LLVM 20.0.0git
X86FastISel.cpp
Go to the documentation of this file.
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the X86-specific support for the FastISel class. Much
10// of the target-specific code is generated by tablegen in the file
11// X86GenFastISel.inc, which is #included here.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86CallingConv.h"
17#include "X86InstrBuilder.h"
18#include "X86InstrInfo.h"
20#include "X86RegisterInfo.h"
21#include "X86Subtarget.h"
22#include "X86TargetMachine.h"
29#include "llvm/IR/CallingConv.h"
30#include "llvm/IR/DebugInfo.h"
36#include "llvm/IR/IntrinsicsX86.h"
37#include "llvm/IR/Operator.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCSymbol.h"
42using namespace llvm;
43
44namespace {
45
46class X86FastISel final : public FastISel {
47 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
48 /// make the right decision when generating code for different targets.
49 const X86Subtarget *Subtarget;
50
51public:
52 explicit X86FastISel(FunctionLoweringInfo &funcInfo,
53 const TargetLibraryInfo *libInfo)
54 : FastISel(funcInfo, libInfo) {
55 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
56 }
57
58 bool fastSelectInstruction(const Instruction *I) override;
59
60 /// The specified machine instr operand is a vreg, and that
61 /// vreg is being provided by the specified load instruction. If possible,
62 /// try to fold the load as an operand to the instruction, returning true if
63 /// possible.
64 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
65 const LoadInst *LI) override;
66
67 bool fastLowerArguments() override;
68 bool fastLowerCall(CallLoweringInfo &CLI) override;
69 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
70
71#include "X86GenFastISel.inc"
72
73private:
74 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
75 const DebugLoc &DL);
76
77 bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
78 unsigned &ResultReg, unsigned Alignment = 1);
79
80 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
81 MachineMemOperand *MMO = nullptr, bool Aligned = false);
82 bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
83 MachineMemOperand *MMO = nullptr, bool Aligned = false);
84
85 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
86 unsigned &ResultReg);
87
88 bool X86SelectAddress(const Value *V, X86AddressMode &AM);
89 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
90
91 bool X86SelectLoad(const Instruction *I);
92
93 bool X86SelectStore(const Instruction *I);
94
95 bool X86SelectRet(const Instruction *I);
96
97 bool X86SelectCmp(const Instruction *I);
98
99 bool X86SelectZExt(const Instruction *I);
100
101 bool X86SelectSExt(const Instruction *I);
102
103 bool X86SelectBranch(const Instruction *I);
104
105 bool X86SelectShift(const Instruction *I);
106
107 bool X86SelectDivRem(const Instruction *I);
108
109 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
110
111 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
112
113 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
114
115 bool X86SelectSelect(const Instruction *I);
116
117 bool X86SelectTrunc(const Instruction *I);
118
119 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
120 const TargetRegisterClass *RC);
121
122 bool X86SelectFPExt(const Instruction *I);
123 bool X86SelectFPTrunc(const Instruction *I);
124 bool X86SelectSIToFP(const Instruction *I);
125 bool X86SelectUIToFP(const Instruction *I);
126 bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
127
128 const X86InstrInfo *getInstrInfo() const {
129 return Subtarget->getInstrInfo();
130 }
131 const X86TargetMachine *getTargetMachine() const {
132 return static_cast<const X86TargetMachine *>(&TM);
133 }
134
135 bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
136
137 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
138 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
139 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
140 unsigned fastMaterializeConstant(const Constant *C) override;
141
142 unsigned fastMaterializeAlloca(const AllocaInst *C) override;
143
144 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
145
146 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
147 /// computed in an SSE register, not on the X87 floating point stack.
148 bool isScalarFPTypeInSSEReg(EVT VT) const {
149 return (VT == MVT::f64 && Subtarget->hasSSE2()) ||
150 (VT == MVT::f32 && Subtarget->hasSSE1()) || VT == MVT::f16;
151 }
152
153 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
154
155 bool IsMemcpySmall(uint64_t Len);
156
157 bool TryEmitSmallMemcpy(X86AddressMode DestAM,
158 X86AddressMode SrcAM, uint64_t Len);
159
160 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
161 const Value *Cond);
162
164 X86AddressMode &AM);
165
166 unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
167 const TargetRegisterClass *RC, unsigned Op0,
168 unsigned Op1, unsigned Op2, unsigned Op3);
169};
170
171} // end anonymous namespace.
172
173static std::pair<unsigned, bool>
175 unsigned CC;
176 bool NeedSwap = false;
177
178 // SSE Condition code mapping:
179 // 0 - EQ
180 // 1 - LT
181 // 2 - LE
182 // 3 - UNORD
183 // 4 - NEQ
184 // 5 - NLT
185 // 6 - NLE
186 // 7 - ORD
187 switch (Predicate) {
188 default: llvm_unreachable("Unexpected predicate");
189 case CmpInst::FCMP_OEQ: CC = 0; break;
190 case CmpInst::FCMP_OGT: NeedSwap = true; [[fallthrough]];
191 case CmpInst::FCMP_OLT: CC = 1; break;
192 case CmpInst::FCMP_OGE: NeedSwap = true; [[fallthrough]];
193 case CmpInst::FCMP_OLE: CC = 2; break;
194 case CmpInst::FCMP_UNO: CC = 3; break;
195 case CmpInst::FCMP_UNE: CC = 4; break;
196 case CmpInst::FCMP_ULE: NeedSwap = true; [[fallthrough]];
197 case CmpInst::FCMP_UGE: CC = 5; break;
198 case CmpInst::FCMP_ULT: NeedSwap = true; [[fallthrough]];
199 case CmpInst::FCMP_UGT: CC = 6; break;
200 case CmpInst::FCMP_ORD: CC = 7; break;
201 case CmpInst::FCMP_UEQ: CC = 8; break;
202 case CmpInst::FCMP_ONE: CC = 12; break;
203 }
204
205 return std::make_pair(CC, NeedSwap);
206}
207
208/// Adds a complex addressing mode to the given machine instr builder.
209/// Note, this will constrain the index register. If its not possible to
210/// constrain the given index register, then a new one will be created. The
211/// IndexReg field of the addressing mode will be updated to match in this case.
213X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
214 X86AddressMode &AM) {
215 // First constrain the index register. It needs to be a GR64_NOSP.
217 MIB->getNumOperands() +
219 return ::addFullAddress(MIB, AM);
220}
221
222/// Check if it is possible to fold the condition from the XALU intrinsic
223/// into the user. The condition code will only be updated on success.
224bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
225 const Value *Cond) {
226 if (!isa<ExtractValueInst>(Cond))
227 return false;
228
229 const auto *EV = cast<ExtractValueInst>(Cond);
230 if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
231 return false;
232
233 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
234 MVT RetVT;
235 const Function *Callee = II->getCalledFunction();
236 Type *RetTy =
237 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
238 if (!isTypeLegal(RetTy, RetVT))
239 return false;
240
241 if (RetVT != MVT::i32 && RetVT != MVT::i64)
242 return false;
243
244 X86::CondCode TmpCC;
245 switch (II->getIntrinsicID()) {
246 default: return false;
247 case Intrinsic::sadd_with_overflow:
248 case Intrinsic::ssub_with_overflow:
249 case Intrinsic::smul_with_overflow:
250 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
251 case Intrinsic::uadd_with_overflow:
252 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
253 }
254
255 // Check if both instructions are in the same basic block.
256 if (II->getParent() != I->getParent())
257 return false;
258
259 // Make sure nothing is in the way
262 for (auto Itr = std::prev(Start); Itr != End; --Itr) {
263 // We only expect extractvalue instructions between the intrinsic and the
264 // instruction to be selected.
265 if (!isa<ExtractValueInst>(Itr))
266 return false;
267
268 // Check that the extractvalue operand comes from the intrinsic.
269 const auto *EVI = cast<ExtractValueInst>(Itr);
270 if (EVI->getAggregateOperand() != II)
271 return false;
272 }
273
274 // Make sure no potentially eflags clobbering phi moves can be inserted in
275 // between.
276 auto HasPhis = [](const BasicBlock *Succ) { return !Succ->phis().empty(); };
277 if (I->isTerminator() && llvm::any_of(successors(I), HasPhis))
278 return false;
279
280 // Make sure there are no potentially eflags clobbering constant
281 // materializations in between.
282 if (llvm::any_of(I->operands(), [](Value *V) { return isa<Constant>(V); }))
283 return false;
284
285 CC = TmpCC;
286 return true;
287}
288
289bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
290 EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true);
291 if (evt == MVT::Other || !evt.isSimple())
292 // Unhandled type. Halt "fast" selection and bail.
293 return false;
294
295 VT = evt.getSimpleVT();
296 // For now, require SSE/SSE2 for performing floating-point operations,
297 // since x87 requires additional work.
298 if (VT == MVT::f64 && !Subtarget->hasSSE2())
299 return false;
300 if (VT == MVT::f32 && !Subtarget->hasSSE1())
301 return false;
302 // Similarly, no f80 support yet.
303 if (VT == MVT::f80)
304 return false;
305 // We only handle legal types. For example, on x86-32 the instruction
306 // selector contains all of the 64-bit instructions from x86-64,
307 // under the assumption that i64 won't be used if the target doesn't
308 // support it.
309 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
310}
311
312/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
313/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
314/// Return true and the result register by reference if it is possible.
315bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM,
316 MachineMemOperand *MMO, unsigned &ResultReg,
317 unsigned Alignment) {
318 bool HasSSE1 = Subtarget->hasSSE1();
319 bool HasSSE2 = Subtarget->hasSSE2();
320 bool HasSSE41 = Subtarget->hasSSE41();
321 bool HasAVX = Subtarget->hasAVX();
322 bool HasAVX2 = Subtarget->hasAVX2();
323 bool HasAVX512 = Subtarget->hasAVX512();
324 bool HasVLX = Subtarget->hasVLX();
325 bool IsNonTemporal = MMO && MMO->isNonTemporal();
326
327 // Treat i1 loads the same as i8 loads. Masking will be done when storing.
328 if (VT == MVT::i1)
329 VT = MVT::i8;
330
331 // Get opcode and regclass of the output for the given load instruction.
332 unsigned Opc = 0;
333 switch (VT.SimpleTy) {
334 default: return false;
335 case MVT::i8:
336 Opc = X86::MOV8rm;
337 break;
338 case MVT::i16:
339 Opc = X86::MOV16rm;
340 break;
341 case MVT::i32:
342 Opc = X86::MOV32rm;
343 break;
344 case MVT::i64:
345 // Must be in x86-64 mode.
346 Opc = X86::MOV64rm;
347 break;
348 case MVT::f32:
349 Opc = HasAVX512 ? X86::VMOVSSZrm_alt
350 : HasAVX ? X86::VMOVSSrm_alt
351 : HasSSE1 ? X86::MOVSSrm_alt
352 : X86::LD_Fp32m;
353 break;
354 case MVT::f64:
355 Opc = HasAVX512 ? X86::VMOVSDZrm_alt
356 : HasAVX ? X86::VMOVSDrm_alt
357 : HasSSE2 ? X86::MOVSDrm_alt
358 : X86::LD_Fp64m;
359 break;
360 case MVT::f80:
361 // No f80 support yet.
362 return false;
363 case MVT::v4f32:
364 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
365 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
366 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
367 else if (Alignment >= 16)
368 Opc = HasVLX ? X86::VMOVAPSZ128rm :
369 HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
370 else
371 Opc = HasVLX ? X86::VMOVUPSZ128rm :
372 HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
373 break;
374 case MVT::v2f64:
375 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
376 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
377 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
378 else if (Alignment >= 16)
379 Opc = HasVLX ? X86::VMOVAPDZ128rm :
380 HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
381 else
382 Opc = HasVLX ? X86::VMOVUPDZ128rm :
383 HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
384 break;
385 case MVT::v4i32:
386 case MVT::v2i64:
387 case MVT::v8i16:
388 case MVT::v16i8:
389 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
390 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
391 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
392 else if (Alignment >= 16)
393 Opc = HasVLX ? X86::VMOVDQA64Z128rm :
394 HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
395 else
396 Opc = HasVLX ? X86::VMOVDQU64Z128rm :
397 HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
398 break;
399 case MVT::v8f32:
400 assert(HasAVX);
401 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
402 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
403 else if (IsNonTemporal && Alignment >= 16)
404 return false; // Force split for X86::VMOVNTDQArm
405 else if (Alignment >= 32)
406 Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
407 else
408 Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
409 break;
410 case MVT::v4f64:
411 assert(HasAVX);
412 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
413 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
414 else if (IsNonTemporal && Alignment >= 16)
415 return false; // Force split for X86::VMOVNTDQArm
416 else if (Alignment >= 32)
417 Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
418 else
419 Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
420 break;
421 case MVT::v8i32:
422 case MVT::v4i64:
423 case MVT::v16i16:
424 case MVT::v32i8:
425 assert(HasAVX);
426 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
427 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
428 else if (IsNonTemporal && Alignment >= 16)
429 return false; // Force split for X86::VMOVNTDQArm
430 else if (Alignment >= 32)
431 Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
432 else
433 Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
434 break;
435 case MVT::v16f32:
436 assert(HasAVX512);
437 if (IsNonTemporal && Alignment >= 64)
438 Opc = X86::VMOVNTDQAZrm;
439 else
440 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
441 break;
442 case MVT::v8f64:
443 assert(HasAVX512);
444 if (IsNonTemporal && Alignment >= 64)
445 Opc = X86::VMOVNTDQAZrm;
446 else
447 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
448 break;
449 case MVT::v8i64:
450 case MVT::v16i32:
451 case MVT::v32i16:
452 case MVT::v64i8:
453 assert(HasAVX512);
454 // Note: There are a lot more choices based on type with AVX-512, but
455 // there's really no advantage when the load isn't masked.
456 if (IsNonTemporal && Alignment >= 64)
457 Opc = X86::VMOVNTDQAZrm;
458 else
459 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
460 break;
461 }
462
463 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
464
465 ResultReg = createResultReg(RC);
467 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg);
468 addFullAddress(MIB, AM);
469 if (MMO)
470 MIB->addMemOperand(*FuncInfo.MF, MMO);
471 return true;
472}
473
474/// X86FastEmitStore - Emit a machine instruction to store a value Val of
475/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
476/// and a displacement offset, or a GlobalAddress,
477/// i.e. V. Return true if it is possible.
478bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
479 MachineMemOperand *MMO, bool Aligned) {
480 bool HasSSE1 = Subtarget->hasSSE1();
481 bool HasSSE2 = Subtarget->hasSSE2();
482 bool HasSSE4A = Subtarget->hasSSE4A();
483 bool HasAVX = Subtarget->hasAVX();
484 bool HasAVX512 = Subtarget->hasAVX512();
485 bool HasVLX = Subtarget->hasVLX();
486 bool IsNonTemporal = MMO && MMO->isNonTemporal();
487
488 // Get opcode and regclass of the output for the given store instruction.
489 unsigned Opc = 0;
490 switch (VT.getSimpleVT().SimpleTy) {
491 case MVT::f80: // No f80 support yet.
492 default: return false;
493 case MVT::i1: {
494 // Mask out all but lowest bit.
495 Register AndResult = createResultReg(&X86::GR8RegClass);
496 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
497 TII.get(X86::AND8ri), AndResult)
498 .addReg(ValReg).addImm(1);
499 ValReg = AndResult;
500 [[fallthrough]]; // handle i1 as i8.
501 }
502 case MVT::i8: Opc = X86::MOV8mr; break;
503 case MVT::i16: Opc = X86::MOV16mr; break;
504 case MVT::i32:
505 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
506 break;
507 case MVT::i64:
508 // Must be in x86-64 mode.
509 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
510 break;
511 case MVT::f32:
512 if (HasSSE1) {
513 if (IsNonTemporal && HasSSE4A)
514 Opc = X86::MOVNTSS;
515 else
516 Opc = HasAVX512 ? X86::VMOVSSZmr :
517 HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
518 } else
519 Opc = X86::ST_Fp32m;
520 break;
521 case MVT::f64:
522 if (HasSSE2) {
523 if (IsNonTemporal && HasSSE4A)
524 Opc = X86::MOVNTSD;
525 else
526 Opc = HasAVX512 ? X86::VMOVSDZmr :
527 HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
528 } else
529 Opc = X86::ST_Fp64m;
530 break;
531 case MVT::x86mmx:
532 Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
533 break;
534 case MVT::v4f32:
535 if (Aligned) {
536 if (IsNonTemporal)
537 Opc = HasVLX ? X86::VMOVNTPSZ128mr :
538 HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
539 else
540 Opc = HasVLX ? X86::VMOVAPSZ128mr :
541 HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
542 } else
543 Opc = HasVLX ? X86::VMOVUPSZ128mr :
544 HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
545 break;
546 case MVT::v2f64:
547 if (Aligned) {
548 if (IsNonTemporal)
549 Opc = HasVLX ? X86::VMOVNTPDZ128mr :
550 HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
551 else
552 Opc = HasVLX ? X86::VMOVAPDZ128mr :
553 HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
554 } else
555 Opc = HasVLX ? X86::VMOVUPDZ128mr :
556 HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
557 break;
558 case MVT::v4i32:
559 case MVT::v2i64:
560 case MVT::v8i16:
561 case MVT::v16i8:
562 if (Aligned) {
563 if (IsNonTemporal)
564 Opc = HasVLX ? X86::VMOVNTDQZ128mr :
565 HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
566 else
567 Opc = HasVLX ? X86::VMOVDQA64Z128mr :
568 HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
569 } else
570 Opc = HasVLX ? X86::VMOVDQU64Z128mr :
571 HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
572 break;
573 case MVT::v8f32:
574 assert(HasAVX);
575 if (Aligned) {
576 if (IsNonTemporal)
577 Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
578 else
579 Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
580 } else
581 Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
582 break;
583 case MVT::v4f64:
584 assert(HasAVX);
585 if (Aligned) {
586 if (IsNonTemporal)
587 Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
588 else
589 Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
590 } else
591 Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
592 break;
593 case MVT::v8i32:
594 case MVT::v4i64:
595 case MVT::v16i16:
596 case MVT::v32i8:
597 assert(HasAVX);
598 if (Aligned) {
599 if (IsNonTemporal)
600 Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
601 else
602 Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
603 } else
604 Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
605 break;
606 case MVT::v16f32:
607 assert(HasAVX512);
608 if (Aligned)
609 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
610 else
611 Opc = X86::VMOVUPSZmr;
612 break;
613 case MVT::v8f64:
614 assert(HasAVX512);
615 if (Aligned) {
616 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
617 } else
618 Opc = X86::VMOVUPDZmr;
619 break;
620 case MVT::v8i64:
621 case MVT::v16i32:
622 case MVT::v32i16:
623 case MVT::v64i8:
624 assert(HasAVX512);
625 // Note: There are a lot more choices based on type with AVX-512, but
626 // there's really no advantage when the store isn't masked.
627 if (Aligned)
628 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
629 else
630 Opc = X86::VMOVDQU64Zmr;
631 break;
632 }
633
634 const MCInstrDesc &Desc = TII.get(Opc);
635 // Some of the instructions in the previous switch use FR128 instead
636 // of FR32 for ValReg. Make sure the register we feed the instruction
637 // matches its register class constraints.
638 // Note: This is fine to do a copy from FR32 to FR128, this is the
639 // same registers behind the scene and actually why it did not trigger
640 // any bugs before.
641 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
643 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, Desc);
644 addFullAddress(MIB, AM).addReg(ValReg);
645 if (MMO)
646 MIB->addMemOperand(*FuncInfo.MF, MMO);
647
648 return true;
649}
650
651bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
652 X86AddressMode &AM,
653 MachineMemOperand *MMO, bool Aligned) {
654 // Handle 'null' like i32/i64 0.
655 if (isa<ConstantPointerNull>(Val))
656 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
657
658 // If this is a store of a simple constant, fold the constant into the store.
659 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
660 unsigned Opc = 0;
661 bool Signed = true;
662 switch (VT.getSimpleVT().SimpleTy) {
663 default: break;
664 case MVT::i1:
665 Signed = false;
666 [[fallthrough]]; // Handle as i8.
667 case MVT::i8: Opc = X86::MOV8mi; break;
668 case MVT::i16: Opc = X86::MOV16mi; break;
669 case MVT::i32: Opc = X86::MOV32mi; break;
670 case MVT::i64:
671 // Must be a 32-bit sign extended value.
672 if (isInt<32>(CI->getSExtValue()))
673 Opc = X86::MOV64mi32;
674 break;
675 }
676
677 if (Opc) {
679 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc));
680 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
681 : CI->getZExtValue());
682 if (MMO)
683 MIB->addMemOperand(*FuncInfo.MF, MMO);
684 return true;
685 }
686 }
687
688 Register ValReg = getRegForValue(Val);
689 if (ValReg == 0)
690 return false;
691
692 return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned);
693}
694
695/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
696/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
697/// ISD::SIGN_EXTEND).
698bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
699 unsigned Src, EVT SrcVT,
700 unsigned &ResultReg) {
701 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
702 if (RR == 0)
703 return false;
704
705 ResultReg = RR;
706 return true;
707}
708
709bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
710 // Handle constant address.
711 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
712 // Can't handle alternate code models yet.
713 if (TM.getCodeModel() != CodeModel::Small &&
714 TM.getCodeModel() != CodeModel::Medium)
715 return false;
716
717 // Can't handle large objects yet.
718 if (TM.isLargeGlobalValue(GV))
719 return false;
720
721 // Can't handle TLS yet.
722 if (GV->isThreadLocal())
723 return false;
724
725 // Can't handle !absolute_symbol references yet.
726 if (GV->isAbsoluteSymbolRef())
727 return false;
728
729 // RIP-relative addresses can't have additional register operands, so if
730 // we've already folded stuff into the addressing mode, just force the
731 // global value into its own register, which we can use as the basereg.
732 if (!Subtarget->isPICStyleRIPRel() ||
733 (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
734 // Okay, we've committed to selecting this global. Set up the address.
735 AM.GV = GV;
736
737 // Allow the subtarget to classify the global.
738 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
739
740 // If this reference is relative to the pic base, set it now.
741 if (isGlobalRelativeToPICBase(GVFlags)) {
742 // FIXME: How do we know Base.Reg is free??
743 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
744 }
745
746 // Unless the ABI requires an extra load, return a direct reference to
747 // the global.
748 if (!isGlobalStubReference(GVFlags)) {
749 if (Subtarget->isPICStyleRIPRel()) {
750 // Use rip-relative addressing if we can. Above we verified that the
751 // base and index registers are unused.
752 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
753 AM.Base.Reg = X86::RIP;
754 }
755 AM.GVOpFlags = GVFlags;
756 return true;
757 }
758
759 // Ok, we need to do a load from a stub. If we've already loaded from
760 // this stub, reuse the loaded pointer, otherwise emit the load now.
761 DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V);
762 Register LoadReg;
763 if (I != LocalValueMap.end() && I->second) {
764 LoadReg = I->second;
765 } else {
766 // Issue load from stub.
767 unsigned Opc = 0;
768 const TargetRegisterClass *RC = nullptr;
769 X86AddressMode StubAM;
770 StubAM.Base.Reg = AM.Base.Reg;
771 StubAM.GV = GV;
772 StubAM.GVOpFlags = GVFlags;
773
774 // Prepare for inserting code in the local-value area.
775 SavePoint SaveInsertPt = enterLocalValueArea();
776
777 if (TLI.getPointerTy(DL) == MVT::i64) {
778 Opc = X86::MOV64rm;
779 RC = &X86::GR64RegClass;
780 } else {
781 Opc = X86::MOV32rm;
782 RC = &X86::GR32RegClass;
783 }
784
785 if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL ||
787 StubAM.Base.Reg = X86::RIP;
788
789 LoadReg = createResultReg(RC);
790 MachineInstrBuilder LoadMI =
791 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), LoadReg);
792 addFullAddress(LoadMI, StubAM);
793
794 // Ok, back to normal mode.
795 leaveLocalValueArea(SaveInsertPt);
796
797 // Prevent loading GV stub multiple times in same MBB.
798 LocalValueMap[V] = LoadReg;
799 }
800
801 // Now construct the final address. Note that the Disp, Scale,
802 // and Index values may already be set here.
803 AM.Base.Reg = LoadReg;
804 AM.GV = nullptr;
805 return true;
806 }
807 }
808
809 // If all else fails, try to materialize the value in a register.
810 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
811 if (AM.Base.Reg == 0) {
812 AM.Base.Reg = getRegForValue(V);
813 return AM.Base.Reg != 0;
814 }
815 if (AM.IndexReg == 0) {
816 assert(AM.Scale == 1 && "Scale with no index!");
817 AM.IndexReg = getRegForValue(V);
818 return AM.IndexReg != 0;
819 }
820 }
821
822 return false;
823}
824
825/// X86SelectAddress - Attempt to fill in an address from the given value.
826///
827bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
829redo_gep:
830 const User *U = nullptr;
831 unsigned Opcode = Instruction::UserOp1;
832 if (const Instruction *I = dyn_cast<Instruction>(V)) {
833 // Don't walk into other basic blocks; it's possible we haven't
834 // visited them yet, so the instructions may not yet be assigned
835 // virtual registers.
836 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
837 FuncInfo.getMBB(I->getParent()) == FuncInfo.MBB) {
838 Opcode = I->getOpcode();
839 U = I;
840 }
841 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
842 Opcode = C->getOpcode();
843 U = C;
844 }
845
846 if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
847 if (Ty->getAddressSpace() > 255)
848 // Fast instruction selection doesn't support the special
849 // address spaces.
850 return false;
851
852 switch (Opcode) {
853 default: break;
854 case Instruction::BitCast:
855 // Look past bitcasts.
856 return X86SelectAddress(U->getOperand(0), AM);
857
858 case Instruction::IntToPtr:
859 // Look past no-op inttoptrs.
860 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
861 TLI.getPointerTy(DL))
862 return X86SelectAddress(U->getOperand(0), AM);
863 break;
864
865 case Instruction::PtrToInt:
866 // Look past no-op ptrtoints.
867 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
868 return X86SelectAddress(U->getOperand(0), AM);
869 break;
870
871 case Instruction::Alloca: {
872 // Do static allocas.
873 const AllocaInst *A = cast<AllocaInst>(V);
875 FuncInfo.StaticAllocaMap.find(A);
876 if (SI != FuncInfo.StaticAllocaMap.end()) {
878 AM.Base.FrameIndex = SI->second;
879 return true;
880 }
881 break;
882 }
883
884 case Instruction::Add: {
885 // Adds of constants are common and easy enough.
886 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
887 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
888 // They have to fit in the 32-bit signed displacement field though.
889 if (isInt<32>(Disp)) {
890 AM.Disp = (uint32_t)Disp;
891 return X86SelectAddress(U->getOperand(0), AM);
892 }
893 }
894 break;
895 }
896
897 case Instruction::GetElementPtr: {
898 X86AddressMode SavedAM = AM;
899
900 // Pattern-match simple GEPs.
901 uint64_t Disp = (int32_t)AM.Disp;
902 unsigned IndexReg = AM.IndexReg;
903 unsigned Scale = AM.Scale;
904 MVT PtrVT = TLI.getValueType(DL, U->getType()).getSimpleVT();
905
907 // Iterate through the indices, folding what we can. Constants can be
908 // folded, and one dynamic index can be handled, if the scale is supported.
909 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
910 i != e; ++i, ++GTI) {
911 const Value *Op = *i;
912 if (StructType *STy = GTI.getStructTypeOrNull()) {
913 const StructLayout *SL = DL.getStructLayout(STy);
914 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
915 continue;
916 }
917
918 // A array/variable index is always of the form i*S where S is the
919 // constant scale size. See if we can push the scale into immediates.
921 for (;;) {
922 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
923 // Constant-offset addressing.
924 Disp += CI->getSExtValue() * S;
925 break;
926 }
927 if (canFoldAddIntoGEP(U, Op)) {
928 // A compatible add with a constant operand. Fold the constant.
929 ConstantInt *CI =
930 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
931 Disp += CI->getSExtValue() * S;
932 // Iterate on the other operand.
933 Op = cast<AddOperator>(Op)->getOperand(0);
934 continue;
935 }
936 if (IndexReg == 0 &&
937 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
938 (S == 1 || S == 2 || S == 4 || S == 8)) {
939 // Scaled-index addressing.
940 Scale = S;
941 IndexReg = getRegForGEPIndex(PtrVT, Op);
942 if (IndexReg == 0)
943 return false;
944 break;
945 }
946 // Unsupported.
947 goto unsupported_gep;
948 }
949 }
950
951 // Check for displacement overflow.
952 if (!isInt<32>(Disp))
953 break;
954
955 AM.IndexReg = IndexReg;
956 AM.Scale = Scale;
957 AM.Disp = (uint32_t)Disp;
958 GEPs.push_back(V);
959
960 if (const GetElementPtrInst *GEP =
961 dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
962 // Ok, the GEP indices were covered by constant-offset and scaled-index
963 // addressing. Update the address state and move on to examining the base.
964 V = GEP;
965 goto redo_gep;
966 } else if (X86SelectAddress(U->getOperand(0), AM)) {
967 return true;
968 }
969
970 // If we couldn't merge the gep value into this addr mode, revert back to
971 // our address and just match the value instead of completely failing.
972 AM = SavedAM;
973
974 for (const Value *I : reverse(GEPs))
975 if (handleConstantAddresses(I, AM))
976 return true;
977
978 return false;
979 unsupported_gep:
980 // Ok, the GEP indices weren't all covered.
981 break;
982 }
983 }
984
985 return handleConstantAddresses(V, AM);
986}
987
988/// X86SelectCallAddress - Attempt to fill in an address from the given value.
989///
990bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
991 const User *U = nullptr;
992 unsigned Opcode = Instruction::UserOp1;
993 const Instruction *I = dyn_cast<Instruction>(V);
994 // Record if the value is defined in the same basic block.
995 //
996 // This information is crucial to know whether or not folding an
997 // operand is valid.
998 // Indeed, FastISel generates or reuses a virtual register for all
999 // operands of all instructions it selects. Obviously, the definition and
1000 // its uses must use the same virtual register otherwise the produced
1001 // code is incorrect.
1002 // Before instruction selection, FunctionLoweringInfo::set sets the virtual
1003 // registers for values that are alive across basic blocks. This ensures
1004 // that the values are consistently set between across basic block, even
1005 // if different instruction selection mechanisms are used (e.g., a mix of
1006 // SDISel and FastISel).
1007 // For values local to a basic block, the instruction selection process
1008 // generates these virtual registers with whatever method is appropriate
1009 // for its needs. In particular, FastISel and SDISel do not share the way
1010 // local virtual registers are set.
1011 // Therefore, this is impossible (or at least unsafe) to share values
1012 // between basic blocks unless they use the same instruction selection
1013 // method, which is not guarantee for X86.
1014 // Moreover, things like hasOneUse could not be used accurately, if we
1015 // allow to reference values across basic blocks whereas they are not
1016 // alive across basic blocks initially.
1017 bool InMBB = true;
1018 if (I) {
1019 Opcode = I->getOpcode();
1020 U = I;
1021 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1022 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1023 Opcode = C->getOpcode();
1024 U = C;
1025 }
1026
1027 switch (Opcode) {
1028 default: break;
1029 case Instruction::BitCast:
1030 // Look past bitcasts if its operand is in the same BB.
1031 if (InMBB)
1032 return X86SelectCallAddress(U->getOperand(0), AM);
1033 break;
1034
1035 case Instruction::IntToPtr:
1036 // Look past no-op inttoptrs if its operand is in the same BB.
1037 if (InMBB &&
1038 TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1039 TLI.getPointerTy(DL))
1040 return X86SelectCallAddress(U->getOperand(0), AM);
1041 break;
1042
1043 case Instruction::PtrToInt:
1044 // Look past no-op ptrtoints if its operand is in the same BB.
1045 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1046 return X86SelectCallAddress(U->getOperand(0), AM);
1047 break;
1048 }
1049
1050 // Handle constant address.
1051 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1052 // Can't handle alternate code models yet.
1053 if (TM.getCodeModel() != CodeModel::Small &&
1054 TM.getCodeModel() != CodeModel::Medium)
1055 return false;
1056
1057 // RIP-relative addresses can't have additional register operands.
1058 if (Subtarget->isPICStyleRIPRel() &&
1059 (AM.Base.Reg != 0 || AM.IndexReg != 0))
1060 return false;
1061
1062 // Can't handle TLS.
1063 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1064 if (GVar->isThreadLocal())
1065 return false;
1066
1067 // Okay, we've committed to selecting this global. Set up the basic address.
1068 AM.GV = GV;
1069
1070 // Return a direct reference to the global. Fastisel can handle calls to
1071 // functions that require loads, such as dllimport and nonlazybind
1072 // functions.
1073 if (Subtarget->isPICStyleRIPRel()) {
1074 // Use rip-relative addressing if we can. Above we verified that the
1075 // base and index registers are unused.
1076 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1077 AM.Base.Reg = X86::RIP;
1078 } else {
1079 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1080 }
1081
1082 return true;
1083 }
1084
1085 // If all else fails, try to materialize the value in a register.
1086 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1087 auto GetCallRegForValue = [this](const Value *V) {
1088 Register Reg = getRegForValue(V);
1089
1090 // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits.
1091 if (Reg && Subtarget->isTarget64BitILP32()) {
1092 Register CopyReg = createResultReg(&X86::GR32RegClass);
1093 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32rr),
1094 CopyReg)
1095 .addReg(Reg);
1096
1097 Register ExtReg = createResultReg(&X86::GR64RegClass);
1098 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1099 TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg)
1100 .addImm(0)
1101 .addReg(CopyReg)
1102 .addImm(X86::sub_32bit);
1103 Reg = ExtReg;
1104 }
1105
1106 return Reg;
1107 };
1108
1109 if (AM.Base.Reg == 0) {
1110 AM.Base.Reg = GetCallRegForValue(V);
1111 return AM.Base.Reg != 0;
1112 }
1113 if (AM.IndexReg == 0) {
1114 assert(AM.Scale == 1 && "Scale with no index!");
1115 AM.IndexReg = GetCallRegForValue(V);
1116 return AM.IndexReg != 0;
1117 }
1118 }
1119
1120 return false;
1121}
1122
1123
1124/// X86SelectStore - Select and emit code to implement store instructions.
1125bool X86FastISel::X86SelectStore(const Instruction *I) {
1126 // Atomic stores need special handling.
1127 const StoreInst *S = cast<StoreInst>(I);
1128
1129 if (S->isAtomic())
1130 return false;
1131
1132 const Value *PtrV = I->getOperand(1);
1133 if (TLI.supportSwiftError()) {
1134 // Swifterror values can come from either a function parameter with
1135 // swifterror attribute or an alloca with swifterror attribute.
1136 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1137 if (Arg->hasSwiftErrorAttr())
1138 return false;
1139 }
1140
1141 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1142 if (Alloca->isSwiftError())
1143 return false;
1144 }
1145 }
1146
1147 const Value *Val = S->getValueOperand();
1148 const Value *Ptr = S->getPointerOperand();
1149
1150 MVT VT;
1151 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1152 return false;
1153
1154 Align Alignment = S->getAlign();
1155 Align ABIAlignment = DL.getABITypeAlign(Val->getType());
1156 bool Aligned = Alignment >= ABIAlignment;
1157
1158 X86AddressMode AM;
1159 if (!X86SelectAddress(Ptr, AM))
1160 return false;
1161
1162 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1163}
1164
1165/// X86SelectRet - Select and emit code to implement ret instructions.
1166bool X86FastISel::X86SelectRet(const Instruction *I) {
1167 const ReturnInst *Ret = cast<ReturnInst>(I);
1168 const Function &F = *I->getParent()->getParent();
1169 const X86MachineFunctionInfo *X86MFInfo =
1170 FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1171
1172 if (!FuncInfo.CanLowerReturn)
1173 return false;
1174
1175 if (TLI.supportSwiftError() &&
1176 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1177 return false;
1178
1179 if (TLI.supportSplitCSR(FuncInfo.MF))
1180 return false;
1181
1182 CallingConv::ID CC = F.getCallingConv();
1183 if (CC != CallingConv::C &&
1184 CC != CallingConv::Fast &&
1185 CC != CallingConv::Tail &&
1192 return false;
1193
1194 // Don't handle popping bytes if they don't fit the ret's immediate.
1195 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1196 return false;
1197
1198 // fastcc with -tailcallopt is intended to provide a guaranteed
1199 // tail call optimization. Fastisel doesn't know how to do that.
1200 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
1202 return false;
1203
1204 // Let SDISel handle vararg functions.
1205 if (F.isVarArg())
1206 return false;
1207
1208 // Build a list of return value registers.
1210
1211 if (Ret->getNumOperands() > 0) {
1213 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1214
1215 // Analyze operands of the call, assigning locations to each operand.
1217 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1218 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1219
1220 const Value *RV = Ret->getOperand(0);
1221 Register Reg = getRegForValue(RV);
1222 if (Reg == 0)
1223 return false;
1224
1225 // Only handle a single return value for now.
1226 if (ValLocs.size() != 1)
1227 return false;
1228
1229 CCValAssign &VA = ValLocs[0];
1230
1231 // Don't bother handling odd stuff for now.
1232 if (VA.getLocInfo() != CCValAssign::Full)
1233 return false;
1234 // Only handle register returns for now.
1235 if (!VA.isRegLoc())
1236 return false;
1237
1238 // The calling-convention tables for x87 returns don't tell
1239 // the whole story.
1240 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1241 return false;
1242
1243 unsigned SrcReg = Reg + VA.getValNo();
1244 EVT SrcVT = TLI.getValueType(DL, RV->getType());
1245 EVT DstVT = VA.getValVT();
1246 // Special handling for extended integers.
1247 if (SrcVT != DstVT) {
1248 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1249 return false;
1250
1251 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1252 return false;
1253
1254 if (SrcVT == MVT::i1) {
1255 if (Outs[0].Flags.isSExt())
1256 return false;
1257 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg);
1258 SrcVT = MVT::i8;
1259 }
1260 if (SrcVT != DstVT) {
1261 unsigned Op =
1262 Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
1263 SrcReg =
1264 fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg);
1265 }
1266 }
1267
1268 // Make the copy.
1269 Register DstReg = VA.getLocReg();
1270 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1271 // Avoid a cross-class copy. This is very unlikely.
1272 if (!SrcRC->contains(DstReg))
1273 return false;
1274 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1275 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1276
1277 // Add register to return instruction.
1278 RetRegs.push_back(VA.getLocReg());
1279 }
1280
1281 // Swift calling convention does not require we copy the sret argument
1282 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1283
1284 // All x86 ABIs require that for returning structs by value we copy
1285 // the sret argument into %rax/%eax (depending on ABI) for the return.
1286 // We saved the argument into a virtual register in the entry block,
1287 // so now we copy the value out and into %rax/%eax.
1288 if (F.hasStructRetAttr() && CC != CallingConv::Swift &&
1290 Register Reg = X86MFInfo->getSRetReturnReg();
1291 assert(Reg &&
1292 "SRetReturnReg should have been set in LowerFormalArguments()!");
1293 unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
1294 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1295 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1296 RetRegs.push_back(RetReg);
1297 }
1298
1299 // Now emit the RET.
1301 if (X86MFInfo->getBytesToPopOnReturn()) {
1302 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1303 TII.get(Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32))
1304 .addImm(X86MFInfo->getBytesToPopOnReturn());
1305 } else {
1306 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1307 TII.get(Subtarget->is64Bit() ? X86::RET64 : X86::RET32));
1308 }
1309 for (unsigned Reg : RetRegs)
1310 MIB.addReg(Reg, RegState::Implicit);
1311 return true;
1312}
1313
1314/// X86SelectLoad - Select and emit code to implement load instructions.
1315///
1316bool X86FastISel::X86SelectLoad(const Instruction *I) {
1317 const LoadInst *LI = cast<LoadInst>(I);
1318
1319 // Atomic loads need special handling.
1320 if (LI->isAtomic())
1321 return false;
1322
1323 const Value *SV = I->getOperand(0);
1324 if (TLI.supportSwiftError()) {
1325 // Swifterror values can come from either a function parameter with
1326 // swifterror attribute or an alloca with swifterror attribute.
1327 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1328 if (Arg->hasSwiftErrorAttr())
1329 return false;
1330 }
1331
1332 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1333 if (Alloca->isSwiftError())
1334 return false;
1335 }
1336 }
1337
1338 MVT VT;
1339 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1340 return false;
1341
1342 const Value *Ptr = LI->getPointerOperand();
1343
1344 X86AddressMode AM;
1345 if (!X86SelectAddress(Ptr, AM))
1346 return false;
1347
1348 unsigned ResultReg = 0;
1349 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1350 LI->getAlign().value()))
1351 return false;
1352
1353 updateValueMap(I, ResultReg);
1354 return true;
1355}
1356
1357static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1358 bool HasAVX512 = Subtarget->hasAVX512();
1359 bool HasAVX = Subtarget->hasAVX();
1360 bool HasSSE1 = Subtarget->hasSSE1();
1361 bool HasSSE2 = Subtarget->hasSSE2();
1362
1363 switch (VT.getSimpleVT().SimpleTy) {
1364 default: return 0;
1365 case MVT::i8: return X86::CMP8rr;
1366 case MVT::i16: return X86::CMP16rr;
1367 case MVT::i32: return X86::CMP32rr;
1368 case MVT::i64: return X86::CMP64rr;
1369 case MVT::f32:
1370 return HasAVX512 ? X86::VUCOMISSZrr
1371 : HasAVX ? X86::VUCOMISSrr
1372 : HasSSE1 ? X86::UCOMISSrr
1373 : 0;
1374 case MVT::f64:
1375 return HasAVX512 ? X86::VUCOMISDZrr
1376 : HasAVX ? X86::VUCOMISDrr
1377 : HasSSE2 ? X86::UCOMISDrr
1378 : 0;
1379 }
1380}
1381
1382/// If we have a comparison with RHS as the RHS of the comparison, return an
1383/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
1384static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1385 switch (VT.getSimpleVT().SimpleTy) {
1386 // Otherwise, we can't fold the immediate into this comparison.
1387 default:
1388 return 0;
1389 case MVT::i8:
1390 return X86::CMP8ri;
1391 case MVT::i16:
1392 return X86::CMP16ri;
1393 case MVT::i32:
1394 return X86::CMP32ri;
1395 case MVT::i64:
1396 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1397 // field.
1398 return isInt<32>(RHSC->getSExtValue()) ? X86::CMP64ri32 : 0;
1399 }
1400}
1401
1402bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1403 const DebugLoc &CurMIMD) {
1404 Register Op0Reg = getRegForValue(Op0);
1405 if (Op0Reg == 0) return false;
1406
1407 // Handle 'null' like i32/i64 0.
1408 if (isa<ConstantPointerNull>(Op1))
1409 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1410
1411 // We have two options: compare with register or immediate. If the RHS of
1412 // the compare is an immediate that we can fold into this compare, use
1413 // CMPri, otherwise use CMPrr.
1414 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1415 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1416 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareImmOpc))
1417 .addReg(Op0Reg)
1418 .addImm(Op1C->getSExtValue());
1419 return true;
1420 }
1421 }
1422
1423 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1424 if (CompareOpc == 0) return false;
1425
1426 Register Op1Reg = getRegForValue(Op1);
1427 if (Op1Reg == 0) return false;
1428 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareOpc))
1429 .addReg(Op0Reg)
1430 .addReg(Op1Reg);
1431
1432 return true;
1433}
1434
1435bool X86FastISel::X86SelectCmp(const Instruction *I) {
1436 const CmpInst *CI = cast<CmpInst>(I);
1437
1438 MVT VT;
1439 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1440 return false;
1441
1442 // Below code only works for scalars.
1443 if (VT.isVector())
1444 return false;
1445
1446 // Try to optimize or fold the cmp.
1447 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1448 unsigned ResultReg = 0;
1449 switch (Predicate) {
1450 default: break;
1451 case CmpInst::FCMP_FALSE: {
1452 ResultReg = createResultReg(&X86::GR32RegClass);
1453 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32r0),
1454 ResultReg);
1455 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit);
1456 if (!ResultReg)
1457 return false;
1458 break;
1459 }
1460 case CmpInst::FCMP_TRUE: {
1461 ResultReg = createResultReg(&X86::GR8RegClass);
1462 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri),
1463 ResultReg).addImm(1);
1464 break;
1465 }
1466 }
1467
1468 if (ResultReg) {
1469 updateValueMap(I, ResultReg);
1470 return true;
1471 }
1472
1473 const Value *LHS = CI->getOperand(0);
1474 const Value *RHS = CI->getOperand(1);
1475
1476 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1477 // We don't have to materialize a zero constant for this case and can just use
1478 // %x again on the RHS.
1479 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1480 const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1481 if (RHSC && RHSC->isNullValue())
1482 RHS = LHS;
1483 }
1484
1485 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1486 static const uint16_t SETFOpcTable[2][3] = {
1487 { X86::COND_E, X86::COND_NP, X86::AND8rr },
1488 { X86::COND_NE, X86::COND_P, X86::OR8rr }
1489 };
1490 const uint16_t *SETFOpc = nullptr;
1491 switch (Predicate) {
1492 default: break;
1493 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1494 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1495 }
1496
1497 ResultReg = createResultReg(&X86::GR8RegClass);
1498 if (SETFOpc) {
1499 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1500 return false;
1501
1502 Register FlagReg1 = createResultReg(&X86::GR8RegClass);
1503 Register FlagReg2 = createResultReg(&X86::GR8RegClass);
1504 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1505 FlagReg1).addImm(SETFOpc[0]);
1506 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1507 FlagReg2).addImm(SETFOpc[1]);
1508 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(SETFOpc[2]),
1509 ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1510 updateValueMap(I, ResultReg);
1511 return true;
1512 }
1513
1515 bool SwapArgs;
1516 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1517 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1518
1519 if (SwapArgs)
1520 std::swap(LHS, RHS);
1521
1522 // Emit a compare of LHS/RHS.
1523 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1524 return false;
1525
1526 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1527 ResultReg).addImm(CC);
1528 updateValueMap(I, ResultReg);
1529 return true;
1530}
1531
1532bool X86FastISel::X86SelectZExt(const Instruction *I) {
1533 EVT DstVT = TLI.getValueType(DL, I->getType());
1534 if (!TLI.isTypeLegal(DstVT))
1535 return false;
1536
1537 Register ResultReg = getRegForValue(I->getOperand(0));
1538 if (ResultReg == 0)
1539 return false;
1540
1541 // Handle zero-extension from i1 to i8, which is common.
1542 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1543 if (SrcVT == MVT::i1) {
1544 // Set the high bits to zero.
1545 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
1546 SrcVT = MVT::i8;
1547
1548 if (ResultReg == 0)
1549 return false;
1550 }
1551
1552 if (DstVT == MVT::i64) {
1553 // Handle extension to 64-bits via sub-register shenanigans.
1554 unsigned MovInst;
1555
1556 switch (SrcVT.SimpleTy) {
1557 case MVT::i8: MovInst = X86::MOVZX32rr8; break;
1558 case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1559 case MVT::i32: MovInst = X86::MOV32rr; break;
1560 default: llvm_unreachable("Unexpected zext to i64 source type");
1561 }
1562
1563 Register Result32 = createResultReg(&X86::GR32RegClass);
1564 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovInst), Result32)
1565 .addReg(ResultReg);
1566
1567 ResultReg = createResultReg(&X86::GR64RegClass);
1568 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG),
1569 ResultReg)
1570 .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1571 } else if (DstVT == MVT::i16) {
1572 // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1573 // extend to 32-bits and then extract down to 16-bits.
1574 Register Result32 = createResultReg(&X86::GR32RegClass);
1575 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVZX32rr8),
1576 Result32).addReg(ResultReg);
1577
1578 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
1579 } else if (DstVT != MVT::i8) {
1580 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1581 ResultReg);
1582 if (ResultReg == 0)
1583 return false;
1584 }
1585
1586 updateValueMap(I, ResultReg);
1587 return true;
1588}
1589
1590bool X86FastISel::X86SelectSExt(const Instruction *I) {
1591 EVT DstVT = TLI.getValueType(DL, I->getType());
1592 if (!TLI.isTypeLegal(DstVT))
1593 return false;
1594
1595 Register ResultReg = getRegForValue(I->getOperand(0));
1596 if (ResultReg == 0)
1597 return false;
1598
1599 // Handle sign-extension from i1 to i8.
1600 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1601 if (SrcVT == MVT::i1) {
1602 // Set the high bits to zero.
1603 Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
1604 if (ZExtReg == 0)
1605 return false;
1606
1607 // Negate the result to make an 8-bit sign extended value.
1608 ResultReg = createResultReg(&X86::GR8RegClass);
1609 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::NEG8r),
1610 ResultReg).addReg(ZExtReg);
1611
1612 SrcVT = MVT::i8;
1613 }
1614
1615 if (DstVT == MVT::i16) {
1616 // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1617 // extend to 32-bits and then extract down to 16-bits.
1618 Register Result32 = createResultReg(&X86::GR32RegClass);
1619 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVSX32rr8),
1620 Result32).addReg(ResultReg);
1621
1622 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
1623 } else if (DstVT != MVT::i8) {
1624 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1625 ResultReg);
1626 if (ResultReg == 0)
1627 return false;
1628 }
1629
1630 updateValueMap(I, ResultReg);
1631 return true;
1632}
1633
1634bool X86FastISel::X86SelectBranch(const Instruction *I) {
1635 // Unconditional branches are selected by tablegen-generated code.
1636 // Handle a conditional branch.
1637 const BranchInst *BI = cast<BranchInst>(I);
1638 MachineBasicBlock *TrueMBB = FuncInfo.getMBB(BI->getSuccessor(0));
1639 MachineBasicBlock *FalseMBB = FuncInfo.getMBB(BI->getSuccessor(1));
1640
1641 // Fold the common case of a conditional branch with a comparison
1642 // in the same block (values defined on other blocks may not have
1643 // initialized registers).
1645 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1646 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1647 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1648
1649 // Try to optimize or fold the cmp.
1650 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1651 switch (Predicate) {
1652 default: break;
1653 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, MIMD.getDL()); return true;
1654 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, MIMD.getDL()); return true;
1655 }
1656
1657 const Value *CmpLHS = CI->getOperand(0);
1658 const Value *CmpRHS = CI->getOperand(1);
1659
1660 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1661 // 0.0.
1662 // We don't have to materialize a zero constant for this case and can just
1663 // use %x again on the RHS.
1664 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1665 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1666 if (CmpRHSC && CmpRHSC->isNullValue())
1667 CmpRHS = CmpLHS;
1668 }
1669
1670 // Try to take advantage of fallthrough opportunities.
1671 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1672 std::swap(TrueMBB, FalseMBB);
1674 }
1675
1676 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1677 // code check. Instead two branch instructions are required to check all
1678 // the flags. First we change the predicate to a supported condition code,
1679 // which will be the first branch. Later one we will emit the second
1680 // branch.
1681 bool NeedExtraBranch = false;
1682 switch (Predicate) {
1683 default: break;
1684 case CmpInst::FCMP_OEQ:
1685 std::swap(TrueMBB, FalseMBB);
1686 [[fallthrough]];
1687 case CmpInst::FCMP_UNE:
1688 NeedExtraBranch = true;
1690 break;
1691 }
1692
1693 bool SwapArgs;
1694 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1695 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1696
1697 if (SwapArgs)
1698 std::swap(CmpLHS, CmpRHS);
1699
1700 // Emit a compare of the LHS and RHS, setting the flags.
1701 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1702 return false;
1703
1704 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1705 .addMBB(TrueMBB).addImm(CC);
1706
1707 // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1708 // to UNE above).
1709 if (NeedExtraBranch) {
1710 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1711 .addMBB(TrueMBB).addImm(X86::COND_P);
1712 }
1713
1714 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1715 return true;
1716 }
1717 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1718 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1719 // typically happen for _Bool and C++ bools.
1720 MVT SourceVT;
1721 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1722 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1723 unsigned TestOpc = 0;
1724 switch (SourceVT.SimpleTy) {
1725 default: break;
1726 case MVT::i8: TestOpc = X86::TEST8ri; break;
1727 case MVT::i16: TestOpc = X86::TEST16ri; break;
1728 case MVT::i32: TestOpc = X86::TEST32ri; break;
1729 case MVT::i64: TestOpc = X86::TEST64ri32; break;
1730 }
1731 if (TestOpc) {
1732 Register OpReg = getRegForValue(TI->getOperand(0));
1733 if (OpReg == 0) return false;
1734
1735 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TestOpc))
1736 .addReg(OpReg).addImm(1);
1737
1738 unsigned JmpCond = X86::COND_NE;
1739 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1740 std::swap(TrueMBB, FalseMBB);
1741 JmpCond = X86::COND_E;
1742 }
1743
1744 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1745 .addMBB(TrueMBB).addImm(JmpCond);
1746
1747 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1748 return true;
1749 }
1750 }
1751 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1752 // Fake request the condition, otherwise the intrinsic might be completely
1753 // optimized away.
1754 Register TmpReg = getRegForValue(BI->getCondition());
1755 if (TmpReg == 0)
1756 return false;
1757
1758 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1759 .addMBB(TrueMBB).addImm(CC);
1760 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1761 return true;
1762 }
1763
1764 // Otherwise do a clumsy setcc and re-test it.
1765 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1766 // in an explicit cast, so make sure to handle that correctly.
1767 Register OpReg = getRegForValue(BI->getCondition());
1768 if (OpReg == 0) return false;
1769
1770 // In case OpReg is a K register, COPY to a GPR
1771 if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1772 unsigned KOpReg = OpReg;
1773 OpReg = createResultReg(&X86::GR32RegClass);
1774 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1775 TII.get(TargetOpcode::COPY), OpReg)
1776 .addReg(KOpReg);
1777 OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit);
1778 }
1779 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
1780 .addReg(OpReg)
1781 .addImm(1);
1782 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1783 .addMBB(TrueMBB).addImm(X86::COND_NE);
1784 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1785 return true;
1786}
1787
1788bool X86FastISel::X86SelectShift(const Instruction *I) {
1789 unsigned CReg = 0, OpReg = 0;
1790 const TargetRegisterClass *RC = nullptr;
1791 if (I->getType()->isIntegerTy(8)) {
1792 CReg = X86::CL;
1793 RC = &X86::GR8RegClass;
1794 switch (I->getOpcode()) {
1795 case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1796 case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1797 case Instruction::Shl: OpReg = X86::SHL8rCL; break;
1798 default: return false;
1799 }
1800 } else if (I->getType()->isIntegerTy(16)) {
1801 CReg = X86::CX;
1802 RC = &X86::GR16RegClass;
1803 switch (I->getOpcode()) {
1804 default: llvm_unreachable("Unexpected shift opcode");
1805 case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1806 case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1807 case Instruction::Shl: OpReg = X86::SHL16rCL; break;
1808 }
1809 } else if (I->getType()->isIntegerTy(32)) {
1810 CReg = X86::ECX;
1811 RC = &X86::GR32RegClass;
1812 switch (I->getOpcode()) {
1813 default: llvm_unreachable("Unexpected shift opcode");
1814 case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1815 case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1816 case Instruction::Shl: OpReg = X86::SHL32rCL; break;
1817 }
1818 } else if (I->getType()->isIntegerTy(64)) {
1819 CReg = X86::RCX;
1820 RC = &X86::GR64RegClass;
1821 switch (I->getOpcode()) {
1822 default: llvm_unreachable("Unexpected shift opcode");
1823 case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1824 case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1825 case Instruction::Shl: OpReg = X86::SHL64rCL; break;
1826 }
1827 } else {
1828 return false;
1829 }
1830
1831 MVT VT;
1832 if (!isTypeLegal(I->getType(), VT))
1833 return false;
1834
1835 Register Op0Reg = getRegForValue(I->getOperand(0));
1836 if (Op0Reg == 0) return false;
1837
1838 Register Op1Reg = getRegForValue(I->getOperand(1));
1839 if (Op1Reg == 0) return false;
1840 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
1841 CReg).addReg(Op1Reg);
1842
1843 // The shift instruction uses X86::CL. If we defined a super-register
1844 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1845 if (CReg != X86::CL)
1846 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1847 TII.get(TargetOpcode::KILL), X86::CL)
1848 .addReg(CReg, RegState::Kill);
1849
1850 Register ResultReg = createResultReg(RC);
1851 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(OpReg), ResultReg)
1852 .addReg(Op0Reg);
1853 updateValueMap(I, ResultReg);
1854 return true;
1855}
1856
1857bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1858 const static unsigned NumTypes = 4; // i8, i16, i32, i64
1859 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
1860 const static bool S = true; // IsSigned
1861 const static bool U = false; // !IsSigned
1862 const static unsigned Copy = TargetOpcode::COPY;
1863 // For the X86 DIV/IDIV instruction, in most cases the dividend
1864 // (numerator) must be in a specific register pair highreg:lowreg,
1865 // producing the quotient in lowreg and the remainder in highreg.
1866 // For most data types, to set up the instruction, the dividend is
1867 // copied into lowreg, and lowreg is sign-extended or zero-extended
1868 // into highreg. The exception is i8, where the dividend is defined
1869 // as a single register rather than a register pair, and we
1870 // therefore directly sign-extend or zero-extend the dividend into
1871 // lowreg, instead of copying, and ignore the highreg.
1872 const static struct DivRemEntry {
1873 // The following portion depends only on the data type.
1874 const TargetRegisterClass *RC;
1875 unsigned LowInReg; // low part of the register pair
1876 unsigned HighInReg; // high part of the register pair
1877 // The following portion depends on both the data type and the operation.
1878 struct DivRemResult {
1879 unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
1880 unsigned OpSignExtend; // Opcode for sign-extending lowreg into
1881 // highreg, or copying a zero into highreg.
1882 unsigned OpCopy; // Opcode for copying dividend into lowreg, or
1883 // zero/sign-extending into lowreg for i8.
1884 unsigned DivRemResultReg; // Register containing the desired result.
1885 bool IsOpSigned; // Whether to use signed or unsigned form.
1886 } ResultTable[NumOps];
1887 } OpTable[NumTypes] = {
1888 { &X86::GR8RegClass, X86::AX, 0, {
1889 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
1890 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
1891 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
1892 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
1893 }
1894 }, // i8
1895 { &X86::GR16RegClass, X86::AX, X86::DX, {
1896 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
1897 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
1898 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
1899 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
1900 }
1901 }, // i16
1902 { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1903 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
1904 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
1905 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
1906 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
1907 }
1908 }, // i32
1909 { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1910 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
1911 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
1912 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
1913 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
1914 }
1915 }, // i64
1916 };
1917
1918 MVT VT;
1919 if (!isTypeLegal(I->getType(), VT))
1920 return false;
1921
1922 unsigned TypeIndex, OpIndex;
1923 switch (VT.SimpleTy) {
1924 default: return false;
1925 case MVT::i8: TypeIndex = 0; break;
1926 case MVT::i16: TypeIndex = 1; break;
1927 case MVT::i32: TypeIndex = 2; break;
1928 case MVT::i64: TypeIndex = 3;
1929 if (!Subtarget->is64Bit())
1930 return false;
1931 break;
1932 }
1933
1934 switch (I->getOpcode()) {
1935 default: llvm_unreachable("Unexpected div/rem opcode");
1936 case Instruction::SDiv: OpIndex = 0; break;
1937 case Instruction::SRem: OpIndex = 1; break;
1938 case Instruction::UDiv: OpIndex = 2; break;
1939 case Instruction::URem: OpIndex = 3; break;
1940 }
1941
1942 const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1943 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1944 Register Op0Reg = getRegForValue(I->getOperand(0));
1945 if (Op0Reg == 0)
1946 return false;
1947 Register Op1Reg = getRegForValue(I->getOperand(1));
1948 if (Op1Reg == 0)
1949 return false;
1950
1951 // Move op0 into low-order input register.
1952 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1953 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1954 // Zero-extend or sign-extend into high-order input register.
1955 if (OpEntry.OpSignExtend) {
1956 if (OpEntry.IsOpSigned)
1957 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1958 TII.get(OpEntry.OpSignExtend));
1959 else {
1960 Register Zero32 = createResultReg(&X86::GR32RegClass);
1961 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1962 TII.get(X86::MOV32r0), Zero32);
1963
1964 // Copy the zero into the appropriate sub/super/identical physical
1965 // register. Unfortunately the operations needed are not uniform enough
1966 // to fit neatly into the table above.
1967 if (VT == MVT::i16) {
1968 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1969 TII.get(Copy), TypeEntry.HighInReg)
1970 .addReg(Zero32, 0, X86::sub_16bit);
1971 } else if (VT == MVT::i32) {
1972 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1973 TII.get(Copy), TypeEntry.HighInReg)
1974 .addReg(Zero32);
1975 } else if (VT == MVT::i64) {
1976 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1977 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1978 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1979 }
1980 }
1981 }
1982 // Generate the DIV/IDIV instruction.
1983 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1984 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1985 // For i8 remainder, we can't reference ah directly, as we'll end
1986 // up with bogus copies like %r9b = COPY %ah. Reference ax
1987 // instead to prevent ah references in a rex instruction.
1988 //
1989 // The current assumption of the fast register allocator is that isel
1990 // won't generate explicit references to the GR8_NOREX registers. If
1991 // the allocator and/or the backend get enhanced to be more robust in
1992 // that regard, this can be, and should be, removed.
1993 unsigned ResultReg = 0;
1994 if ((I->getOpcode() == Instruction::SRem ||
1995 I->getOpcode() == Instruction::URem) &&
1996 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1997 Register SourceSuperReg = createResultReg(&X86::GR16RegClass);
1998 Register ResultSuperReg = createResultReg(&X86::GR16RegClass);
1999 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2000 TII.get(Copy), SourceSuperReg).addReg(X86::AX);
2001
2002 // Shift AX right by 8 bits instead of using AH.
2003 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SHR16ri),
2004 ResultSuperReg).addReg(SourceSuperReg).addImm(8);
2005
2006 // Now reference the 8-bit subreg of the result.
2007 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
2008 X86::sub_8bit);
2009 }
2010 // Copy the result out of the physreg if we haven't already.
2011 if (!ResultReg) {
2012 ResultReg = createResultReg(TypeEntry.RC);
2013 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Copy), ResultReg)
2014 .addReg(OpEntry.DivRemResultReg);
2015 }
2016 updateValueMap(I, ResultReg);
2017
2018 return true;
2019}
2020
2021/// Emit a conditional move instruction (if the are supported) to lower
2022/// the select.
2023bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2024 // Check if the subtarget supports these instructions.
2025 if (!Subtarget->canUseCMOV())
2026 return false;
2027
2028 // FIXME: Add support for i8.
2029 if (RetVT < MVT::i16 || RetVT > MVT::i64)
2030 return false;
2031
2032 const Value *Cond = I->getOperand(0);
2033 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2034 bool NeedTest = true;
2036
2037 // Optimize conditions coming from a compare if both instructions are in the
2038 // same basic block (values defined in other basic blocks may not have
2039 // initialized registers).
2040 const auto *CI = dyn_cast<CmpInst>(Cond);
2041 if (CI && (CI->getParent() == I->getParent())) {
2042 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2043
2044 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
2045 static const uint16_t SETFOpcTable[2][3] = {
2046 { X86::COND_NP, X86::COND_E, X86::TEST8rr },
2047 { X86::COND_P, X86::COND_NE, X86::OR8rr }
2048 };
2049 const uint16_t *SETFOpc = nullptr;
2050 switch (Predicate) {
2051 default: break;
2052 case CmpInst::FCMP_OEQ:
2053 SETFOpc = &SETFOpcTable[0][0];
2055 break;
2056 case CmpInst::FCMP_UNE:
2057 SETFOpc = &SETFOpcTable[1][0];
2059 break;
2060 }
2061
2062 bool NeedSwap;
2063 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
2064 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
2065
2066 const Value *CmpLHS = CI->getOperand(0);
2067 const Value *CmpRHS = CI->getOperand(1);
2068 if (NeedSwap)
2069 std::swap(CmpLHS, CmpRHS);
2070
2071 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2072 // Emit a compare of the LHS and RHS, setting the flags.
2073 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2074 return false;
2075
2076 if (SETFOpc) {
2077 Register FlagReg1 = createResultReg(&X86::GR8RegClass);
2078 Register FlagReg2 = createResultReg(&X86::GR8RegClass);
2079 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2080 FlagReg1).addImm(SETFOpc[0]);
2081 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2082 FlagReg2).addImm(SETFOpc[1]);
2083 auto const &II = TII.get(SETFOpc[2]);
2084 if (II.getNumDefs()) {
2085 Register TmpReg = createResultReg(&X86::GR8RegClass);
2086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, TmpReg)
2087 .addReg(FlagReg2).addReg(FlagReg1);
2088 } else {
2089 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2090 .addReg(FlagReg2).addReg(FlagReg1);
2091 }
2092 }
2093 NeedTest = false;
2094 } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2095 // Fake request the condition, otherwise the intrinsic might be completely
2096 // optimized away.
2097 Register TmpReg = getRegForValue(Cond);
2098 if (TmpReg == 0)
2099 return false;
2100
2101 NeedTest = false;
2102 }
2103
2104 if (NeedTest) {
2105 // Selects operate on i1, however, CondReg is 8 bits width and may contain
2106 // garbage. Indeed, only the less significant bit is supposed to be
2107 // accurate. If we read more than the lsb, we may see non-zero values
2108 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2109 // the select. This is achieved by performing TEST against 1.
2110 Register CondReg = getRegForValue(Cond);
2111 if (CondReg == 0)
2112 return false;
2113
2114 // In case OpReg is a K register, COPY to a GPR
2115 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2116 unsigned KCondReg = CondReg;
2117 CondReg = createResultReg(&X86::GR32RegClass);
2118 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2119 TII.get(TargetOpcode::COPY), CondReg)
2120 .addReg(KCondReg);
2121 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
2122 }
2123 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
2124 .addReg(CondReg)
2125 .addImm(1);
2126 }
2127
2128 const Value *LHS = I->getOperand(1);
2129 const Value *RHS = I->getOperand(2);
2130
2131 Register RHSReg = getRegForValue(RHS);
2132 Register LHSReg = getRegForValue(LHS);
2133 if (!LHSReg || !RHSReg)
2134 return false;
2135
2136 const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2137 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC) / 8, false,
2138 Subtarget->hasNDD());
2139 Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
2140 updateValueMap(I, ResultReg);
2141 return true;
2142}
2143
2144/// Emit SSE or AVX instructions to lower the select.
2145///
2146/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2147/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2148/// SSE instructions are available. If AVX is available, try to use a VBLENDV.
2149bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2150 // Optimize conditions coming from a compare if both instructions are in the
2151 // same basic block (values defined in other basic blocks may not have
2152 // initialized registers).
2153 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2154 if (!CI || (CI->getParent() != I->getParent()))
2155 return false;
2156
2157 if (I->getType() != CI->getOperand(0)->getType() ||
2158 !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2159 (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2160 return false;
2161
2162 const Value *CmpLHS = CI->getOperand(0);
2163 const Value *CmpRHS = CI->getOperand(1);
2164 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2165
2166 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2167 // We don't have to materialize a zero constant for this case and can just use
2168 // %x again on the RHS.
2169 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2170 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2171 if (CmpRHSC && CmpRHSC->isNullValue())
2172 CmpRHS = CmpLHS;
2173 }
2174
2175 unsigned CC;
2176 bool NeedSwap;
2177 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2178 if (CC > 7 && !Subtarget->hasAVX())
2179 return false;
2180
2181 if (NeedSwap)
2182 std::swap(CmpLHS, CmpRHS);
2183
2184 const Value *LHS = I->getOperand(1);
2185 const Value *RHS = I->getOperand(2);
2186
2187 Register LHSReg = getRegForValue(LHS);
2188 Register RHSReg = getRegForValue(RHS);
2189 Register CmpLHSReg = getRegForValue(CmpLHS);
2190 Register CmpRHSReg = getRegForValue(CmpRHS);
2191 if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg)
2192 return false;
2193
2194 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2195 unsigned ResultReg;
2196
2197 if (Subtarget->hasAVX512()) {
2198 // If we have AVX512 we can use a mask compare and masked movss/sd.
2199 const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2200 const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2201
2202 unsigned CmpOpcode =
2203 (RetVT == MVT::f32) ? X86::VCMPSSZrri : X86::VCMPSDZrri;
2204 Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg,
2205 CC);
2206
2207 // Need an IMPLICIT_DEF for the input that is used to generate the upper
2208 // bits of the result register since its not based on any of the inputs.
2209 Register ImplicitDefReg = createResultReg(VR128X);
2210 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2211 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2212
2213 // Place RHSReg is the passthru of the masked movss/sd operation and put
2214 // LHS in the input. The mask input comes from the compare.
2215 unsigned MovOpcode =
2216 (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
2217 unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg,
2218 ImplicitDefReg, LHSReg);
2219
2220 ResultReg = createResultReg(RC);
2221 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2222 TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2223
2224 } else if (Subtarget->hasAVX()) {
2225 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2226
2227 // If we have AVX, create 1 blendv instead of 3 logic instructions.
2228 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2229 // uses XMM0 as the selection register. That may need just as many
2230 // instructions as the AND/ANDN/OR sequence due to register moves, so
2231 // don't bother.
2232 unsigned CmpOpcode =
2233 (RetVT == MVT::f32) ? X86::VCMPSSrri : X86::VCMPSDrri;
2234 unsigned BlendOpcode =
2235 (RetVT == MVT::f32) ? X86::VBLENDVPSrrr : X86::VBLENDVPDrrr;
2236
2237 Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg,
2238 CC);
2239 Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg,
2240 CmpReg);
2241 ResultReg = createResultReg(RC);
2242 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2243 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2244 } else {
2245 // Choose the SSE instruction sequence based on data type (float or double).
2246 static const uint16_t OpcTable[2][4] = {
2247 { X86::CMPSSrri, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr },
2248 { X86::CMPSDrri, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr }
2249 };
2250
2251 const uint16_t *Opc = nullptr;
2252 switch (RetVT.SimpleTy) {
2253 default: return false;
2254 case MVT::f32: Opc = &OpcTable[0][0]; break;
2255 case MVT::f64: Opc = &OpcTable[1][0]; break;
2256 }
2257
2258 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2259 Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC);
2260 Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg);
2261 Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg);
2262 Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg);
2263 ResultReg = createResultReg(RC);
2264 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2265 TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
2266 }
2267 updateValueMap(I, ResultReg);
2268 return true;
2269}
2270
2271bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2272 // These are pseudo CMOV instructions and will be later expanded into control-
2273 // flow.
2274 unsigned Opc;
2275 switch (RetVT.SimpleTy) {
2276 default: return false;
2277 case MVT::i8: Opc = X86::CMOV_GR8; break;
2278 case MVT::i16: Opc = X86::CMOV_GR16; break;
2279 case MVT::i32: Opc = X86::CMOV_GR32; break;
2280 case MVT::f16:
2281 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR16X : X86::CMOV_FR16; break;
2282 case MVT::f32:
2283 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X : X86::CMOV_FR32; break;
2284 case MVT::f64:
2285 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X : X86::CMOV_FR64; break;
2286 }
2287
2288 const Value *Cond = I->getOperand(0);
2290
2291 // Optimize conditions coming from a compare if both instructions are in the
2292 // same basic block (values defined in other basic blocks may not have
2293 // initialized registers).
2294 const auto *CI = dyn_cast<CmpInst>(Cond);
2295 if (CI && (CI->getParent() == I->getParent())) {
2296 bool NeedSwap;
2297 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
2299 return false;
2300
2301 const Value *CmpLHS = CI->getOperand(0);
2302 const Value *CmpRHS = CI->getOperand(1);
2303
2304 if (NeedSwap)
2305 std::swap(CmpLHS, CmpRHS);
2306
2307 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2308 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2309 return false;
2310 } else {
2311 Register CondReg = getRegForValue(Cond);
2312 if (CondReg == 0)
2313 return false;
2314
2315 // In case OpReg is a K register, COPY to a GPR
2316 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2317 unsigned KCondReg = CondReg;
2318 CondReg = createResultReg(&X86::GR32RegClass);
2319 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2320 TII.get(TargetOpcode::COPY), CondReg)
2321 .addReg(KCondReg);
2322 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
2323 }
2324 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
2325 .addReg(CondReg)
2326 .addImm(1);
2327 }
2328
2329 const Value *LHS = I->getOperand(1);
2330 const Value *RHS = I->getOperand(2);
2331
2332 Register LHSReg = getRegForValue(LHS);
2333 Register RHSReg = getRegForValue(RHS);
2334 if (!LHSReg || !RHSReg)
2335 return false;
2336
2337 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2338
2339 Register ResultReg =
2340 fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
2341 updateValueMap(I, ResultReg);
2342 return true;
2343}
2344
2345bool X86FastISel::X86SelectSelect(const Instruction *I) {
2346 MVT RetVT;
2347 if (!isTypeLegal(I->getType(), RetVT))
2348 return false;
2349
2350 // Check if we can fold the select.
2351 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2352 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2353 const Value *Opnd = nullptr;
2354 switch (Predicate) {
2355 default: break;
2356 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2357 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
2358 }
2359 // No need for a select anymore - this is an unconditional move.
2360 if (Opnd) {
2361 Register OpReg = getRegForValue(Opnd);
2362 if (OpReg == 0)
2363 return false;
2364 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2365 Register ResultReg = createResultReg(RC);
2366 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2367 TII.get(TargetOpcode::COPY), ResultReg)
2368 .addReg(OpReg);
2369 updateValueMap(I, ResultReg);
2370 return true;
2371 }
2372 }
2373
2374 // First try to use real conditional move instructions.
2375 if (X86FastEmitCMoveSelect(RetVT, I))
2376 return true;
2377
2378 // Try to use a sequence of SSE instructions to simulate a conditional move.
2379 if (X86FastEmitSSESelect(RetVT, I))
2380 return true;
2381
2382 // Fall-back to pseudo conditional move instructions, which will be later
2383 // converted to control-flow.
2384 if (X86FastEmitPseudoSelect(RetVT, I))
2385 return true;
2386
2387 return false;
2388}
2389
2390// Common code for X86SelectSIToFP and X86SelectUIToFP.
2391bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
2392 // The target-independent selection algorithm in FastISel already knows how
2393 // to select a SINT_TO_FP if the target is SSE but not AVX.
2394 // Early exit if the subtarget doesn't have AVX.
2395 // Unsigned conversion requires avx512.
2396 bool HasAVX512 = Subtarget->hasAVX512();
2397 if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
2398 return false;
2399
2400 // TODO: We could sign extend narrower types.
2401 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2402 if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
2403 return false;
2404
2405 // Select integer to float/double conversion.
2406 Register OpReg = getRegForValue(I->getOperand(0));
2407 if (OpReg == 0)
2408 return false;
2409
2410 unsigned Opcode;
2411
2412 static const uint16_t SCvtOpc[2][2][2] = {
2413 { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr },
2414 { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } },
2415 { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
2416 { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
2417 };
2418 static const uint16_t UCvtOpc[2][2] = {
2419 { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
2420 { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
2421 };
2422 bool Is64Bit = SrcVT == MVT::i64;
2423
2424 if (I->getType()->isDoubleTy()) {
2425 // s/uitofp int -> double
2426 Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
2427 } else if (I->getType()->isFloatTy()) {
2428 // s/uitofp int -> float
2429 Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
2430 } else
2431 return false;
2432
2433 MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
2434 const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2435 Register ImplicitDefReg = createResultReg(RC);
2436 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2437 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2438 Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg);
2439 updateValueMap(I, ResultReg);
2440 return true;
2441}
2442
2443bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2444 return X86SelectIntToFP(I, /*IsSigned*/true);
2445}
2446
2447bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
2448 return X86SelectIntToFP(I, /*IsSigned*/false);
2449}
2450
2451// Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2452bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2453 unsigned TargetOpc,
2454 const TargetRegisterClass *RC) {
2455 assert((I->getOpcode() == Instruction::FPExt ||
2456 I->getOpcode() == Instruction::FPTrunc) &&
2457 "Instruction must be an FPExt or FPTrunc!");
2458 bool HasAVX = Subtarget->hasAVX();
2459
2460 Register OpReg = getRegForValue(I->getOperand(0));
2461 if (OpReg == 0)
2462 return false;
2463
2464 unsigned ImplicitDefReg;
2465 if (HasAVX) {
2466 ImplicitDefReg = createResultReg(RC);
2467 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2468 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2469
2470 }
2471
2472 Register ResultReg = createResultReg(RC);
2474 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpc),
2475 ResultReg);
2476
2477 if (HasAVX)
2478 MIB.addReg(ImplicitDefReg);
2479
2480 MIB.addReg(OpReg);
2481 updateValueMap(I, ResultReg);
2482 return true;
2483}
2484
2485bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2486 if (Subtarget->hasSSE2() && I->getType()->isDoubleTy() &&
2487 I->getOperand(0)->getType()->isFloatTy()) {
2488 bool HasAVX512 = Subtarget->hasAVX512();
2489 // fpext from float to double.
2490 unsigned Opc =
2491 HasAVX512 ? X86::VCVTSS2SDZrr
2492 : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2493 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64));
2494 }
2495
2496 return false;
2497}
2498
2499bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2500 if (Subtarget->hasSSE2() && I->getType()->isFloatTy() &&
2501 I->getOperand(0)->getType()->isDoubleTy()) {
2502 bool HasAVX512 = Subtarget->hasAVX512();
2503 // fptrunc from double to float.
2504 unsigned Opc =
2505 HasAVX512 ? X86::VCVTSD2SSZrr
2506 : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2507 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32));
2508 }
2509
2510 return false;
2511}
2512
2513bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2514 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2515 EVT DstVT = TLI.getValueType(DL, I->getType());
2516
2517 // This code only handles truncation to byte.
2518 if (DstVT != MVT::i8 && DstVT != MVT::i1)
2519 return false;
2520 if (!TLI.isTypeLegal(SrcVT))
2521 return false;
2522
2523 Register InputReg = getRegForValue(I->getOperand(0));
2524 if (!InputReg)
2525 // Unhandled operand. Halt "fast" selection and bail.
2526 return false;
2527
2528 if (SrcVT == MVT::i8) {
2529 // Truncate from i8 to i1; no code needed.
2530 updateValueMap(I, InputReg);
2531 return true;
2532 }
2533
2534 // Issue an extract_subreg.
2535 Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, InputReg,
2536 X86::sub_8bit);
2537 if (!ResultReg)
2538 return false;
2539
2540 updateValueMap(I, ResultReg);
2541 return true;
2542}
2543
2544bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2545 return Len <= (Subtarget->is64Bit() ? 32 : 16);
2546}
2547
2548bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2549 X86AddressMode SrcAM, uint64_t Len) {
2550
2551 // Make sure we don't bloat code by inlining very large memcpy's.
2552 if (!IsMemcpySmall(Len))
2553 return false;
2554
2555 bool i64Legal = Subtarget->is64Bit();
2556
2557 // We don't care about alignment here since we just emit integer accesses.
2558 while (Len) {
2559 MVT VT;
2560 if (Len >= 8 && i64Legal)
2561 VT = MVT::i64;
2562 else if (Len >= 4)
2563 VT = MVT::i32;
2564 else if (Len >= 2)
2565 VT = MVT::i16;
2566 else
2567 VT = MVT::i8;
2568
2569 unsigned Reg;
2570 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2571 RV &= X86FastEmitStore(VT, Reg, DestAM);
2572 assert(RV && "Failed to emit load or store??");
2573 (void)RV;
2574
2575 unsigned Size = VT.getSizeInBits()/8;
2576 Len -= Size;
2577 DestAM.Disp += Size;
2578 SrcAM.Disp += Size;
2579 }
2580
2581 return true;
2582}
2583
2584bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2585 // FIXME: Handle more intrinsics.
2586 switch (II->getIntrinsicID()) {
2587 default: return false;
2588 case Intrinsic::convert_from_fp16:
2589 case Intrinsic::convert_to_fp16: {
2590 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2591 return false;
2592
2593 const Value *Op = II->getArgOperand(0);
2594 Register InputReg = getRegForValue(Op);
2595 if (InputReg == 0)
2596 return false;
2597
2598 // F16C only allows converting from float to half and from half to float.
2599 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2600 if (IsFloatToHalf) {
2601 if (!Op->getType()->isFloatTy())
2602 return false;
2603 } else {
2604 if (!II->getType()->isFloatTy())
2605 return false;
2606 }
2607
2608 unsigned ResultReg = 0;
2609 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2610 if (IsFloatToHalf) {
2611 // 'InputReg' is implicitly promoted from register class FR32 to
2612 // register class VR128 by method 'constrainOperandRegClass' which is
2613 // directly called by 'fastEmitInst_ri'.
2614 // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2615 // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2616 // It's consistent with the other FP instructions, which are usually
2617 // controlled by MXCSR.
2618 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr
2619 : X86::VCVTPS2PHrr;
2620 InputReg = fastEmitInst_ri(Opc, RC, InputReg, 4);
2621
2622 // Move the lower 32-bits of ResultReg to another register of class GR32.
2623 Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr
2624 : X86::VMOVPDI2DIrr;
2625 ResultReg = createResultReg(&X86::GR32RegClass);
2626 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
2627 .addReg(InputReg, RegState::Kill);
2628
2629 // The result value is in the lower 16-bits of ResultReg.
2630 unsigned RegIdx = X86::sub_16bit;
2631 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, RegIdx);
2632 } else {
2633 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2634 // Explicitly zero-extend the input to 32-bit.
2635 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg);
2636
2637 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2638 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2639 InputReg);
2640
2641 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr
2642 : X86::VCVTPH2PSrr;
2643 InputReg = fastEmitInst_r(Opc, RC, InputReg);
2644
2645 // The result value is in the lower 32-bits of ResultReg.
2646 // Emit an explicit copy from register class VR128 to register class FR32.
2647 ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
2648 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2649 TII.get(TargetOpcode::COPY), ResultReg)
2650 .addReg(InputReg, RegState::Kill);
2651 }
2652
2653 updateValueMap(II, ResultReg);
2654 return true;
2655 }
2656 case Intrinsic::frameaddress: {
2657 MachineFunction *MF = FuncInfo.MF;
2658 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2659 return false;
2660
2661 Type *RetTy = II->getCalledFunction()->getReturnType();
2662
2663 MVT VT;
2664 if (!isTypeLegal(RetTy, VT))
2665 return false;
2666
2667 unsigned Opc;
2668 const TargetRegisterClass *RC = nullptr;
2669
2670 switch (VT.SimpleTy) {
2671 default: llvm_unreachable("Invalid result type for frameaddress.");
2672 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2673 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2674 }
2675
2676 // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2677 // we get the wrong frame register.
2678 MachineFrameInfo &MFI = MF->getFrameInfo();
2679 MFI.setFrameAddressIsTaken(true);
2680
2681 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2682 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2683 assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2684 (FrameReg == X86::EBP && VT == MVT::i32)) &&
2685 "Invalid Frame Register!");
2686
2687 // Always make a copy of the frame register to a vreg first, so that we
2688 // never directly reference the frame register (the TwoAddressInstruction-
2689 // Pass doesn't like that).
2690 Register SrcReg = createResultReg(RC);
2691 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2692 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2693
2694 // Now recursively load from the frame address.
2695 // movq (%rbp), %rax
2696 // movq (%rax), %rax
2697 // movq (%rax), %rax
2698 // ...
2699 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2700 while (Depth--) {
2701 Register DestReg = createResultReg(RC);
2702 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2703 TII.get(Opc), DestReg), SrcReg);
2704 SrcReg = DestReg;
2705 }
2706
2707 updateValueMap(II, SrcReg);
2708 return true;
2709 }
2710 case Intrinsic::memcpy: {
2711 const MemCpyInst *MCI = cast<MemCpyInst>(II);
2712 // Don't handle volatile or variable length memcpys.
2713 if (MCI->isVolatile())
2714 return false;
2715
2716 if (isa<ConstantInt>(MCI->getLength())) {
2717 // Small memcpy's are common enough that we want to do them
2718 // without a call if possible.
2719 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2720 if (IsMemcpySmall(Len)) {
2721 X86AddressMode DestAM, SrcAM;
2722 if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2723 !X86SelectAddress(MCI->getRawSource(), SrcAM))
2724 return false;
2725 TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2726 return true;
2727 }
2728 }
2729
2730 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2731 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2732 return false;
2733
2734 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2735 return false;
2736
2737 return lowerCallTo(II, "memcpy", II->arg_size() - 1);
2738 }
2739 case Intrinsic::memset: {
2740 const MemSetInst *MSI = cast<MemSetInst>(II);
2741
2742 if (MSI->isVolatile())
2743 return false;
2744
2745 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2746 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2747 return false;
2748
2749 if (MSI->getDestAddressSpace() > 255)
2750 return false;
2751
2752 return lowerCallTo(II, "memset", II->arg_size() - 1);
2753 }
2754 case Intrinsic::stackprotector: {
2755 // Emit code to store the stack guard onto the stack.
2756 EVT PtrTy = TLI.getPointerTy(DL);
2757
2758 const Value *Op1 = II->getArgOperand(0); // The guard's value.
2759 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2760
2761 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2762
2763 // Grab the frame index.
2764 X86AddressMode AM;
2765 if (!X86SelectAddress(Slot, AM)) return false;
2766 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2767 return true;
2768 }
2769 case Intrinsic::dbg_declare: {
2770 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2771 X86AddressMode AM;
2772 assert(DI->getAddress() && "Null address should be checked earlier!");
2773 if (!X86SelectAddress(DI->getAddress(), AM))
2774 return false;
2775 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2776 assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) &&
2777 "Expected inlined-at fields to agree");
2778 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II), AM)
2779 .addImm(0)
2780 .addMetadata(DI->getVariable())
2781 .addMetadata(DI->getExpression());
2782 return true;
2783 }
2784 case Intrinsic::trap: {
2785 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TRAP));
2786 return true;
2787 }
2788 case Intrinsic::sqrt: {
2789 if (!Subtarget->hasSSE1())
2790 return false;
2791
2792 Type *RetTy = II->getCalledFunction()->getReturnType();
2793
2794 MVT VT;
2795 if (!isTypeLegal(RetTy, VT))
2796 return false;
2797
2798 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2799 // is not generated by FastISel yet.
2800 // FIXME: Update this code once tablegen can handle it.
2801 static const uint16_t SqrtOpc[3][2] = {
2802 { X86::SQRTSSr, X86::SQRTSDr },
2803 { X86::VSQRTSSr, X86::VSQRTSDr },
2804 { X86::VSQRTSSZr, X86::VSQRTSDZr },
2805 };
2806 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2807 Subtarget->hasAVX() ? 1 :
2808 0;
2809 unsigned Opc;
2810 switch (VT.SimpleTy) {
2811 default: return false;
2812 case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
2813 case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
2814 }
2815
2816 const Value *SrcVal = II->getArgOperand(0);
2817 Register SrcReg = getRegForValue(SrcVal);
2818
2819 if (SrcReg == 0)
2820 return false;
2821
2822 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2823 unsigned ImplicitDefReg = 0;
2824 if (AVXLevel > 0) {
2825 ImplicitDefReg = createResultReg(RC);
2826 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2827 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2828 }
2829
2830 Register ResultReg = createResultReg(RC);
2832 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
2833 ResultReg);
2834
2835 if (ImplicitDefReg)
2836 MIB.addReg(ImplicitDefReg);
2837
2838 MIB.addReg(SrcReg);
2839
2840 updateValueMap(II, ResultReg);
2841 return true;
2842 }
2843 case Intrinsic::sadd_with_overflow:
2844 case Intrinsic::uadd_with_overflow:
2845 case Intrinsic::ssub_with_overflow:
2846 case Intrinsic::usub_with_overflow:
2847 case Intrinsic::smul_with_overflow:
2848 case Intrinsic::umul_with_overflow: {
2849 // This implements the basic lowering of the xalu with overflow intrinsics
2850 // into add/sub/mul followed by either seto or setb.
2851 const Function *Callee = II->getCalledFunction();
2852 auto *Ty = cast<StructType>(Callee->getReturnType());
2853 Type *RetTy = Ty->getTypeAtIndex(0U);
2854 assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
2855 Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
2856 "Overflow value expected to be an i1");
2857
2858 MVT VT;
2859 if (!isTypeLegal(RetTy, VT))
2860 return false;
2861
2862 if (VT < MVT::i8 || VT > MVT::i64)
2863 return false;
2864
2865 const Value *LHS = II->getArgOperand(0);
2866 const Value *RHS = II->getArgOperand(1);
2867
2868 // Canonicalize immediate to the RHS.
2869 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && II->isCommutative())
2870 std::swap(LHS, RHS);
2871
2872 unsigned BaseOpc, CondCode;
2873 switch (II->getIntrinsicID()) {
2874 default: llvm_unreachable("Unexpected intrinsic!");
2875 case Intrinsic::sadd_with_overflow:
2876 BaseOpc = ISD::ADD; CondCode = X86::COND_O; break;
2877 case Intrinsic::uadd_with_overflow:
2878 BaseOpc = ISD::ADD; CondCode = X86::COND_B; break;
2879 case Intrinsic::ssub_with_overflow:
2880 BaseOpc = ISD::SUB; CondCode = X86::COND_O; break;
2881 case Intrinsic::usub_with_overflow:
2882 BaseOpc = ISD::SUB; CondCode = X86::COND_B; break;
2883 case Intrinsic::smul_with_overflow:
2884 BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break;
2885 case Intrinsic::umul_with_overflow:
2886 BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break;
2887 }
2888
2889 Register LHSReg = getRegForValue(LHS);
2890 if (LHSReg == 0)
2891 return false;
2892
2893 unsigned ResultReg = 0;
2894 // Check if we have an immediate version.
2895 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2896 static const uint16_t Opc[2][4] = {
2897 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2898 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2899 };
2900
2901 if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
2902 CondCode == X86::COND_O) {
2903 // We can use INC/DEC.
2904 ResultReg = createResultReg(TLI.getRegClassFor(VT));
2905 bool IsDec = BaseOpc == ISD::SUB;
2906 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2907 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2908 .addReg(LHSReg);
2909 } else
2910 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, CI->getZExtValue());
2911 }
2912
2913 unsigned RHSReg;
2914 if (!ResultReg) {
2915 RHSReg = getRegForValue(RHS);
2916 if (RHSReg == 0)
2917 return false;
2918 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, RHSReg);
2919 }
2920
2921 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2922 // it manually.
2923 if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2924 static const uint16_t MULOpc[] =
2925 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2926 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2927 // First copy the first operand into RAX, which is an implicit input to
2928 // the X86::MUL*r instruction.
2929 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2930 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2931 .addReg(LHSReg);
2932 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2933 TLI.getRegClassFor(VT), RHSReg);
2934 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2935 static const uint16_t MULOpc[] =
2936 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2937 if (VT == MVT::i8) {
2938 // Copy the first operand into AL, which is an implicit input to the
2939 // X86::IMUL8r instruction.
2940 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2941 TII.get(TargetOpcode::COPY), X86::AL)
2942 .addReg(LHSReg);
2943 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg);
2944 } else
2945 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2946 TLI.getRegClassFor(VT), LHSReg, RHSReg);
2947 }
2948
2949 if (!ResultReg)
2950 return false;
2951
2952 // Assign to a GPR since the overflow return value is lowered to a SETcc.
2953 Register ResultReg2 = createResultReg(&X86::GR8RegClass);
2954 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2955 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2956 ResultReg2).addImm(CondCode);
2957
2958 updateValueMap(II, ResultReg, 2);
2959 return true;
2960 }
2961 case Intrinsic::x86_sse_cvttss2si:
2962 case Intrinsic::x86_sse_cvttss2si64:
2963 case Intrinsic::x86_sse2_cvttsd2si:
2964 case Intrinsic::x86_sse2_cvttsd2si64: {
2965 bool IsInputDouble;
2966 switch (II->getIntrinsicID()) {
2967 default: llvm_unreachable("Unexpected intrinsic.");
2968 case Intrinsic::x86_sse_cvttss2si:
2969 case Intrinsic::x86_sse_cvttss2si64:
2970 if (!Subtarget->hasSSE1())
2971 return false;
2972 IsInputDouble = false;
2973 break;
2974 case Intrinsic::x86_sse2_cvttsd2si:
2975 case Intrinsic::x86_sse2_cvttsd2si64:
2976 if (!Subtarget->hasSSE2())
2977 return false;
2978 IsInputDouble = true;
2979 break;
2980 }
2981
2982 Type *RetTy = II->getCalledFunction()->getReturnType();
2983 MVT VT;
2984 if (!isTypeLegal(RetTy, VT))
2985 return false;
2986
2987 static const uint16_t CvtOpc[3][2][2] = {
2988 { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr },
2989 { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } },
2990 { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr },
2991 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } },
2992 { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
2993 { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
2994 };
2995 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2996 Subtarget->hasAVX() ? 1 :
2997 0;
2998 unsigned Opc;
2999 switch (VT.SimpleTy) {
3000 default: llvm_unreachable("Unexpected result type.");
3001 case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
3002 case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
3003 }
3004
3005 // Check if we can fold insertelement instructions into the convert.
3006 const Value *Op = II->getArgOperand(0);
3007 while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3008 const Value *Index = IE->getOperand(2);
3009 if (!isa<ConstantInt>(Index))
3010 break;
3011 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3012
3013 if (Idx == 0) {
3014 Op = IE->getOperand(1);
3015 break;
3016 }
3017 Op = IE->getOperand(0);
3018 }
3019
3020 Register Reg = getRegForValue(Op);
3021 if (Reg == 0)
3022 return false;
3023
3024 Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3025 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
3026 .addReg(Reg);
3027
3028 updateValueMap(II, ResultReg);
3029 return true;
3030 }
3031 case Intrinsic::x86_sse42_crc32_32_8:
3032 case Intrinsic::x86_sse42_crc32_32_16:
3033 case Intrinsic::x86_sse42_crc32_32_32:
3034 case Intrinsic::x86_sse42_crc32_64_64: {
3035 if (!Subtarget->hasCRC32())
3036 return false;
3037
3038 Type *RetTy = II->getCalledFunction()->getReturnType();
3039
3040 MVT VT;
3041 if (!isTypeLegal(RetTy, VT))
3042 return false;
3043
3044 unsigned Opc;
3045 const TargetRegisterClass *RC = nullptr;
3046
3047 switch (II->getIntrinsicID()) {
3048 default:
3049 llvm_unreachable("Unexpected intrinsic.");
3050#define GET_EGPR_IF_ENABLED(OPC) Subtarget->hasEGPR() ? OPC##_EVEX : OPC
3051 case Intrinsic::x86_sse42_crc32_32_8:
3052 Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r8);
3053 RC = &X86::GR32RegClass;
3054 break;
3055 case Intrinsic::x86_sse42_crc32_32_16:
3056 Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r16);
3057 RC = &X86::GR32RegClass;
3058 break;
3059 case Intrinsic::x86_sse42_crc32_32_32:
3060 Opc = GET_EGPR_IF_ENABLED(X86::CRC32r32r32);
3061 RC = &X86::GR32RegClass;
3062 break;
3063 case Intrinsic::x86_sse42_crc32_64_64:
3064 Opc = GET_EGPR_IF_ENABLED(X86::CRC32r64r64);
3065 RC = &X86::GR64RegClass;
3066 break;
3067#undef GET_EGPR_IF_ENABLED
3068 }
3069
3070 const Value *LHS = II->getArgOperand(0);
3071 const Value *RHS = II->getArgOperand(1);
3072
3073 Register LHSReg = getRegForValue(LHS);
3074 Register RHSReg = getRegForValue(RHS);
3075 if (!LHSReg || !RHSReg)
3076 return false;
3077
3078 Register ResultReg = fastEmitInst_rr(Opc, RC, LHSReg, RHSReg);
3079 if (!ResultReg)
3080 return false;
3081
3082 updateValueMap(II, ResultReg);
3083 return true;
3084 }
3085 }
3086}
3087
3088bool X86FastISel::fastLowerArguments() {
3089 if (!FuncInfo.CanLowerReturn)
3090 return false;
3091
3092 const Function *F = FuncInfo.Fn;
3093 if (F->isVarArg())
3094 return false;
3095
3096 CallingConv::ID CC = F->getCallingConv();
3097 if (CC != CallingConv::C)
3098 return false;
3099
3100 if (Subtarget->isCallingConvWin64(CC))
3101 return false;
3102
3103 if (!Subtarget->is64Bit())
3104 return false;
3105
3106 if (Subtarget->useSoftFloat())
3107 return false;
3108
3109 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3110 unsigned GPRCnt = 0;
3111 unsigned FPRCnt = 0;
3112 for (auto const &Arg : F->args()) {
3113 if (Arg.hasAttribute(Attribute::ByVal) ||
3114 Arg.hasAttribute(Attribute::InReg) ||
3115 Arg.hasAttribute(Attribute::StructRet) ||
3116 Arg.hasAttribute(Attribute::SwiftSelf) ||
3117 Arg.hasAttribute(Attribute::SwiftAsync) ||
3118 Arg.hasAttribute(Attribute::SwiftError) ||
3119 Arg.hasAttribute(Attribute::Nest))
3120 return false;
3121
3122 Type *ArgTy = Arg.getType();
3123 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3124 return false;
3125
3126 EVT ArgVT = TLI.getValueType(DL, ArgTy);
3127 if (!ArgVT.isSimple()) return false;
3128 switch (ArgVT.getSimpleVT().SimpleTy) {
3129 default: return false;
3130 case MVT::i32:
3131 case MVT::i64:
3132 ++GPRCnt;
3133 break;
3134 case MVT::f32:
3135 case MVT::f64:
3136 if (!Subtarget->hasSSE1())
3137 return false;
3138 ++FPRCnt;
3139 break;
3140 }
3141
3142 if (GPRCnt > 6)
3143 return false;
3144
3145 if (FPRCnt > 8)
3146 return false;
3147 }
3148
3149 static const MCPhysReg GPR32ArgRegs[] = {
3150 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3151 };
3152 static const MCPhysReg GPR64ArgRegs[] = {
3153 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3154 };
3155 static const MCPhysReg XMMArgRegs[] = {
3156 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3157 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3158 };
3159
3160 unsigned GPRIdx = 0;
3161 unsigned FPRIdx = 0;
3162 for (auto const &Arg : F->args()) {
3163 MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
3164 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3165 unsigned SrcReg;
3166 switch (VT.SimpleTy) {
3167 default: llvm_unreachable("Unexpected value type.");
3168 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3169 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3170 case MVT::f32: [[fallthrough]];
3171 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3172 }
3173 Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3174 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3175 // Without this, EmitLiveInCopies may eliminate the livein if its only
3176 // use is a bitcast (which isn't turned into an instruction).
3177 Register ResultReg = createResultReg(RC);
3178 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3179 TII.get(TargetOpcode::COPY), ResultReg)
3180 .addReg(DstReg, getKillRegState(true));
3181 updateValueMap(&Arg, ResultReg);
3182 }
3183 return true;
3184}
3185
3186static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3188 const CallBase *CB) {
3189 if (Subtarget->is64Bit())
3190 return 0;
3191 if (Subtarget->getTargetTriple().isOSMSVCRT())
3192 return 0;
3193 if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3196 return 0;
3197
3198 if (CB)
3199 if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) ||
3200 CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
3201 return 0;
3202
3203 return 4;
3204}
3205
3206bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3207 auto &OutVals = CLI.OutVals;
3208 auto &OutFlags = CLI.OutFlags;
3209 auto &OutRegs = CLI.OutRegs;
3210 auto &Ins = CLI.Ins;
3211 auto &InRegs = CLI.InRegs;
3212 CallingConv::ID CC = CLI.CallConv;
3213 bool &IsTailCall = CLI.IsTailCall;
3214 bool IsVarArg = CLI.IsVarArg;
3215 const Value *Callee = CLI.Callee;
3216 MCSymbol *Symbol = CLI.Symbol;
3217 const auto *CB = CLI.CB;
3218
3219 bool Is64Bit = Subtarget->is64Bit();
3220 bool IsWin64 = Subtarget->isCallingConvWin64(CC);
3221
3222 // Call / invoke instructions with NoCfCheck attribute require special
3223 // handling.
3224 if (CB && CB->doesNoCfCheck())
3225 return false;
3226
3227 // Functions with no_caller_saved_registers that need special handling.
3228 if ((CB && isa<CallInst>(CB) && CB->hasFnAttr("no_caller_saved_registers")))
3229 return false;
3230
3231 // Functions with no_callee_saved_registers that need special handling.
3232 if ((CB && CB->hasFnAttr("no_callee_saved_registers")))
3233 return false;
3234
3235 // Indirect calls with CFI checks need special handling.
3236 if (CB && CB->isIndirectCall() && CB->getOperandBundle(LLVMContext::OB_kcfi))
3237 return false;
3238
3239 // Functions using thunks for indirect calls need to use SDISel.
3240 if (Subtarget->useIndirectThunkCalls())
3241 return false;
3242
3243 // Handle only C and fastcc calling conventions for now.
3244 switch (CC) {
3245 default: return false;
3246 case CallingConv::C:
3247 case CallingConv::Fast:
3248 case CallingConv::Tail:
3249 case CallingConv::Swift:
3254 case CallingConv::Win64:
3257 break;
3258 }
3259
3260 // Allow SelectionDAG isel to handle tail calls.
3261 if (IsTailCall)
3262 return false;
3263
3264 // fastcc with -tailcallopt is intended to provide a guaranteed
3265 // tail call optimization. Fastisel doesn't know how to do that.
3266 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
3268 return false;
3269
3270 // Don't know how to handle Win64 varargs yet. Nothing special needed for
3271 // x86-32. Special handling for x86-64 is implemented.
3272 if (IsVarArg && IsWin64)
3273 return false;
3274
3275 // Don't know about inalloca yet.
3276 if (CLI.CB && CLI.CB->hasInAllocaArgument())
3277 return false;
3278
3279 for (auto Flag : CLI.OutFlags)
3280 if (Flag.isSwiftError() || Flag.isPreallocated())
3281 return false;
3282
3283 SmallVector<MVT, 16> OutVTs;
3285
3286 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3287 // instruction. This is safe because it is common to all FastISel supported
3288 // calling conventions on x86.
3289 for (int i = 0, e = OutVals.size(); i != e; ++i) {
3290 Value *&Val = OutVals[i];
3291 ISD::ArgFlagsTy Flags = OutFlags[i];
3292 if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3293 if (CI->getBitWidth() < 32) {
3294 if (Flags.isSExt())
3295 Val = ConstantInt::get(CI->getContext(), CI->getValue().sext(32));
3296 else
3297 Val = ConstantInt::get(CI->getContext(), CI->getValue().zext(32));
3298 }
3299 }
3300
3301 // Passing bools around ends up doing a trunc to i1 and passing it.
3302 // Codegen this as an argument + "and 1".
3303 MVT VT;
3304 auto *TI = dyn_cast<TruncInst>(Val);
3305 unsigned ResultReg;
3306 if (TI && TI->getType()->isIntegerTy(1) && CLI.CB &&
3307 (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) {
3308 Value *PrevVal = TI->getOperand(0);
3309 ResultReg = getRegForValue(PrevVal);
3310
3311 if (!ResultReg)
3312 return false;
3313
3314 if (!isTypeLegal(PrevVal->getType(), VT))
3315 return false;
3316
3317 ResultReg = fastEmit_ri(VT, VT, ISD::AND, ResultReg, 1);
3318 } else {
3319 if (!isTypeLegal(Val->getType(), VT) ||
3320 (VT.isVector() && VT.getVectorElementType() == MVT::i1))
3321 return false;
3322 ResultReg = getRegForValue(Val);
3323 }
3324
3325 if (!ResultReg)
3326 return false;
3327
3328 ArgRegs.push_back(ResultReg);
3329 OutVTs.push_back(VT);
3330 }
3331
3332 // Analyze operands of the call, assigning locations to each operand.
3334 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3335
3336 // Allocate shadow area for Win64
3337 if (IsWin64)
3338 CCInfo.AllocateStack(32, Align(8));
3339
3340 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3341
3342 // Get a count of how many bytes are to be pushed on the stack.
3343 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3344
3345 // Issue CALLSEQ_START
3346 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3347 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown))
3348 .addImm(NumBytes).addImm(0).addImm(0);
3349
3350 // Walk the register/memloc assignments, inserting copies/loads.
3351 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3352 for (const CCValAssign &VA : ArgLocs) {
3353 const Value *ArgVal = OutVals[VA.getValNo()];
3354 MVT ArgVT = OutVTs[VA.getValNo()];
3355
3356 if (ArgVT == MVT::x86mmx)
3357 return false;
3358
3359 unsigned ArgReg = ArgRegs[VA.getValNo()];
3360
3361 // Promote the value if needed.
3362 switch (VA.getLocInfo()) {
3363 case CCValAssign::Full: break;
3364 case CCValAssign::SExt: {
3365 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3366 "Unexpected extend");
3367
3368 if (ArgVT == MVT::i1)
3369 return false;
3370
3371 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3372 ArgVT, ArgReg);
3373 assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3374 ArgVT = VA.getLocVT();
3375 break;
3376 }
3377 case CCValAssign::ZExt: {
3378 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3379 "Unexpected extend");
3380
3381 // Handle zero-extension from i1 to i8, which is common.
3382 if (ArgVT == MVT::i1) {
3383 // Set the high bits to zero.
3384 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg);
3385 ArgVT = MVT::i8;
3386
3387 if (ArgReg == 0)
3388 return false;
3389 }
3390
3391 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3392 ArgVT, ArgReg);
3393 assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3394 ArgVT = VA.getLocVT();
3395 break;
3396 }
3397 case CCValAssign::AExt: {
3398 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3399 "Unexpected extend");
3400 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3401 ArgVT, ArgReg);
3402 if (!Emitted)
3403 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3404 ArgVT, ArgReg);
3405 if (!Emitted)
3406 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3407 ArgVT, ArgReg);
3408
3409 assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3410 ArgVT = VA.getLocVT();
3411 break;
3412 }
3413 case CCValAssign::BCvt: {
3414 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg);
3415 assert(ArgReg && "Failed to emit a bitcast!");
3416 ArgVT = VA.getLocVT();
3417 break;
3418 }
3419 case CCValAssign::VExt:
3420 // VExt has not been implemented, so this should be impossible to reach
3421 // for now. However, fallback to Selection DAG isel once implemented.
3422 return false;
3426 case CCValAssign::FPExt:
3427 case CCValAssign::Trunc:
3428 llvm_unreachable("Unexpected loc info!");
3430 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3431 // support this.
3432 return false;
3433 }
3434
3435 if (VA.isRegLoc()) {
3436 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3437 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3438 OutRegs.push_back(VA.getLocReg());
3439 } else {
3440 assert(VA.isMemLoc() && "Unknown value location!");
3441
3442 // Don't emit stores for undef values.
3443 if (isa<UndefValue>(ArgVal))
3444 continue;
3445
3446 unsigned LocMemOffset = VA.getLocMemOffset();
3447 X86AddressMode AM;
3448 AM.Base.Reg = RegInfo->getStackRegister();
3449 AM.Disp = LocMemOffset;
3450 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3451 Align Alignment = DL.getABITypeAlign(ArgVal->getType());
3452 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3453 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3454 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3455 if (Flags.isByVal()) {
3456 X86AddressMode SrcAM;
3457 SrcAM.Base.Reg = ArgReg;
3458 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3459 return false;
3460 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3461 // If this is a really simple value, emit this with the Value* version
3462 // of X86FastEmitStore. If it isn't simple, we don't want to do this,
3463 // as it can cause us to reevaluate the argument.
3464 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3465 return false;
3466 } else {
3467 if (!X86FastEmitStore(ArgVT, ArgReg, AM, MMO))
3468 return false;
3469 }
3470 }
3471 }
3472
3473 // ELF / PIC requires GOT in the EBX register before function calls via PLT
3474 // GOT pointer.
3475 if (Subtarget->isPICStyleGOT()) {
3476 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3477 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3478 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3479 }
3480
3481 if (Is64Bit && IsVarArg && !IsWin64) {
3482 // From AMD64 ABI document:
3483 // For calls that may call functions that use varargs or stdargs
3484 // (prototype-less calls or calls to functions containing ellipsis (...) in
3485 // the declaration) %al is used as hidden argument to specify the number
3486 // of SSE registers used. The contents of %al do not need to match exactly
3487 // the number of registers, but must be an ubound on the number of SSE
3488 // registers used and is in the range 0 - 8 inclusive.
3489
3490 // Count the number of XMM registers allocated.
3491 static const MCPhysReg XMMArgRegs[] = {
3492 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3493 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3494 };
3495 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3496 assert((Subtarget->hasSSE1() || !NumXMMRegs)
3497 && "SSE registers cannot be used when SSE is disabled");
3498 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri),
3499 X86::AL).addImm(NumXMMRegs);
3500 }
3501
3502 // Materialize callee address in a register. FIXME: GV address can be
3503 // handled with a CALLpcrel32 instead.
3504 X86AddressMode CalleeAM;
3505 if (!X86SelectCallAddress(Callee, CalleeAM))
3506 return false;
3507
3508 unsigned CalleeOp = 0;
3509 const GlobalValue *GV = nullptr;
3510 if (CalleeAM.GV != nullptr) {
3511 GV = CalleeAM.GV;
3512 } else if (CalleeAM.Base.Reg != 0) {
3513 CalleeOp = CalleeAM.Base.Reg;
3514 } else
3515 return false;
3516
3517 // Issue the call.
3519 if (CalleeOp) {
3520 // Register-indirect call.
3521 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3522 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc))
3523 .addReg(CalleeOp);
3524 } else {
3525 // Direct call.
3526 assert(GV && "Not a direct call");
3527 // See if we need any target-specific flags on the GV operand.
3528 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3529 if (OpFlags == X86II::MO_PLT && !Is64Bit &&
3530 TM.getRelocationModel() == Reloc::Static && isa<Function>(GV) &&
3531 cast<Function>(GV)->isIntrinsic())
3532 OpFlags = X86II::MO_NO_FLAG;
3533
3534 // This will be a direct call, or an indirect call through memory for
3535 // NonLazyBind calls or dllimport calls.
3536 bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT ||
3537 OpFlags == X86II::MO_GOTPCREL ||
3538 OpFlags == X86II::MO_GOTPCREL_NORELAX ||
3539 OpFlags == X86II::MO_COFFSTUB;
3540 unsigned CallOpc = NeedLoad
3541 ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3542 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3543
3544 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc));
3545 if (NeedLoad)
3546 MIB.addReg(Is64Bit ? X86::RIP : X86::NoRegister).addImm(1).addReg(0);
3547 if (Symbol)
3548 MIB.addSym(Symbol, OpFlags);
3549 else
3550 MIB.addGlobalAddress(GV, 0, OpFlags);
3551 if (NeedLoad)
3552 MIB.addReg(0);
3553 }
3554
3555 // Add a register mask operand representing the call-preserved registers.
3556 // Proper defs for return values will be added by setPhysRegsDeadExcept().
3557 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3558
3559 // Add an implicit use GOT pointer in EBX.
3560 if (Subtarget->isPICStyleGOT())
3561 MIB.addReg(X86::EBX, RegState::Implicit);
3562
3563 if (Is64Bit && IsVarArg && !IsWin64)
3564 MIB.addReg(X86::AL, RegState::Implicit);
3565
3566 // Add implicit physical register uses to the call.
3567 for (auto Reg : OutRegs)
3568 MIB.addReg(Reg, RegState::Implicit);
3569
3570 // Issue CALLSEQ_END
3571 unsigned NumBytesForCalleeToPop =
3572 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3573 TM.Options.GuaranteedTailCallOpt)
3574 ? NumBytes // Callee pops everything.
3575 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB);
3576 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3577 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp))
3578 .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3579
3580 // Now handle call return values.
3582 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3583 CLI.RetTy->getContext());
3584 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3585
3586 // Copy all of the result registers out of their specified physreg.
3587 Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3588 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3589 CCValAssign &VA = RVLocs[i];
3590 EVT CopyVT = VA.getValVT();
3591 unsigned CopyReg = ResultReg + i;
3592 Register SrcReg = VA.getLocReg();
3593
3594 // If this is x86-64, and we disabled SSE, we can't return FP values
3595 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3596 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3597 report_fatal_error("SSE register return with SSE disabled");
3598 }
3599
3600 // If we prefer to use the value in xmm registers, copy it out as f80 and
3601 // use a truncate to move it from fp stack reg to xmm reg.
3602 if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
3603 isScalarFPTypeInSSEReg(VA.getValVT())) {
3604 CopyVT = MVT::f80;
3605 CopyReg = createResultReg(&X86::RFP80RegClass);
3606 }
3607
3608 // Copy out the result.
3609 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3610 TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
3611 InRegs.push_back(VA.getLocReg());
3612
3613 // Round the f80 to the right size, which also moves it to the appropriate
3614 // xmm register. This is accomplished by storing the f80 value in memory
3615 // and then loading it back.
3616 if (CopyVT != VA.getValVT()) {
3617 EVT ResVT = VA.getValVT();
3618 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3619 unsigned MemSize = ResVT.getSizeInBits()/8;
3620 int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false);
3621 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3622 TII.get(Opc)), FI)
3623 .addReg(CopyReg);
3624 Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt;
3625 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3626 TII.get(Opc), ResultReg + i), FI);
3627 }
3628 }
3629
3630 CLI.ResultReg = ResultReg;
3631 CLI.NumResultRegs = RVLocs.size();
3632 CLI.Call = MIB;
3633
3634 return true;
3635}
3636
3637bool
3638X86FastISel::fastSelectInstruction(const Instruction *I) {
3639 switch (I->getOpcode()) {
3640 default: break;
3641 case Instruction::Load:
3642 return X86SelectLoad(I);
3643 case Instruction::Store:
3644 return X86SelectStore(I);
3645 case Instruction::Ret:
3646 return X86SelectRet(I);
3647 case Instruction::ICmp:
3648 case Instruction::FCmp:
3649 return X86SelectCmp(I);
3650 case Instruction::ZExt:
3651 return X86SelectZExt(I);
3652 case Instruction::SExt:
3653 return X86SelectSExt(I);
3654 case Instruction::Br:
3655 return X86SelectBranch(I);
3656 case Instruction::LShr:
3657 case Instruction::AShr:
3658 case Instruction::Shl:
3659 return X86SelectShift(I);
3660 case Instruction::SDiv:
3661 case Instruction::UDiv:
3662 case Instruction::SRem:
3663 case Instruction::URem:
3664 return X86SelectDivRem(I);
3665 case Instruction::Select:
3666 return X86SelectSelect(I);
3667 case Instruction::Trunc:
3668 return X86SelectTrunc(I);
3669 case Instruction::FPExt:
3670 return X86SelectFPExt(I);
3671 case Instruction::FPTrunc:
3672 return X86SelectFPTrunc(I);
3673 case Instruction::SIToFP:
3674 return X86SelectSIToFP(I);
3675 case Instruction::UIToFP:
3676 return X86SelectUIToFP(I);
3677 case Instruction::IntToPtr: // Deliberate fall-through.
3678 case Instruction::PtrToInt: {
3679 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3680 EVT DstVT = TLI.getValueType(DL, I->getType());
3681 if (DstVT.bitsGT(SrcVT))
3682 return X86SelectZExt(I);
3683 if (DstVT.bitsLT(SrcVT))
3684 return X86SelectTrunc(I);
3685 Register Reg = getRegForValue(I->getOperand(0));
3686 if (Reg == 0) return false;
3687 updateValueMap(I, Reg);
3688 return true;
3689 }
3690 case Instruction::BitCast: {
3691 // Select SSE2/AVX bitcasts between 128/256/512 bit vector types.
3692 if (!Subtarget->hasSSE2())
3693 return false;
3694
3695 MVT SrcVT, DstVT;
3696 if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) ||
3697 !isTypeLegal(I->getType(), DstVT))
3698 return false;
3699
3700 // Only allow vectors that use xmm/ymm/zmm.
3701 if (!SrcVT.isVector() || !DstVT.isVector() ||
3702 SrcVT.getVectorElementType() == MVT::i1 ||
3703 DstVT.getVectorElementType() == MVT::i1)
3704 return false;
3705
3706 Register Reg = getRegForValue(I->getOperand(0));
3707 if (!Reg)
3708 return false;
3709
3710 // Emit a reg-reg copy so we don't propagate cached known bits information
3711 // with the wrong VT if we fall out of fast isel after selecting this.
3712 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
3713 Register ResultReg = createResultReg(DstClass);
3714 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3715 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
3716
3717 updateValueMap(I, ResultReg);
3718 return true;
3719 }
3720 }
3721
3722 return false;
3723}
3724
3725unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3726 if (VT > MVT::i64)
3727 return 0;
3728
3729 uint64_t Imm = CI->getZExtValue();
3730 if (Imm == 0) {
3731 Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3732 switch (VT.SimpleTy) {
3733 default: llvm_unreachable("Unexpected value type");
3734 case MVT::i1:
3735 case MVT::i8:
3736 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, X86::sub_8bit);
3737 case MVT::i16:
3738 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, X86::sub_16bit);
3739 case MVT::i32:
3740 return SrcReg;
3741 case MVT::i64: {
3742 Register ResultReg = createResultReg(&X86::GR64RegClass);
3743 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3744 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3745 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3746 return ResultReg;
3747 }
3748 }
3749 }
3750
3751 unsigned Opc = 0;
3752 switch (VT.SimpleTy) {
3753 default: llvm_unreachable("Unexpected value type");
3754 case MVT::i1:
3755 VT = MVT::i8;
3756 [[fallthrough]];
3757 case MVT::i8: Opc = X86::MOV8ri; break;
3758 case MVT::i16: Opc = X86::MOV16ri; break;
3759 case MVT::i32: Opc = X86::MOV32ri; break;
3760 case MVT::i64: {
3761 if (isUInt<32>(Imm))
3762 Opc = X86::MOV32ri64;
3763 else if (isInt<32>(Imm))
3764 Opc = X86::MOV64ri32;
3765 else
3766 Opc = X86::MOV64ri;
3767 break;
3768 }
3769 }
3770 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3771}
3772
3773unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3774 if (CFP->isNullValue())
3775 return fastMaterializeFloatZero(CFP);
3776
3777 // Can't handle alternate code models yet.
3778 CodeModel::Model CM = TM.getCodeModel();
3779 if (CM != CodeModel::Small && CM != CodeModel::Medium &&
3780 CM != CodeModel::Large)
3781 return 0;
3782
3783 // Get opcode and regclass of the output for the given load instruction.
3784 unsigned Opc = 0;
3785 bool HasSSE1 = Subtarget->hasSSE1();
3786 bool HasSSE2 = Subtarget->hasSSE2();
3787 bool HasAVX = Subtarget->hasAVX();
3788 bool HasAVX512 = Subtarget->hasAVX512();
3789 switch (VT.SimpleTy) {
3790 default: return 0;
3791 case MVT::f32:
3792 Opc = HasAVX512 ? X86::VMOVSSZrm_alt
3793 : HasAVX ? X86::VMOVSSrm_alt
3794 : HasSSE1 ? X86::MOVSSrm_alt
3795 : X86::LD_Fp32m;
3796 break;
3797 case MVT::f64:
3798 Opc = HasAVX512 ? X86::VMOVSDZrm_alt
3799 : HasAVX ? X86::VMOVSDrm_alt
3800 : HasSSE2 ? X86::MOVSDrm_alt
3801 : X86::LD_Fp64m;
3802 break;
3803 case MVT::f80:
3804 // No f80 support yet.
3805 return 0;
3806 }
3807
3808 // MachineConstantPool wants an explicit alignment.
3809 Align Alignment = DL.getPrefTypeAlign(CFP->getType());
3810
3811 // x86-32 PIC requires a PIC base register for constant pools.
3812 unsigned PICBase = 0;
3813 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3814 if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3815 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3816 else if (OpFlag == X86II::MO_GOTOFF)
3817 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3818 else if (Subtarget->is64Bit() && TM.getCodeModel() != CodeModel::Large)
3819 PICBase = X86::RIP;
3820
3821 // Create the load from the constant pool.
3822 unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment);
3823 Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
3824
3825 // Large code model only applies to 64-bit mode.
3826 if (Subtarget->is64Bit() && CM == CodeModel::Large) {
3827 Register AddrReg = createResultReg(&X86::GR64RegClass);
3828 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri),
3829 AddrReg)
3830 .addConstantPoolIndex(CPI, 0, OpFlag);
3831 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3832 TII.get(Opc), ResultReg);
3833 addRegReg(MIB, AddrReg, false, PICBase, false);
3834 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3836 MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment);
3837 MIB->addMemOperand(*FuncInfo.MF, MMO);
3838 return ResultReg;
3839 }
3840
3841 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3842 TII.get(Opc), ResultReg),
3843 CPI, PICBase, OpFlag);
3844 return ResultReg;
3845}
3846
3847unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3848 // Can't handle large GlobalValues yet.
3849 if (TM.getCodeModel() != CodeModel::Small &&
3850 TM.getCodeModel() != CodeModel::Medium)
3851 return 0;
3852 if (TM.isLargeGlobalValue(GV))
3853 return 0;
3854
3855 // Materialize addresses with LEA/MOV instructions.
3856 X86AddressMode AM;
3857 if (X86SelectAddress(GV, AM)) {
3858 // If the expression is just a basereg, then we're done, otherwise we need
3859 // to emit an LEA.
3861 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3862 return AM.Base.Reg;
3863
3864 Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3865 if (TM.getRelocationModel() == Reloc::Static &&
3866 TLI.getPointerTy(DL) == MVT::i64) {
3867 // The displacement code could be more than 32 bits away so we need to use
3868 // an instruction with a 64 bit immediate
3869 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri),
3870 ResultReg)
3871 .addGlobalAddress(GV);
3872 } else {
3873 unsigned Opc =
3874 TLI.getPointerTy(DL) == MVT::i32
3875 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3876 : X86::LEA64r;
3877 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3878 TII.get(Opc), ResultReg), AM);
3879 }
3880 return ResultReg;
3881 }
3882 return 0;
3883}
3884
3885unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3886 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3887
3888 // Only handle simple types.
3889 if (!CEVT.isSimple())
3890 return 0;
3891 MVT VT = CEVT.getSimpleVT();
3892
3893 if (const auto *CI = dyn_cast<ConstantInt>(C))
3894 return X86MaterializeInt(CI, VT);
3895 if (const auto *CFP = dyn_cast<ConstantFP>(C))
3896 return X86MaterializeFP(CFP, VT);
3897 if (const auto *GV = dyn_cast<GlobalValue>(C))
3898 return X86MaterializeGV(GV, VT);
3899 if (isa<UndefValue>(C)) {
3900 unsigned Opc = 0;
3901 switch (VT.SimpleTy) {
3902 default:
3903 break;
3904 case MVT::f32:
3905 if (!Subtarget->hasSSE1())
3906 Opc = X86::LD_Fp032;
3907 break;
3908 case MVT::f64:
3909 if (!Subtarget->hasSSE2())
3910 Opc = X86::LD_Fp064;
3911 break;
3912 case MVT::f80:
3913 Opc = X86::LD_Fp080;
3914 break;
3915 }
3916
3917 if (Opc) {
3918 Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3919 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
3920 ResultReg);
3921 return ResultReg;
3922 }
3923 }
3924
3925 return 0;
3926}
3927
3928unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3929 // Fail on dynamic allocas. At this point, getRegForValue has already
3930 // checked its CSE maps, so if we're here trying to handle a dynamic
3931 // alloca, we're not going to succeed. X86SelectAddress has a
3932 // check for dynamic allocas, because it's called directly from
3933 // various places, but targetMaterializeAlloca also needs a check
3934 // in order to avoid recursion between getRegForValue,
3935 // X86SelectAddrss, and targetMaterializeAlloca.
3936 if (!FuncInfo.StaticAllocaMap.count(C))
3937 return 0;
3938 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3939
3940 X86AddressMode AM;
3941 if (!X86SelectAddress(C, AM))
3942 return 0;
3943 unsigned Opc =
3944 TLI.getPointerTy(DL) == MVT::i32
3945 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3946 : X86::LEA64r;
3947 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3948 Register ResultReg = createResultReg(RC);
3949 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3950 TII.get(Opc), ResultReg), AM);
3951 return ResultReg;
3952}
3953
3954unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3955 MVT VT;
3956 if (!isTypeLegal(CF->getType(), VT))
3957 return 0;
3958
3959 // Get opcode and regclass for the given zero.
3960 bool HasSSE1 = Subtarget->hasSSE1();
3961 bool HasSSE2 = Subtarget->hasSSE2();
3962 bool HasAVX512 = Subtarget->hasAVX512();
3963 unsigned Opc = 0;
3964 switch (VT.SimpleTy) {
3965 default: return 0;
3966 case MVT::f16:
3967 Opc = HasAVX512 ? X86::AVX512_FsFLD0SH : X86::FsFLD0SH;
3968 break;
3969 case MVT::f32:
3970 Opc = HasAVX512 ? X86::AVX512_FsFLD0SS
3971 : HasSSE1 ? X86::FsFLD0SS
3972 : X86::LD_Fp032;
3973 break;
3974 case MVT::f64:
3975 Opc = HasAVX512 ? X86::AVX512_FsFLD0SD
3976 : HasSSE2 ? X86::FsFLD0SD
3977 : X86::LD_Fp064;
3978 break;
3979 case MVT::f80:
3980 // No f80 support yet.
3981 return 0;
3982 }
3983
3984 Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3985 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg);
3986 return ResultReg;
3987}
3988
3989
3990bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3991 const LoadInst *LI) {
3992 const Value *Ptr = LI->getPointerOperand();
3993 X86AddressMode AM;
3994 if (!X86SelectAddress(Ptr, AM))
3995 return false;
3996
3997 const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3998
3999 unsigned Size = DL.getTypeAllocSize(LI->getType());
4000
4002 AM.getFullAddress(AddrOps);
4003
4005 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(),
4006 /*AllowCommute=*/true);
4007 if (!Result)
4008 return false;
4009
4010 // The index register could be in the wrong register class. Unfortunately,
4011 // foldMemoryOperandImpl could have commuted the instruction so its not enough
4012 // to just look at OpNo + the offset to the index reg. We actually need to
4013 // scan the instruction to find the index reg and see if its the correct reg
4014 // class.
4015 unsigned OperandNo = 0;
4016 for (MachineInstr::mop_iterator I = Result->operands_begin(),
4017 E = Result->operands_end(); I != E; ++I, ++OperandNo) {
4018 MachineOperand &MO = *I;
4019 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
4020 continue;
4021 // Found the index reg, now try to rewrite it.
4022 Register IndexReg = constrainOperandRegClass(Result->getDesc(),
4023 MO.getReg(), OperandNo);
4024 if (IndexReg == MO.getReg())
4025 continue;
4026 MO.setReg(IndexReg);
4027 }
4028
4029 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
4030 Result->cloneInstrSymbols(*FuncInfo.MF, *MI);
4032 removeDeadCode(I, std::next(I));
4033 return true;
4034}
4035
4036unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
4037 const TargetRegisterClass *RC,
4038 unsigned Op0, unsigned Op1,
4039 unsigned Op2, unsigned Op3) {
4040 const MCInstrDesc &II = TII.get(MachineInstOpcode);
4041
4042 Register ResultReg = createResultReg(RC);
4043 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
4044 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
4045 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
4046 Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
4047
4048 if (II.getNumDefs() >= 1)
4049 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
4050 .addReg(Op0)
4051 .addReg(Op1)
4052 .addReg(Op2)
4053 .addReg(Op3);
4054 else {
4055 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
4056 .addReg(Op0)
4057 .addReg(Op1)
4058 .addReg(Op2)
4059 .addReg(Op3);
4060 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
4061 ResultReg)
4062 .addReg(II.implicit_defs()[0]);
4063 }
4064 return ResultReg;
4065}
4066
4067
4068namespace llvm {
4070 const TargetLibraryInfo *libInfo) {
4071 return new X86FastISel(funcInfo, libInfo);
4072 }
4073}
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
return RetTy
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
This file defines the FastISel class.
Hexagon Common GEP
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
unsigned const TargetRegisterInfo * TRI
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
unsigned OpIndex
static LLVM_ATTRIBUTE_ALWAYS_INLINE MVT::SimpleValueType getSimpleVT(const unsigned char *MatcherTable, unsigned &MatcherIndex)
getSimpleVT - Decode a value in MatcherTable, if it's a VBR encoded value, use GetVBR to decode it.
static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC)
If we have a comparison with RHS as the RHS of the comparison, return an opcode that works for the co...
#define GET_EGPR_IF_ENABLED(OPC)
static std::pair< unsigned, bool > getX86SSEConditionCode(CmpInst::Predicate Predicate)
static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, CallingConv::ID CC, const CallBase *CB)
static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget)
static void X86SelectAddress(const MachineInstr &I, const MachineRegisterInfo &MRI, X86AddressMode &AM)
Value * RHS
Value * LHS
an instruction to allocate memory on the stack
Definition: Instructions.h:63
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
InstListType::const_iterator const_iterator
Definition: BasicBlock.h:178
Conditional or Unconditional Branch instruction.
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
CCState - This class holds information needed while lowering arguments and return values.
CCValAssign - Represent assignment of one arg/retval to a location.
bool isRegLoc() const
Register getLocReg() const
LocInfo getLocInfo() const
bool isMemLoc() const
int64_t getLocMemOffset() const
unsigned getValNo() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1120
bool arg_empty() const
Definition: InstrTypes.h:1291
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:661
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:673
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:676
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:690
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:679
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:688
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:677
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:678
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:687
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:681
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:684
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:685
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:680
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:682
@ ICMP_NE
not equal
Definition: InstrTypes.h:695
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:689
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:686
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
Definition: InstrTypes.h:675
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:683
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition: InstrTypes.h:787
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:763
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:1108
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:271
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition: Constants.h:163
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:157
This is an important base class in LLVM.
Definition: Constant.h:42
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:373
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:90
bool isValidLocationForIntrinsic(const DILocation *DL) const
Check that a location is valid for this variable.
This class represents an Operation in the Expression.
This represents the llvm.dbg.declare instruction.
Value * getAddress() const
DILocalVariable * getVariable() const
DIExpression * getExpression() const
A debug info location.
Definition: DebugLoc.h:33
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition: FastISel.h:66
virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF)
Emit the floating-point constant +0.0 in a register using target- specific logic.
Definition: FastISel.h:480
virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II)
This method is called by target-independent code to do target- specific intrinsic lowering.
Definition: FastISel.cpp:1948
virtual bool tryToFoldLoadIntoMI(MachineInstr *, unsigned, const LoadInst *)
The specified machine instr operand is a vreg, and that vreg is being provided by the specified load ...
Definition: FastISel.h:300
virtual unsigned fastMaterializeConstant(const Constant *C)
Emit a constant in a register using target-specific logic, such as constant pool loads.
Definition: FastISel.h:473
virtual bool fastLowerCall(CallLoweringInfo &CLI)
This method is called by target-independent code to do target- specific call lowering.
Definition: FastISel.cpp:1946
virtual bool fastLowerArguments()
This method is called by target-independent code to do target- specific argument lowering.
Definition: FastISel.cpp:1944
virtual bool fastSelectInstruction(const Instruction *I)=0
This method is called by target-independent code when the normal FastISel process fails to select an ...
const TargetMachine & TM
Definition: FastISel.h:209
virtual unsigned fastMaterializeAlloca(const AllocaInst *C)
Emit an alloca address in a register using target-specific logic.
Definition: FastISel.h:476
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:933
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:475
bool isAtomic() const LLVM_READONLY
Return true if this instruction has an AtomicOrdering of unordered or higher.
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
An instruction for reading from memory.
Definition: Instructions.h:176
Value * getPointerOperand()
Definition: Instructions.h:255
Align getAlign() const
Return the alignment of the access that is being performed.
Definition: Instructions.h:211
bool usesWindowsCFI() const
Definition: MCAsmInfo.h:661
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
Machine Value Type.
SimpleValueType SimpleTy
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
MVT getVectorElementType() const
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
void setFrameAddressIsTaken(bool T)
void setStackProtectorIndex(int I)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addMetadata(const MDNode *MD) const
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addConstantPoolIndex(unsigned Idx, int Offset=0, unsigned TargetFlags=0) const
const MachineInstrBuilder & addRegMask(const uint32_t *Mask) const
const MachineInstrBuilder & addGlobalAddress(const GlobalValue *GV, int64_t Offset=0, unsigned TargetFlags=0) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:578
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:572
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
void setReg(Register Reg)
Change the register this operand corresponds to.
Register getReg() const
getReg - Returns the register number.
This class wraps the llvm.memcpy intrinsic.
Value * getLength() const
Value * getRawDest() const
unsigned getDestAddressSpace() const
bool isVolatile() const
This class wraps the llvm.memset and llvm.memset.inline intrinsics.
Value * getRawSource() const
Return the arguments to the instruction.
unsigned getSourceAddressSpace() const
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Return a value (possibly void), from a function.
size_t size() const
Definition: SmallVector.h:78
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
An instruction for storing to memory.
Definition: Instructions.h:292
Align getAlign() const
Definition: Instructions.h:333
Value * getValueOperand()
Definition: Instructions.h:378
Value * getPointerOperand()
Definition: Instructions.h:381
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition: DataLayout.h:567
TypeSize getElementOffset(unsigned Idx) const
Definition: DataLayout.h:596
Class to represent struct types.
Definition: DerivedTypes.h:218
Provides information about what library functions are available for the current target.
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
bool contains(Register Reg) const
Return true if the specified register is included in this register class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
bool isOSMSVCRT() const
Is this a "Windows" OS targeting a "MSVCRT.dll" environment.
Definition: Triple.h:678
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:270
bool isArrayTy() const
True if this is an instance of ArrayType.
Definition: Type.h:261
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:258
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:237
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
Value * getOperand(unsigned i) const
Definition: User.h:228
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1075
MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const override
Fold a load or store of the specified stack slot into the specified machine instruction for the speci...
X86MachineFunctionInfo - This class is derived from MachineFunction and contains private X86 target-s...
bool hasSSE1() const
Definition: X86Subtarget.h:193
bool isTargetMCU() const
Definition: X86Subtarget.h:297
const Triple & getTargetTriple() const
Definition: X86Subtarget.h:278
bool hasAVX512() const
Definition: X86Subtarget.h:201
bool hasSSE2() const
Definition: X86Subtarget.h:194
bool hasAVX() const
Definition: X86Subtarget.h:199
TypeSize getSequentialElementStride(const DataLayout &DL) const
const ParentTy * getParent() const
Definition: ilist_node.h:32
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ X86_64_SysV
The C convention as specified in the x86-64 supplement to the System V ABI, used on most non-Windows ...
Definition: CallingConv.h:151
@ HiPE
Used by the High-Performance Erlang Compiler (HiPE).
Definition: CallingConv.h:53
@ Swift
Calling convention for Swift.
Definition: CallingConv.h:69
@ CFGuard_Check
Special calling convention on Windows for calling the Control Guard Check ICall funtion.
Definition: CallingConv.h:82
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
Definition: CallingConv.h:50
@ X86_ThisCall
Similar to X86_StdCall.
Definition: CallingConv.h:122
@ X86_StdCall
stdcall is mostly used by the Win32 API.
Definition: CallingConv.h:99
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ Win64
The C convention as implemented on Windows/x86-64 and AArch64.
Definition: CallingConv.h:159
@ SwiftTail
This follows the Swift calling convention in how arguments are passed but guarantees tail calls will ...
Definition: CallingConv.h:87
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ X86_FastCall
'fast' analog of X86_StdCall.
Definition: CallingConv.h:103
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition: ISDOpcodes.h:40
@ ADD
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:246
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:814
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition: ISDOpcodes.h:954
@ SIGN_EXTEND
Conversion operators.
Definition: ISDOpcodes.h:805
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition: ISDOpcodes.h:635
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:811
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:709
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
Definition: ISDOpcodes.h:1602
Flag
These should be considered private to the implementation of the MCInstrDesc class.
Definition: MCInstrDesc.h:148
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
Definition: PPCPredicates.h:26
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Kill
The last use of a register.
Reg
All possible values of the reg field in the ModR/M byte.
@ MO_GOTPCREL_NORELAX
MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL relocations are guaranteed to...
Definition: X86BaseInfo.h:391
@ MO_GOTOFF
MO_GOTOFF - On a symbol operand this indicates that the immediate is the offset to the location of th...
Definition: X86BaseInfo.h:381
@ MO_COFFSTUB
MO_COFFSTUB - On a symbol operand "FOO", this indicates that the reference is actually to the "....
Definition: X86BaseInfo.h:488
@ MO_PLT
MO_PLT - On a symbol operand this indicates that the immediate is offset to the PLT entry of symbol n...
Definition: X86BaseInfo.h:396
@ MO_NO_FLAG
MO_NO_FLAG - No flag for the operand.
Definition: X86BaseInfo.h:363
@ MO_DLLIMPORT
MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the reference is actually to the "__imp...
Definition: X86BaseInfo.h:460
@ MO_PIC_BASE_OFFSET
MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the immediate should get the value of th...
Definition: X86BaseInfo.h:371
@ MO_GOTPCREL
MO_GOTPCREL - On a symbol operand this indicates that the immediate is offset to the GOT entry for th...
Definition: X86BaseInfo.h:387
@ AddrIndexReg
Definition: X86BaseInfo.h:31
@ LAST_VALID_COND
Definition: X86BaseInfo.h:94
std::pair< CondCode, bool > getX86ConditionCode(CmpInst::Predicate Predicate)
Return a pair of condition code for the given predicate and whether the instruction operands should b...
bool isCalleePop(CallingConv::ID CallingConv, bool is64Bit, bool IsVarArg, bool GuaranteeTCO)
Determines whether the callee is required to pop its own arguments.
FastISel * createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo)
unsigned getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand=false, bool HasNDD=false)
Return a cmov opcode for the given register size in bytes, and operand type.
StringMapEntry< std::atomic< TypeEntryBody * > > TypeEntry
Definition: TypePool.h:27
@ Emitted
Assigned address, still materializing.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
static bool isGlobalStubReference(unsigned char TargetFlag)
isGlobalStubReference - Return true if the specified TargetFlag operand is a reference to a stub for ...
Definition: X86InstrInfo.h:121
static bool isGlobalRelativeToPICBase(unsigned char TargetFlag)
isGlobalRelativeToPICBase - Return true if the specified global value reference is relative to a 32-b...
Definition: X86InstrInfo.h:139
Register constrainOperandRegClass(const MachineFunction &MF, const TargetRegisterInfo &TRI, MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, MachineInstr &InsertPt, const TargetRegisterClass &RegClass, MachineOperand &RegMO)
Constrain the Register operand OpIdx, so that it is now constrained to the TargetRegisterClass passed...
Definition: Utils.cpp:56
void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
auto successors(const MachineBasicBlock *BB)
bool RetCC_X86(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
static const MachineInstrBuilder & addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset=0, bool mem=true)
addFrameReference - This function is used to add a reference to the base of an abstract object on the...
static const MachineInstrBuilder & addFullAddress(const MachineInstrBuilder &MIB, const X86AddressMode &AM)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:420
static const MachineInstrBuilder & addConstantPoolReference(const MachineInstrBuilder &MIB, unsigned CPI, unsigned GlobalBaseReg, unsigned char OpFlags)
addConstantPoolReference - This function is used to add a reference to the base of a constant value s...
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
static const MachineInstrBuilder & addRegReg(const MachineInstrBuilder &MIB, unsigned Reg1, bool isKill1, unsigned Reg2, bool isKill2)
addRegReg - This function is used to add a memory reference of the form: [Reg + Reg].
unsigned getKillRegState(bool B)
gep_type_iterator gep_type_begin(const User *GEP)
bool CC_X86(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
static const MachineInstrBuilder & addDirectMem(const MachineInstrBuilder &MIB, unsigned Reg)
addDirectMem - This function is used to add a direct memory reference to the current instruction – th...
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition: Alignment.h:85
Description of the encoding of one expression Op.
Extended Value Type.
Definition: ValueTypes.h:35
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition: ValueTypes.h:137
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition: ValueTypes.h:279
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition: ValueTypes.h:295
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition: ValueTypes.h:368
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:311
static MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID=0)
Stack pointer relative access.
static MachinePointerInfo getConstantPool(MachineFunction &MF)
Return a MachinePointerInfo record that refers to the constant pool.
X86AddressMode - This struct holds a generalized full x86 address mode.
void getFullAddress(SmallVectorImpl< MachineOperand > &MO)
const GlobalValue * GV
enum llvm::X86AddressMode::@662 BaseType
union llvm::X86AddressMode::@663 Base