LLVM 20.0.0git
X86ISelLowering.h
Go to the documentation of this file.
1//===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that X86 uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
15#define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
16
19
20namespace llvm {
21 class X86Subtarget;
22 class X86TargetMachine;
23
24 namespace X86ISD {
25 // X86 Specific DAG Nodes
26 enum NodeType : unsigned {
27 // Start the numbering where the builtin ops leave off.
29
30 /// Bit scan forward.
32 /// Bit scan reverse.
34
35 /// X86 funnel/double shift i16 instructions. These correspond to
36 /// X86::SHLDW and X86::SHRDW instructions which have different amt
37 /// modulo rules to generic funnel shifts.
38 /// NOTE: The operand order matches ISD::FSHL/FSHR not SHLD/SHRD.
41
42 /// Bitwise logical AND of floating point values. This corresponds
43 /// to X86::ANDPS or X86::ANDPD.
45
46 /// Bitwise logical OR of floating point values. This corresponds
47 /// to X86::ORPS or X86::ORPD.
49
50 /// Bitwise logical XOR of floating point values. This corresponds
51 /// to X86::XORPS or X86::XORPD.
53
54 /// Bitwise logical ANDNOT of floating point values. This
55 /// corresponds to X86::ANDNPS or X86::ANDNPD.
57
58 /// These operations represent an abstract X86 call
59 /// instruction, which includes a bunch of information. In particular the
60 /// operands of these node are:
61 ///
62 /// #0 - The incoming token chain
63 /// #1 - The callee
64 /// #2 - The number of arg bytes the caller pushes on the stack.
65 /// #3 - The number of arg bytes the callee pops off the stack.
66 /// #4 - The value to pass in AL/AX/EAX (optional)
67 /// #5 - The value to pass in DL/DX/EDX (optional)
68 ///
69 /// The result values of these nodes are:
70 ///
71 /// #0 - The outgoing token chain
72 /// #1 - The first register result value (optional)
73 /// #2 - The second register result value (optional)
74 ///
76
77 /// Same as call except it adds the NoTrack prefix.
79
80 // Pseudo for a OBJC call that gets emitted together with a special
81 // marker instruction.
83
84 /// X86 compare and logical compare instructions.
89
90 /// X86 bit-test instructions.
92
93 /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
94 /// operand, usually produced by a CMP instruction.
96
97 /// X86 Select
99
100 // Same as SETCC except it's materialized with a sbb and the value is all
101 // one's or all zero's.
102 SETCC_CARRY, // R = carry_bit ? ~0 : 0
103
104 /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
105 /// Operands are two FP values to compare; result is a mask of
106 /// 0s or 1s. Generally DTRT for C/C++ with NaNs.
108
109 /// X86 FP SETCC, similar to above, but with output as an i1 mask and
110 /// and a version with SAE.
113
114 /// X86 conditional moves. Operand 0 and operand 1 are the two values
115 /// to select from. Operand 2 is the condition code, and operand 3 is the
116 /// flag operand produced by a CMP or TEST instruction.
118
119 /// X86 conditional branches. Operand 0 is the chain operand, operand 1
120 /// is the block to branch if condition is true, operand 2 is the
121 /// condition code, and operand 3 is the flag operand produced by a CMP
122 /// or TEST instruction.
124
125 /// BRIND node with NoTrack prefix. Operand 0 is the chain operand and
126 /// operand 1 is the target address.
128
129 /// Return with a glue operand. Operand 0 is the chain operand, operand
130 /// 1 is the number of bytes of stack to pop.
132
133 /// Return from interrupt. Operand 0 is the number of bytes to pop.
135
136 /// Repeat fill, corresponds to X86::REP_STOSx.
138
139 /// Repeat move, corresponds to X86::REP_MOVSx.
141
142 /// On Darwin, this node represents the result of the popl
143 /// at function entry, used for PIC code.
145
146 /// A wrapper node for TargetConstantPool, TargetJumpTable,
147 /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
148 /// MCSymbol and TargetBlockAddress.
150
151 /// Special wrapper used under X86-64 PIC mode for RIP
152 /// relative displacements.
154
155 /// Copies a 64-bit value from an MMX vector to the low word
156 /// of an XMM vector, with the high word zero filled.
158
159 /// Copies a 64-bit value from the low word of an XMM vector
160 /// to an MMX vector.
162
163 /// Copies a 32-bit value from the low word of a MMX
164 /// vector to a GPR.
166
167 /// Copies a GPR into the low 32-bit word of a MMX vector
168 /// and zero out the high word.
170
171 /// Extract an 8-bit value from a vector and zero extend it to
172 /// i32, corresponds to X86::PEXTRB.
174
175 /// Extract a 16-bit value from a vector and zero extend it to
176 /// i32, corresponds to X86::PEXTRW.
178
179 /// Insert any element of a 4 x float vector into any element
180 /// of a destination 4 x floatvector.
182
183 /// Insert the lower 8-bits of a 32-bit value to a vector,
184 /// corresponds to X86::PINSRB.
186
187 /// Insert the lower 16-bits of a 32-bit value to a vector,
188 /// corresponds to X86::PINSRW.
190
191 /// Shuffle 16 8-bit values within a vector.
193
194 /// Compute Sum of Absolute Differences.
196 /// Compute Double Block Packed Sum-Absolute-Differences
198
199 /// Bitwise Logical AND NOT of Packed FP values.
201
202 /// Blend where the selector is an immediate.
204
205 /// Dynamic (non-constant condition) vector blend where only the sign bits
206 /// of the condition elements are used. This is used to enforce that the
207 /// condition mask is not valid for generic VSELECT optimizations. This
208 /// is also used to implement the intrinsics.
209 /// Operands are in VSELECT order: MASK, TRUE, FALSE
211
212 /// Combined add and sub on an FP vector.
214
215 // FP vector ops with rounding mode.
235
236 // FP vector get exponent.
241 // Extract Normalized Mantissas.
246 // FP Scale.
251
252 /// Integer horizontal add/sub.
255
256 /// Floating point horizontal add/sub.
259
260 // Detect Conflicts Within a Vector
262
263 /// Floating point max and min.
266
267 /// Commutative FMIN and FMAX.
270
271 /// Scalar intrinsic floating point max and min.
274
275 /// Floating point reciprocal-sqrt and reciprocal approximation.
276 /// Note that these typically require refinement
277 /// in order to obtain suitable precision.
280
281 // AVX-512 reciprocal approximations with a little more precision.
286
287 // Thread Local Storage.
289
290 // Thread Local Storage. A call to get the start address
291 // of the TLS block for the current module.
293
294 // Thread Local Storage. When calling to an OS provided
295 // thunk at the address from an earlier relocation.
297
298 // Thread Local Storage. A descriptor containing pointer to
299 // code and to argument to get the TLS offset for the symbol.
301
302 // Exception Handling helpers.
304
305 // SjLj exception handling setjmp.
307
308 // SjLj exception handling longjmp.
310
311 // SjLj exception handling dispatch.
313
314 /// Tail call return. See X86TargetLowering::LowerCall for
315 /// the list of operands.
317
318 // Vector move to low scalar and zero higher vector elements.
320
321 // Vector integer truncate.
323 // Vector integer truncate with unsigned/signed saturation.
326
327 // Masked version of the above. Used when less than a 128-bit result is
328 // produced since the mask only applies to the lower elements and can't
329 // be represented by a select.
330 // SRC, PASSTHRU, MASK
334
335 // Vector FP extend.
340
341 // Vector FP round.
343 // Convert TWO packed single data to one packed data
349
350 // Masked version of above. Used for v2f64->v4f32.
351 // SRC, PASSTHRU, MASK
353
354 // 128-bit vector logical left / right shift
357
358 // Vector shift elements
362
363 // Vector variable shift
367
368 // Vector shift elements by immediate
372
373 // Shifts of mask registers.
376
377 // Bit rotate by immediate
380
381 // Vector packed double/float comparison.
383
384 // Vector integer comparisons.
387
388 // v8i16 Horizontal minimum and position.
390
392
393 /// Vector comparison generating mask bits for fp and
394 /// integer signed and unsigned data types.
396 // Vector mask comparison generating mask bits for FP values.
398 // Vector mask comparison with SAE for FP values.
400
401 // Arithmetic operations with FLAGS results.
411
412 // Bit field extract.
415
416 // Zero High Bits Starting with Specified Bit Position.
418
419 // Parallel extract and deposit.
422
423 // X86-specific multiply by immediate.
425
426 // Vector sign bit extraction.
428
429 // Vector bitwise comparisons.
431
432 // Vector packed fp sign bitwise comparisons.
434
435 // OR/AND test for masks.
438
439 // ADD for masks.
441
442 // Several flavors of instructions with vector shuffle behaviors.
443 // Saturated signed/unnsigned packing.
446 // Intra-lane alignr.
448 // AVX512 inter-lane alignr.
454 // VBMI2 Concat & Shift.
459 // Shuffle Packed Values at 128-bit granularity.
475
476 // Variable Permute (VPERM).
477 // Res = VPERMV MaskV, V0
479
480 // 3-op Variable Permute (VPERMT2).
481 // Res = VPERMV3 V0, MaskV, V1
483
484 // Bitwise ternary logic.
486 // Fix Up Special Packed Float32/64 values.
491 // Range Restriction Calculation For Packed Pairs of Float32/64 values.
496 // Reduce - Perform Reduction Transformation on scalar\packed FP.
501 // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
502 // Also used by the legacy (V)ROUND intrinsics where we mask out the
503 // scaling part of the immediate.
508 // Tests Types Of a FP Values for packed types.
510 // Tests Types Of a FP Values for scalar types.
512
513 // Broadcast (splat) scalar or element 0 of a vector. If the operand is
514 // a vector, this node may change the vector length as part of the splat.
516 // Broadcast mask to vector.
518
519 /// SSE4A Extraction and Insertion.
522
523 // XOP arithmetic/logical shifts.
526 // XOP signed/unsigned integer comparisons.
529 // XOP packed permute bytes.
531 // XOP two source permutation.
533
534 // Vector multiply packed unsigned doubleword integers.
536 // Vector multiply packed signed doubleword integers.
538 // Vector Multiply Packed UnsignedIntegers with Round and Scale.
540
541 // Multiply and Add Packed Integers.
544
545 // AVX512IFMA multiply and add.
546 // NOTE: These are different than the instruction and perform
547 // op0 x op1 + op2.
550
551 // VNNI
556
557 // FMA nodes.
558 // We use the target independent ISD::FMA for the non-inverted case.
564
565 // FMA with rounding mode.
572
573 // AVX512-FP16 complex addition and multiplication.
578
583
588
593
600
607
612
621
623
645
646 // Compress and expand.
649
650 // Bits shuffle
652
653 // Convert Unsigned/Integer to Floating-Point Value with rounding mode.
660
661 // Vector float/double to signed/unsigned integer.
666 // Scalar float/double to signed/unsigned integer.
671
672 // Vector float/double to signed/unsigned integer with truncation.
677 // Scalar float/double to signed/unsigned integer with truncation.
682
683 // Vector signed/unsigned integer to float/double.
686
687 // Masked versions of above. Used for v2f64->v4f32.
688 // SRC, PASSTHRU, MASK
695
696 // Vector float to bfloat16.
697 // Convert packed single data to packed BF16 data
699 // Masked version of above.
700 // SRC, PASSTHRU, MASK
702
703 // Dot product of BF16/FP16 pairs to accumulated into
704 // packed single precision.
707
708 // A stack checking function call. On Windows it's _chkstk call.
710
711 // For allocating variable amounts of stack space when using
712 // segmented stacks. Check if the current stacklet has enough space, and
713 // falls back to heap allocation if not.
715
716 // For allocating stack space when using stack clash protector.
717 // Allocation is performed by block, and each block is probed.
719
720 // Memory barriers.
722
723 // Get a random integer and indicate whether it is valid in CF.
725
726 // Get a NIST SP800-90B & C compliant random integer and
727 // indicate whether it is valid in CF.
729
730 // Protection keys
731 // RDPKRU - Operand 0 is chain. Operand 1 is value for ECX.
732 // WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is
733 // value for ECX.
736
737 // SSE42 string comparisons.
738 // These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG
739 // will emit one or two instructions based on which results are used. If
740 // flags and index/mask this allows us to use a single instruction since
741 // we won't have to pick and opcode for flags. Instead we can rely on the
742 // DAG to CSE everything and decide at isel.
745
746 // Test if in transactional execution.
748
749 // Conversions between float and half-float.
754
755 // Masked version of above.
756 // SRC, RND, PASSTHRU, MASK
759
760 // Galois Field Arithmetic Instructions
764
765 // LWP insert record.
767
768 // User level wait
771
772 // Enqueue Stores Instructions
775
776 // For avx512-vp2intersect
778
779 // User level interrupts - testui
781
782 // Perform an FP80 add after changing precision control in FPCW.
784
785 // Conditional compare instructions
788
789 /// X86 strict FP compare instructions.
792
793 // Vector packed double/float comparison.
795
796 /// Vector comparison generating mask bits for fp and
797 /// integer signed and unsigned data types.
799
800 // Vector float/double to signed/unsigned integer with truncation.
803
804 // Vector FP extend.
806
807 // Vector FP round.
809
810 // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
811 // Also used by the legacy (V)ROUND intrinsics where we mask out the
812 // scaling part of the immediate.
814
815 // Vector signed/unsigned integer to float/double.
818
819 // Strict FMA nodes.
823
824 // Conversions between float and half-float.
827
828 // Perform an FP80 add after changing precision control in FPCW.
830
831 // WARNING: Only add nodes here if they are strict FP nodes. Non-memory and
832 // non-strict FP nodes should be above FIRST_TARGET_STRICTFP_OPCODE.
833
834 // Compare and swap.
839
840 /// LOCK-prefixed arithmetic read-modify-write instructions.
841 /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
853
854 /// RAO arithmetic instructions.
855 /// OUTCHAIN = AADD(INCHAIN, PTR, RHS)
860
861 // Load, scalar_to_vector, and zero extend.
863
864 // extract_vector_elt, store.
866
867 // scalar broadcast from memory.
869
870 // subvector broadcast from memory.
872
873 // Store FP control word into i16 memory.
875
876 // Load FP control word from i16 memory.
878
879 // Store x87 FPU environment into memory.
881
882 // Load x87 FPU environment from memory.
884
885 /// This instruction implements FP_TO_SINT with the
886 /// integer destination in memory and a FP reg source. This corresponds
887 /// to the X86::FIST*m instructions and the rounding mode change stuff. It
888 /// has two inputs (token chain and address) and two outputs (int value
889 /// and token chain). Memory VT specifies the type to store to.
891
892 /// This instruction implements SINT_TO_FP with the
893 /// integer source in memory and FP reg result. This corresponds to the
894 /// X86::FILD*m instructions. It has two inputs (token chain and address)
895 /// and two outputs (FP value and token chain). The integer source type is
896 /// specified by the memory VT.
898
899 /// This instruction implements a fp->int store from FP stack
900 /// slots. This corresponds to the fist instruction. It takes a
901 /// chain operand, value to store, address, and glue. The memory VT
902 /// specifies the type to store as.
904
905 /// This instruction implements an extending load to FP stack slots.
906 /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
907 /// operand, and ptr to load from. The memory VT specifies the type to
908 /// load from.
910
911 /// This instruction implements a truncating store from FP stack
912 /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
913 /// chain operand, value to store, address, and glue. The memory VT
914 /// specifies the type to store as.
916
917 /// These instructions grab the address of the next argument
918 /// from a va_list. (reads and modifies the va_list in memory)
921
922 // Vector truncating store with unsigned/signed saturation
925 // Vector truncating masked store with unsigned/signed saturation
928
929 // X86 specific gather and scatter
932
933 // Key locker nodes that produce flags.
942
943 /// Compare and Add if Condition is Met. Compare value in operand 2 with
944 /// value in memory of operand 1. If condition of operand 4 is met, add
945 /// value operand 3 to m32 and write new value in operand 1. Operand 2 is
946 /// always updated with the original value from operand 1.
948
949 // Save xmm argument registers to the stack, according to %al. An operator
950 // is needed so that this can be expanded with control flow.
952
953 // Conditional load/store instructions
956
957 // WARNING: Do not add anything in the end unless you want the node to
958 // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
959 // opcodes will be thought as target memory ops!
960 };
961 } // end namespace X86ISD
962
963 namespace X86 {
964 /// Current rounding mode is represented in bits 11:10 of FPSR. These
965 /// values are same as corresponding constants for rounding mode used
966 /// in glibc.
968 rmToNearest = 0, // FE_TONEAREST
969 rmDownward = 1 << 10, // FE_DOWNWARD
970 rmUpward = 2 << 10, // FE_UPWARD
971 rmTowardZero = 3 << 10, // FE_TOWARDZERO
972 rmMask = 3 << 10 // Bit mask selecting rounding mode
973 };
974 }
975
976 /// Define some predicates that are used for node matching.
977 namespace X86 {
978 /// Returns true if Elt is a constant zero or floating point constant +0.0.
979 bool isZeroNode(SDValue Elt);
980
981 /// Returns true of the given offset can be
982 /// fit into displacement field of the instruction.
984 bool hasSymbolicDisplacement);
985
986 /// Determines whether the callee is required to pop its
987 /// own arguments. Callee pop is necessary to support tail calls.
988 bool isCalleePop(CallingConv::ID CallingConv,
989 bool is64Bit, bool IsVarArg, bool GuaranteeTCO);
990
991 /// If Op is a constant whose elements are all the same constant or
992 /// undefined, return true and return the constant value in \p SplatVal.
993 /// If we have undef bits that don't cover an entire element, we treat these
994 /// as zero if AllowPartialUndefs is set, else we fail and return false.
995 bool isConstantSplat(SDValue Op, APInt &SplatVal,
996 bool AllowPartialUndefs = true);
997
998 /// Check if Op is a load operation that could be folded into some other x86
999 /// instruction as a memory operand. Example: vpaddd (%rdi), %xmm0, %xmm0.
1000 bool mayFoldLoad(SDValue Op, const X86Subtarget &Subtarget,
1001 bool AssumeSingleUse = false);
1002
1003 /// Check if Op is a load operation that could be folded into a vector splat
1004 /// instruction as a memory operand. Example: vbroadcastss 16(%rdi), %xmm2.
1005 bool mayFoldLoadIntoBroadcastFromMem(SDValue Op, MVT EltVT,
1006 const X86Subtarget &Subtarget,
1007 bool AssumeSingleUse = false);
1008
1009 /// Check if Op is a value that could be used to fold a store into some
1010 /// other x86 instruction as a memory operand. Ex: pextrb $0, %xmm0, (%rdi).
1011 bool mayFoldIntoStore(SDValue Op);
1012
1013 /// Check if Op is an operation that could be folded into a zero extend x86
1014 /// instruction.
1015 bool mayFoldIntoZeroExtend(SDValue Op);
1016
1017 /// True if the target supports the extended frame for async Swift
1018 /// functions.
1019 bool isExtendedSwiftAsyncFrameSupported(const X86Subtarget &Subtarget,
1020 const MachineFunction &MF);
1021 } // end namespace X86
1022
1023 //===--------------------------------------------------------------------===//
1024 // X86 Implementation of the TargetLowering interface
1025 class X86TargetLowering final : public TargetLowering {
1026 public:
1027 explicit X86TargetLowering(const X86TargetMachine &TM,
1028 const X86Subtarget &STI);
1029
1030 unsigned getJumpTableEncoding() const override;
1031 bool useSoftFloat() const override;
1032
1033 void markLibCallAttributes(MachineFunction *MF, unsigned CC,
1034 ArgListTy &Args) const override;
1035
1036 MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override {
1037 return MVT::i8;
1038 }
1039
1040 const MCExpr *
1042 const MachineBasicBlock *MBB, unsigned uid,
1043 MCContext &Ctx) const override;
1044
1045 /// Returns relocation base for the given PIC jumptable.
1047 SelectionDAG &DAG) const override;
1048 const MCExpr *
1050 unsigned JTI, MCContext &Ctx) const override;
1051
1052 /// Return the desired alignment for ByVal aggregate
1053 /// function arguments in the caller parameter area. For X86, aggregates
1054 /// that contains are placed at 16-byte boundaries while the rest are at
1055 /// 4-byte boundaries.
1057 const DataLayout &DL) const override;
1058
1060 const AttributeList &FuncAttributes) const override;
1061
1062 /// Returns true if it's safe to use load / store of the
1063 /// specified type to expand memcpy / memset inline. This is mostly true
1064 /// for all types except for some special cases. For example, on X86
1065 /// targets without SSE2 f64 load / store are done with fldl / fstpl which
1066 /// also does type conversion. Note the specified type doesn't have to be
1067 /// legal as the hook is used before type legalization.
1068 bool isSafeMemOpType(MVT VT) const override;
1069
1070 bool isMemoryAccessFast(EVT VT, Align Alignment) const;
1071
1072 /// Returns true if the target allows unaligned memory accesses of the
1073 /// specified type. Returns whether it is "fast" in the last argument.
1074 bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment,
1076 unsigned *Fast) const override;
1077
1078 /// This function returns true if the memory access is aligned or if the
1079 /// target allows this specific unaligned memory access. If the access is
1080 /// allowed, the optional final parameter returns a relative speed of the
1081 /// access (as defined by the target).
1082 bool allowsMemoryAccess(
1083 LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1084 Align Alignment,
1086 unsigned *Fast = nullptr) const override;
1087
1089 const MachineMemOperand &MMO,
1090 unsigned *Fast) const {
1091 return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(),
1092 MMO.getAlign(), MMO.getFlags(), Fast);
1093 }
1094
1095 /// Provide custom lowering hooks for some operations.
1096 ///
1097 SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
1098
1099 /// Replace the results of node with an illegal result
1100 /// type with new values built out of custom code.
1101 ///
1103 SelectionDAG &DAG) const override;
1104
1105 SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
1106
1107 bool preferABDSToABSWithNSW(EVT VT) const override;
1108
1109 bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT,
1110 EVT ExtVT) const override;
1111
1113 EVT VT) const override;
1114
1115 /// Return true if the target has native support for
1116 /// the specified value type and it is 'desirable' to use the type for the
1117 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
1118 /// instruction encodings are longer and some i16 instructions are slow.
1119 bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
1120
1121 /// Return true if the target has native support for the
1122 /// specified value type and it is 'desirable' to use the type. e.g. On x86
1123 /// i16 is legal, but undesirable since i16 instruction encodings are longer
1124 /// and some i16 instructions are slow.
1125 bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
1126
1127 /// Return prefered fold type, Abs if this is a vector, AddAnd if its an
1128 /// integer, None otherwise.
1131 const SDNode *SETCC0,
1132 const SDNode *SETCC1) const override;
1133
1134 /// Return the newly negated expression if the cost is not expensive and
1135 /// set the cost in \p Cost to indicate that if it is cheaper or neutral to
1136 /// do the negation.
1138 bool LegalOperations, bool ForCodeSize,
1140 unsigned Depth) const override;
1141
1144 MachineBasicBlock *MBB) const override;
1145
1146 /// This method returns the name of a target specific DAG node.
1147 const char *getTargetNodeName(unsigned Opcode) const override;
1148
1149 /// Do not merge vector stores after legalization because that may conflict
1150 /// with x86-specific store splitting optimizations.
1151 bool mergeStoresAfterLegalization(EVT MemVT) const override {
1152 return !MemVT.isVector();
1153 }
1154
1155 bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
1156 const MachineFunction &MF) const override;
1157
1158 bool isCheapToSpeculateCttz(Type *Ty) const override;
1159
1160 bool isCheapToSpeculateCtlz(Type *Ty) const override;
1161
1162 bool isCtlzFast() const override;
1163
1164 bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override {
1165 // If the pair to store is a mixture of float and int values, we will
1166 // save two bitwise instructions and one float-to-int instruction and
1167 // increase one store instruction. There is potentially a more
1168 // significant benefit because it avoids the float->int domain switch
1169 // for input value. So It is more likely a win.
1170 if ((LTy.isFloatingPoint() && HTy.isInteger()) ||
1171 (LTy.isInteger() && HTy.isFloatingPoint()))
1172 return true;
1173 // If the pair only contains int values, we will save two bitwise
1174 // instructions and increase one store instruction (costing one more
1175 // store buffer). Since the benefit is more blurred so we leave
1176 // such pair out until we get testcase to prove it is a win.
1177 return false;
1178 }
1179
1180 bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
1181
1182 bool hasAndNotCompare(SDValue Y) const override;
1183
1184 bool hasAndNot(SDValue Y) const override;
1185
1186 bool hasBitTest(SDValue X, SDValue Y) const override;
1187
1190 unsigned OldShiftOpcode, unsigned NewShiftOpcode,
1191 SelectionDAG &DAG) const override;
1192
1194 EVT VT, unsigned ShiftOpc, bool MayTransformRotate,
1195 const APInt &ShiftOrRotateAmt,
1196 const std::optional<APInt> &AndMask) const override;
1197
1198 bool preferScalarizeSplat(SDNode *N) const override;
1199
1200 CondMergingParams
1202 const Value *Rhs) const override;
1203
1205 CombineLevel Level) const override;
1206
1207 bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override;
1208
1209 bool
1211 unsigned KeptBits) const override {
1212 // For vectors, we don't have a preference..
1213 if (XVT.isVector())
1214 return false;
1215
1216 auto VTIsOk = [](EVT VT) -> bool {
1217 return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
1218 VT == MVT::i64;
1219 };
1220
1221 // We are ok with KeptBitsVT being byte/word/dword, what MOVS supports.
1222 // XVT will be larger than KeptBitsVT.
1223 MVT KeptBitsVT = MVT::getIntegerVT(KeptBits);
1224 return VTIsOk(XVT) && VTIsOk(KeptBitsVT);
1225 }
1226
1229 unsigned ExpansionFactor) const override;
1230
1231 bool shouldSplatInsEltVarIndex(EVT VT) const override;
1232
1233 bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const override {
1234 // Converting to sat variants holds little benefit on X86 as we will just
1235 // need to saturate the value back using fp arithmatic.
1237 }
1238
1239 bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
1240 return VT.isScalarInteger();
1241 }
1242
1243 /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
1244 MVT hasFastEqualityCompare(unsigned NumBits) const override;
1245
1246 /// Return the value type to use for ISD::SETCC.
1248 EVT VT) const override;
1249
1251 const APInt &DemandedElts,
1252 TargetLoweringOpt &TLO) const override;
1253
1254 /// Determine which of the bits specified in Mask are known to be either
1255 /// zero or one and return them in the KnownZero/KnownOne bitsets.
1257 KnownBits &Known,
1258 const APInt &DemandedElts,
1259 const SelectionDAG &DAG,
1260 unsigned Depth = 0) const override;
1261
1262 /// Determine the number of bits in the operation that are sign bits.
1264 const APInt &DemandedElts,
1265 const SelectionDAG &DAG,
1266 unsigned Depth) const override;
1267
1269 const APInt &DemandedElts,
1270 APInt &KnownUndef,
1271 APInt &KnownZero,
1272 TargetLoweringOpt &TLO,
1273 unsigned Depth) const override;
1274
1276 const APInt &DemandedElts,
1277 unsigned MaskIndex,
1278 TargetLoweringOpt &TLO,
1279 unsigned Depth) const;
1280
1282 const APInt &DemandedBits,
1283 const APInt &DemandedElts,
1284 KnownBits &Known,
1285 TargetLoweringOpt &TLO,
1286 unsigned Depth) const override;
1287
1289 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
1290 SelectionDAG &DAG, unsigned Depth) const override;
1291
1293 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
1294 bool PoisonOnly, unsigned Depth) const override;
1295
1297 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
1298 bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const override;
1299
1300 bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts,
1301 APInt &UndefElts, const SelectionDAG &DAG,
1302 unsigned Depth) const override;
1303
1305 // Peek through bitcasts/extracts/inserts to see if we have a broadcast
1306 // vector from memory.
1307 while (Op.getOpcode() == ISD::BITCAST ||
1308 Op.getOpcode() == ISD::EXTRACT_SUBVECTOR ||
1309 (Op.getOpcode() == ISD::INSERT_SUBVECTOR &&
1310 Op.getOperand(0).isUndef()))
1311 Op = Op.getOperand(Op.getOpcode() == ISD::INSERT_SUBVECTOR ? 1 : 0);
1312
1313 return Op.getOpcode() == X86ISD::VBROADCAST_LOAD ||
1315 }
1316
1317 const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const override;
1318
1319 SDValue unwrapAddress(SDValue N) const override;
1320
1322
1323 bool ExpandInlineAsm(CallInst *CI) const override;
1324
1325 ConstraintType getConstraintType(StringRef Constraint) const override;
1326
1327 /// Examine constraint string and operand type and determine a weight value.
1328 /// The operand object must already have been set up with the operand type.
1330 getSingleConstraintMatchWeight(AsmOperandInfo &Info,
1331 const char *Constraint) const override;
1332
1333 const char *LowerXConstraint(EVT ConstraintVT) const override;
1334
1335 /// Lower the specified operand into the Ops vector. If it is invalid, don't
1336 /// add anything to Ops. If hasMemory is true it means one of the asm
1337 /// constraint of the inline asm instruction being processed is 'm'.
1339 std::vector<SDValue> &Ops,
1340 SelectionDAG &DAG) const override;
1341
1343 getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
1344 if (ConstraintCode == "v")
1346 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1347 }
1348
1349 /// Handle Lowering flag assembly outputs.
1351 const SDLoc &DL,
1352 const AsmOperandInfo &Constraint,
1353 SelectionDAG &DAG) const override;
1354
1355 /// Given a physical register constraint
1356 /// (e.g. {edx}), return the register number and the register class for the
1357 /// register. This should only be used for C_Register constraints. On
1358 /// error, this returns a register number of 0.
1359 std::pair<unsigned, const TargetRegisterClass *>
1361 StringRef Constraint, MVT VT) const override;
1362
1363 /// Return true if the addressing mode represented
1364 /// by AM is legal for this target, for a load/store of the specified type.
1365 bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
1366 Type *Ty, unsigned AS,
1367 Instruction *I = nullptr) const override;
1368
1369 bool addressingModeSupportsTLS(const GlobalValue &GV) const override;
1370
1371 /// Return true if the specified immediate is legal
1372 /// icmp immediate, that is the target has icmp instructions which can
1373 /// compare a register against the immediate without having to materialize
1374 /// the immediate into a register.
1375 bool isLegalICmpImmediate(int64_t Imm) const override;
1376
1377 /// Return true if the specified immediate is legal
1378 /// add immediate, that is the target has add instructions which can
1379 /// add a register and the immediate without having to materialize
1380 /// the immediate into a register.
1381 bool isLegalAddImmediate(int64_t Imm) const override;
1382
1383 bool isLegalStoreImmediate(int64_t Imm) const override;
1384
1385 /// This is used to enable splatted operand transforms for vector shifts
1386 /// and vector funnel shifts.
1387 bool isVectorShiftByScalarCheap(Type *Ty) const override;
1388
1389 /// Add x86-specific opcodes to the default list.
1390 bool isBinOp(unsigned Opcode) const override;
1391
1392 /// Returns true if the opcode is a commutative binary operation.
1393 bool isCommutativeBinOp(unsigned Opcode) const override;
1394
1395 /// Return true if it's free to truncate a value of
1396 /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
1397 /// register EAX to i16 by referencing its sub-register AX.
1398 bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
1399 bool isTruncateFree(EVT VT1, EVT VT2) const override;
1400
1401 bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
1402
1403 /// Return true if any actual instruction that defines a
1404 /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
1405 /// register. This does not necessarily include registers defined in
1406 /// unknown ways, such as incoming arguments, or copies from unknown
1407 /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
1408 /// does not necessarily apply to truncate instructions. e.g. on x86-64,
1409 /// all instructions that define 32-bit values implicit zero-extend the
1410 /// result out to 64 bits.
1411 bool isZExtFree(Type *Ty1, Type *Ty2) const override;
1412 bool isZExtFree(EVT VT1, EVT VT2) const override;
1413 bool isZExtFree(SDValue Val, EVT VT2) const override;
1414
1416 SmallVectorImpl<Use *> &Ops) const override;
1417 bool shouldConvertPhiType(Type *From, Type *To) const override;
1418
1419 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
1420 /// extend node) is profitable.
1421 bool isVectorLoadExtDesirable(SDValue) const override;
1422
1423 /// Return true if an FMA operation is faster than a pair of fmul and fadd
1424 /// instructions. fmuladd intrinsics will be expanded to FMAs when this
1425 /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
1427 EVT VT) const override;
1428
1429 /// Return true if it's profitable to narrow operations of type SrcVT to
1430 /// DestVT. e.g. on x86, it's profitable to narrow from i32 to i8 but not
1431 /// from i32 to i16.
1432 bool isNarrowingProfitable(EVT SrcVT, EVT DestVT) const override;
1433
1434 bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode,
1435 EVT VT) const override;
1436
1437 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1438 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1439 /// true and stores the intrinsic information into the IntrinsicInfo that was
1440 /// passed to the function.
1441 bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
1442 MachineFunction &MF,
1443 unsigned Intrinsic) const override;
1444
1445 /// Returns true if the target can instruction select the
1446 /// specified FP immediate natively. If false, the legalizer will
1447 /// materialize the FP immediate as a load from a constant pool.
1448 bool isFPImmLegal(const APFloat &Imm, EVT VT,
1449 bool ForCodeSize) const override;
1450
1451 /// Targets can use this to indicate that they only support *some*
1452 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
1453 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
1454 /// be legal.
1455 bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
1456
1457 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1458 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1459 /// constant pool entry.
1460 bool isVectorClearMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
1461
1462 /// Returns true if lowering to a jump table is allowed.
1463 bool areJTsAllowed(const Function *Fn) const override;
1464
1466 EVT ConditionVT) const override;
1467
1468 /// If true, then instruction selection should
1469 /// seek to shrink the FP constant of the specified type to a smaller type
1470 /// in order to save space and / or reduce runtime.
1471 bool ShouldShrinkFPConstant(EVT VT) const override;
1472
1473 /// Return true if we believe it is correct and profitable to reduce the
1474 /// load node to a smaller type.
1476 EVT NewVT) const override;
1477
1478 /// Return true if the specified scalar FP type is computed in an SSE
1479 /// register, not on the X87 floating point stack.
1480 bool isScalarFPTypeInSSEReg(EVT VT) const;
1481
1482 /// Returns true if it is beneficial to convert a load of a constant
1483 /// to just the constant itself.
1485 Type *Ty) const override;
1486
1487 bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const override;
1488
1489 bool convertSelectOfConstantsToMath(EVT VT) const override;
1490
1491 bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
1492 SDValue C) const override;
1493
1494 /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
1495 /// with this index.
1496 bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
1497 unsigned Index) const override;
1498
1499 /// Scalar ops always have equal or better analysis/performance/power than
1500 /// the vector equivalent, so this always makes sense if the scalar op is
1501 /// supported.
1502 bool shouldScalarizeBinop(SDValue) const override;
1503
1504 /// Extract of a scalar FP value from index 0 of a vector is free.
1505 bool isExtractVecEltCheap(EVT VT, unsigned Index) const override {
1506 EVT EltVT = VT.getScalarType();
1507 return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0;
1508 }
1509
1510 /// Overflow nodes should get combined/lowered to optimal instructions
1511 /// (they should allow eliminating explicit compares by getting flags from
1512 /// math ops).
1513 bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
1514 bool MathUsed) const override;
1515
1516 bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT, unsigned NumElem,
1517 unsigned AddrSpace) const override {
1518 // If we can replace more than 2 scalar stores, there will be a reduction
1519 // in instructions even after we add a vector constant load.
1520 return IsZero || NumElem > 2;
1521 }
1522
1523 bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
1524 const SelectionDAG &DAG,
1525 const MachineMemOperand &MMO) const override;
1526
1527 Register getRegisterByName(const char* RegName, LLT VT,
1528 const MachineFunction &MF) const override;
1529
1530 /// If a physical register, this returns the register that receives the
1531 /// exception address on entry to an EH pad.
1532 Register
1533 getExceptionPointerRegister(const Constant *PersonalityFn) const override;
1534
1535 /// If a physical register, this returns the register that receives the
1536 /// exception typeid on entry to a landing pad.
1537 Register
1538 getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
1539
1540 bool needsFixedCatchObjects() const override;
1541
1542 /// This method returns a target specific FastISel object,
1543 /// or null if the target does not support "fast" ISel.
1545 const TargetLibraryInfo *libInfo) const override;
1546
1547 /// If the target has a standard location for the stack protector cookie,
1548 /// returns the address of that location. Otherwise, returns nullptr.
1549 Value *getIRStackGuard(IRBuilderBase &IRB) const override;
1550
1551 bool useLoadStackGuardNode() const override;
1552 bool useStackGuardXorFP() const override;
1553 void insertSSPDeclarations(Module &M) const override;
1554 Value *getSDagStackGuard(const Module &M) const override;
1555 Function *getSSPStackGuardCheck(const Module &M) const override;
1557 const SDLoc &DL) const override;
1558
1559
1560 /// Return true if the target stores SafeStack pointer at a fixed offset in
1561 /// some non-standard address space, and populates the address space and
1562 /// offset as appropriate.
1563 Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const override;
1564
1565 std::pair<SDValue, SDValue> BuildFILD(EVT DstVT, EVT SrcVT, const SDLoc &DL,
1566 SDValue Chain, SDValue Pointer,
1567 MachinePointerInfo PtrInfo,
1568 Align Alignment,
1569 SelectionDAG &DAG) const;
1570
1571 /// Customize the preferred legalization strategy for certain types.
1573
1574 bool softPromoteHalfType() const override { return true; }
1575
1577 EVT VT) const override;
1578
1581 EVT VT) const override;
1582
1584 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
1585 unsigned &NumIntermediates, MVT &RegisterVT) const override;
1586
1587 bool isIntDivCheap(EVT VT, AttributeList Attr) const override;
1588
1589 bool supportSwiftError() const override;
1590
1591 bool supportKCFIBundles() const override { return true; }
1592
1595 const TargetInstrInfo *TII) const override;
1596
1597 bool hasStackProbeSymbol(const MachineFunction &MF) const override;
1598 bool hasInlineStackProbe(const MachineFunction &MF) const override;
1599 StringRef getStackProbeSymbolName(const MachineFunction &MF) const override;
1600
1601 unsigned getStackProbeSize(const MachineFunction &MF) const;
1602
1603 bool hasVectorBlend() const override { return true; }
1604
1605 unsigned getMaxSupportedInterleaveFactor() const override { return 4; }
1606
1608 unsigned OpNo) const override;
1609
1610 SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain,
1611 MachineMemOperand *MMO, SDValue &NewLoad,
1612 SDValue Ptr, SDValue PassThru,
1613 SDValue Mask) const override;
1616 SDValue Mask) const override;
1617
1618 /// Lower interleaved load(s) into target specific
1619 /// instructions/intrinsics.
1622 ArrayRef<unsigned> Indices,
1623 unsigned Factor) const override;
1624
1625 /// Lower interleaved store(s) into target specific
1626 /// instructions/intrinsics.
1628 unsigned Factor) const override;
1629
1631 int JTI, SelectionDAG &DAG) const override;
1632
1633 Align getPrefLoopAlignment(MachineLoop *ML) const override;
1634
1635 EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const override {
1636 if (VT == MVT::f80)
1637 return EVT::getIntegerVT(Context, 96);
1638 return TargetLoweringBase::getTypeToTransformTo(Context, VT);
1639 }
1640
1641 protected:
1642 std::pair<const TargetRegisterClass *, uint8_t>
1644 MVT VT) const override;
1645
1646 private:
1647 /// Keep a reference to the X86Subtarget around so that we can
1648 /// make the right decision when generating code for different targets.
1649 const X86Subtarget &Subtarget;
1650
1651 /// A list of legal FP immediates.
1652 std::vector<APFloat> LegalFPImmediates;
1653
1654 /// Indicate that this x86 target can instruction
1655 /// select the specified FP immediate natively.
1656 void addLegalFPImmediate(const APFloat& Imm) {
1657 LegalFPImmediates.push_back(Imm);
1658 }
1659
1660 SDValue LowerCallResult(SDValue Chain, SDValue InGlue,
1661 CallingConv::ID CallConv, bool isVarArg,
1662 const SmallVectorImpl<ISD::InputArg> &Ins,
1663 const SDLoc &dl, SelectionDAG &DAG,
1664 SmallVectorImpl<SDValue> &InVals,
1665 uint32_t *RegMask) const;
1666 SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
1667 const SmallVectorImpl<ISD::InputArg> &ArgInfo,
1668 const SDLoc &dl, SelectionDAG &DAG,
1669 const CCValAssign &VA, MachineFrameInfo &MFI,
1670 unsigned i) const;
1671 SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
1672 const SDLoc &dl, SelectionDAG &DAG,
1673 const CCValAssign &VA,
1674 ISD::ArgFlagsTy Flags, bool isByval) const;
1675
1676 // Call lowering helpers.
1677
1678 /// Check whether the call is eligible for tail call optimization. Targets
1679 /// that want to do tail call optimization should implement this function.
1680 bool IsEligibleForTailCallOptimization(
1681 TargetLowering::CallLoweringInfo &CLI, CCState &CCInfo,
1682 SmallVectorImpl<CCValAssign> &ArgLocs, bool IsCalleePopSRet) const;
1683 SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
1684 SDValue Chain, bool IsTailCall,
1685 bool Is64Bit, int FPDiff,
1686 const SDLoc &dl) const;
1687
1688 unsigned GetAlignedArgumentStackSize(unsigned StackSize,
1689 SelectionDAG &DAG) const;
1690
1691 unsigned getAddressSpace() const;
1692
1693 SDValue FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned,
1694 SDValue &Chain) const;
1695 SDValue LRINT_LLRINTHelper(SDNode *N, SelectionDAG &DAG) const;
1696
1697 SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
1698 SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
1699 SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1700 SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
1701
1702 unsigned getGlobalWrapperKind(const GlobalValue *GV,
1703 const unsigned char OpFlags) const;
1704 SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
1705 SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
1706 SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
1707 SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
1708 SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
1709
1710 /// Creates target global address or external symbol nodes for calls or
1711 /// other uses.
1712 SDValue LowerGlobalOrExternal(SDValue Op, SelectionDAG &DAG,
1713 bool ForCall) const;
1714
1715 SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1716 SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1717 SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
1718 SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
1719 SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) const;
1720 SDValue LowerLRINT_LLRINT(SDValue Op, SelectionDAG &DAG) const;
1721 SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
1722 SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const;
1723 SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
1724 SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
1725 SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
1726 SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
1727 SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
1728 SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
1729 SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1730 SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
1731 SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
1732 SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
1733 SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
1734 SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1735 SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1736 SDValue lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const;
1737 SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
1738 SDValue LowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
1739 SDValue LowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
1740 SDValue LowerGET_FPENV_MEM(SDValue Op, SelectionDAG &DAG) const;
1741 SDValue LowerSET_FPENV_MEM(SDValue Op, SelectionDAG &DAG) const;
1742 SDValue LowerRESET_FPENV(SDValue Op, SelectionDAG &DAG) const;
1743 SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
1744 SDValue LowerWin64_FP_TO_INT128(SDValue Op, SelectionDAG &DAG,
1745 SDValue &Chain) const;
1746 SDValue LowerWin64_INT128_TO_FP(SDValue Op, SelectionDAG &DAG) const;
1747 SDValue LowerGC_TRANSITION(SDValue Op, SelectionDAG &DAG) const;
1748 SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
1749 SDValue lowerFaddFsub(SDValue Op, SelectionDAG &DAG) const;
1750 SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
1751 SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
1752 SDValue LowerFP_TO_BF16(SDValue Op, SelectionDAG &DAG) const;
1753
1754 SDValue
1755 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1756 const SmallVectorImpl<ISD::InputArg> &Ins,
1757 const SDLoc &dl, SelectionDAG &DAG,
1758 SmallVectorImpl<SDValue> &InVals) const override;
1759 SDValue LowerCall(CallLoweringInfo &CLI,
1760 SmallVectorImpl<SDValue> &InVals) const override;
1761
1762 SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1763 const SmallVectorImpl<ISD::OutputArg> &Outs,
1764 const SmallVectorImpl<SDValue> &OutVals,
1765 const SDLoc &dl, SelectionDAG &DAG) const override;
1766
1767 bool supportSplitCSR(MachineFunction *MF) const override {
1768 return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
1769 MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
1770 }
1771 void initializeSplitCSR(MachineBasicBlock *Entry) const override;
1772 void insertCopiesSplitCSR(
1773 MachineBasicBlock *Entry,
1774 const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
1775
1776 bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
1777
1778 bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1779
1780 EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
1781 ISD::NodeType ExtendKind) const override;
1782
1783 bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1784 bool isVarArg,
1785 const SmallVectorImpl<ISD::OutputArg> &Outs,
1786 LLVMContext &Context) const override;
1787
1788 const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
1789 ArrayRef<MCPhysReg> getRoundingControlRegisters() const override;
1790
1792 shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
1794 shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
1796 shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
1798 shouldExpandLogicAtomicRMWInIR(AtomicRMWInst *AI) const;
1799 void emitBitTestAtomicRMWIntrinsic(AtomicRMWInst *AI) const override;
1800 void emitCmpArithAtomicRMWIntrinsic(AtomicRMWInst *AI) const override;
1801
1802 LoadInst *
1803 lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;
1804
1805 bool needsCmpXchgNb(Type *MemType) const;
1806
1807 void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB,
1808 MachineBasicBlock *DispatchBB, int FI) const;
1809
1810 // Utility function to emit the low-level va_arg code for X86-64.
1811 MachineBasicBlock *
1812 EmitVAARGWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
1813
1814 /// Utility function to emit the xmm reg save portion of va_start.
1815 MachineBasicBlock *EmitLoweredCascadedSelect(MachineInstr &MI1,
1816 MachineInstr &MI2,
1817 MachineBasicBlock *BB) const;
1818
1819 MachineBasicBlock *EmitLoweredSelect(MachineInstr &I,
1820 MachineBasicBlock *BB) const;
1821
1822 MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
1823 MachineBasicBlock *BB) const;
1824
1825 MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr &MI,
1826 MachineBasicBlock *BB) const;
1827
1828 MachineBasicBlock *EmitLoweredProbedAlloca(MachineInstr &MI,
1829 MachineBasicBlock *BB) const;
1830
1831 MachineBasicBlock *EmitLoweredTLSAddr(MachineInstr &MI,
1832 MachineBasicBlock *BB) const;
1833
1834 MachineBasicBlock *EmitLoweredTLSCall(MachineInstr &MI,
1835 MachineBasicBlock *BB) const;
1836
1837 MachineBasicBlock *EmitLoweredIndirectThunk(MachineInstr &MI,
1838 MachineBasicBlock *BB) const;
1839
1840 MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
1841 MachineBasicBlock *MBB) const;
1842
1843 void emitSetJmpShadowStackFix(MachineInstr &MI,
1844 MachineBasicBlock *MBB) const;
1845
1846 MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
1847 MachineBasicBlock *MBB) const;
1848
1849 MachineBasicBlock *emitLongJmpShadowStackFix(MachineInstr &MI,
1850 MachineBasicBlock *MBB) const;
1851
1852 MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr &MI,
1853 MachineBasicBlock *MBB) const;
1854
1855 MachineBasicBlock *emitPatchableEventCall(MachineInstr &MI,
1856 MachineBasicBlock *MBB) const;
1857
1858 /// Emit flags for the given setcc condition and operands. Also returns the
1859 /// corresponding X86 condition code constant in X86CC.
1860 SDValue emitFlagsForSetcc(SDValue Op0, SDValue Op1, ISD::CondCode CC,
1861 const SDLoc &dl, SelectionDAG &DAG,
1862 SDValue &X86CC) const;
1863
1864 bool optimizeFMulOrFDivAsShiftAddBitcast(SDNode *N, SDValue FPConst,
1865 SDValue IntPow2) const override;
1866
1867 /// Check if replacement of SQRT with RSQRT should be disabled.
1868 bool isFsqrtCheap(SDValue Op, SelectionDAG &DAG) const override;
1869
1870 /// Use rsqrt* to speed up sqrt calculations.
1871 SDValue getSqrtEstimate(SDValue Op, SelectionDAG &DAG, int Enabled,
1872 int &RefinementSteps, bool &UseOneConstNR,
1873 bool Reciprocal) const override;
1874
1875 /// Use rcp* to speed up fdiv calculations.
1876 SDValue getRecipEstimate(SDValue Op, SelectionDAG &DAG, int Enabled,
1877 int &RefinementSteps) const override;
1878
1879 /// Reassociate floating point divisions into multiply by reciprocal.
1880 unsigned combineRepeatedFPDivisors() const override;
1881
1882 SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
1883 SmallVectorImpl<SDNode *> &Created) const override;
1884
1885 SDValue getMOVL(SelectionDAG &DAG, const SDLoc &dl, MVT VT, SDValue V1,
1886 SDValue V2) const;
1887 };
1888
1889 namespace X86 {
1890 FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
1891 const TargetLibraryInfo *libInfo);
1892 } // end namespace X86
1893
1894 // X86 specific Gather/Scatter nodes.
1895 // The class has the same order of operands as MaskedGatherScatterSDNode for
1896 // convenience.
1898 public:
1899 // This is a intended as a utility and should never be directly created.
1902
1903 const SDValue &getBasePtr() const { return getOperand(3); }
1904 const SDValue &getIndex() const { return getOperand(4); }
1905 const SDValue &getMask() const { return getOperand(2); }
1906 const SDValue &getScale() const { return getOperand(5); }
1907
1908 static bool classof(const SDNode *N) {
1909 return N->getOpcode() == X86ISD::MGATHER ||
1910 N->getOpcode() == X86ISD::MSCATTER;
1911 }
1912 };
1913
1915 public:
1916 const SDValue &getPassThru() const { return getOperand(1); }
1917
1918 static bool classof(const SDNode *N) {
1919 return N->getOpcode() == X86ISD::MGATHER;
1920 }
1921 };
1922
1924 public:
1925 const SDValue &getValue() const { return getOperand(1); }
1926
1927 static bool classof(const SDNode *N) {
1928 return N->getOpcode() == X86ISD::MSCATTER;
1929 }
1930 };
1931
1932 /// Generate unpacklo/unpackhi shuffle mask.
1933 void createUnpackShuffleMask(EVT VT, SmallVectorImpl<int> &Mask, bool Lo,
1934 bool Unary);
1935
1936 /// Similar to unpacklo/unpackhi, but without the 128-bit lane limitation
1937 /// imposed by AVX and specific to the unary pattern. Example:
1938 /// v8iX Lo --> <0, 0, 1, 1, 2, 2, 3, 3>
1939 /// v8iX Hi --> <4, 4, 5, 5, 6, 6, 7, 7>
1940 void createSplat2ShuffleMask(MVT VT, SmallVectorImpl<int> &Mask, bool Lo);
1941
1942} // end namespace llvm
1943
1944#endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Function Alias Analysis Results
BlockVerifier::State From
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
uint64_t Addr
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define RegName(no)
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
const SmallVectorImpl< MachineOperand > & Cond
This file describes how to lower LLVM code to machine code.
static bool is64Bit(const char *name)
Class for arbitrary precision integers.
Definition: APInt.h:78
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
This class represents a function call, abstracting a target machine's calling convention.
This is an important base class in LLVM.
Definition: Constant.h:42
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition: FastISel.h:66
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:91
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:174
This class is used to represent ISD::LOAD nodes.
Context object for machine code objects.
Definition: MCContext.h:83
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:34
Machine Value Type.
static MVT getIntegerVT(unsigned BitWidth)
Instructions::iterator instr_iterator
Representation of each machine instruction.
Definition: MachineInstr.h:69
A description of a memory reference used in the backend.
unsigned getAddrSpace() const
Flags
Flags values. These may be or'd together.
Flags getFlags() const
Return the raw flags of the source value,.
Align getAlign() const
Return the minimum known alignment in bytes of the actual memory reference.
This SDNode is used for target intrinsics that touch memory and need an associated MachineMemOperand.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
const SDValue & getOperand(unsigned Num) const
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:226
This instruction constructs a fixed permutation of two input vectors.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
An instruction for storing to memory.
Definition: Instructions.h:290
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
TargetInstrInfo - Interface to description of machine instruction set.
Provides information about what library functions are available for the current target.
ShiftLegalizationStrategy
Return the preferred strategy to legalize tihs SHIFT instruction, with ExpansionFactor being the recu...
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
AndOrSETCCFoldKind
Enum of different potentially desirable ways to fold (and/or (setcc ...), (setcc ....
NegatibleCost
Enum that specifies when a float negation is beneficial.
std::vector< ArgListEntry > ArgListTy
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
virtual bool isTargetCanonicalConstantNode(SDValue Op) const
Returns true if the given Opc is considered a canonical constant for the target, which should not be ...
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
LLVM Value Representation.
Definition: Value.h:74
const SDValue & getPassThru() const
static bool classof(const SDNode *N)
const SDValue & getBasePtr() const
const SDValue & getScale() const
static bool classof(const SDNode *N)
const SDValue & getIndex() const
const SDValue & getValue() const
static bool classof(const SDNode *N)
bool shouldFormOverflowOp(unsigned Opcode, EVT VT, bool MathUsed) const override
Overflow nodes should get combined/lowered to optimal instructions (they should allow eliminating exp...
Align getPrefLoopAlignment(MachineLoop *ML) const override
Return the preferred loop alignment.
std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const override
Return the largest legal super-reg register class of the register class for the specified type and it...
bool isLegalAddImmediate(int64_t Imm) const override
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT, EVT ExtVT) const override
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override
This method will be invoked for all target nodes and for any target-independent nodes that the target...
SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const override
Returns relocation base for the given PIC jumptable.
bool preferABDSToABSWithNSW(EVT VT) const override
bool isCheapToSpeculateCtlz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic ctlz.
bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override
Return true if it is cheaper to split the store of a merged int val from a pair of smaller values int...
unsigned getJumpTableEncoding() const override
Return the entry encoding for a jump table in the current function.
std::pair< SDValue, SDValue > BuildFILD(EVT DstVT, EVT SrcVT, const SDLoc &DL, SDValue Chain, SDValue Pointer, MachinePointerInfo PtrInfo, Align Alignment, SelectionDAG &DAG) const
bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const override
Should we tranform the IR-optimal check for whether given truncation down into KeptBits would be trun...
bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth) const override
Attempt to simplify any target nodes based on the demanded vector elements, returning true on success...
bool isMemoryAccessFast(EVT VT, Align Alignment) const
SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag, const SDLoc &DL, const AsmOperandInfo &Constraint, SelectionDAG &DAG) const override
Handle Lowering flag assembly outputs.
bool supportKCFIBundles() const override
Return true if the target supports kcfi operand bundles.
const char * LowerXConstraint(EVT ConstraintVT) const override
Try to replace an X constraint, which matches anything, with another that has more specific requireme...
SDValue SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth) const override
More limited version of SimplifyDemandedBits that can be used to "look through" ops that don't contri...
bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &UndefElts, const SelectionDAG &DAG, unsigned Depth) const override
Return true if vector Op has the same value across all DemandedElts, indicating any elements which ma...
bool convertSelectOfConstantsToMath(EVT VT) const override
Return true if a select of constants (select Cond, C1, C2) should be transformed into simple math ops...
ConstraintType getConstraintType(StringRef Constraint) const override
Given a constraint letter, return the type of constraint for this target.
bool hasVectorBlend() const override
Return true if the target has a vector blend instruction.
Register getExceptionSelectorRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception typeid on entry to a la...
bool useSoftFloat() const override
bool isVectorShiftByScalarCheap(Type *Ty) const override
This is used to enable splatted operand transforms for vector shifts and vector funnel shifts.
InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const override
ShiftLegalizationStrategy preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N, unsigned ExpansionFactor) const override
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override
Provide custom lowering hooks for some operations.
bool isLegalStoreImmediate(int64_t Imm) const override
Return true if the specified immediate is legal for the value input of a store instruction.
SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue Ptr, SDValue Val, SDValue Mask) const override
SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, NegatibleCost &Cost, unsigned Depth) const override
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override
Return true if the target has native support for the specified value type and it is 'desirable' to us...
const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const override
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
bool isCtlzFast() const override
Return true if ctlz instruction is fast.
Register getRegisterByName(const char *RegName, LLT VT, const MachineFunction &MF) const override
Return the register ID of the name passed in.
bool isSafeMemOpType(MVT VT) const override
Returns true if it's safe to use load / store of the specified type to expand memcpy / memset inline.
bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const override
Given the pattern (X & (C l>>/<< Y)) ==/!= 0 return true if it should be transformed into: ((X <</l>>...
bool isNarrowingProfitable(EVT SrcVT, EVT DestVT) const override
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override
Return the type to use for a scalar shift opcode, given the shifted amount type.
Value * getIRStackGuard(IRBuilderBase &IRB) const override
If the target has a standard location for the stack protector cookie, returns the address of that loc...
bool supportSwiftError() const override
Return true if the target supports swifterror attribute.
bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT, unsigned NumElem, unsigned AddrSpace) const override
Return true if it is expected to be cheaper to do a store of vector constant with the given size and ...
bool isCheapToSpeculateCttz(Type *Ty) const override
Return true if it is cheap to speculate a call to intrinsic cttz.
bool shouldSplatInsEltVarIndex(EVT VT) const override
Return true if inserting a scalar into a variable element of an undef vector is more efficiently hand...
bool shouldSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const override
Return true if sinking I's operands to the same basic block as I is profitable, e....
bool isInlineAsmTargetBranch(const SmallVectorImpl< StringRef > &AsmStrs, unsigned OpNo) const override
On x86, return true if the operand with index OpNo is a CALL or JUMP instruction, which can use eithe...
MVT hasFastEqualityCompare(unsigned NumBits) const override
Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
EVT getOptimalMemOpType(const MemOp &Op, const AttributeList &FuncAttributes) const override
It returns EVT::Other if the type should be determined using generic target-independent logic.
bool SimplifyDemandedVectorEltsForTargetShuffle(SDValue Op, const APInt &DemandedElts, unsigned MaskIndex, TargetLoweringOpt &TLO, unsigned Depth) const
bool isLegalICmpImmediate(int64_t Imm) const override
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode, EVT VT) const override
Return true if pulling a binary operation into a select with an identity constant is profitable.
bool hasInlineStackProbe(const MachineFunction &MF) const override
Returns true if stack probing through inline assembly is requested.
MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const override
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
unsigned preferedOpcodeForCmpEqPiecesOfOperand(EVT VT, unsigned ShiftOpc, bool MayTransformRotate, const APInt &ShiftOrRotateAmt, const std::optional< APInt > &AndMask) const override
bool isXAndYEqZeroPreferableToXAndYEqY(ISD::CondCode Cond, EVT VT) const override
bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT, const MachineFunction &MF) const override
Returns if it's reasonable to merge stores to MemVT size.
bool ExpandInlineAsm(CallInst *CI) const override
This hook allows the target to expand an inline asm call to be explicit llvm code if it wants to.
bool hasAndNot(SDValue Y) const override
Return true if the target has a bitwise and-not operation: X = ~A & B This can be used to simplify se...
bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT) const override
Return true if we believe it is correct and profitable to reduce the load node to a smaller type.
bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const override
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const override
Returns true if it is beneficial to convert a load of a constant to just the constant itself.
bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, const MachineMemOperand &MMO, unsigned *Fast) const
bool preferScalarizeSplat(SDNode *N) const override
Function * getSSPStackGuardCheck(const Module &M) const override
If the target has a standard stack protection check function that performs validation and error handl...
bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const override
Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT from min(max(fptoi)) satur...
std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const override
Given a physical register constraint (e.g.
MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const override
Returns true if the target allows unaligned memory accesses of the specified type.
bool isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const override
Returns true if the target can instruction select the specified FP immediate natively.
bool shouldFoldConstantShiftPairToMask(const SDNode *N, CombineLevel Level) const override
Return true if it is profitable to fold a pair of shifts into a mask.
MachineInstr * EmitKCFICheck(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator &MBBI, const TargetInstrInfo *TII) const override
bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const override
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
unsigned getMaxSupportedInterleaveFactor() const override
Get the maximum supported factor for interleaved memory accesses.
bool useLoadStackGuardNode() const override
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
bool hasAndNotCompare(SDValue Y) const override
Return true if the target should transform: (X & Y) == Y —> (~X & Y) == 0 (X & Y) !...
Value * getSDagStackGuard(const Module &M) const override
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const override
Return true if it is profitable to convert a select of FP constants into a constant pool load whose a...
bool lowerInterleavedLoad(LoadInst *LI, ArrayRef< ShuffleVectorInst * > Shuffles, ArrayRef< unsigned > Indices, unsigned Factor) const override
Lower interleaved load(s) into target specific instructions/intrinsics.
StringRef getStackProbeSymbolName(const MachineFunction &MF) const override
Returns the name of the symbol used to emit stack probes or the empty string if not applicable.
uint64_t getByValTypeAlignment(Type *Ty, const DataLayout &DL) const override
Return the desired alignment for ByVal aggregate function arguments in the caller parameter area.
bool hasBitTest(SDValue X, SDValue Y) const override
Return true if the target has a bit-test instruction: (X & (1 << Y)) ==/!= 0 This knowledge can be us...
bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override
Return true if a truncation from FromTy to ToTy is permitted when deciding whether a call is in tail ...
unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const override
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
bool isShuffleMaskLegal(ArrayRef< int > Mask, EVT VT) const override
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
bool useStackGuardXorFP() const override
If this function returns true, stack protection checks should XOR the frame pointer (or whichever poi...
unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const override
Determine the number of bits in the operation that are sign bits.
bool shouldScalarizeBinop(SDValue) const override
Scalar ops always have equal or better analysis/performance/power than the vector equivalent,...
void markLibCallAttributes(MachineFunction *MF, unsigned CC, ArgListTy &Args) const override
bool isTruncateFree(Type *Ty1, Type *Ty2) const override
Return true if it's free to truncate a value of type Ty1 to type Ty2.
Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const override
Return true if the target stores SafeStack pointer at a fixed offset in some non-standard address spa...
bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const override
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
bool areJTsAllowed(const Function *Fn) const override
Returns true if lowering to a jump table is allowed.
bool isCommutativeBinOp(unsigned Opcode) const override
Returns true if the opcode is a commutative binary operation.
bool isScalarFPTypeInSSEReg(EVT VT) const
Return true if the specified scalar FP type is computed in an SSE register, not on the X87 floating p...
const char * getTargetNodeName(unsigned Opcode) const override
This method returns the name of a target specific DAG node.
MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const override
Returns preferred type for switch condition.
SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain, MachineMemOperand *MMO, SDValue &NewLoad, SDValue Ptr, SDValue PassThru, SDValue Mask) const override
bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, unsigned Factor) const override
Lower interleaved store(s) into target specific instructions/intrinsics.
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const override
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const override
Return true if EXTRACT_SUBVECTOR is cheap for this result type with this index.
unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const override
Certain targets require unusual breakdowns of certain types.
bool convertSetCCLogicToBitwiseLogic(EVT VT) const override
Use bitwise logic to make pairs of compares more efficient.
bool isVectorClearMaskLegal(ArrayRef< int > Mask, EVT VT) const override
Similar to isShuffleMaskLegal.
ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &Info, const char *Constraint) const override
Examine constraint string and operand type and determine a weight value.
bool isIntDivCheap(EVT VT, AttributeList Attr) const override
Return true if integer divide is usually cheaper than a sequence of several shifts,...
LegalizeTypeAction getPreferredVectorAction(MVT VT) const override
Customize the preferred legalization strategy for certain types.
bool shouldConvertPhiType(Type *From, Type *To) const override
Given a set in interconnected phis of type 'From' that are loaded/stored or bitcast to type 'To',...
bool hasStackProbeSymbol(const MachineFunction &MF) const override
Returns true if stack probing through a function call is requested.
bool isZExtFree(Type *Ty1, Type *Ty2) const override
Return true if any actual instruction that defines a value of type Ty1 implicit zero-extends the valu...
bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const override
This function returns true if the memory access is aligned or if the target allows this specific unal...
bool isTargetCanonicalConstantNode(SDValue Op) const override
Returns true if the given Opc is considered a canonical constant for the target, which should not be ...
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I=nullptr) const override
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
bool softPromoteHalfType() const override
SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, const SDLoc &DL) const override
bool mergeStoresAfterLegalization(EVT MemVT) const override
Do not merge vector stores after legalization because that may conflict with x86-specific store split...
TargetLowering::AndOrSETCCFoldKind isDesirableToCombineLogicOpOfSETCC(const SDNode *LogicOp, const SDNode *SETCC0, const SDNode *SETCC1) const override
Return prefered fold type, Abs if this is a vector, AddAnd if its an integer, None otherwise.
bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override
There are two ways to clear extreme bits (either low or high): Mask: x & (-1 << y) (the instcombine c...
bool addressingModeSupportsTLS(const GlobalValue &GV) const override
Returns true if the targets addressing mode can target thread local storage (TLS).
SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const
bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const override
Register getExceptionPointerRegister(const Constant *PersonalityFn) const override
If a physical register, this returns the register that receives the exception address on entry to an ...
SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr, int JTI, SelectionDAG &DAG) const override
Expands target specific indirect branch for the case of JumpTable expansion.
FastISel * createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) const override
This method returns a target specific FastISel object, or null if the target does not support "fast" ...
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const override
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool isBinOp(unsigned Opcode) const override
Add x86-specific opcodes to the default list.
bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, unsigned Depth) const override
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDValue unwrapAddress(SDValue N) const override
CondMergingParams getJumpConditionMergingParams(Instruction::BinaryOps Opc, const Value *Lhs, const Value *Rhs) const override
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const override
Return the value type to use for ISD::SETCC.
bool isVectorLoadExtDesirable(SDValue) const override
Return true if folding a vector load into ExtVal (a sign, zero, or any extend node) is profitable.
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const override
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
const Constant * getTargetConstantFromLoad(LoadSDNode *LD) const override
This method returns the constant pool value that will be loaded by LD.
EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const override
For types supported by the target, this is an identity function.
bool canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const override
Return true if Op can create undef or poison from non-undef & non-poison operands.
void insertSSPDeclarations(Module &M) const override
Inserts necessary declarations for SSP (stack protection) purpose.
const MCExpr * LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, unsigned uid, MCContext &Ctx) const override
unsigned getStackProbeSize(const MachineFunction &MF) const
bool ShouldShrinkFPConstant(EVT VT) const override
If true, then instruction selection should seek to shrink the FP constant of the specified type to a ...
void ReplaceNodeResults(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const override
Replace the results of node with an illegal result type with new values built out of custom code.
bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override
Return if the target supports combining a chain like:
void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const override
Lower the specified operand into the Ops vector.
bool needsFixedCatchObjects() const override
bool isExtractVecEltCheap(EVT VT, unsigned Index) const override
Extract of a scalar FP value from index 0 of a vector is free.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ CXX_FAST_TLS
Used for access functions.
Definition: CallingConv.h:72
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition: ISDOpcodes.h:40
@ INSERT_SUBVECTOR
INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector with VECTOR2 inserted into VECTOR1.
Definition: ISDOpcodes.h:573
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition: ISDOpcodes.h:953
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
Definition: ISDOpcodes.h:1480
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
Definition: ISDOpcodes.h:587
@ FP_TO_UINT_SAT
Definition: ISDOpcodes.h:906
static const int FIRST_TARGET_MEMORY_OPCODE
FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations which do not reference a specific me...
Definition: ISDOpcodes.h:1492
static const int FIRST_TARGET_STRICTFP_OPCODE
FIRST_TARGET_STRICTFP_OPCODE - Target-specific pre-isel operations which cannot raise FP exceptions s...
Definition: ISDOpcodes.h:1486
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
Definition: ISDOpcodes.h:1603
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Definition: ISDOpcodes.h:1583
@ X86
Windows x64, Windows Itanium (IA-64)
@ FST
This instruction implements a truncating store from FP stack slots.
@ REP_MOVS
Repeat move, corresponds to X86::REP_MOVSx.
@ CMPM
Vector comparison generating mask bits for fp and integer signed and unsigned data types.
@ FMAX
Floating point max and min.
@ BT
X86 bit-test instructions.
@ HADD
Integer horizontal add/sub.
@ MOVQ2DQ
Copies a 64-bit value from an MMX vector to the low word of an XMM vector, with the high word zero fi...
@ BLENDI
Blend where the selector is an immediate.
@ CMP
X86 compare and logical compare instructions.
@ BLENDV
Dynamic (non-constant condition) vector blend where only the sign bits of the condition elements are ...
@ ADDSUB
Combined add and sub on an FP vector.
@ RET_GLUE
Return with a glue operand.
@ STRICT_FCMP
X86 strict FP compare instructions.
@ STRICT_CMPM
Vector comparison generating mask bits for fp and integer signed and unsigned data types.
@ FHADD
Floating point horizontal add/sub.
@ FMAXS
Scalar intrinsic floating point max and min.
@ BSR
Bit scan reverse.
@ IRET
Return from interrupt. Operand 0 is the number of bytes to pop.
@ SETCC
X86 SetCC.
@ NT_BRIND
BRIND node with NoTrack prefix.
@ SELECTS
X86 Select.
@ FSETCCM
X86 FP SETCC, similar to above, but with output as an i1 mask and and a version with SAE.
@ PEXTRB
Extract an 8-bit value from a vector and zero extend it to i32, corresponds to X86::PEXTRB.
@ FXOR
Bitwise logical XOR of floating point values.
@ BRCOND
X86 conditional branches.
@ FSETCC
X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
@ PINSRB
Insert the lower 8-bits of a 32-bit value to a vector, corresponds to X86::PINSRB.
@ REP_STOS
Repeat fill, corresponds to X86::REP_STOSx.
@ INSERTPS
Insert any element of a 4 x float vector into any element of a destination 4 x floatvector.
@ PSHUFB
Shuffle 16 8-bit values within a vector.
@ PEXTRW
Extract a 16-bit value from a vector and zero extend it to i32, corresponds to X86::PEXTRW.
@ CALL
These operations represent an abstract X86 call instruction, which includes a bunch of information.
@ AADD
RAO arithmetic instructions.
@ FANDN
Bitwise logical ANDNOT of floating point values.
@ GlobalBaseReg
On Darwin, this node represents the result of the popl at function entry, used for PIC code.
@ FMAXC
Commutative FMIN and FMAX.
@ EXTRQI
SSE4A Extraction and Insertion.
@ FLD
This instruction implements an extending load to FP stack slots.
@ TC_RETURN
Tail call return.
@ PSADBW
Compute Sum of Absolute Differences.
@ FOR
Bitwise logical OR of floating point values.
@ FIST
This instruction implements a fp->int store from FP stack slots.
@ FP_TO_INT_IN_MEM
This instruction implements FP_TO_SINT with the integer destination in memory and a FP reg source.
@ LADD
LOCK-prefixed arithmetic read-modify-write instructions.
@ DBPSADBW
Compute Double Block Packed Sum-Absolute-Differences.
@ MMX_MOVW2D
Copies a GPR into the low 32-bit word of a MMX vector and zero out the high word.
@ Wrapper
A wrapper node for TargetConstantPool, TargetJumpTable, TargetExternalSymbol, TargetGlobalAddress,...
@ PINSRW
Insert the lower 16-bits of a 32-bit value to a vector, corresponds to X86::PINSRW.
@ CMPCCXADD
Compare and Add if Condition is Met.
@ NT_CALL
Same as call except it adds the NoTrack prefix.
@ MMX_MOVD2W
Copies a 32-bit value from the low word of a MMX vector to a GPR.
@ FILD
This instruction implements SINT_TO_FP with the integer source in memory and FP reg result.
@ MOVDQ2Q
Copies a 64-bit value from the low word of an XMM vector to an MMX vector.
@ ANDNP
Bitwise Logical AND NOT of Packed FP values.
@ BSF
Bit scan forward.
@ VAARG_64
These instructions grab the address of the next argument from a va_list.
@ FAND
Bitwise logical AND of floating point values.
@ CMOV
X86 conditional moves.
@ WrapperRIP
Special wrapper used under X86-64 PIC mode for RIP relative displacements.
@ FSHL
X86 funnel/double shift i16 instructions.
@ FRSQRT
Floating point reciprocal-sqrt and reciprocal approximation.
RoundingMode
Current rounding mode is represented in bits 11:10 of FPSR.
bool mayFoldLoadIntoBroadcastFromMem(SDValue Op, MVT EltVT, const X86Subtarget &Subtarget, bool AssumeSingleUse=false)
Check if Op is a load operation that could be folded into a vector splat instruction as a memory oper...
bool isZeroNode(SDValue Elt)
Returns true if Elt is a constant zero or floating point constant +0.0.
bool mayFoldIntoZeroExtend(SDValue Op)
Check if Op is an operation that could be folded into a zero extend x86 instruction.
bool mayFoldIntoStore(SDValue Op)
Check if Op is a value that could be used to fold a store into some other x86 instruction as a memory...
bool isExtendedSwiftAsyncFrameSupported(const X86Subtarget &Subtarget, const MachineFunction &MF)
True if the target supports the extended frame for async Swift functions.
bool isCalleePop(CallingConv::ID CallingConv, bool is64Bit, bool IsVarArg, bool GuaranteeTCO)
Determines whether the callee is required to pop its own arguments.
bool mayFoldLoad(SDValue Op, const X86Subtarget &Subtarget, bool AssumeSingleUse=false)
Check if Op is a load operation that could be folded into some other x86 instruction as a memory oper...
FastISel * createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo)
bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, bool hasSymbolicDisplacement)
Returns true of the given offset can be fit into displacement field of the instruction.
bool isConstantSplat(SDValue Op, APInt &SplatVal, bool AllowPartialUndefs)
If Op is a constant whose elements are all the same constant or undefined, return true and return the...
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition: MCRegister.h:21
AddressSpace
Definition: NVPTXBaseInfo.h:21
void createUnpackShuffleMask(EVT VT, SmallVectorImpl< int > &Mask, bool Lo, bool Unary)
Generate unpacklo/unpackhi shuffle mask.
void createSplat2ShuffleMask(MVT VT, SmallVectorImpl< int > &Mask, bool Lo)
Similar to unpacklo/unpackhi, but without the 128-bit lane limitation imposed by AVX and specific to ...
CombineLevel
Definition: DAGCombine.h:15
DWARFExpression::Operation Op
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Extended Value Type.
Definition: ValueTypes.h:35
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition: ValueTypes.h:147
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
Definition: ValueTypes.h:65
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:168
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition: ValueTypes.h:314
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition: ValueTypes.h:157
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition: ValueTypes.h:152
This class contains a discriminated union of information about pointers in memory operands,...