? Index1 : Index0;
1005 Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
1006 Type *VecTy = I.getType();
1007 assert(VecTy->isVectorTy() &&
1008 (IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
1009 (ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
1010 ScalarTy->isPointerTy()) &&
1011 "Unexpected types for insert element into binop or cmp");
1012
1013 unsigned Opcode = I.getOpcode();
1014 InstructionCost ScalarOpCost, VectorOpCost;
1015 if (IsCmp) {
1016 CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
1017 ScalarOpCost = TTI.getCmpSelInstrCost(
1018 Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred, CostKind);
1019 VectorOpCost = TTI.getCmpSelInstrCost(
1020 Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred, CostKind);
1021 } else {
1022 ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy, CostKind);
1023 VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy, CostKind);
1024 }
1025
1026 // Get cost estimate for the insert element. This cost will factor into
1027 // both sequences.
1029 Instruction::InsertElement, VecTy, CostKind, Index);
1030 InstructionCost OldCost =
1031 (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
1032 InstructionCost NewCost = ScalarOpCost + InsertCost +
1033 (IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
1034 (IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
1035
1036 // We want to scalarize unless the vector variant actually has lower cost.
1037 if (OldCost < NewCost || !NewCost.isValid())
1038 return false;
1039
1040 // vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
1041 // inselt NewVecC, (scalar_op V0, V1), Index
1042 if (IsCmp)
1043 ++NumScalarCmp;
1044 else
1045 ++NumScalarBO;
1046
1047 // For constant cases, extract the scalar element, this should constant fold.
1048 if (IsConst0)
1049 V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
1050 if (IsConst1)
1051 V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
1052
1053 Value *Scalar =
1054 IsCmp ? Builder.CreateCmp(Pred, V0, V1)
1055 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
1056
1057 Scalar->setName(I.getName() + ".scalar");
1058
1059 // All IR flags are safe to back-propagate. There is no potential for extra
1060 // poison to be created by the scalar instruction.
1061 if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
1062 ScalarInst->copyIRFlags(&I);
1063
1064 // Fold the vector constants in the original vectors into a new base vector.
1065 Value *NewVecC =
1066 IsCmp ? Builder.CreateCmp(Pred, VecC0, VecC1)
1067 : Builder.CreateBinOp((Instruction::BinaryOps)Opcode, VecC0, VecC1);
1068 Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
1069 replaceValue(I, *Insert);
1070 return true;
1071}
1072
1073/// Try to combine a scalar binop + 2 scalar compares of extracted elements of
1074/// a vector into vector operations followed by extract. Note: The SLP pass
1075/// may miss this pattern because of implementation problems.
1076bool VectorCombine::foldExtractedCmps(Instruction &I) {
1077 auto *BI = dyn_cast<BinaryOperator>(&I);
1078
1079 // We are looking for a scalar binop of booleans.
1080 // binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
1081 if (!BI || !I.getType()->isIntegerTy(1))
1082 return false;
1083
1084 // The compare predicates should match, and each compare should have a
1085 // constant operand.
1086 Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
1087 Instruction *I0, *I1;
1088 Constant *C0, *C1;
1089 CmpPredicate P0, P1;
1090 // FIXME: Use CmpPredicate::getMatching here.
1091 if (!match(B0, m_Cmp(P0, m_Instruction(I0), m_Constant(C0))) ||
1092 !match(B1, m_Cmp(P1, m_Instruction(I1), m_Constant(C1))) ||
1093 P0 != static_cast<CmpInst::Predicate>(P1))
1094 return false;
1095
1096 // The compare operands must be extracts of the same vector with constant
1097 // extract indexes.
1098 Value *X;
1099 uint64_t Index0, Index1;
1100 if (!match(I0, m_ExtractElt(m_Value(X), m_ConstantInt(Index0))) ||
1101 !match(I1, m_ExtractElt(m_Specific(X), m_ConstantInt(Index1))))
1102 return false;
1103
1104 auto *Ext0 = cast<ExtractElementInst>(I0);
1105 auto *Ext1 = cast<ExtractElementInst>(I1);
1106 ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1, CostKind);
1107 if (!ConvertToShuf)
1108 return false;
1109 assert((ConvertToShuf == Ext0 || ConvertToShuf == Ext1) &&
1110 "Unknown ExtractElementInst");
1111
1112 // The original scalar pattern is:
1113 // binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
1114 CmpInst::Predicate Pred = P0;
1115 unsigned CmpOpcode =
1116 CmpInst::isFPPredicate(Pred) ? Instruction::FCmp : Instruction::ICmp;
1117 auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
1118 if (!VecTy)
1119 return false;
1120
1121 InstructionCost Ext0Cost =
1122 TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
1123 InstructionCost Ext1Cost =
1124 TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
1126 CmpOpcode, I0->getType(), CmpInst::makeCmpResultType(I0->getType()), Pred,
1127 CostKind);
1128
1129 InstructionCost OldCost =
1130 Ext0Cost + Ext1Cost + CmpCost * 2 +
1131 TTI.getArithmeticInstrCost(I.getOpcode(), I.getType(), CostKind);
1132
1133 // The proposed vector pattern is:
1134 // vcmp = cmp Pred X, VecC
1135 // ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
1136 int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
1137 int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
1138 auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
1140 CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred,
1141 CostKind);
1142 SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
1143 ShufMask[CheapIndex] = ExpensiveIndex;
1145 ShufMask, CostKind);
1146 NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy, CostKind);
1147 NewCost += TTI.getVectorInstrCost(*Ext0, CmpTy, CostKind, CheapIndex);
1148 NewCost += Ext0->hasOneUse() ? 0 : Ext0Cost;
1149 NewCost += Ext1->hasOneUse() ? 0 : Ext1Cost;
1150
1151 // Aggressively form vector ops if the cost is equal because the transform
1152 // may enable further optimization.
1153 // Codegen can reverse this transform (scalarize) if it was not profitable.
1154 if (OldCost < NewCost || !NewCost.isValid())
1155 return false;
1156
1157 // Create a vector constant from the 2 scalar constants.
1158 SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
1159 PoisonValue::get(VecTy->getElementType()));
1160 CmpC[Index0] = C0;
1161 CmpC[Index1] = C1;
1162 Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
1163 Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
1164 Value *LHS = ConvertToShuf == Ext0 ? Shuf : VCmp;
1165 Value *RHS = ConvertToShuf == Ext0 ? VCmp : Shuf;
1166 Value *VecLogic = Builder.CreateBinOp(BI->getOpcode(), LHS, RHS);
1167 Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
1168 replaceValue(I, *NewExt);
1169 ++NumVecCmpBO;
1170 return true;
1171}
1172
1173// Check if memory loc modified between two instrs in the same BB
1176 const MemoryLocation &Loc, AAResults &AA) {
1177 unsigned NumScanned = 0;
1178 return std::any_of(Begin, End, [&](const Instruction &Instr) {
1179 return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
1180 ++NumScanned > MaxInstrsToScan;
1181 });
1182}
1183
1184namespace {
1185/// Helper class to indicate whether a vector index can be safely scalarized and
1186/// if a freeze needs to be inserted.
1187class ScalarizationResult {
1188 enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
1189
1190 StatusTy Status;
1191 Value *ToFreeze;
1192
1193 ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
1194 : Status(Status), ToFreeze(ToFreeze) {}
1195
1196public:
1197 ScalarizationResult(const ScalarizationResult &Other) = default;
1198 ~ScalarizationResult() {
1199 assert(!ToFreeze && "freeze() not called with ToFreeze being set");
1200 }
1201
1202 static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
1203 static ScalarizationResult safe() { return {StatusTy::Safe}; }
1204 static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
1205 return {StatusTy::SafeWithFreeze, ToFreeze};
1206 }
1207
1208 /// Returns true if the index can be scalarize without requiring a freeze.
1209 bool isSafe() const { return Status == StatusTy::Safe; }
1210 /// Returns true if the index cannot be scalarized.
1211 bool isUnsafe() const { return Status == StatusTy::Unsafe; }
1212 /// Returns true if the index can be scalarize, but requires inserting a
1213 /// freeze.
1214 bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }
1215
1216 /// Reset the state of Unsafe and clear ToFreze if set.
1217 void discard() {
1218 ToFreeze = nullptr;
1219 Status = StatusTy::Unsafe;
1220 }
1221
1222 /// Freeze the ToFreeze and update the use in \p User to use it.
1223 void freeze(IRBuilder<> &Builder, Instruction &UserI) {
1224 assert(isSafeWithFreeze() &&
1225 "should only be used when freezing is required");
1226 assert(is_contained(ToFreeze->users(), &UserI) &&
1227 "UserI must be a user of ToFreeze");
1228 IRBuilder<>::InsertPointGuard Guard(Builder);
1229 Builder.SetInsertPoint(cast<Instruction>(&UserI));
1230 Value *Frozen =
1231 Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
1232 for (Use &U : make_early_inc_range((UserI.operands())))
1233 if (U.get() == ToFreeze)
1234 U.set(Frozen);
1235
1236 ToFreeze = nullptr;
1237 }
1238};
1239} // namespace
1240
1241/// Check if it is legal to scalarize a memory access to \p VecTy at index \p
1242/// Idx. \p Idx must access a valid vector element.
1243static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx,
1244 Instruction *CtxI,
1245 AssumptionCache &AC,
1246 const DominatorTree &DT) {
1247 // We do checks for both fixed vector types and scalable vector types.
1248 // This is the number of elements of fixed vector types,
1249 // or the minimum number of elements of scalable vector types.
1250 uint64_t NumElements = VecTy->getElementCount().getKnownMinValue();
1251
1252 if (auto *C = dyn_cast<ConstantInt>(Idx)) {
1253 if (C->getValue().ult(NumElements))
1254 return ScalarizationResult::safe();
1255 return ScalarizationResult::unsafe();
1256 }
1257
1258 unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
1259 APInt Zero(IntWidth, 0);
1260 APInt MaxElts(IntWidth, NumElements);
1261 ConstantRange ValidIndices(Zero, MaxElts);
1262 ConstantRange IdxRange(IntWidth, true);
1263
1264 if (isGuaranteedNotToBePoison(Idx, &AC)) {
1265 if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false,
1266 true, &AC, CtxI, &DT)))
1267 return ScalarizationResult::safe();
1268 return ScalarizationResult::unsafe();
1269 }
1270
1271 // If the index may be poison, check if we can insert a freeze before the
1272 // range of the index is restricted.
1273 Value *IdxBase;
1274 ConstantInt *CI;
1275 if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
1276 IdxRange = IdxRange.binaryAnd(CI->getValue());
1277 } else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
1278 IdxRange = IdxRange.urem(CI->getValue());
1279 }
1280
1281 if (ValidIndices.contains(IdxRange))
1282 return ScalarizationResult::safeWithFreeze(IdxBase);
1283 return ScalarizationResult::unsafe();
1284}
1285
1286/// The memory operation on a vector of \p ScalarType had alignment of
1287/// \p VectorAlignment. Compute the maximal, but conservatively correct,
1288/// alignment that will be valid for the memory operation on a single scalar
1289/// element of the same type with index \p Idx.
1291 Type *ScalarType, Value *Idx,
1292 const DataLayout &DL) {
1293 if (auto *C = dyn_cast<ConstantInt>(Idx))
1294 return commonAlignment(VectorAlignment,
1295 C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
1296 return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
1297}
1298
1299// Combine patterns like:
1300// %0 = load <4 x i32>, <4 x i32>* %a
1301// %1 = insertelement <4 x i32> %0, i32 %b, i32 1
1302// store <4 x i32> %1, <4 x i32>* %a
1303// to:
1304// %0 = bitcast <4 x i32>* %a to i32*
1305// %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
1306// store i32 %b, i32* %1
1307bool VectorCombine::foldSingleElementStore(Instruction &I) {
1308 auto *SI = cast<StoreInst>(&I);
1309 if (!SI->isSimple() || !isa<VectorType>(SI->getValueOperand()->getType()))
1310 return false;
1311
1312 // TODO: Combine more complicated patterns (multiple insert) by referencing
1313 // TargetTransformInfo.
1315 Value *NewElement;
1316 Value *Idx;
1317 if (!match(SI->getValueOperand(),
1318 m_InsertElt(m_Instruction(Source), m_Value(NewElement),
1319 m_Value(Idx))))
1320 return false;
1321
1322 if (auto *Load = dyn_cast<LoadInst>(Source)) {
1323 auto VecTy = cast<VectorType>(SI->getValueOperand()->getType());
1324 Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
1325 // Don't optimize for atomic/volatile load or store. Ensure memory is not
1326 // modified between, vector type matches store size, and index is inbounds.
1327 if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
1328 !DL->typeSizeEqualsStoreSize(Load->getType()->getScalarType()) ||
1329 SrcAddr != SI->getPointerOperand()->stripPointerCasts())
1330 return false;
1331
1332 auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
1333 if (ScalarizableIdx.isUnsafe() ||
1334 isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
1335 MemoryLocation::get(SI), AA))
1336 return false;
1337
1338 if (ScalarizableIdx.isSafeWithFreeze())
1339 ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
1340 Value *GEP = Builder.CreateInBoundsGEP(
1341 SI->getValueOperand()->getType(), SI->getPointerOperand(),
1342 {ConstantInt::get(Idx->getType(), 0), Idx});
1343 StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
1344 NSI->copyMetadata(*SI);
1345 Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1346 std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
1347 *DL);
1348 NSI->setAlignment(ScalarOpAlignment);
1349 replaceValue(I, *NSI);
1351 return true;
1352 }
1353
1354 return false;
1355}
1356
1357/// Try to scalarize vector loads feeding extractelement instructions.
1358bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
1359 Value *Ptr;
1360 if (!match(&I, m_Load(m_Value(Ptr))))
1361 return false;
1362
1363 auto *VecTy = cast<VectorType>(I.getType());
1364 auto *LI = cast<LoadInst>(&I);
1365 if (LI->isVolatile() || !DL->typeSizeEqualsStoreSize(VecTy->getScalarType()))
1366 return false;
1367
1368 InstructionCost OriginalCost =
1369 TTI.getMemoryOpCost(Instruction::Load, VecTy, LI->getAlign(),
1370 LI->getPointerAddressSpace(), CostKind);
1371 InstructionCost ScalarizedCost = 0;
1372
1373 Instruction *LastCheckedInst = LI;
1374 unsigned NumInstChecked = 0;
1376 auto FailureGuard = make_scope_exit([&]() {
1377 // If the transform is aborted, discard the ScalarizationResults.
1378 for (auto &Pair : NeedFreeze)
1379 Pair.second.discard();
1380 });
1381
1382 // Check if all users of the load are extracts with no memory modifications
1383 // between the load and the extract. Compute the cost of both the original
1384 // code and the scalarized version.
1385 for (User *U : LI->users()) {
1386 auto *UI = dyn_cast<ExtractElementInst>(U);
1387 if (!UI || UI->getParent() != LI->getParent())
1388 return false;
1389
1390 // Check if any instruction between the load and the extract may modify
1391 // memory.
1392 if (LastCheckedInst->comesBefore(UI)) {
1393 for (Instruction &I :
1394 make_range(std::next(LI->getIterator()), UI->getIterator())) {
1395 // Bail out if we reached the check limit or the instruction may write
1396 // to memory.
1397 if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
1398 return false;
1399 NumInstChecked++;
1400 }
1401 LastCheckedInst = UI;
1402 }
1403
1404 auto ScalarIdx = canScalarizeAccess(VecTy, UI->getOperand(1), &I, AC, DT);
1405 if (ScalarIdx.isUnsafe())
1406 return false;
1407 if (ScalarIdx.isSafeWithFreeze()) {
1408 NeedFreeze.try_emplace(UI, ScalarIdx);
1409 ScalarIdx.discard();
1410 }
1411
1412 auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1));
1413 OriginalCost +=
1414 TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, CostKind,
1415 Index ? Index->getZExtValue() : -1);
1416 ScalarizedCost +=
1417 TTI.getMemoryOpCost(Instruction::Load, VecTy->getElementType(),
1418 Align(1), LI->getPointerAddressSpace(), CostKind);
1419 ScalarizedCost += TTI.getAddressComputationCost(VecTy->getElementType());
1420 }
1421
1422 if (ScalarizedCost >= OriginalCost)
1423 return false;
1424
1425 // Replace extracts with narrow scalar loads.
1426 for (User *U : LI->users()) {
1427 auto *EI = cast<ExtractElementInst>(U);
1428 Value *Idx = EI->getOperand(1);
1429
1430 // Insert 'freeze' for poison indexes.
1431 auto It = NeedFreeze.find(EI);
1432 if (It != NeedFreeze.end())
1433 It->second.freeze(Builder, *cast<Instruction>(Idx));
1434
1435 Builder.SetInsertPoint(EI);
1436 Value *GEP =
1437 Builder.CreateInBoundsGEP(VecTy, Ptr, {Builder.getInt32(0), Idx});
1438 auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
1439 VecTy->getElementType(), GEP, EI->getName() + ".scalar"));
1440
1441 Align ScalarOpAlignment = computeAlignmentAfterScalarization(
1442 LI->getAlign(), VecTy->getElementType(), Idx, *DL);
1443 NewLoad->setAlignment(ScalarOpAlignment);
1444
1445 replaceValue(*EI, *NewLoad);
1446 }
1447
1448 FailureGuard.release();
1449 return true;
1450}
1451
1452/// Try to fold "(or (zext (bitcast X)), (shl (zext (bitcast Y)), C))"
1453/// to "(bitcast (concat X, Y))"
1454/// where X/Y are bitcasted from i1 mask vectors.
1455bool VectorCombine::foldConcatOfBoolMasks(Instruction &I) {
1456 Type *Ty = I.getType();
1457 if (!Ty->isIntegerTy())
1458 return false;
1459
1460 // TODO: Add big endian test coverage
1461 if (DL->isBigEndian())
1462 return false;
1463
1464 // Restrict to disjoint cases so the mask vectors aren't overlapping.
1465 Instruction *X, *Y;
1467 return false;
1468
1469 // Allow both sources to contain shl, to handle more generic pattern:
1470 // "(or (shl (zext (bitcast X)), C1), (shl (zext (bitcast Y)), C2))"
1471 Value *SrcX;
1472 uint64_t ShAmtX = 0;
1473 if (!match(X, m_OneUse(m_ZExt(m_OneUse(m_BitCast(m_Value(SrcX)))))) &&
1474 !match(X, m_OneUse(
1476 m_ConstantInt(ShAmtX)))))
1477 return false;
1478
1479 Value *SrcY;
1480 uint64_t ShAmtY = 0;
1481 if (!match(Y, m_OneUse(m_ZExt(m_OneUse(m_BitCast(m_Value(SrcY)))))) &&
1482 !match(Y, m_OneUse(
1484 m_ConstantInt(ShAmtY)))))
1485 return false;
1486
1487 // Canonicalize larger shift to the RHS.
1488 if (ShAmtX > ShAmtY) {
1489 std::swap(X, Y);
1490 std::swap(SrcX, SrcY);
1491 std::swap(ShAmtX, ShAmtY);
1492 }
1493
1494 // Ensure both sources are matching vXi1 bool mask types, and that the shift
1495 // difference is the mask width so they can be easily concatenated together.
1496 uint64_t ShAmtDiff = ShAmtY - ShAmtX;
1497 unsigned NumSHL = (ShAmtX > 0) + (ShAmtY > 0);
1498 unsigned BitWidth = Ty->getPrimitiveSizeInBits();
1499 auto *MaskTy = dyn_cast<FixedVectorType>(SrcX->getType());
1500 if (!MaskTy || SrcX->getType() != SrcY->getType() ||
1501 !MaskTy->getElementType()->isIntegerTy(1) ||
1502 MaskTy->getNumElements() != ShAmtDiff ||
1503 MaskTy->getNumElements() > (BitWidth / 2))
1504 return false;
1505
1506 auto *ConcatTy = FixedVectorType::getDoubleElementsVectorType(MaskTy);
1507 auto *ConcatIntTy =
1508 Type::getIntNTy(Ty->getContext(), ConcatTy->getNumElements());
1509 auto *MaskIntTy = Type::getIntNTy(Ty->getContext(), ShAmtDiff);
1510
1511 SmallVector<int, 32> ConcatMask(ConcatTy->getNumElements());
1512 std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
1513
1514 // TODO: Is it worth supporting multi use cases?
1515 InstructionCost OldCost = 0;
1516 OldCost += TTI.getArithmeticInstrCost(Instruction::Or, Ty, CostKind);
1517 OldCost +=
1518 NumSHL * TTI.getArithmeticInstrCost(Instruction::Shl, Ty, CostKind);
1519 OldCost += 2 * TTI.getCastInstrCost(Instruction::ZExt, Ty, MaskIntTy,
1521 OldCost += 2 * TTI.getCastInstrCost(Instruction::BitCast, MaskIntTy, MaskTy,
1523
1524 InstructionCost NewCost = 0;
1526 ConcatMask, CostKind);
1527 NewCost += TTI.getCastInstrCost(Instruction::BitCast, ConcatIntTy, ConcatTy,
1529 if (Ty != ConcatIntTy)
1530 NewCost += TTI.getCastInstrCost(Instruction::ZExt, Ty, ConcatIntTy,
1532 if (ShAmtX > 0)
1533 NewCost += TTI.getArithmeticInstrCost(Instruction::Shl, Ty, CostKind);
1534
1535 if (NewCost > OldCost)
1536 return false;
1537
1538 // Build bool mask concatenation, bitcast back to scalar integer, and perform
1539 // any residual zero-extension or shifting.
1540 Value *Concat = Builder.CreateShuffleVector(SrcX, SrcY, ConcatMask);
1541 Worklist.pushValue(Concat);
1542
1543 Value *Result = Builder.CreateBitCast(Concat, ConcatIntTy);
1544
1545 if (Ty != ConcatIntTy) {
1546 Worklist.pushValue(Result);
1547 Result = Builder.CreateZExt(Result, Ty);
1548 }
1549
1550 if (ShAmtX > 0) {
1551 Worklist.pushValue(Result);
1552 Result = Builder.CreateShl(Result, ShAmtX);
1553 }
1554
1555 replaceValue(I, *Result);
1556 return true;
1557}
1558
1559/// Try to convert "shuffle (binop (shuffle, shuffle)), undef"
1560/// --> "binop (shuffle), (shuffle)".
1561bool VectorCombine::foldPermuteOfBinops(Instruction &I) {
1562 BinaryOperator *BinOp;
1563 ArrayRef<int> OuterMask;
1564 if (!match(&I,
1565 m_Shuffle(m_OneUse(m_BinOp(BinOp)), m_Undef(), m_Mask(OuterMask))))
1566 return false;
1567
1568 // Don't introduce poison into div/rem.
1569 if (BinOp->isIntDivRem() && llvm::is_contained(OuterMask, PoisonMaskElem))
1570 return false;
1571
1572 Value *Op00, *Op01;
1573 ArrayRef<int> Mask0;
1574 if (!match(BinOp->getOperand(0),
1575 m_OneUse(m_Shuffle(m_Value(Op00), m_Value(Op01), m_Mask(Mask0)))))
1576 return false;
1577
1578 Value *Op10, *Op11;
1579 ArrayRef<int> Mask1;
1580 if (!match(BinOp->getOperand(1),
1581 m_OneUse(m_Shuffle(m_Value(Op10), m_Value(Op11), m_Mask(Mask1)))))
1582 return false;
1583
1584 Instruction::BinaryOps Opcode = BinOp->getOpcode();
1585 auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1586 auto *BinOpTy = dyn_cast<FixedVectorType>(BinOp->getType());
1587 auto *Op0Ty = dyn_cast<FixedVectorType>(Op00->getType());
1588 auto *Op1Ty = dyn_cast<FixedVectorType>(Op10->getType());
1589 if (!ShuffleDstTy || !BinOpTy || !Op0Ty || !Op1Ty)
1590 return false;
1591
1592 unsigned NumSrcElts = BinOpTy->getNumElements();
1593
1594 // Don't accept shuffles that reference the second operand in
1595 // div/rem or if its an undef arg.
1596 if ((BinOp->isIntDivRem() || !isa<PoisonValue>(I.getOperand(1))) &&
1597 any_of(OuterMask, [NumSrcElts](int M) { return M >= (int)NumSrcElts; }))
1598 return false;
1599
1600 // Merge outer / inner shuffles.
1601 SmallVector<int> NewMask0, NewMask1;
1602 for (int M : OuterMask) {
1603 if (M < 0 || M >= (int)NumSrcElts) {
1604 NewMask0.push_back(PoisonMaskElem);
1605 NewMask1.push_back(PoisonMaskElem);
1606 } else {
1607 NewMask0.push_back(Mask0[M]);
1608 NewMask1.push_back(Mask1[M]);
1609 }
1610 }
1611
1612 // Try to merge shuffles across the binop if the new shuffles are not costly.
1613 InstructionCost OldCost =
1614 TTI.getArithmeticInstrCost(Opcode, BinOpTy, CostKind) +
1616 OuterMask, CostKind, 0, nullptr, {BinOp}, &I) +
1618 CostKind, 0, nullptr, {Op00, Op01},
1619 cast<Instruction>(BinOp->getOperand(0))) +
1621 CostKind, 0, nullptr, {Op10, Op11},
1622 cast<Instruction>(BinOp->getOperand(1)));
1623
1624 InstructionCost NewCost =
1626 CostKind, 0, nullptr, {Op00, Op01}) +
1628 CostKind, 0, nullptr, {Op10, Op11}) +
1629 TTI.getArithmeticInstrCost(Opcode, ShuffleDstTy, CostKind);
1630
1631 LLVM_DEBUG(dbgs() << "Found a shuffle feeding a shuffled binop: " << I
1632 << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost
1633 << "\n");
1634
1635 // If costs are equal, still fold as we reduce instruction count.
1636 if (NewCost > OldCost)
1637 return false;
1638
1639 Value *Shuf0 = Builder.CreateShuffleVector(Op00, Op01, NewMask0);
1640 Value *Shuf1 = Builder.CreateShuffleVector(Op10, Op11, NewMask1);
1641 Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1);
1642
1643 // Intersect flags from the old binops.
1644 if (auto *NewInst = dyn_cast<Instruction>(NewBO))
1645 NewInst->copyIRFlags(BinOp);
1646
1647 Worklist.pushValue(Shuf0);
1648 Worklist.pushValue(Shuf1);
1649 replaceValue(I, *NewBO);
1650 return true;
1651}
1652
1653/// Try to convert "shuffle (binop), (binop)" into "binop (shuffle), (shuffle)".
1654/// Try to convert "shuffle (cmpop), (cmpop)" into "cmpop (shuffle), (shuffle)".
1655bool VectorCombine::foldShuffleOfBinops(Instruction &I) {
1656 ArrayRef<int> OldMask;
1657 Instruction *LHS, *RHS;
1658 if (!match(&I, m_Shuffle(m_OneUse(m_Instruction(LHS)),
1659 m_OneUse(m_Instruction(RHS)), m_Mask(OldMask))))
1660 return false;
1661
1662 // TODO: Add support for addlike etc.
1663 if (LHS->getOpcode() != RHS->getOpcode())
1664 return false;
1665
1666 Value *X, *Y, *Z, *W;
1667 bool IsCommutative = false;
1669 if (match(LHS, m_BinOp(m_Value(X), m_Value(Y))) &&
1670 match(RHS, m_BinOp(m_Value(Z), m_Value(W)))) {
1671 auto *BO = cast<BinaryOperator>(LHS);
1672 // Don't introduce poison into div/rem.
1673 if (llvm::is_contained(OldMask, PoisonMaskElem) && BO->isIntDivRem())
1674 return false;
1675 IsCommutative = BinaryOperator::isCommutative(BO->getOpcode());
1676 } else if (match(LHS, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
1677 match(RHS, m_SpecificCmp(Pred, m_Value(Z), m_Value(W)))) {
1678 IsCommutative = cast<CmpInst>(LHS)->isCommutative();
1679 } else
1680 return false;
1681
1682 auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1683 auto *BinResTy = dyn_cast<FixedVectorType>(LHS->getType());
1684 auto *BinOpTy = dyn_cast<FixedVectorType>(X->getType());
1685 if (!ShuffleDstTy || !BinResTy || !BinOpTy || X->getType() != Z->getType())
1686 return false;
1687
1688 unsigned NumSrcElts = BinOpTy->getNumElements();
1689
1690 // If we have something like "add X, Y" and "add Z, X", swap ops to match.
1691 if (IsCommutative && X != Z && Y != W && (X == W || Y == Z))
1692 std::swap(X, Y);
1693
1694 auto ConvertToUnary = [NumSrcElts](int &M) {
1695 if (M >= (int)NumSrcElts)
1696 M -= NumSrcElts;
1697 };
1698
1699 SmallVector<int> NewMask0(OldMask);
1701 if (X == Z) {
1702 llvm::for_each(NewMask0, ConvertToUnary);
1704 Z = PoisonValue::get(BinOpTy);
1705 }
1706
1707 SmallVector<int> NewMask1(OldMask);
1709 if (Y == W) {
1710 llvm::for_each(NewMask1, ConvertToUnary);
1712 W = PoisonValue::get(BinOpTy);
1713 }
1714
1715 // Try to replace a binop with a shuffle if the shuffle is not costly.
1716 InstructionCost OldCost =
1720 OldMask, CostKind, 0, nullptr, {LHS, RHS}, &I);
1721
1722 InstructionCost NewCost =
1723 TTI.getShuffleCost(SK0, BinOpTy, NewMask0, CostKind, 0, nullptr, {X, Z}) +
1724 TTI.getShuffleCost(SK1, BinOpTy, NewMask1, CostKind, 0, nullptr, {Y, W});
1725
1726 if (Pred == CmpInst::BAD_ICMP_PREDICATE) {
1727 NewCost +=
1728 TTI.getArithmeticInstrCost(LHS->getOpcode(), ShuffleDstTy, CostKind);
1729 } else {
1730 auto *ShuffleCmpTy =
1731 FixedVectorType::get(BinOpTy->getElementType(), ShuffleDstTy);
1732 NewCost += TTI.getCmpSelInstrCost(LHS->getOpcode(), ShuffleCmpTy,
1733 ShuffleDstTy, Pred, CostKind);
1734 }
1735
1736 LLVM_DEBUG(dbgs() << "Found a shuffle feeding two binops: " << I
1737 << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost
1738 << "\n");
1739
1740 // If either shuffle will constant fold away, then fold for the same cost as
1741 // we will reduce the instruction count.
1742 bool ReducedInstCount = (isa<Constant>(X) && isa<Constant>(Z)) ||
1743 (isa<Constant>(Y) && isa<Constant>(W));
1744 if (ReducedInstCount ? (NewCost > OldCost) : (NewCost >= OldCost))
1745 return false;
1746
1747 Value *Shuf0 = Builder.CreateShuffleVector(X, Z, NewMask0);
1748 Value *Shuf1 = Builder.CreateShuffleVector(Y, W, NewMask1);
1749 Value *NewBO = Pred == CmpInst::BAD_ICMP_PREDICATE
1750 ? Builder.CreateBinOp(
1751 cast<BinaryOperator>(LHS)->getOpcode(), Shuf0, Shuf1)
1752 : Builder.CreateCmp(Pred, Shuf0, Shuf1);
1753
1754 // Intersect flags from the old binops.
1755 if (auto *NewInst = dyn_cast<Instruction>(NewBO)) {
1756 NewInst->copyIRFlags(LHS);
1757 NewInst->andIRFlags(RHS);
1758 }
1759
1760 Worklist.pushValue(Shuf0);
1761 Worklist.pushValue(Shuf1);
1762 replaceValue(I, *NewBO);
1763 return true;
1764}
1765
1766/// Try to convert "shuffle (castop), (castop)" with a shared castop operand
1767/// into "castop (shuffle)".
1768bool VectorCombine::foldShuffleOfCastops(Instruction &I) {
1769 Value *V0, *V1;
1770 ArrayRef<int> OldMask;
1771 if (!match(&I, m_Shuffle(m_Value(V0), m_Value(V1), m_Mask(OldMask))))
1772 return false;
1773
1774 auto *C0 = dyn_cast<CastInst>(V0);
1775 auto *C1 = dyn_cast<CastInst>(V1);
1776 if (!C0 || !C1)
1777 return false;
1778
1779 Instruction::CastOps Opcode = C0->getOpcode();
1780 if (C0->getSrcTy() != C1->getSrcTy())
1781 return false;
1782
1783 // Handle shuffle(zext_nneg(x), sext(y)) -> sext(shuffle(x,y)) folds.
1784 if (Opcode != C1->getOpcode()) {
1785 if (match(C0, m_SExtLike(m_Value())) && match(C1, m_SExtLike(m_Value())))
1786 Opcode = Instruction::SExt;
1787 else
1788 return false;
1789 }
1790
1791 auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1792 auto *CastDstTy = dyn_cast<FixedVectorType>(C0->getDestTy());
1793 auto *CastSrcTy = dyn_cast<FixedVectorType>(C0->getSrcTy());
1794 if (!ShuffleDstTy || !CastDstTy || !CastSrcTy)
1795 return false;
1796
1797 unsigned NumSrcElts = CastSrcTy->getNumElements();
1798 unsigned NumDstElts = CastDstTy->getNumElements();
1799 assert((NumDstElts == NumSrcElts || Opcode == Instruction::BitCast) &&
1800 "Only bitcasts expected to alter src/dst element counts");
1801
1802 // Check for bitcasting of unscalable vector types.
1803 // e.g. <32 x i40> -> <40 x i32>
1804 if (NumDstElts != NumSrcElts && (NumSrcElts % NumDstElts) != 0 &&
1805 (NumDstElts % NumSrcElts) != 0)
1806 return false;
1807
1808 SmallVector<int, 16> NewMask;
1809 if (NumSrcElts >= NumDstElts) {
1810 // The bitcast is from wide to narrow/equal elements. The shuffle mask can
1811 // always be expanded to the equivalent form choosing narrower elements.
1812 assert(NumSrcElts % NumDstElts == 0 && "Unexpected shuffle mask");
1813 unsigned ScaleFactor = NumSrcElts / NumDstElts;
1814 narrowShuffleMaskElts(ScaleFactor, OldMask, NewMask);
1815 } else {
1816 // The bitcast is from narrow elements to wide elements. The shuffle mask
1817 // must choose consecutive elements to allow casting first.
1818 assert(NumDstElts % NumSrcElts == 0 && "Unexpected shuffle mask");
1819 unsigned ScaleFactor = NumDstElts / NumSrcElts;
1820 if (!widenShuffleMaskElts(ScaleFactor, OldMask, NewMask))
1821 return false;
1822 }
1823
1824 auto *NewShuffleDstTy =
1825 FixedVectorType::get(CastSrcTy->getScalarType(), NewMask.size());
1826
1827 // Try to replace a castop with a shuffle if the shuffle is not costly.
1828 InstructionCost CostC0 =
1829 TTI.getCastInstrCost(C0->getOpcode(), CastDstTy, CastSrcTy,
1831 InstructionCost CostC1 =
1832 TTI.getCastInstrCost(C1->getOpcode(), CastDstTy, CastSrcTy,
1834 InstructionCost OldCost = CostC0 + CostC1;
1835 OldCost +=
1837 OldMask, CostKind, 0, nullptr, {}, &I);
1838
1840 TargetTransformInfo::SK_PermuteTwoSrc, CastSrcTy, NewMask, CostKind);
1841 NewCost += TTI.getCastInstrCost(Opcode, ShuffleDstTy, NewShuffleDstTy,
1843 if (!C0->hasOneUse())
1844 NewCost += CostC0;
1845 if (!C1->hasOneUse())
1846 NewCost += CostC1;
1847
1848 LLVM_DEBUG(dbgs() << "Found a shuffle feeding two casts: " << I
1849 << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost
1850 << "\n");
1851 if (NewCost > OldCost)
1852 return false;
1853
1854 Value *Shuf = Builder.CreateShuffleVector(C0->getOperand(0),
1855 C1->getOperand(0), NewMask);
1856 Value *Cast = Builder.CreateCast(Opcode, Shuf, ShuffleDstTy);
1857
1858 // Intersect flags from the old casts.
1859 if (auto *NewInst = dyn_cast<Instruction>(Cast)) {
1860 NewInst->copyIRFlags(C0);
1861 NewInst->andIRFlags(C1);
1862 }
1863
1864 Worklist.pushValue(Shuf);
1865 replaceValue(I, *Cast);
1866 return true;
1867}
1868
1869/// Try to convert any of:
1870/// "shuffle (shuffle x, undef), (shuffle y, undef)"
1871/// "shuffle (shuffle x, undef), y"
1872/// "shuffle x, (shuffle y, undef)"
1873/// into "shuffle x, y".
1874bool VectorCombine::foldShuffleOfShuffles(Instruction &I) {
1875 ArrayRef<int> OuterMask;
1876 Value *OuterV0, *OuterV1;
1877 if (!match(&I,
1878 m_Shuffle(m_Value(OuterV0), m_Value(OuterV1), m_Mask(OuterMask))))
1879 return false;
1880
1881 ArrayRef<int> InnerMask0, InnerMask1;
1882 Value *V0 = nullptr, *V1 = nullptr;
1883 UndefValue *U0 = nullptr, *U1 = nullptr;
1884 bool Match0 = match(
1885 OuterV0, m_Shuffle(m_Value(V0), m_UndefValue(U0), m_Mask(InnerMask0)));
1886 bool Match1 = match(
1887 OuterV1, m_Shuffle(m_Value(V1), m_UndefValue(U1), m_Mask(InnerMask1)));
1888 if (!Match0 && !Match1)
1889 return false;
1890
1891 V0 = Match0 ? V0 : OuterV0;
1892 V1 = Match1 ? V1 : OuterV1;
1893 auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1894 auto *ShuffleSrcTy = dyn_cast<FixedVectorType>(V0->getType());
1895 auto *ShuffleImmTy = dyn_cast<FixedVectorType>(I.getOperand(0)->getType());
1896 if (!ShuffleDstTy || !ShuffleSrcTy || !ShuffleImmTy ||
1897 V0->getType() != V1->getType())
1898 return false;
1899
1900 unsigned NumSrcElts = ShuffleSrcTy->getNumElements();
1901 unsigned NumImmElts = ShuffleImmTy->getNumElements();
1902
1903 // Bail if either inner masks reference a RHS undef arg.
1904 if ((Match0 && !isa<PoisonValue>(U0) &&
1905 any_of(InnerMask0, [&](int M) { return M >= (int)NumSrcElts; })) ||
1906 (Match1 && !isa<PoisonValue>(U1) &&
1907 any_of(InnerMask1, [&](int M) { return M >= (int)NumSrcElts; })))
1908 return false;
1909
1910 // Merge shuffles - replace index to the RHS poison arg with PoisonMaskElem,
1911 SmallVector<int, 16> NewMask(OuterMask);
1912 for (int &M : NewMask) {
1913 if (0 <= M && M < (int)NumImmElts) {
1914 if (Match0)
1915 M = (InnerMask0[M] >= (int)NumSrcElts) ? PoisonMaskElem : InnerMask0[M];
1916 } else if (M >= (int)NumImmElts) {
1917 if (Match1) {
1918 if (InnerMask1[M - NumImmElts] >= (int)NumSrcElts)
1919 M = PoisonMaskElem;
1920 else
1921 M = InnerMask1[M - NumImmElts] + (V0 == V1 ? 0 : NumSrcElts);
1922 }
1923 }
1924 }
1925
1926 // Have we folded to an Identity shuffle?
1927 if (ShuffleVectorInst::isIdentityMask(NewMask, NumSrcElts)) {
1928 replaceValue(I, *V0);
1929 return true;
1930 }
1931
1932 // Try to merge the shuffles if the new shuffle is not costly.
1933 InstructionCost InnerCost0 = 0;
1934 if (Match0)
1935 InnerCost0 = TTI.getShuffleCost(
1936 TargetTransformInfo::SK_PermuteSingleSrc, ShuffleSrcTy, InnerMask0,
1937 CostKind, 0, nullptr, {V0, U0}, cast<ShuffleVectorInst>(OuterV0));
1938
1939 InstructionCost InnerCost1 = 0;
1940 if (Match1)
1941 InnerCost1 = TTI.getShuffleCost(
1942 TargetTransformInfo::SK_PermuteSingleSrc, ShuffleSrcTy, InnerMask1,
1943 CostKind, 0, nullptr, {V1, U1}, cast<ShuffleVectorInst>(OuterV1));
1944
1946 TargetTransformInfo::SK_PermuteTwoSrc, ShuffleImmTy, OuterMask, CostKind,
1947 0, nullptr, {OuterV0, OuterV1}, &I);
1948
1949 InstructionCost OldCost = InnerCost0 + InnerCost1 + OuterCost;
1950
1951 InstructionCost NewCost =
1953 NewMask, CostKind, 0, nullptr, {V0, V1});
1954 if (!OuterV0->hasOneUse())
1955 NewCost += InnerCost0;
1956 if (!OuterV1->hasOneUse())
1957 NewCost += InnerCost1;
1958
1959 LLVM_DEBUG(dbgs() << "Found a shuffle feeding two shuffles: " << I
1960 << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost
1961 << "\n");
1962 if (NewCost > OldCost)
1963 return false;
1964
1965 // Clear unused sources to poison.
1966 if (none_of(NewMask, [&](int M) { return 0 <= M && M < (int)NumSrcElts; }))
1967 V0 = PoisonValue::get(ShuffleSrcTy);
1968 if (none_of(NewMask, [&](int M) { return (int)NumSrcElts <= M; }))
1969 V1 = PoisonValue::get(ShuffleSrcTy);
1970
1971 Value *Shuf = Builder.CreateShuffleVector(V0, V1, NewMask);
1972 replaceValue(I, *Shuf);
1973 return true;
1974}
1975
1976/// Try to convert
1977/// "shuffle (intrinsic), (intrinsic)" into "intrinsic (shuffle), (shuffle)".
1978bool VectorCombine::foldShuffleOfIntrinsics(Instruction &I) {
1979 Value *V0, *V1;
1980 ArrayRef<int> OldMask;
1981 if (!match(&I, m_Shuffle(m_OneUse(m_Value(V0)), m_OneUse(m_Value(V1)),
1982 m_Mask(OldMask))))
1983 return false;
1984
1985 auto *II0 = dyn_cast<IntrinsicInst>(V0);
1986 auto *II1 = dyn_cast<IntrinsicInst>(V1);
1987 if (!II0 || !II1)
1988 return false;
1989
1990 Intrinsic::ID IID = II0->getIntrinsicID();
1991 if (IID != II1->getIntrinsicID())
1992 return false;
1993
1994 auto *ShuffleDstTy = dyn_cast<FixedVectorType>(I.getType());
1995 auto *II0Ty = dyn_cast<FixedVectorType>(II0->getType());
1996 if (!ShuffleDstTy || !II0Ty)
1997 return false;
1998
1999 if (!isTriviallyVectorizable(IID))
2000 return false;
2001
2002 for (unsigned I = 0, E = II0->arg_size(); I != E; ++I)
2004 II0->getArgOperand(I) != II1->getArgOperand(I))
2005 return false;
2006
2007 InstructionCost OldCost =
2011 CostKind, 0, nullptr, {II0, II1}, &I);
2012
2013 SmallVector<Type *> NewArgsTy;
2014 InstructionCost NewCost = 0;
2015 for (unsigned I = 0, E = II0->arg_size(); I != E; ++I)
2017 NewArgsTy.push_back(II0->getArgOperand(I)->getType());
2018 } else {
2019 auto *VecTy = cast<FixedVectorType>(II0->getArgOperand(I)->getType());
2020 NewArgsTy.push_back(FixedVectorType::get(VecTy->getElementType(),
2021 VecTy->getNumElements() * 2));
2023 VecTy, OldMask, CostKind);
2024 }
2025 IntrinsicCostAttributes NewAttr(IID, ShuffleDstTy, NewArgsTy);
2026 NewCost += TTI.getIntrinsicInstrCost(NewAttr, CostKind);
2027
2028 LLVM_DEBUG(dbgs() << "Found a shuffle feeding two intrinsics: " << I
2029 << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost
2030 << "\n");
2031
2032 if (NewCost > OldCost)
2033 return false;
2034
2035 SmallVector<Value *> NewArgs;
2036 for (unsigned I = 0, E = II0->arg_size(); I != E; ++I)
2038 NewArgs.push_back(II0->getArgOperand(I));
2039 } else {
2040 Value *Shuf = Builder.CreateShuffleVector(II0->getArgOperand(I),
2041 II1->getArgOperand(I), OldMask);
2042 NewArgs.push_back(Shuf);
2043 Worklist.pushValue(Shuf);
2044 }
2045 Value *NewIntrinsic = Builder.CreateIntrinsic(ShuffleDstTy, IID, NewArgs);
2046
2047 // Intersect flags from the old intrinsics.
2048 if (auto *NewInst = dyn_cast<Instruction>(NewIntrinsic)) {
2049 NewInst->copyIRFlags(II0);
2050 NewInst->andIRFlags(II1);
2051 }
2052
2053 replaceValue(I, *NewIntrinsic);
2054 return true;
2055}
2056
2057using InstLane = std::pair<Use *, int>;
2058
2059static InstLane lookThroughShuffles(Use *U, int Lane) {
2060 while (auto *SV = dyn_cast<ShuffleVectorInst>(U->get())) {
2061 unsigned NumElts =
2062 cast<FixedVectorType>(SV->getOperand(0)->getType())->getNumElements();
2063 int M = SV->getMaskValue(Lane);
2064 if (M < 0)
2065 return {nullptr, PoisonMaskElem};
2066 if (static_cast<unsigned>(M) < NumElts) {
2067 U = &SV->getOperandUse(0);
2068 Lane = M;
2069 } else {
2070 U = &SV->getOperandUse(1);
2071 Lane = M - NumElts;
2072 }
2073 }
2074 return InstLane{U, Lane};
2075}
2076
2080 for (InstLane IL : Item) {
2081 auto [U, Lane] = IL;
2082 InstLane OpLane =
2083 U ? lookThroughShuffles(&cast<Instruction>(U->get())->getOperandUse(Op),
2084 Lane)
2085 : InstLane{nullptr, PoisonMaskElem};
2086 NItem.emplace_back(OpLane);
2087 }
2088 return NItem;
2089}
2090
2091/// Detect concat of multiple values into a vector
2093 const TargetTransformInfo &TTI) {
2094 auto *Ty = cast<FixedVectorType>(Item.front().first->get()->getType());
2095 unsigned NumElts = Ty->getNumElements();
2096 if (Item.size() == NumElts || NumElts == 1 || Item.size() % NumElts != 0)
2097 return false;
2098
2099 // Check that the concat is free, usually meaning that the type will be split
2100 // during legalization.
2101 SmallVector<int, 16> ConcatMask(NumElts * 2);
2102 std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
2103 if (TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, ConcatMask, CostKind) != 0)
2104 return false;
2105
2106 unsigned NumSlices = Item.size() / NumElts;
2107 // Currently we generate a tree of shuffles for the concats, which limits us
2108 // to a power2.
2109 if (!isPowerOf2_32(NumSlices))
2110 return false;
2111 for (unsigned Slice = 0; Slice < NumSlices; ++Slice) {
2112 Use *SliceV = Item[Slice * NumElts].first;
2113 if (!SliceV || SliceV->get()->getType() != Ty)
2114 return false;
2115 for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2116 auto [V, Lane] = Item[Slice * NumElts + Elt];
2117 if (Lane != static_cast<int>(Elt) || SliceV->get() != V->get())
2118 return false;
2119 }
2120 }
2121 return true;
2122}
2123
2125 const SmallPtrSet<Use *, 4> &IdentityLeafs,
2126 const SmallPtrSet<Use *, 4> &SplatLeafs,
2127 const SmallPtrSet<Use *, 4> &ConcatLeafs,
2128 IRBuilder<> &Builder,
2129 const TargetTransformInfo *TTI) {
2130 auto [FrontU, FrontLane] = Item.front();
2131
2132 if (IdentityLeafs.contains(FrontU)) {
2133 return FrontU->get();
2134 }
2135 if (SplatLeafs.contains(FrontU)) {
2136 SmallVector<int, 16> Mask(Ty->getNumElements(), FrontLane);
2137 return Builder.CreateShuffleVector(FrontU->get(), Mask);
2138 }
2139 if (ConcatLeafs.contains(FrontU)) {
2140 unsigned NumElts =
2141 cast<FixedVectorType>(FrontU->get()->getType())->getNumElements();
2142 SmallVector<Value *> Values(Item.size() / NumElts, nullptr);
2143 for (unsigned S = 0; S < Values.size(); ++S)
2144 Values[S] = Item[S * NumElts].first->get();
2145
2146 while (Values.size() > 1) {
2147 NumElts *= 2;
2148 SmallVector<int, 16> Mask(NumElts, 0);
2149 std::iota(Mask.begin(), Mask.end(), 0);
2150 SmallVector<Value *> NewValues(Values.size() / 2, nullptr);
2151 for (unsigned S = 0; S < NewValues.size(); ++S)
2152 NewValues[S] =
2153 Builder.CreateShuffleVector(Values[S * 2], Values[S * 2 + 1], Mask);
2154 Values = NewValues;
2155 }
2156 return Values[0];
2157 }
2158
2159 auto *I = cast<Instruction>(FrontU->get());
2160 auto *II = dyn_cast<IntrinsicInst>(I);
2161 unsigned NumOps = I->getNumOperands() - (II ? 1 : 0);
2162 SmallVector<Value *> Ops(NumOps);
2163 for (unsigned Idx = 0; Idx < NumOps; Idx++) {
2164 if (II &&
2165 isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(), Idx, TTI)) {
2166 Ops[Idx] = II->getOperand(Idx);
2167 continue;
2168 }
2170 Ty, IdentityLeafs, SplatLeafs, ConcatLeafs,
2171 Builder, TTI);
2172 }
2173
2174 SmallVector<Value *, 8> ValueList;
2175 for (const auto &Lane : Item)
2176 if (Lane.first)
2177 ValueList.push_back(Lane.first->get());
2178
2179 Type *DstTy =
2180 FixedVectorType::get(I->getType()->getScalarType(), Ty->getNumElements());
2181 if (auto *BI = dyn_cast<BinaryOperator>(I)) {
2182 auto *Value = Builder.CreateBinOp((Instruction::BinaryOps)BI->getOpcode(),
2183 Ops[0], Ops[1]);
2184 propagateIRFlags(Value, ValueList);
2185 return Value;
2186 }
2187 if (auto *CI = dyn_cast<CmpInst>(I)) {
2188 auto *Value = Builder.CreateCmp(CI->getPredicate(), Ops[0], Ops[1]);
2189 propagateIRFlags(Value, ValueList);
2190 return Value;
2191 }
2192 if (auto *SI = dyn_cast<SelectInst>(I)) {
2193 auto *Value = Builder.CreateSelect(Ops[0], Ops[1], Ops[2], "", SI);
2194 propagateIRFlags(Value, ValueList);
2195 return Value;
2196 }
2197 if (auto *CI = dyn_cast<CastInst>(I)) {
2198 auto *Value = Builder.CreateCast((Instruction::CastOps)CI->getOpcode(),
2199 Ops[0], DstTy);
2200 propagateIRFlags(Value, ValueList);
2201 return Value;
2202 }
2203 if (II) {
2204 auto *Value = Builder.CreateIntrinsic(DstTy, II->getIntrinsicID(), Ops);
2205 propagateIRFlags(Value, ValueList);
2206 return Value;
2207 }
2208 assert(isa<UnaryInstruction>(I) && "Unexpected instruction type in Generate");
2209 auto *Value =
2210 Builder.CreateUnOp((Instruction::UnaryOps)I->getOpcode(), Ops[0]);
2211 propagateIRFlags(Value, ValueList);
2212 return Value;
2213}
2214
2215// Starting from a shuffle, look up through operands tracking the shuffled index
2216// of each lane. If we can simplify away the shuffles to identities then
2217// do so.
2218bool VectorCombine::foldShuffleToIdentity(Instruction &I) {
2219 auto *Ty = dyn_cast<FixedVectorType>(I.getType());
2220 if (!Ty || I.use_empty())
2221 return false;
2222
2223 SmallVector<InstLane> Start(Ty->getNumElements());
2224 for (unsigned M = 0, E = Ty->getNumElements(); M < E; ++M)
2225 Start[M] = lookThroughShuffles(&*I.use_begin(), M);
2226
2228 Worklist.push_back(Start);
2229 SmallPtrSet<Use *, 4> IdentityLeafs, SplatLeafs, ConcatLeafs;
2230 unsigned NumVisited = 0;
2231
2232 while (!Worklist.empty()) {
2233 if (++NumVisited > MaxInstrsToScan)
2234 return false;
2235
2236 SmallVector<InstLane> Item = Worklist.pop_back_val();
2237 auto [FrontU, FrontLane] = Item.front();
2238
2239 // If we found an undef first lane then bail out to keep things simple.
2240 if (!FrontU)
2241 return false;
2242
2243 // Helper to peek through bitcasts to the same value.
2244 auto IsEquiv = [&](Value *X, Value *Y) {
2245 return X->getType() == Y->getType() &&
2247 };
2248
2249 // Look for an identity value.
2250 if (FrontLane == 0 &&
2251 cast<FixedVectorType>(FrontU->get()->getType())->getNumElements() ==
2252 Ty->getNumElements() &&
2253 all_of(drop_begin(enumerate(Item)), [IsEquiv, Item](const auto &E) {
2254 Value *FrontV = Item.front().first->get();
2255 return !E.value().first || (IsEquiv(E.value().first->get(), FrontV) &&
2256 E.value().second == (int)E.index());
2257 })) {
2258 IdentityLeafs.insert(FrontU);
2259 continue;
2260 }
2261 // Look for constants, for the moment only supporting constant splats.
2262 if (auto *C = dyn_cast<Constant>(FrontU);
2263 C && C->getSplatValue() &&
2264 all_of(drop_begin(Item), [Item](InstLane &IL) {
2265 Value *FrontV = Item.front().first->get();
2266 Use *U = IL.first;
2267 return !U || (isa<Constant>(U->get()) &&
2268 cast<Constant>(U->get())->getSplatValue() ==
2269 cast<Constant>(FrontV)->getSplatValue());
2270 })) {
2271 SplatLeafs.insert(FrontU);
2272 continue;
2273 }
2274 // Look for a splat value.
2275 if (all_of(drop_begin(Item), [Item](InstLane &IL) {
2276 auto [FrontU, FrontLane] = Item.front();
2277 auto [U, Lane] = IL;
2278 return !U || (U->get() == FrontU->get() && Lane == FrontLane);
2279 })) {
2280 SplatLeafs.insert(FrontU);
2281 continue;
2282 }
2283
2284 // We need each element to be the same type of value, and check that each
2285 // element has a single use.
2286 auto CheckLaneIsEquivalentToFirst = [Item](InstLane IL) {
2287 Value *FrontV = Item.front().first->get();
2288 if (!IL.first)
2289 return true;
2290 Value *V = IL.first->get();
2291 if (auto *I = dyn_cast<Instruction>(V); I && !I->hasOneUse())
2292 return false;
2293 if (V->getValueID() != FrontV->getValueID())
2294 return false;
2295 if (auto *CI = dyn_cast<CmpInst>(V))
2296 if (CI->getPredicate() != cast<CmpInst>(FrontV)->getPredicate())
2297 return false;
2298 if (auto *CI = dyn_cast<CastInst>(V))
2299 if (CI->getSrcTy()->getScalarType() !=
2300 cast<CastInst>(FrontV)->getSrcTy()->getScalarType())
2301 return false;
2302 if (auto *SI = dyn_cast<SelectInst>(V))
2303 if (!isa<VectorType>(SI->getOperand(0)->getType()) ||
2304 SI->getOperand(0)->getType() !=
2305 cast<SelectInst>(FrontV)->getOperand(0)->getType())
2306 return false;
2307 if (isa<CallInst>(V) && !isa<IntrinsicInst>(V))
2308 return false;
2309 auto *II = dyn_cast<IntrinsicInst>(V);
2310 return !II || (isa<IntrinsicInst>(FrontV) &&
2311 II->getIntrinsicID() ==
2312 cast<IntrinsicInst>(FrontV)->getIntrinsicID() &&
2313 !II->hasOperandBundles());
2314 };
2315 if (all_of(drop_begin(Item), CheckLaneIsEquivalentToFirst)) {
2316 // Check the operator is one that we support.
2317 if (isa<BinaryOperator, CmpInst>(FrontU)) {
2318 // We exclude div/rem in case they hit UB from poison lanes.
2319 if (auto *BO = dyn_cast<BinaryOperator>(FrontU);
2320 BO && BO->isIntDivRem())
2321 return false;
2324 continue;
2326 FPToUIInst, SIToFPInst, UIToFPInst>(FrontU)) {
2328 continue;
2329 } else if (auto *BitCast = dyn_cast<BitCastInst>(FrontU)) {
2330 // TODO: Handle vector widening/narrowing bitcasts.
2331 auto *DstTy = dyn_cast<FixedVectorType>(BitCast->getDestTy());
2332 auto *SrcTy = dyn_cast<FixedVectorType>(BitCast->getSrcTy());
2333 if (DstTy && SrcTy &&
2334 SrcTy->getNumElements() == DstTy->getNumElements()) {
2336 continue;
2337 }
2338 } else if (isa<SelectInst>(FrontU)) {
2342 continue;
2343 } else if (auto *II = dyn_cast<IntrinsicInst>(FrontU);
2344 II && isTriviallyVectorizable(II->getIntrinsicID()) &&
2345 !II->hasOperandBundles()) {
2346 for (unsigned Op = 0, E = II->getNumOperands() - 1; Op < E; Op++) {
2347 if (isVectorIntrinsicWithScalarOpAtArg(II->getIntrinsicID(), Op,
2348 &TTI)) {
2349 if (!all_of(drop_begin(Item), [Item, Op](InstLane &IL) {
2350 Value *FrontV = Item.front().first->get();
2351 Use *U = IL.first;
2352 return !U || (cast<Instruction>(U->get())->getOperand(Op) ==
2353 cast<Instruction>(FrontV)->getOperand(Op));
2354 }))
2355 return false;
2356 continue;
2357 }
2359 }
2360 continue;
2361 }
2362 }
2363
2364 if (isFreeConcat(Item, CostKind, TTI)) {
2365 ConcatLeafs.insert(FrontU);
2366 continue;
2367 }
2368
2369 return false;
2370 }
2371
2372 if (NumVisited <= 1)
2373 return false;
2374
2375 // If we got this far, we know the shuffles are superfluous and can be
2376 // removed. Scan through again and generate the new tree of instructions.
2377 Builder.SetInsertPoint(&I);
2378 Value *V = generateNewInstTree(Start, Ty, IdentityLeafs, SplatLeafs,
2379 ConcatLeafs, Builder, &TTI);
2380 replaceValue(I, *V);
2381 return true;
2382}
2383
2384/// Given a commutative reduction, the order of the input lanes does not alter
2385/// the results. We can use this to remove certain shuffles feeding the
2386/// reduction, removing the need to shuffle at all.
2387bool VectorCombine::foldShuffleFromReductions(Instruction &I) {
2388 auto *II = dyn_cast<IntrinsicInst>(&I);
2389 if (!II)
2390 return false;
2391 switch (II->getIntrinsicID()) {
2392 case Intrinsic::vector_reduce_add:
2393 case Intrinsic::vector_reduce_mul:
2394 case Intrinsic::vector_reduce_and:
2395 case Intrinsic::vector_reduce_or:
2396 case Intrinsic::vector_reduce_xor:
2397 case Intrinsic::vector_reduce_smin:
2398 case Intrinsic::vector_reduce_smax:
2399 case Intrinsic::vector_reduce_umin:
2400 case Intrinsic::vector_reduce_umax:
2401 break;
2402 default:
2403 return false;
2404 }
2405
2406 // Find all the inputs when looking through operations that do not alter the
2407 // lane order (binops, for example). Currently we look for a single shuffle,
2408 // and can ignore splat values.
2409 std::queue<Value *> Worklist;
2411 ShuffleVectorInst *Shuffle = nullptr;
2412 if (auto *Op = dyn_cast<Instruction>(I.getOperand(0)))
2413 Worklist.push(Op);
2414
2415 while (!Worklist.empty()) {
2416 Value *CV = Worklist.front();
2417 Worklist.pop();
2418 if (Visited.contains(CV))
2419 continue;
2420
2421 // Splats don't change the order, so can be safely ignored.
2422 if (isSplatValue(CV))
2423 continue;
2424
2425 Visited.insert(CV);
2426
2427 if (auto *CI = dyn_cast<Instruction>(CV)) {
2428 if (CI->isBinaryOp()) {
2429 for (auto *Op : CI->operand_values())
2430 Worklist.push(Op);
2431 continue;
2432 } else if (auto *SV = dyn_cast<ShuffleVectorInst>(CI)) {
2433 if (Shuffle && Shuffle != SV)
2434 return false;
2435 Shuffle = SV;
2436 continue;
2437 }
2438 }
2439
2440 // Anything else is currently an unknown node.
2441 return false;
2442 }
2443
2444 if (!Shuffle)
2445 return false;
2446
2447 // Check all uses of the binary ops and shuffles are also included in the
2448 // lane-invariant operations (Visited should be the list of lanewise
2449 // instructions, including the shuffle that we found).
2450 for (auto *V : Visited)
2451 for (auto *U : V->users())
2452 if (!Visited.contains(U) && U != &I)
2453 return false;
2454
2456 dyn_cast<FixedVectorType>(II->getOperand(0)->getType());
2457 if (!VecType)
2458 return false;
2459 FixedVectorType *ShuffleInputType =
2460 dyn_cast<FixedVectorType>(Shuffle->getOperand(0)->getType());
2461 if (!ShuffleInputType)
2462 return false;
2463 unsigned NumInputElts = ShuffleInputType->getNumElements();
2464
2465 // Find the mask from sorting the lanes into order. This is most likely to
2466 // become a identity or concat mask. Undef elements are pushed to the end.
2467 SmallVector<int> ConcatMask;
2468 Shuffle->getShuffleMask(ConcatMask);
2469 sort(ConcatMask, [](int X, int Y) { return (unsigned)X < (unsigned)Y; });
2470 // In the case of a truncating shuffle it's possible for the mask
2471 // to have an index greater than the size of the resulting vector.
2472 // This requires special handling.
2473 bool IsTruncatingShuffle = VecType->getNumElements() < NumInputElts;
2474 bool UsesSecondVec =
2475 any_of(ConcatMask, [&](int M) { return M >= (int)NumInputElts; });
2476
2477 FixedVectorType *VecTyForCost =
2478 (UsesSecondVec && !IsTruncatingShuffle) ? VecType : ShuffleInputType;
2481 VecTyForCost, Shuffle->getShuffleMask(), CostKind);
2484 VecTyForCost, ConcatMask, CostKind);
2485
2486 LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle
2487 << "\n");
2488 LLVM_DEBUG(dbgs() << " OldCost: " << OldCost << " vs NewCost: " << NewCost
2489 << "\n");
2490 if (NewCost < OldCost) {
2491 Builder.SetInsertPoint(Shuffle);
2492 Value *NewShuffle = Builder.CreateShuffleVector(
2493 Shuffle->getOperand(0), Shuffle->getOperand(1), ConcatMask);
2494 LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n");
2495 replaceValue(*Shuffle, *NewShuffle);
2496 }
2497
2498 // See if we can re-use foldSelectShuffle, getting it to reduce the size of
2499 // the shuffle into a nicer order, as it can ignore the order of the shuffles.
2500 return foldSelectShuffle(*Shuffle, true);
2501}
2502
2503/// Determine if its more efficient to fold:
2504/// reduce(trunc(x)) -> trunc(reduce(x)).
2505/// reduce(sext(x)) -> sext(reduce(x)).
2506/// reduce(zext(x)) -> zext(reduce(x)).
2507bool VectorCombine::foldCastFromReductions(Instruction &I) {
2508 auto *II = dyn_cast<IntrinsicInst>(&I);
2509 if (!II)
2510 return false;
2511
2512 bool TruncOnly = false;
2513 Intrinsic::ID IID = II->getIntrinsicID();
2514 switch (IID) {
2515 case Intrinsic::vector_reduce_add:
2516 case Intrinsic::vector_reduce_mul:
2517 TruncOnly = true;
2518 break;
2519 case Intrinsic::vector_reduce_and:
2520 case Intrinsic::vector_reduce_or:
2521 case Intrinsic::vector_reduce_xor:
2522 break;
2523 default:
2524 return false;
2525 }
2526
2527 unsigned ReductionOpc = getArithmeticReductionInstruction(IID);
2528 Value *ReductionSrc = I.getOperand(0);
2529
2530 Value *Src;
2531 if (!match(ReductionSrc, m_OneUse(m_Trunc(m_Value(Src)))) &&
2532 (TruncOnly || !match(ReductionSrc, m_OneUse(m_ZExtOrSExt(m_Value(Src))))))
2533 return false;
2534
2535 auto CastOpc =
2536 (Instruction::CastOps)cast<Instruction>(ReductionSrc)->getOpcode();
2537
2538 auto *SrcTy = cast<VectorType>(Src->getType());
2539 auto *ReductionSrcTy = cast<VectorType>(ReductionSrc->getType());
2540 Type *ResultTy = I.getType();
2541
2543 ReductionOpc, ReductionSrcTy, std::nullopt, CostKind);
2544 OldCost += TTI.getCastInstrCost(CastOpc, ReductionSrcTy, SrcTy,
2546 cast<CastInst>(ReductionSrc));
2547 InstructionCost NewCost =
2548 TTI.getArithmeticReductionCost(ReductionOpc, SrcTy, std::nullopt,
2549 CostKind) +
2550 TTI.getCastInstrCost(CastOpc, ResultTy, ReductionSrcTy->getScalarType(),
2552
2553 if (OldCost <= NewCost || !NewCost.isValid())
2554 return false;
2555
2556 Value *NewReduction = Builder.CreateIntrinsic(SrcTy->getScalarType(),
2557 II->getIntrinsicID(), {Src});
2558 Value *NewCast = Builder.CreateCast(CastOpc, NewReduction, ResultTy);
2559 replaceValue(I, *NewCast);
2560 return true;
2561}
2562
2563/// This method looks for groups of shuffles acting on binops, of the form:
2564/// %x = shuffle ...
2565/// %y = shuffle ...
2566/// %a = binop %x, %y
2567/// %b = binop %x, %y
2568/// shuffle %a, %b, selectmask
2569/// We may, especially if the shuffle is wider than legal, be able to convert
2570/// the shuffle to a form where only parts of a and b need to be computed. On
2571/// architectures with no obvious "select" shuffle, this can reduce the total
2572/// number of operations if the target reports them as cheaper.
2573bool VectorCombine::foldSelectShuffle(Instruction &I, bool FromReduction) {
2574 auto *SVI = cast<ShuffleVectorInst>(&I);
2575 auto *VT = cast<FixedVectorType>(I.getType());
2576 auto *Op0 = dyn_cast<Instruction>(SVI->getOperand(0));
2577 auto *Op1 = dyn_cast<Instruction>(SVI->getOperand(1));
2578 if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() ||
2579 VT != Op0->getType())
2580 return false;
2581
2582 auto *SVI0A = dyn_cast<Instruction>(Op0->getOperand(0));
2583 auto *SVI0B = dyn_cast<Instruction>(Op0->getOperand(1));
2584 auto *SVI1A = dyn_cast<Instruction>(Op1->getOperand(0));
2585 auto *SVI1B = dyn_cast<Instruction>(Op1->getOperand(1));
2586 SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B});
2587 auto checkSVNonOpUses = [&](Instruction *I) {
2588 if (!I || I->getOperand(0)->getType() != VT)
2589 return true;
2590 return any_of(I->users(), [&](User *U) {
2591 return U != Op0 && U != Op1 &&
2592 !(isa<ShuffleVectorInst>(U) &&
2593 (InputShuffles.contains(cast<Instruction>(U)) ||
2594 isInstructionTriviallyDead(cast<Instruction>(U))));
2595 });
2596 };
2597 if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) ||
2598 checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B))
2599 return false;
2600
2601 // Collect all the uses that are shuffles that we can transform together. We
2602 // may not have a single shuffle, but a group that can all be transformed
2603 // together profitably.
2605 auto collectShuffles = [&](Instruction *I) {
2606 for (auto *U : I->users()) {
2607 auto *SV = dyn_cast<ShuffleVectorInst>(U);
2608 if (!SV || SV->getType() != VT)
2609 return false;
2610 if ((SV->getOperand(0) != Op0 && SV->getOperand(0) != Op1) ||
2611 (SV->getOperand(1) != Op0 && SV->getOperand(1) != Op1))
2612 return false;
2613 if (!llvm::is_contained(Shuffles, SV))
2614 Shuffles.push_back(SV);
2615 }
2616 return true;
2617 };
2618 if (!collectShuffles(Op0) || !collectShuffles(Op1))
2619 return false;
2620 // From a reduction, we need to be processing a single shuffle, otherwise the
2621 // other uses will not be lane-invariant.
2622 if (FromReduction && Shuffles.size() > 1)
2623 return false;
2624
2625 // Add any shuffle uses for the shuffles we have found, to include them in our
2626 // cost calculations.
2627 if (!FromReduction) {
2628 for (ShuffleVectorInst *SV : Shuffles) {
2629 for (auto *U : SV->users()) {
2630 ShuffleVectorInst *SSV = dyn_cast<ShuffleVectorInst>(U);
2631 if (SSV && isa<UndefValue>(SSV->getOperand(1)) && SSV->getType() == VT)
2632 Shuffles.push_back(SSV);
2633 }
2634 }
2635 }
2636
2637 // For each of the output shuffles, we try to sort all the first vector
2638 // elements to the beginning, followed by the second array elements at the
2639 // end. If the binops are legalized to smaller vectors, this may reduce total
2640 // number of binops. We compute the ReconstructMask mask needed to convert
2641 // back to the original lane order.
2643 SmallVector<SmallVector<int>> OrigReconstructMasks;
2644 int MaxV1Elt = 0, MaxV2Elt = 0;
2645 unsigned NumElts = VT->getNumElements();
2646 for (ShuffleVectorInst *SVN : Shuffles) {
2648 SVN->getShuffleMask(Mask);
2649
2650 // Check the operands are the same as the original, or reversed (in which
2651 // case we need to commute the mask).
2652 Value *SVOp0 = SVN->getOperand(0);
2653 Value *SVOp1 = SVN->getOperand(1);
2654 if (isa<UndefValue>(SVOp1)) {
2655 auto *SSV = cast<ShuffleVectorInst>(SVOp0);
2656 SVOp0 = SSV->getOperand(0);
2657 SVOp1 = SSV->getOperand(1);
2658 for (unsigned I = 0, E = Mask.size(); I != E; I++) {
2659 if (Mask[I] >= static_cast<int>(SSV->getShuffleMask().size()))
2660 return false;
2661 Mask[I] = Mask[I] < 0 ? Mask[I] : SSV->getMaskValue(Mask[I]);
2662 }
2663 }
2664 if (SVOp0 == Op1 && SVOp1 == Op0) {
2665 std::swap(SVOp0, SVOp1);
2667 }
2668 if (SVOp0 != Op0 || SVOp1 != Op1)
2669 return false;
2670
2671 // Calculate the reconstruction mask for this shuffle, as the mask needed to
2672 // take the packed values from Op0/Op1 and reconstructing to the original
2673 // order.
2674 SmallVector<int> ReconstructMask;
2675 for (unsigned I = 0; I < Mask.size(); I++) {
2676 if (Mask[I] < 0) {
2677 ReconstructMask.push_back(-1);
2678 } else if (Mask[I] < static_cast<int>(NumElts)) {
2679 MaxV1Elt = std::max(MaxV1Elt, Mask[I]);
2680 auto It = find_if(V1, [&](const std::pair<int, int> &A) {
2681 return Mask[I] == A.first;
2682 });
2683 if (It != V1.end())
2684 ReconstructMask.push_back(It - V1.begin());
2685 else {
2686 ReconstructMask.push_back(V1.size());
2687 V1.emplace_back(Mask[I], V1.size());
2688 }
2689 } else {
2690 MaxV2Elt = std::max<int>(MaxV2Elt, Mask[I] - NumElts);
2691 auto It = find_if(V2, [&](const std::pair<int, int> &A) {
2692 return Mask[I] - static_cast<int>(NumElts) == A.first;
2693 });
2694 if (It != V2.end())
2695 ReconstructMask.push_back(NumElts + It - V2.begin());
2696 else {
2697 ReconstructMask.push_back(NumElts + V2.size());
2698 V2.emplace_back(Mask[I] - NumElts, NumElts + V2.size());
2699 }
2700 }
2701 }
2702
2703 // For reductions, we know that the lane ordering out doesn't alter the
2704 // result. In-order can help simplify the shuffle away.
2705 if (FromReduction)
2706 sort(ReconstructMask);
2707 OrigReconstructMasks.push_back(std::move(ReconstructMask));
2708 }
2709
2710 // If the Maximum element used from V1 and V2 are not larger than the new
2711 // vectors, the vectors are already packes and performing the optimization
2712 // again will likely not help any further. This also prevents us from getting
2713 // stuck in a cycle in case the costs do not also rule it out.
2714 if (V1.empty() || V2.empty() ||
2715 (MaxV1Elt == static_cast<int>(V1.size()) - 1 &&
2716 MaxV2Elt == static_cast<int>(V2.size()) - 1))
2717 return false;
2718
2719 // GetBaseMaskValue takes one of the inputs, which may either be a shuffle, a
2720 // shuffle of another shuffle, or not a shuffle (that is treated like a
2721 // identity shuffle).
2722 auto GetBaseMaskValue = [&](Instruction *I, int M) {
2723 auto *SV = dyn_cast<ShuffleVectorInst>(I);
2724 if (!SV)
2725 return M;
2726 if (isa<UndefValue>(SV->getOperand(1)))
2727 if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
2728 if (InputShuffles.contains(SSV))
2729 return SSV->getMaskValue(SV->getMaskValue(M));
2730 return SV->getMaskValue(M);
2731 };
2732
2733 // Attempt to sort the inputs my ascending mask values to make simpler input
2734 // shuffles and push complex shuffles down to the uses. We sort on the first
2735 // of the two input shuffle orders, to try and get at least one input into a
2736 // nice order.
2737 auto SortBase = [&](Instruction *A, std::pair<int, int> X,
2738 std::pair<int, int> Y) {
2739 int MXA = GetBaseMaskValue(A, X.first);
2740 int MYA = GetBaseMaskValue(A, Y.first);
2741 return MXA < MYA;
2742 };
2743 stable_sort(V1, [&](std::pair<int, int> A, std::pair<int, int> B) {
2744 return SortBase(SVI0A, A, B);
2745 });
2746 stable_sort(V2, [&](std::pair<int, int> A, std::pair<int, int> B) {
2747 return SortBase(SVI1A, A, B);
2748 });
2749 // Calculate our ReconstructMasks from the OrigReconstructMasks and the
2750 // modified order of the input shuffles.
2751 SmallVector<SmallVector<int>> ReconstructMasks;
2752 for (const auto &Mask : OrigReconstructMasks) {
2753 SmallVector<int> ReconstructMask;
2754 for (int M : Mask) {
2755 auto FindIndex = [](const SmallVector<std::pair<int, int>> &V, int M) {
2756 auto It = find_if(V, [M](auto A) { return A.second == M; });
2757 assert(It != V.end() && "Expected all entries in Mask");
2758 return std::distance(V.begin(), It);
2759 };
2760 if (M < 0)
2761 ReconstructMask.push_back(-1);
2762 else if (M < static_cast<int>(NumElts)) {
2763 ReconstructMask.push_back(FindIndex(V1, M));
2764 } else {
2765 ReconstructMask.push_back(NumElts + FindIndex(V2, M));
2766 }
2767 }
2768 ReconstructMasks.push_back(std::move(ReconstructMask));
2769 }
2770
2771 // Calculate the masks needed for the new input shuffles, which get padded
2772 // with undef
2773 SmallVector<int> V1A, V1B, V2A, V2B;
2774 for (unsigned I = 0; I < V1.size(); I++) {
2775 V1A.push_back(GetBaseMaskValue(SVI0A, V1[I].first));
2776 V1B.push_back(GetBaseMaskValue(SVI0B, V1[I].first));
2777 }
2778 for (unsigned I = 0; I < V2.size(); I++) {
2779 V2A.push_back(GetBaseMaskValue(SVI1A, V2[I].first));
2780 V2B.push_back(GetBaseMaskValue(SVI1B, V2[I].first));
2781 }
2782 while (V1A.size() < NumElts) {
2785 }
2786 while (V2A.size() < NumElts) {
2789 }
2790
2791 auto AddShuffleCost = [&](InstructionCost C, Instruction *I) {
2792 auto *SV = dyn_cast<ShuffleVectorInst>(I);
2793 if (!SV)
2794 return C;
2795 return C + TTI.getShuffleCost(isa<UndefValue>(SV->getOperand(1))
2798 VT, SV->getShuffleMask(), CostKind);
2799 };
2800 auto AddShuffleMaskCost = [&](InstructionCost C, ArrayRef<int> Mask) {
2801 return C + TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, VT, Mask, CostKind);
2802 };
2803
2804 // Get the costs of the shuffles + binops before and after with the new
2805 // shuffle masks.
2806 InstructionCost CostBefore =
2807 TTI.getArithmeticInstrCost(Op0->getOpcode(), VT, CostKind) +
2808 TTI.getArithmeticInstrCost(Op1->getOpcode(), VT, CostKind);
2809 CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(),
2810 InstructionCost(0), AddShuffleCost);
2811 CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
2812 InstructionCost(0), AddShuffleCost);
2813
2814 // The new binops will be unused for lanes past the used shuffle lengths.
2815 // These types attempt to get the correct cost for that from the target.
2816 FixedVectorType *Op0SmallVT =
2817 FixedVectorType::get(VT->getScalarType(), V1.size());
2818 FixedVectorType *Op1SmallVT =
2819 FixedVectorType::get(VT->getScalarType(), V2.size());
2820 InstructionCost CostAfter =
2821 TTI.getArithmeticInstrCost(Op0->getOpcode(), Op0SmallVT, CostKind) +
2822 TTI.getArithmeticInstrCost(Op1->getOpcode(), Op1SmallVT, CostKind);
2823 CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(),
2824 InstructionCost(0), AddShuffleMaskCost);
2825 std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B});
2826 CostAfter +=
2827 std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(),
2828 InstructionCost(0), AddShuffleMaskCost);
2829
2830 LLVM_DEBUG(dbgs() << "Found a binop select shuffle pattern: " << I << "\n");
2831 LLVM_DEBUG(dbgs() << " CostBefore: " << CostBefore
2832 << " vs CostAfter: " << CostAfter << "\n");
2833 if (CostBefore <= CostAfter)
2834 return false;
2835
2836 // The cost model has passed, create the new instructions.
2837 auto GetShuffleOperand = [&](Instruction *I, unsigned Op) -> Value * {
2838 auto *SV = dyn_cast<ShuffleVectorInst>(I);
2839 if (!SV)
2840 return I;
2841 if (isa<UndefValue>(SV->getOperand(1)))
2842 if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
2843 if (InputShuffles.contains(SSV))
2844 return SSV->getOperand(Op);
2845 return SV->getOperand(Op);
2846 };
2847 Builder.SetInsertPoint(*SVI0A->getInsertionPointAfterDef());
2848 Value *NSV0A = Builder.CreateShuffleVector(GetShuffleOperand(SVI0A, 0),
2849 GetShuffleOperand(SVI0A, 1), V1A);
2850 Builder.SetInsertPoint(*SVI0B->getInsertionPointAfterDef());
2851 Value *NSV0B = Builder.CreateShuffleVector(GetShuffleOperand(SVI0B, 0),
2852 GetShuffleOperand(SVI0B, 1), V1B);
2853 Builder.SetInsertPoint(*SVI1A->getInsertionPointAfterDef());
2854 Value *NSV1A = Builder.CreateShuffleVector(GetShuffleOperand(SVI1A, 0),
2855 GetShuffleOperand(SVI1A, 1), V2A);
2856 Builder.SetInsertPoint(*SVI1B->getInsertionPointAfterDef());
2857 Value *NSV1B = Builder.CreateShuffleVector(GetShuffleOperand(SVI1B, 0),
2858 GetShuffleOperand(SVI1B, 1), V2B);
2859 Builder.SetInsertPoint(Op0);
2860 Value *NOp0 = Builder.CreateBinOp((Instruction::BinaryOps)Op0->getOpcode(),
2861 NSV0A, NSV0B);
2862 if (auto *I = dyn_cast<Instruction>(NOp0))
2863 I->copyIRFlags(Op0, true);
2864 Builder.SetInsertPoint(Op1);
2865 Value *NOp1 = Builder.CreateBinOp((Instruction::BinaryOps)Op1->getOpcode(),
2866 NSV1A, NSV1B);
2867 if (auto *I = dyn_cast<Instruction>(NOp1))
2868 I->copyIRFlags(Op1, true);
2869
2870 for (int S = 0, E = ReconstructMasks.size(); S != E; S++) {
2871 Builder.SetInsertPoint(Shuffles[S]);
2872 Value *NSV = Builder.CreateShuffleVector(NOp0, NOp1, ReconstructMasks[S]);
2873 replaceValue(*Shuffles[S], *NSV);
2874 }
2875
2876 Worklist.pushValue(NSV0A);
2877 Worklist.pushValue(NSV0B);
2878 Worklist.pushValue(NSV1A);
2879 Worklist.pushValue(NSV1B);
2880 for (auto *S : Shuffles)
2881 Worklist.add(S);
2882 return true;
2883}
2884
2885/// Check if instruction depends on ZExt and this ZExt can be moved after the
2886/// instruction. Move ZExt if it is profitable. For example:
2887/// logic(zext(x),y) -> zext(logic(x,trunc(y)))
2888/// lshr((zext(x),y) -> zext(lshr(x,trunc(y)))
2889/// Cost model calculations takes into account if zext(x) has other users and
2890/// whether it can be propagated through them too.
2891bool VectorCombine::shrinkType(Instruction &I) {
2892 Value *ZExted, *OtherOperand;
2893 if (!match(&I, m_c_BitwiseLogic(m_ZExt(m_Value(ZExted)),
2894 m_Value(OtherOperand))) &&
2895 !match(&I, m_LShr(m_ZExt(m_Value(ZExted)), m_Value(OtherOperand))))
2896 return false;
2897
2898 Value *ZExtOperand = I.getOperand(I.getOperand(0) == OtherOperand ? 1 : 0);
2899
2900 auto *BigTy = cast<FixedVectorType>(I.getType());
2901 auto *SmallTy = cast<FixedVectorType>(ZExted->getType());
2902 unsigned BW = SmallTy->getElementType()->getPrimitiveSizeInBits();
2903
2904 if (I.getOpcode() == Instruction::LShr) {
2905 // Check that the shift amount is less than the number of bits in the
2906 // smaller type. Otherwise, the smaller lshr will return a poison value.
2907 KnownBits ShAmtKB = computeKnownBits(I.getOperand(1), *DL);
2908 if (ShAmtKB.getMaxValue().uge(BW))
2909 return false;
2910 } else {
2911 // Check that the expression overall uses at most the same number of bits as
2912 // ZExted
2913 KnownBits KB = computeKnownBits(&I, *DL);
2914 if (KB.countMaxActiveBits() > BW)
2915 return false;
2916 }
2917
2918 // Calculate costs of leaving current IR as it is and moving ZExt operation
2919 // later, along with adding truncates if needed
2921 Instruction::ZExt, BigTy, SmallTy,
2922 TargetTransformInfo::CastContextHint::None, CostKind);
2923 InstructionCost CurrentCost = ZExtCost;
2924 InstructionCost ShrinkCost = 0;
2925
2926 // Calculate total cost and check that we can propagate through all ZExt users
2927 for (User *U : ZExtOperand->users()) {
2928 auto *UI = cast<Instruction>(U);
2929 if (UI == &I) {
2930 CurrentCost +=
2931 TTI.getArithmeticInstrCost(UI->getOpcode(), BigTy, CostKind);
2932 ShrinkCost +=
2933 TTI.getArithmeticInstrCost(UI->getOpcode(), SmallTy, CostKind);
2934 ShrinkCost += ZExtCost;
2935 continue;
2936 }
2937
2938 if (!Instruction::isBinaryOp(UI->getOpcode()))
2939 return false;
2940
2941 // Check if we can propagate ZExt through its other users
2942 KnownBits KB = computeKnownBits(UI, *DL);
2943 if (KB.countMaxActiveBits() > BW)
2944 return false;
2945
2946 CurrentCost += TTI.getArithmeticInstrCost(UI->getOpcode(), BigTy, CostKind);
2947 ShrinkCost +=
2948 TTI.getArithmeticInstrCost(UI->getOpcode(), SmallTy, CostKind);
2949 ShrinkCost += ZExtCost;
2950 }
2951
2952 // If the other instruction operand is not a constant, we'll need to
2953 // generate a truncate instruction. So we have to adjust cost
2954 if (!isa<Constant>(OtherOperand))
2955 ShrinkCost += TTI.getCastInstrCost(
2956 Instruction::Trunc, SmallTy, BigTy,
2957 TargetTransformInfo::CastContextHint::None, CostKind);
2958
2959 // If the cost of shrinking types and leaving the IR is the same, we'll lean
2960 // towards modifying the IR because shrinking opens opportunities for other
2961 // shrinking optimisations.
2962 if (ShrinkCost > CurrentCost)
2963 return false;
2964
2965 Builder.SetInsertPoint(&I);
2966 Value *Op0 = ZExted;
2967 Value *Op1 = Builder.CreateTrunc(OtherOperand, SmallTy);
2968 // Keep the order of operands the same
2969 if (I.getOperand(0) == OtherOperand)
2970 std::swap(Op0, Op1);
2971 Value *NewBinOp =
2972 Builder.CreateBinOp((Instruction::BinaryOps)I.getOpcode(), Op0, Op1);
2973 cast<Instruction>(NewBinOp)->copyIRFlags(&I);
2974 cast<Instruction>(NewBinOp)->copyMetadata(I);
2975 Value *NewZExtr = Builder.CreateZExt(NewBinOp, BigTy);
2976 replaceValue(I, *NewZExtr);
2977 return true;
2978}
2979
2980/// insert (DstVec, (extract SrcVec, ExtIdx), InsIdx) -->
2981/// shuffle (DstVec, SrcVec, Mask)
2982bool VectorCombine::foldInsExtVectorToShuffle(Instruction &I) {
2983 Value *DstVec, *SrcVec;
2984 uint64_t ExtIdx, InsIdx;
2985 if (!match(&I,
2986 m_InsertElt(m_Value(DstVec),
2987 m_ExtractElt(m_Value(SrcVec), m_ConstantInt(ExtIdx)),
2988 m_ConstantInt(InsIdx))))
2989 return false;
2990
2991 auto *VecTy = dyn_cast<FixedVectorType>(I.getType());
2992 if (!VecTy || SrcVec->getType() != VecTy)
2993 return false;
2994
2995 unsigned NumElts = VecTy->getNumElements();
2996 if (ExtIdx >= NumElts || InsIdx >= NumElts)
2997 return false;
2998
2999 SmallVector<int> Mask(NumElts, 0);
3000 std::iota(Mask.begin(), Mask.end(), 0);
3001 Mask[InsIdx] = ExtIdx + NumElts;
3002 // Cost
3003 auto *Ins = cast<InsertElementInst>(&I);
3004 auto *Ext = cast<ExtractElementInst>(I.getOperand(1));
3005
3006 InstructionCost OldCost =
3007 TTI.getVectorInstrCost(*Ext, VecTy, CostKind, ExtIdx) +
3008 TTI.getVectorInstrCost(*Ins, VecTy, CostKind, InsIdx);
3009
3012 if (!Ext->hasOneUse())
3013 NewCost += TTI.getVectorInstrCost(*Ext, VecTy, CostKind, ExtIdx);
3014
3015 LLVM_DEBUG(dbgs() << "Found a insert/extract shuffle-like pair : " << I
3016 << "\n OldCost: " << OldCost << " vs NewCost: " << NewCost
3017 << "\n");
3018
3019 if (OldCost < NewCost)
3020 return false;
3021
3022 // Canonicalize undef param to RHS to help further folds.
3023 if (isa<UndefValue>(DstVec) && !isa<UndefValue>(SrcVec)) {
3025 std::swap(DstVec, SrcVec);
3026 }
3027
3028 Value *Shuf = Builder.CreateShuffleVector(DstVec, SrcVec, Mask);
3029 replaceValue(I, *Shuf);
3030
3031 return true;
3032}
3033
3034/// This is the entry point for all transforms. Pass manager differences are
3035/// handled in the callers of this function.
3036bool VectorCombine::run() {
3038 return false;
3039
3040 // Don't attempt vectorization if the target does not support vectors.
3041 if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
3042 return false;
3043
3044 LLVM_DEBUG(dbgs() << "\n\nVECTORCOMBINE on " << F.getName() << "\n");
3045
3046 bool MadeChange = false;
3047 auto FoldInst = [this, &MadeChange](Instruction &I) {
3048 Builder.SetInsertPoint(&I);
3049 bool IsVectorType = isa<VectorType>(I.getType());
3050 bool IsFixedVectorType = isa<FixedVectorType>(I.getType());
3051 auto Opcode = I.getOpcode();
3052
3053 LLVM_DEBUG(dbgs() << "VC: Visiting: " << I << '\n');
3054
3055 // These folds should be beneficial regardless of when this pass is run
3056 // in the optimization pipeline.
3057 // The type checking is for run-time efficiency. We can avoid wasting time
3058 // dispatching to folding functions if there's no chance of matching.
3059 if (IsFixedVectorType) {
3060 switch (Opcode) {
3061 case Instruction::InsertElement:
3062 MadeChange |= vectorizeLoadInsert(I);
3063 break;
3064 case Instruction::ShuffleVector:
3065 MadeChange |= widenSubvectorLoad(I);
3066 break;
3067 default:
3068 break;
3069 }
3070 }
3071
3072 // This transform works with scalable and fixed vectors
3073 // TODO: Identify and allow other scalable transforms
3074 if (IsVectorType) {
3075 MadeChange |= scalarizeBinopOrCmp(I);
3076 MadeChange |= scalarizeLoadExtract(I);
3077 MadeChange |= scalarizeVPIntrinsic(I);
3078 }
3079
3080 if (Opcode == Instruction::Store)
3081 MadeChange |= foldSingleElementStore(I);
3082
3083 // If this is an early pipeline invocation of this pass, we are done.
3084 if (TryEarlyFoldsOnly)
3085 return;
3086
3087 // Otherwise, try folds that improve codegen but may interfere with
3088 // early IR canonicalizations.
3089 // The type checking is for run-time efficiency. We can avoid wasting time
3090 // dispatching to folding functions if there's no chance of matching.
3091 if (IsFixedVectorType) {
3092 switch (Opcode) {
3093 case Instruction::InsertElement:
3094 MadeChange |= foldInsExtFNeg(I);
3095 MadeChange |= foldInsExtVectorToShuffle(I);
3096 break;
3097 case Instruction::ShuffleVector:
3098 MadeChange |= foldPermuteOfBinops(I);
3099 MadeChange |= foldShuffleOfBinops(I);
3100 MadeChange |= foldShuffleOfCastops(I);
3101 MadeChange |= foldShuffleOfShuffles(I);
3102 MadeChange |= foldShuffleOfIntrinsics(I);
3103 MadeChange |= foldSelectShuffle(I);
3104 MadeChange |= foldShuffleToIdentity(I);
3105 break;
3106 case Instruction::BitCast:
3107 MadeChange |= foldBitcastShuffle(I);
3108 break;
3109 default:
3110 MadeChange |= shrinkType(I);
3111 break;
3112 }
3113 } else {
3114 switch (Opcode) {
3115 case Instruction::Call:
3116 MadeChange |= foldShuffleFromReductions(I);
3117 MadeChange |= foldCastFromReductions(I);
3118 break;
3119 case Instruction::ICmp:
3120 case Instruction::FCmp:
3121 MadeChange |= foldExtractExtract(I);
3122 break;
3123 case Instruction::Or:
3124 MadeChange |= foldConcatOfBoolMasks(I);
3125 [[fallthrough]];
3126 default:
3127 if (Instruction::isBinaryOp(Opcode)) {
3128 MadeChange |= foldExtractExtract(I);
3129 MadeChange |= foldExtractedCmps(I);
3130 }
3131 break;
3132 }
3133 }
3134 };
3135
3136 for (BasicBlock &BB : F) {
3137 // Ignore unreachable basic blocks.
3138 if (!DT.isReachableFromEntry(&BB))
3139 continue;
3140 // Use early increment range so that we can erase instructions in loop.
3141 for (Instruction &I : make_early_inc_range(BB)) {
3142 if (I.isDebugOrPseudoInst())
3143 continue;
3144 FoldInst(I);
3145 }
3146 }
3147
3148 while (!Worklist.isEmpty()) {
3149 Instruction *I = Worklist.removeOne();
3150 if (!I)
3151 continue;
3152
3155 continue;
3156 }
3157
3158 FoldInst(*I);
3159 }
3160
3161 return MadeChange;
3162}
3163
3166 auto &AC = FAM.getResult<AssumptionAnalysis>(F);
3170 const DataLayout *DL = &F.getDataLayout();
3171 VectorCombine Combiner(F, TTI, DT, AA, AC, DL, TTI::TCK_RecipThroughput,
3172 TryEarlyFoldsOnly);
3173 if (!Combiner.run())
3174 return PreservedAnalyses::all();
3177 return PA;
3178}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This is the interface for LLVM's primary stateless and local alias analysis.
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static cl::opt< TargetTransformInfo::TargetCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(TargetTransformInfo::TCK_RecipThroughput), cl::values(clEnumValN(TargetTransformInfo::TCK_RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(TargetTransformInfo::TCK_Latency, "latency", "Instruction latency"), clEnumValN(TargetTransformInfo::TCK_CodeSize, "code-size", "Code size"), clEnumValN(TargetTransformInfo::TCK_SizeAndLatency, "size-latency", "Code size and latency")))
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines the DenseMap class.
std::optional< std::vector< StOtherPiece > > Other
Definition: ELFYAML.cpp:1315
bool End
Definition: ELF_riscv.cpp:480
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
This is the interface for a simple mod/ref and alias analysis over globals.
Hexagon Common GEP
static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, MemorySSAUpdater &MSSAU)
Definition: LICM.cpp:1504
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
uint64_t IntrinsicInst * II
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
FunctionAnalysisManager FAM
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
unsigned OpIndex
This file contains some templates that are useful if you are working with the STL at all.
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:39
This pass exposes codegen information to IR-level passes.
static std::optional< unsigned > getOpcode(ArrayRef< VPValue * > Values)
Returns the opcode of Values or ~0 if they do not all agree.
Definition: VPlanSLP.cpp:191
static bool isFreeConcat(ArrayRef< InstLane > Item, TTI::TargetCostKind CostKind, const TargetTransformInfo &TTI)
Detect concat of multiple values into a vector.
static SmallVector< InstLane > generateInstLaneVectorFromOperand(ArrayRef< InstLane > Item, int Op)
static Value * createShiftShuffle(Value *Vec, unsigned OldIndex, unsigned NewIndex, IRBuilder<> &Builder)
Create a shuffle that translates (shifts) 1 element from the input vector to a new element location.
static Value * peekThroughBitcasts(Value *V)
Return the source operand of a potentially bitcasted value.
static Align computeAlignmentAfterScalarization(Align VectorAlignment, Type *ScalarType, Value *Idx, const DataLayout &DL)
The memory operation on a vector of ScalarType had alignment of VectorAlignment.
static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx, Instruction *CtxI, AssumptionCache &AC, const DominatorTree &DT)
Check if it is legal to scalarize a memory access to VecTy at index Idx.
static cl::opt< bool > DisableVectorCombine("disable-vector-combine", cl::init(false), cl::Hidden, cl::desc("Disable all vector combine transforms"))
static InstLane lookThroughShuffles(Use *U, int Lane)
static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI)
static const unsigned InvalidIndex
static Value * generateNewInstTree(ArrayRef< InstLane > Item, FixedVectorType *Ty, const SmallPtrSet< Use *, 4 > &IdentityLeafs, const SmallPtrSet< Use *, 4 > &SplatLeafs, const SmallPtrSet< Use *, 4 > &ConcatLeafs, IRBuilder<> &Builder, const TargetTransformInfo *TTI)
std::pair< Use *, int > InstLane
static cl::opt< unsigned > MaxInstrsToScan("vector-combine-max-scan-instrs", cl::init(30), cl::Hidden, cl::desc("Max number of instructions to scan for vector combining."))
static cl::opt< bool > DisableBinopExtractShuffle("disable-binop-extract-shuffle", cl::init(false), cl::Hidden, cl::desc("Disable binop extract to shuffle transforms"))
static bool isMemModifiedBetween(BasicBlock::iterator Begin, BasicBlock::iterator End, const MemoryLocation &Loc, AAResults &AA)
static ExtractElementInst * translateExtract(ExtractElementInst *ExtElt, unsigned NewIndex, IRBuilder<> &Builder)
Given an extract element instruction with constant index operand, shuffle the source vector (shift th...
static constexpr int Concat[]
Value * RHS
Value * LHS
A manager for alias analyses.
ModRefInfo getModRefInfo(const Instruction *I, const std::optional< MemoryLocation > &OptLoc)
Check whether or not an instruction may read or write the optionally specified memory location.
Class for arbitrary precision integers.
Definition: APInt.h:78
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:239
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition: APInt.h:1221
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:410
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
const T & front() const
front - Get the first element.
Definition: ArrayRef.h:171
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
A function analysis which provides an AssumptionCache.
A cache of @llvm.assume calls within a function.
bool hasFnAttr(Attribute::AttrKind Kind) const
Return true if the attribute exists for the function.
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
BinaryOps getOpcode() const
Definition: InstrTypes.h:370
Represents analyses that only rely on functions' control flow.
Definition: Analysis.h:72
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1294
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
Definition: InstrTypes.h:1285
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition: InstrTypes.h:988
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:673
bool isFPPredicate() const
Definition: InstrTypes.h:780
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
Definition: CmpPredicate.h:22
Combiner implementation.
Definition: Combiner.h:34
static Constant * getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy=nullptr)
Definition: Constants.cpp:2554
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:148
This class represents a range of values.
Definition: ConstantRange.h:47
ConstantRange urem(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an unsigned remainder operation of...
ConstantRange binaryAnd(const ConstantRange &Other) const
Return a new range representing the possible values resulting from a binary-and of a value in this ra...
bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static Constant * get(ArrayRef< Constant * > V)
Definition: Constants.cpp:1421
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:156
std::pair< iterator, bool > try_emplace(KeyT &&Key, Ts &&...Args)
Definition: DenseMap.h:226
iterator end()
Definition: DenseMap.h:84
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:321
This instruction extracts a single (scalar) element from a VectorType value.
This class represents a cast from floating point to signed integer.
This class represents a cast from floating point to unsigned integer.
Class to represent fixed width SIMD vectors.
Definition: DerivedTypes.h:563
unsigned getNumElements() const
Definition: DerivedTypes.h:606
static FixedVectorType * getDoubleElementsVectorType(FixedVectorType *VTy)
Definition: DerivedTypes.h:598
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition: Type.cpp:791
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2503
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
Definition: IRBuilder.h:2491
LoadInst * CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align, const char *Name)
Definition: IRBuilder.h:1830
Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Definition: IRBuilder.cpp:1152
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Definition: IRBuilder.cpp:890
Value * CreateFNegFMF(Value *V, Instruction *FMFSource, const Twine &Name="")
Copy fast-math-flags from an instruction rather than using the builder's default FMF.
Definition: IRBuilder.h:1763
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
Definition: IRBuilder.cpp:1048
Value * CreateFreeze(Value *V, const Twine &Name="")
Definition: IRBuilder.h:2566
Value * CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="")
Definition: IRBuilder.h:1897
Value * CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2213
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
Definition: IRBuilder.h:488
Value * CreateUnOp(Instruction::UnaryOps Opc, Value *V, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1776
ConstantInt * getInt32(uint32_t C)
Get a constant 32-bit value.
Definition: IRBuilder.h:483
Value * CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2398
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
Definition: IRBuilder.h:2155
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of converting the string to 'bool...
Definition: IRBuilder.h:1813
Value * CreateShl(Value *LHS, Value *RHS, const Twine &Name="", bool HasNUW=false, bool HasNSW=false)
Definition: IRBuilder.h:1439
Value * CreateZExt(Value *V, Type *DestTy, const Twine &Name="", bool IsNonNeg=false)
Definition: IRBuilder.h:2048
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
Definition: IRBuilder.h:2525
Value * CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:2189
StoreInst * CreateStore(Value *Val, Value *Ptr, bool isVolatile=false)
Definition: IRBuilder.h:1826
Value * CreateTrunc(Value *V, Type *DestTy, const Twine &Name="", bool IsNUW=false, bool IsNSW=false)
Definition: IRBuilder.h:2034
PointerType * getPtrTy(unsigned AddrSpace=0)
Fetch the type representing a pointer.
Definition: IRBuilder.h:566
Value * CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name="", MDNode *FPMathTag=nullptr)
Definition: IRBuilder.h:1689
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:177
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
Definition: IRBuilder.h:2697
InstructionWorklist - This is the worklist management logic for InstCombine and other simplification ...
void pushUsersToWorkList(Instruction &I)
When an instruction is simplified, add all users of the instruction to the work lists because they mi...
void push(Instruction *I)
Push the instruction onto the worklist stack.
void remove(Instruction *I)
Remove I from the worklist if it exists.
void copyIRFlags(const Value *V, bool IncludeWrapFlags=true)
Convenience method to copy supported exact, fast-math, and (optionally) wrapping flags from V to this...
bool isBinaryOp() const
Definition: Instruction.h:279
bool comesBefore(const Instruction *Other) const
Given an instruction Other in the same basic block as this instruction, return true if this instructi...
bool mayReadFromMemory() const LLVM_READONLY
Return true if this instruction may read memory.
void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
bool isIntDivRem() const
Definition: Instruction.h:280
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Definition: IntrinsicInst.h:55
An instruction for reading from memory.
Definition: Instructions.h:176
Representation for a specific memory location.
static MemoryLocation get(const LoadInst *LI)
Return a location with information about the memory reference by the given instruction.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1878
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
void preserveSet()
Mark an analysis set as preserved.
Definition: Analysis.h:146
This class represents a sign extension of integer types.
This class represents a cast from signed integer to floating point.
This instruction constructs a fixed permutation of two input vectors.
int getMaskValue(unsigned Elt) const
Return the shuffle mask value of this instruction for the given element index.
VectorType * getType() const
Overload to return most specific vector type.
static void getShuffleMask(const Constant *Mask, SmallVectorImpl< int > &Result)
Convert the input shuffle mask operand to a vector of integers.
static bool isIdentityMask(ArrayRef< int > Mask, int NumSrcElts)
Return true if this shuffle mask chooses elements from exactly one source vector without lane crossin...
static void commuteShuffleMask(MutableArrayRef< int > Mask, unsigned InVecNumElts)
Change values in a shuffle permute mask assuming the two vector operands of length InVecNumElts have ...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
bool contains(ConstPtrType Ptr) const
Definition: SmallPtrSet.h:458
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
void assign(size_type NumElts, ValueParamT Elt)
Definition: SmallVector.h:704
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:937
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
An instruction for storing to memory.
Definition: Instructions.h:292
void setAlignment(Align Align)
Definition: Instructions.h:337
Analysis pass providing the TargetTransformInfo.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo Op1Info={OK_AnyValue, OP_None}, OperandValueInfo Op2Info={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE=nullptr, const SCEV *Ptr=nullptr) const
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, OperandValueInfo OpdInfo={OK_AnyValue, OP_None}, const Instruction *I=nullptr) const
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) const
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput) const
Calculate the cost of vector reduction intrinsics.
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind=TTI::TCK_SizeAndLatency, const Instruction *I=nullptr) const
unsigned getRegisterClassForType(bool Vector, Type *Ty=nullptr) const
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr, const TargetLibraryInfo *TLibInfo=nullptr) const
This is an approximation of reciprocal throughput of a math/logic op.
InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp, ArrayRef< int > Mask={}, TTI::TargetCostKind CostKind=TTI::TCK_RecipThroughput, int Index=0, VectorType *SubTp=nullptr, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr) const
unsigned getMinVectorRegisterBitWidth() const
unsigned getNumberOfRegisters(unsigned ClassID) const
InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, ArrayRef< Value * > VL={}) const
Estimate the overhead of scalarizing an instruction.
InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index=-1, Value *Op0=nullptr, Value *Op1=nullptr) const
ShuffleKind
The various kinds of shuffle patterns for vector queries.
@ SK_Select
Selects elements from the corresponding lane of either source operand.
@ SK_PermuteSingleSrc
Shuffle elements of single source vector with any shuffle mask.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_PermuteTwoSrc
Merge elements from two source vectors into one with any shuffle mask.
@ None
The cast is not used with a load/store of any kind.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:270
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:264
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:128
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition: Type.h:184
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:237
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition: Type.h:355
This class represents a cast unsigned integer to floating point.
'undef' values are things that do not have specified contents.
Definition: Constants.h:1412
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
op_range operands()
Definition: User.h:288
Value * getOperand(unsigned i) const
Definition: User.h:228
static bool isVPBinOp(Intrinsic::ID ID)
This is the common base class for vector predication intrinsics.
std::optional< unsigned > getFunctionalIntrinsicID() const
std::optional< unsigned > getFunctionalOpcode() const
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
const Value * stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, APInt &Offset) const
This is a wrapper around stripAndAccumulateConstantOffsets with the in-bounds requirement set to fals...
Definition: Value.h:740
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
iterator_range< user_iterator > users()
Definition: Value.h:421
Align getPointerAlignment(const DataLayout &DL) const
Returns an alignment of the pointer value.
Definition: Value.cpp:927
unsigned getValueID() const
Return an ID for the concrete type of this object.
Definition: Value.h:532
bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
Definition: Value.cpp:149
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
PreservedAnalyses run(Function &F, FunctionAnalysisManager &)
This class represents zero extension of integer types.
constexpr char Args[]
Key for Kernel::Metadata::mArgs.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:125
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
AttributeList getAttributes(LLVMContext &C, ID id)
Return the attributes for an intrinsic.
class_match< PoisonValue > m_Poison()
Match an arbitrary poison constant.
Definition: PatternMatch.h:160
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
Definition: PatternMatch.h:100
BinaryOp_match< LHS, RHS, Instruction::URem > m_URem(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:165
CastInst_match< OpTy, TruncInst > m_Trunc(const OpTy &Op)
Matches Trunc.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
Definition: PatternMatch.h:982
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
Definition: PatternMatch.h:826
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:885
DisjointOr_match< LHS, RHS > m_DisjointOr(const LHS &L, const RHS &R)
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:168
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
match_combine_and< LTy, RTy > m_CombineAnd(const LTy &L, const RTy &R)
Combine two pattern matchers matching L && R.
Definition: PatternMatch.h:245
SpecificCmpClass_match< LHS, RHS, CmpInst > m_SpecificCmp(CmpPredicate MatchPred, const LHS &L, const RHS &R)
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
Definition: PatternMatch.h:599
OneUse_match< T > m_OneUse(const T &SubPattern)
Definition: PatternMatch.h:67
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
BinOpPred_match< LHS, RHS, is_bitwiselogic_op, true > m_c_BitwiseLogic(const LHS &L, const RHS &R)
Matches bitwise logic operations in either order.
class_match< UndefValue > m_UndefValue()
Match an arbitrary UndefValue constant.
Definition: PatternMatch.h:155
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
Definition: PatternMatch.h:105
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
match_combine_or< CastInst_match< OpTy, SExtInst >, NNegZExt_match< OpTy > > m_SExtLike(const OpTy &Op)
Match either "sext" or "zext nneg".
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
BinaryOp_match< LHS, RHS, Instruction::LShr > m_LShr(const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
FNeg_match< OpTy > m_FNeg(const OpTy &X)
Match 'fneg X' as 'fsub -0.0, X'.
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
Definition: PatternMatch.h:152
ThreeOps_match< Val_t, Elt_t, Idx_t, Instruction::InsertElement > m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
Matches InsertElementInst.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
PointerTypeMap run(const Module &M)
Compute the PointerTypeMap for the module M.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
Definition: STLExtras.h:329
@ Offset
Definition: DWP.cpp:480
void stable_sort(R &&Range)
Definition: STLExtras.h:2037
UnaryFunction for_each(R &&Range, UnaryFunction F)
Provide wrappers to std::for_each which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1732
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
Definition: ScopeExit.h:59
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
Definition: STLExtras.h:2448
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
unsigned getArithmeticReductionInstruction(Intrinsic::ID RdxID)
Returns the arithmetic instruction opcode used when expanding a reduction.
Definition: LoopUtils.cpp:960
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:657
bool mustSuppressSpeculation(const LoadInst &LI)
Return true if speculation of the given load must be suppressed to avoid ordering or interfering with...
Definition: Loads.cpp:370
bool widenShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Try to transform a shuffle mask by replacing elements with the scaled index for an equivalent mask of...
Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
ConstantRange computeConstantRange(const Value *V, bool ForSigned, bool UseInstrInfo=true, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Determine the possible constant range of an integer or vector of integer value.
bool isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, const Instruction *Inst, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true)
This returns the same result as isSafeToSpeculativelyExecute if Opcode is the actual opcode of Inst.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
Definition: Local.cpp:406
bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:291
bool isModSet(const ModRefInfo MRI)
Definition: ModRef.h:48
void sort(IteratorTy Start, IteratorTy End)
Definition: STLExtras.h:1664
bool isSafeToLoadUnconditionally(Value *V, Align Alignment, const APInt &Size, const DataLayout &DL, Instruction *ScanFrom, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr)
Return true if we know that executing a load from this value cannot trap.
Definition: Loads.cpp:385
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1753
bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition: Casting.h:548
void propagateIRFlags(Value *I, ArrayRef< Value * > VL, Value *OpValue=nullptr, bool IncludeWrapFlags=true)
Get the intersection (logical and) of all of the potential IR flags of each scalar operation (VL) tha...
Definition: LoopUtils.cpp:1368
bool isKnownNonZero(const Value *V, const SimplifyQuery &Q, unsigned Depth=0)
Return true if the given value is known to be non-zero when defined.
constexpr int PoisonMaskElem
void narrowShuffleMaskElts(int Scale, ArrayRef< int > Mask, SmallVectorImpl< int > &ScaledMask)
Replace each shuffle mask index with the scaled sequential indices for an equivalent mask of narrowed...
bool isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID, unsigned ScalarOpdIdx, const TargetTransformInfo *TTI)
Identifies if the vector form of the intrinsic has a scalar operand.
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
DWARFExpression::Operation Op
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:217
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1766
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1903
Align commonAlignment(Align A, uint64_t Offset)
Returns the alignment that satisfies both alignments.
Definition: Alignment.h:212
bool isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Returns true if V cannot be poison, but may be undef.
bool isTriviallyVectorizable(Intrinsic::ID ID)
Identify if the intrinsic is trivially vectorizable.
Definition: VectorUtils.cpp:46
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
unsigned countMaxActiveBits() const
Returns the maximum number of bits needed to represent all possible unsigned values with these known ...
Definition: KnownBits.h:288
APInt getMaxValue() const
Return the maximal unsigned value possible given these KnownBits.
Definition: KnownBits.h:137