LLVM 17.0.0git
X86FastISel.cpp
Go to the documentation of this file.
1//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the X86-specific support for the FastISel class. Much
10// of the target-specific code is generated by tablegen in the file
11// X86GenFastISel.inc, which is #included here.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86CallingConv.h"
17#include "X86InstrBuilder.h"
18#include "X86InstrInfo.h"
20#include "X86RegisterInfo.h"
21#include "X86Subtarget.h"
22#include "X86TargetMachine.h"
29#include "llvm/IR/CallingConv.h"
30#include "llvm/IR/DebugInfo.h"
33#include "llvm/IR/GlobalAlias.h"
37#include "llvm/IR/IntrinsicsX86.h"
38#include "llvm/IR/Operator.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCSymbol.h"
43using namespace llvm;
44
45namespace {
46
47class X86FastISel final : public FastISel {
48 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
49 /// make the right decision when generating code for different targets.
50 const X86Subtarget *Subtarget;
51
52public:
53 explicit X86FastISel(FunctionLoweringInfo &funcInfo,
54 const TargetLibraryInfo *libInfo)
55 : FastISel(funcInfo, libInfo) {
56 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
57 }
58
59 bool fastSelectInstruction(const Instruction *I) override;
60
61 /// The specified machine instr operand is a vreg, and that
62 /// vreg is being provided by the specified load instruction. If possible,
63 /// try to fold the load as an operand to the instruction, returning true if
64 /// possible.
65 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
66 const LoadInst *LI) override;
67
68 bool fastLowerArguments() override;
69 bool fastLowerCall(CallLoweringInfo &CLI) override;
70 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
71
72#include "X86GenFastISel.inc"
73
74private:
75 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
76 const DebugLoc &DL);
77
78 bool X86FastEmitLoad(MVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
79 unsigned &ResultReg, unsigned Alignment = 1);
80
81 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
82 MachineMemOperand *MMO = nullptr, bool Aligned = false);
83 bool X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
84 MachineMemOperand *MMO = nullptr, bool Aligned = false);
85
86 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
87 unsigned &ResultReg);
88
89 bool X86SelectAddress(const Value *V, X86AddressMode &AM);
90 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
91
92 bool X86SelectLoad(const Instruction *I);
93
94 bool X86SelectStore(const Instruction *I);
95
96 bool X86SelectRet(const Instruction *I);
97
98 bool X86SelectCmp(const Instruction *I);
99
100 bool X86SelectZExt(const Instruction *I);
101
102 bool X86SelectSExt(const Instruction *I);
103
104 bool X86SelectBranch(const Instruction *I);
105
106 bool X86SelectShift(const Instruction *I);
107
108 bool X86SelectDivRem(const Instruction *I);
109
110 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
111
112 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
113
114 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
115
116 bool X86SelectSelect(const Instruction *I);
117
118 bool X86SelectTrunc(const Instruction *I);
119
120 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
121 const TargetRegisterClass *RC);
122
123 bool X86SelectFPExt(const Instruction *I);
124 bool X86SelectFPTrunc(const Instruction *I);
125 bool X86SelectSIToFP(const Instruction *I);
126 bool X86SelectUIToFP(const Instruction *I);
127 bool X86SelectIntToFP(const Instruction *I, bool IsSigned);
128
129 const X86InstrInfo *getInstrInfo() const {
130 return Subtarget->getInstrInfo();
131 }
132 const X86TargetMachine *getTargetMachine() const {
133 return static_cast<const X86TargetMachine *>(&TM);
134 }
135
136 bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
137
138 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
139 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
140 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
141 unsigned fastMaterializeConstant(const Constant *C) override;
142
143 unsigned fastMaterializeAlloca(const AllocaInst *C) override;
144
145 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
146
147 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
148 /// computed in an SSE register, not on the X87 floating point stack.
149 bool isScalarFPTypeInSSEReg(EVT VT) const {
150 return (VT == MVT::f64 && Subtarget->hasSSE2()) ||
151 (VT == MVT::f32 && Subtarget->hasSSE1()) || VT == MVT::f16;
152 }
153
154 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
155
156 bool IsMemcpySmall(uint64_t Len);
157
158 bool TryEmitSmallMemcpy(X86AddressMode DestAM,
159 X86AddressMode SrcAM, uint64_t Len);
160
161 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
162 const Value *Cond);
163
165 X86AddressMode &AM);
166
167 unsigned fastEmitInst_rrrr(unsigned MachineInstOpcode,
168 const TargetRegisterClass *RC, unsigned Op0,
169 unsigned Op1, unsigned Op2, unsigned Op3);
170};
171
172} // end anonymous namespace.
173
174static std::pair<unsigned, bool>
176 unsigned CC;
177 bool NeedSwap = false;
178
179 // SSE Condition code mapping:
180 // 0 - EQ
181 // 1 - LT
182 // 2 - LE
183 // 3 - UNORD
184 // 4 - NEQ
185 // 5 - NLT
186 // 6 - NLE
187 // 7 - ORD
188 switch (Predicate) {
189 default: llvm_unreachable("Unexpected predicate");
190 case CmpInst::FCMP_OEQ: CC = 0; break;
191 case CmpInst::FCMP_OGT: NeedSwap = true; [[fallthrough]];
192 case CmpInst::FCMP_OLT: CC = 1; break;
193 case CmpInst::FCMP_OGE: NeedSwap = true; [[fallthrough]];
194 case CmpInst::FCMP_OLE: CC = 2; break;
195 case CmpInst::FCMP_UNO: CC = 3; break;
196 case CmpInst::FCMP_UNE: CC = 4; break;
197 case CmpInst::FCMP_ULE: NeedSwap = true; [[fallthrough]];
198 case CmpInst::FCMP_UGE: CC = 5; break;
199 case CmpInst::FCMP_ULT: NeedSwap = true; [[fallthrough]];
200 case CmpInst::FCMP_UGT: CC = 6; break;
201 case CmpInst::FCMP_ORD: CC = 7; break;
202 case CmpInst::FCMP_UEQ: CC = 8; break;
203 case CmpInst::FCMP_ONE: CC = 12; break;
204 }
205
206 return std::make_pair(CC, NeedSwap);
207}
208
209/// Adds a complex addressing mode to the given machine instr builder.
210/// Note, this will constrain the index register. If its not possible to
211/// constrain the given index register, then a new one will be created. The
212/// IndexReg field of the addressing mode will be updated to match in this case.
214X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
215 X86AddressMode &AM) {
216 // First constrain the index register. It needs to be a GR64_NOSP.
218 MIB->getNumOperands() +
220 return ::addFullAddress(MIB, AM);
221}
222
223/// Check if it is possible to fold the condition from the XALU intrinsic
224/// into the user. The condition code will only be updated on success.
225bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
226 const Value *Cond) {
227 if (!isa<ExtractValueInst>(Cond))
228 return false;
229
230 const auto *EV = cast<ExtractValueInst>(Cond);
231 if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
232 return false;
233
234 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
235 MVT RetVT;
236 const Function *Callee = II->getCalledFunction();
237 Type *RetTy =
238 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
239 if (!isTypeLegal(RetTy, RetVT))
240 return false;
241
242 if (RetVT != MVT::i32 && RetVT != MVT::i64)
243 return false;
244
245 X86::CondCode TmpCC;
246 switch (II->getIntrinsicID()) {
247 default: return false;
248 case Intrinsic::sadd_with_overflow:
249 case Intrinsic::ssub_with_overflow:
250 case Intrinsic::smul_with_overflow:
251 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
252 case Intrinsic::uadd_with_overflow:
253 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
254 }
255
256 // Check if both instructions are in the same basic block.
257 if (II->getParent() != I->getParent())
258 return false;
259
260 // Make sure nothing is in the way
263 for (auto Itr = std::prev(Start); Itr != End; --Itr) {
264 // We only expect extractvalue instructions between the intrinsic and the
265 // instruction to be selected.
266 if (!isa<ExtractValueInst>(Itr))
267 return false;
268
269 // Check that the extractvalue operand comes from the intrinsic.
270 const auto *EVI = cast<ExtractValueInst>(Itr);
271 if (EVI->getAggregateOperand() != II)
272 return false;
273 }
274
275 // Make sure no potentially eflags clobbering phi moves can be inserted in
276 // between.
277 auto HasPhis = [](const BasicBlock *Succ) { return !Succ->phis().empty(); };
278 if (I->isTerminator() && llvm::any_of(successors(I), HasPhis))
279 return false;
280
281 // Make sure there are no potentially eflags clobbering constant
282 // materializations in between.
283 if (llvm::any_of(I->operands(), [](Value *V) { return isa<Constant>(V); }))
284 return false;
285
286 CC = TmpCC;
287 return true;
288}
289
290bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
291 EVT evt = TLI.getValueType(DL, Ty, /*AllowUnknown=*/true);
292 if (evt == MVT::Other || !evt.isSimple())
293 // Unhandled type. Halt "fast" selection and bail.
294 return false;
295
296 VT = evt.getSimpleVT();
297 // For now, require SSE/SSE2 for performing floating-point operations,
298 // since x87 requires additional work.
299 if (VT == MVT::f64 && !Subtarget->hasSSE2())
300 return false;
301 if (VT == MVT::f32 && !Subtarget->hasSSE1())
302 return false;
303 // Similarly, no f80 support yet.
304 if (VT == MVT::f80)
305 return false;
306 // We only handle legal types. For example, on x86-32 the instruction
307 // selector contains all of the 64-bit instructions from x86-64,
308 // under the assumption that i64 won't be used if the target doesn't
309 // support it.
310 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
311}
312
313/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
314/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
315/// Return true and the result register by reference if it is possible.
316bool X86FastISel::X86FastEmitLoad(MVT VT, X86AddressMode &AM,
317 MachineMemOperand *MMO, unsigned &ResultReg,
318 unsigned Alignment) {
319 bool HasSSE1 = Subtarget->hasSSE1();
320 bool HasSSE2 = Subtarget->hasSSE2();
321 bool HasSSE41 = Subtarget->hasSSE41();
322 bool HasAVX = Subtarget->hasAVX();
323 bool HasAVX2 = Subtarget->hasAVX2();
324 bool HasAVX512 = Subtarget->hasAVX512();
325 bool HasVLX = Subtarget->hasVLX();
326 bool IsNonTemporal = MMO && MMO->isNonTemporal();
327
328 // Treat i1 loads the same as i8 loads. Masking will be done when storing.
329 if (VT == MVT::i1)
330 VT = MVT::i8;
331
332 // Get opcode and regclass of the output for the given load instruction.
333 unsigned Opc = 0;
334 switch (VT.SimpleTy) {
335 default: return false;
336 case MVT::i8:
337 Opc = X86::MOV8rm;
338 break;
339 case MVT::i16:
340 Opc = X86::MOV16rm;
341 break;
342 case MVT::i32:
343 Opc = X86::MOV32rm;
344 break;
345 case MVT::i64:
346 // Must be in x86-64 mode.
347 Opc = X86::MOV64rm;
348 break;
349 case MVT::f32:
350 Opc = HasAVX512 ? X86::VMOVSSZrm_alt
351 : HasAVX ? X86::VMOVSSrm_alt
352 : HasSSE1 ? X86::MOVSSrm_alt
353 : X86::LD_Fp32m;
354 break;
355 case MVT::f64:
356 Opc = HasAVX512 ? X86::VMOVSDZrm_alt
357 : HasAVX ? X86::VMOVSDrm_alt
358 : HasSSE2 ? X86::MOVSDrm_alt
359 : X86::LD_Fp64m;
360 break;
361 case MVT::f80:
362 // No f80 support yet.
363 return false;
364 case MVT::v4f32:
365 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
366 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
367 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
368 else if (Alignment >= 16)
369 Opc = HasVLX ? X86::VMOVAPSZ128rm :
370 HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
371 else
372 Opc = HasVLX ? X86::VMOVUPSZ128rm :
373 HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
374 break;
375 case MVT::v2f64:
376 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
377 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
378 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
379 else if (Alignment >= 16)
380 Opc = HasVLX ? X86::VMOVAPDZ128rm :
381 HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
382 else
383 Opc = HasVLX ? X86::VMOVUPDZ128rm :
384 HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
385 break;
386 case MVT::v4i32:
387 case MVT::v2i64:
388 case MVT::v8i16:
389 case MVT::v16i8:
390 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
391 Opc = HasVLX ? X86::VMOVNTDQAZ128rm :
392 HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
393 else if (Alignment >= 16)
394 Opc = HasVLX ? X86::VMOVDQA64Z128rm :
395 HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
396 else
397 Opc = HasVLX ? X86::VMOVDQU64Z128rm :
398 HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
399 break;
400 case MVT::v8f32:
401 assert(HasAVX);
402 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
403 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
404 else if (IsNonTemporal && Alignment >= 16)
405 return false; // Force split for X86::VMOVNTDQArm
406 else if (Alignment >= 32)
407 Opc = HasVLX ? X86::VMOVAPSZ256rm : X86::VMOVAPSYrm;
408 else
409 Opc = HasVLX ? X86::VMOVUPSZ256rm : X86::VMOVUPSYrm;
410 break;
411 case MVT::v4f64:
412 assert(HasAVX);
413 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
414 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
415 else if (IsNonTemporal && Alignment >= 16)
416 return false; // Force split for X86::VMOVNTDQArm
417 else if (Alignment >= 32)
418 Opc = HasVLX ? X86::VMOVAPDZ256rm : X86::VMOVAPDYrm;
419 else
420 Opc = HasVLX ? X86::VMOVUPDZ256rm : X86::VMOVUPDYrm;
421 break;
422 case MVT::v8i32:
423 case MVT::v4i64:
424 case MVT::v16i16:
425 case MVT::v32i8:
426 assert(HasAVX);
427 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
428 Opc = HasVLX ? X86::VMOVNTDQAZ256rm : X86::VMOVNTDQAYrm;
429 else if (IsNonTemporal && Alignment >= 16)
430 return false; // Force split for X86::VMOVNTDQArm
431 else if (Alignment >= 32)
432 Opc = HasVLX ? X86::VMOVDQA64Z256rm : X86::VMOVDQAYrm;
433 else
434 Opc = HasVLX ? X86::VMOVDQU64Z256rm : X86::VMOVDQUYrm;
435 break;
436 case MVT::v16f32:
437 assert(HasAVX512);
438 if (IsNonTemporal && Alignment >= 64)
439 Opc = X86::VMOVNTDQAZrm;
440 else
441 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
442 break;
443 case MVT::v8f64:
444 assert(HasAVX512);
445 if (IsNonTemporal && Alignment >= 64)
446 Opc = X86::VMOVNTDQAZrm;
447 else
448 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
449 break;
450 case MVT::v8i64:
451 case MVT::v16i32:
452 case MVT::v32i16:
453 case MVT::v64i8:
454 assert(HasAVX512);
455 // Note: There are a lot more choices based on type with AVX-512, but
456 // there's really no advantage when the load isn't masked.
457 if (IsNonTemporal && Alignment >= 64)
458 Opc = X86::VMOVNTDQAZrm;
459 else
460 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
461 break;
462 }
463
464 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
465
466 ResultReg = createResultReg(RC);
468 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg);
469 addFullAddress(MIB, AM);
470 if (MMO)
471 MIB->addMemOperand(*FuncInfo.MF, MMO);
472 return true;
473}
474
475/// X86FastEmitStore - Emit a machine instruction to store a value Val of
476/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
477/// and a displacement offset, or a GlobalAddress,
478/// i.e. V. Return true if it is possible.
479bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, X86AddressMode &AM,
480 MachineMemOperand *MMO, bool Aligned) {
481 bool HasSSE1 = Subtarget->hasSSE1();
482 bool HasSSE2 = Subtarget->hasSSE2();
483 bool HasSSE4A = Subtarget->hasSSE4A();
484 bool HasAVX = Subtarget->hasAVX();
485 bool HasAVX512 = Subtarget->hasAVX512();
486 bool HasVLX = Subtarget->hasVLX();
487 bool IsNonTemporal = MMO && MMO->isNonTemporal();
488
489 // Get opcode and regclass of the output for the given store instruction.
490 unsigned Opc = 0;
491 switch (VT.getSimpleVT().SimpleTy) {
492 case MVT::f80: // No f80 support yet.
493 default: return false;
494 case MVT::i1: {
495 // Mask out all but lowest bit.
496 Register AndResult = createResultReg(&X86::GR8RegClass);
497 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
498 TII.get(X86::AND8ri), AndResult)
499 .addReg(ValReg).addImm(1);
500 ValReg = AndResult;
501 [[fallthrough]]; // handle i1 as i8.
502 }
503 case MVT::i8: Opc = X86::MOV8mr; break;
504 case MVT::i16: Opc = X86::MOV16mr; break;
505 case MVT::i32:
506 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
507 break;
508 case MVT::i64:
509 // Must be in x86-64 mode.
510 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
511 break;
512 case MVT::f32:
513 if (HasSSE1) {
514 if (IsNonTemporal && HasSSE4A)
515 Opc = X86::MOVNTSS;
516 else
517 Opc = HasAVX512 ? X86::VMOVSSZmr :
518 HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
519 } else
520 Opc = X86::ST_Fp32m;
521 break;
522 case MVT::f64:
523 if (HasSSE2) {
524 if (IsNonTemporal && HasSSE4A)
525 Opc = X86::MOVNTSD;
526 else
527 Opc = HasAVX512 ? X86::VMOVSDZmr :
528 HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
529 } else
530 Opc = X86::ST_Fp64m;
531 break;
532 case MVT::x86mmx:
533 Opc = (IsNonTemporal && HasSSE1) ? X86::MMX_MOVNTQmr : X86::MMX_MOVQ64mr;
534 break;
535 case MVT::v4f32:
536 if (Aligned) {
537 if (IsNonTemporal)
538 Opc = HasVLX ? X86::VMOVNTPSZ128mr :
539 HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
540 else
541 Opc = HasVLX ? X86::VMOVAPSZ128mr :
542 HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
543 } else
544 Opc = HasVLX ? X86::VMOVUPSZ128mr :
545 HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
546 break;
547 case MVT::v2f64:
548 if (Aligned) {
549 if (IsNonTemporal)
550 Opc = HasVLX ? X86::VMOVNTPDZ128mr :
551 HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
552 else
553 Opc = HasVLX ? X86::VMOVAPDZ128mr :
554 HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
555 } else
556 Opc = HasVLX ? X86::VMOVUPDZ128mr :
557 HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
558 break;
559 case MVT::v4i32:
560 case MVT::v2i64:
561 case MVT::v8i16:
562 case MVT::v16i8:
563 if (Aligned) {
564 if (IsNonTemporal)
565 Opc = HasVLX ? X86::VMOVNTDQZ128mr :
566 HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
567 else
568 Opc = HasVLX ? X86::VMOVDQA64Z128mr :
569 HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
570 } else
571 Opc = HasVLX ? X86::VMOVDQU64Z128mr :
572 HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
573 break;
574 case MVT::v8f32:
575 assert(HasAVX);
576 if (Aligned) {
577 if (IsNonTemporal)
578 Opc = HasVLX ? X86::VMOVNTPSZ256mr : X86::VMOVNTPSYmr;
579 else
580 Opc = HasVLX ? X86::VMOVAPSZ256mr : X86::VMOVAPSYmr;
581 } else
582 Opc = HasVLX ? X86::VMOVUPSZ256mr : X86::VMOVUPSYmr;
583 break;
584 case MVT::v4f64:
585 assert(HasAVX);
586 if (Aligned) {
587 if (IsNonTemporal)
588 Opc = HasVLX ? X86::VMOVNTPDZ256mr : X86::VMOVNTPDYmr;
589 else
590 Opc = HasVLX ? X86::VMOVAPDZ256mr : X86::VMOVAPDYmr;
591 } else
592 Opc = HasVLX ? X86::VMOVUPDZ256mr : X86::VMOVUPDYmr;
593 break;
594 case MVT::v8i32:
595 case MVT::v4i64:
596 case MVT::v16i16:
597 case MVT::v32i8:
598 assert(HasAVX);
599 if (Aligned) {
600 if (IsNonTemporal)
601 Opc = HasVLX ? X86::VMOVNTDQZ256mr : X86::VMOVNTDQYmr;
602 else
603 Opc = HasVLX ? X86::VMOVDQA64Z256mr : X86::VMOVDQAYmr;
604 } else
605 Opc = HasVLX ? X86::VMOVDQU64Z256mr : X86::VMOVDQUYmr;
606 break;
607 case MVT::v16f32:
608 assert(HasAVX512);
609 if (Aligned)
610 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
611 else
612 Opc = X86::VMOVUPSZmr;
613 break;
614 case MVT::v8f64:
615 assert(HasAVX512);
616 if (Aligned) {
617 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
618 } else
619 Opc = X86::VMOVUPDZmr;
620 break;
621 case MVT::v8i64:
622 case MVT::v16i32:
623 case MVT::v32i16:
624 case MVT::v64i8:
625 assert(HasAVX512);
626 // Note: There are a lot more choices based on type with AVX-512, but
627 // there's really no advantage when the store isn't masked.
628 if (Aligned)
629 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
630 else
631 Opc = X86::VMOVDQU64Zmr;
632 break;
633 }
634
635 const MCInstrDesc &Desc = TII.get(Opc);
636 // Some of the instructions in the previous switch use FR128 instead
637 // of FR32 for ValReg. Make sure the register we feed the instruction
638 // matches its register class constraints.
639 // Note: This is fine to do a copy from FR32 to FR128, this is the
640 // same registers behind the scene and actually why it did not trigger
641 // any bugs before.
642 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
644 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, Desc);
645 addFullAddress(MIB, AM).addReg(ValReg);
646 if (MMO)
647 MIB->addMemOperand(*FuncInfo.MF, MMO);
648
649 return true;
650}
651
652bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
653 X86AddressMode &AM,
654 MachineMemOperand *MMO, bool Aligned) {
655 // Handle 'null' like i32/i64 0.
656 if (isa<ConstantPointerNull>(Val))
657 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
658
659 // If this is a store of a simple constant, fold the constant into the store.
660 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
661 unsigned Opc = 0;
662 bool Signed = true;
663 switch (VT.getSimpleVT().SimpleTy) {
664 default: break;
665 case MVT::i1:
666 Signed = false;
667 [[fallthrough]]; // Handle as i8.
668 case MVT::i8: Opc = X86::MOV8mi; break;
669 case MVT::i16: Opc = X86::MOV16mi; break;
670 case MVT::i32: Opc = X86::MOV32mi; break;
671 case MVT::i64:
672 // Must be a 32-bit sign extended value.
673 if (isInt<32>(CI->getSExtValue()))
674 Opc = X86::MOV64mi32;
675 break;
676 }
677
678 if (Opc) {
680 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc));
681 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
682 : CI->getZExtValue());
683 if (MMO)
684 MIB->addMemOperand(*FuncInfo.MF, MMO);
685 return true;
686 }
687 }
688
689 Register ValReg = getRegForValue(Val);
690 if (ValReg == 0)
691 return false;
692
693 return X86FastEmitStore(VT, ValReg, AM, MMO, Aligned);
694}
695
696/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
697/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
698/// ISD::SIGN_EXTEND).
699bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
700 unsigned Src, EVT SrcVT,
701 unsigned &ResultReg) {
702 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src);
703 if (RR == 0)
704 return false;
705
706 ResultReg = RR;
707 return true;
708}
709
710bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
711 // Handle constant address.
712 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
713 // Can't handle alternate code models yet.
714 if (TM.getCodeModel() != CodeModel::Small)
715 return false;
716
717 // Can't handle TLS yet.
718 if (GV->isThreadLocal())
719 return false;
720
721 // Can't handle !absolute_symbol references yet.
722 if (GV->isAbsoluteSymbolRef())
723 return false;
724
725 // RIP-relative addresses can't have additional register operands, so if
726 // we've already folded stuff into the addressing mode, just force the
727 // global value into its own register, which we can use as the basereg.
728 if (!Subtarget->isPICStyleRIPRel() ||
729 (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
730 // Okay, we've committed to selecting this global. Set up the address.
731 AM.GV = GV;
732
733 // Allow the subtarget to classify the global.
734 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
735
736 // If this reference is relative to the pic base, set it now.
737 if (isGlobalRelativeToPICBase(GVFlags)) {
738 // FIXME: How do we know Base.Reg is free??
739 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
740 }
741
742 // Unless the ABI requires an extra load, return a direct reference to
743 // the global.
744 if (!isGlobalStubReference(GVFlags)) {
745 if (Subtarget->isPICStyleRIPRel()) {
746 // Use rip-relative addressing if we can. Above we verified that the
747 // base and index registers are unused.
748 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
749 AM.Base.Reg = X86::RIP;
750 }
751 AM.GVOpFlags = GVFlags;
752 return true;
753 }
754
755 // Ok, we need to do a load from a stub. If we've already loaded from
756 // this stub, reuse the loaded pointer, otherwise emit the load now.
757 DenseMap<const Value *, Register>::iterator I = LocalValueMap.find(V);
758 Register LoadReg;
759 if (I != LocalValueMap.end() && I->second) {
760 LoadReg = I->second;
761 } else {
762 // Issue load from stub.
763 unsigned Opc = 0;
764 const TargetRegisterClass *RC = nullptr;
765 X86AddressMode StubAM;
766 StubAM.Base.Reg = AM.Base.Reg;
767 StubAM.GV = GV;
768 StubAM.GVOpFlags = GVFlags;
769
770 // Prepare for inserting code in the local-value area.
771 SavePoint SaveInsertPt = enterLocalValueArea();
772
773 if (TLI.getPointerTy(DL) == MVT::i64) {
774 Opc = X86::MOV64rm;
775 RC = &X86::GR64RegClass;
776 } else {
777 Opc = X86::MOV32rm;
778 RC = &X86::GR32RegClass;
779 }
780
781 if (Subtarget->isPICStyleRIPRel() || GVFlags == X86II::MO_GOTPCREL ||
783 StubAM.Base.Reg = X86::RIP;
784
785 LoadReg = createResultReg(RC);
786 MachineInstrBuilder LoadMI =
787 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), LoadReg);
788 addFullAddress(LoadMI, StubAM);
789
790 // Ok, back to normal mode.
791 leaveLocalValueArea(SaveInsertPt);
792
793 // Prevent loading GV stub multiple times in same MBB.
794 LocalValueMap[V] = LoadReg;
795 }
796
797 // Now construct the final address. Note that the Disp, Scale,
798 // and Index values may already be set here.
799 AM.Base.Reg = LoadReg;
800 AM.GV = nullptr;
801 return true;
802 }
803 }
804
805 // If all else fails, try to materialize the value in a register.
806 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
807 if (AM.Base.Reg == 0) {
808 AM.Base.Reg = getRegForValue(V);
809 return AM.Base.Reg != 0;
810 }
811 if (AM.IndexReg == 0) {
812 assert(AM.Scale == 1 && "Scale with no index!");
813 AM.IndexReg = getRegForValue(V);
814 return AM.IndexReg != 0;
815 }
816 }
817
818 return false;
819}
820
821/// X86SelectAddress - Attempt to fill in an address from the given value.
822///
823bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
825redo_gep:
826 const User *U = nullptr;
827 unsigned Opcode = Instruction::UserOp1;
828 if (const Instruction *I = dyn_cast<Instruction>(V)) {
829 // Don't walk into other basic blocks; it's possible we haven't
830 // visited them yet, so the instructions may not yet be assigned
831 // virtual registers.
832 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
833 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
834 Opcode = I->getOpcode();
835 U = I;
836 }
837 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
838 Opcode = C->getOpcode();
839 U = C;
840 }
841
842 if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
843 if (Ty->getAddressSpace() > 255)
844 // Fast instruction selection doesn't support the special
845 // address spaces.
846 return false;
847
848 switch (Opcode) {
849 default: break;
850 case Instruction::BitCast:
851 // Look past bitcasts.
852 return X86SelectAddress(U->getOperand(0), AM);
853
854 case Instruction::IntToPtr:
855 // Look past no-op inttoptrs.
856 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
857 TLI.getPointerTy(DL))
858 return X86SelectAddress(U->getOperand(0), AM);
859 break;
860
861 case Instruction::PtrToInt:
862 // Look past no-op ptrtoints.
863 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
864 return X86SelectAddress(U->getOperand(0), AM);
865 break;
866
867 case Instruction::Alloca: {
868 // Do static allocas.
869 const AllocaInst *A = cast<AllocaInst>(V);
871 FuncInfo.StaticAllocaMap.find(A);
872 if (SI != FuncInfo.StaticAllocaMap.end()) {
874 AM.Base.FrameIndex = SI->second;
875 return true;
876 }
877 break;
878 }
879
880 case Instruction::Add: {
881 // Adds of constants are common and easy enough.
882 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
883 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
884 // They have to fit in the 32-bit signed displacement field though.
885 if (isInt<32>(Disp)) {
886 AM.Disp = (uint32_t)Disp;
887 return X86SelectAddress(U->getOperand(0), AM);
888 }
889 }
890 break;
891 }
892
893 case Instruction::GetElementPtr: {
894 X86AddressMode SavedAM = AM;
895
896 // Pattern-match simple GEPs.
897 uint64_t Disp = (int32_t)AM.Disp;
898 unsigned IndexReg = AM.IndexReg;
899 unsigned Scale = AM.Scale;
901 // Iterate through the indices, folding what we can. Constants can be
902 // folded, and one dynamic index can be handled, if the scale is supported.
903 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
904 i != e; ++i, ++GTI) {
905 const Value *Op = *i;
906 if (StructType *STy = GTI.getStructTypeOrNull()) {
907 const StructLayout *SL = DL.getStructLayout(STy);
908 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
909 continue;
910 }
911
912 // A array/variable index is always of the form i*S where S is the
913 // constant scale size. See if we can push the scale into immediates.
914 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
915 for (;;) {
916 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
917 // Constant-offset addressing.
918 Disp += CI->getSExtValue() * S;
919 break;
920 }
921 if (canFoldAddIntoGEP(U, Op)) {
922 // A compatible add with a constant operand. Fold the constant.
923 ConstantInt *CI =
924 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
925 Disp += CI->getSExtValue() * S;
926 // Iterate on the other operand.
927 Op = cast<AddOperator>(Op)->getOperand(0);
928 continue;
929 }
930 if (IndexReg == 0 &&
931 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
932 (S == 1 || S == 2 || S == 4 || S == 8)) {
933 // Scaled-index addressing.
934 Scale = S;
935 IndexReg = getRegForGEPIndex(Op);
936 if (IndexReg == 0)
937 return false;
938 break;
939 }
940 // Unsupported.
941 goto unsupported_gep;
942 }
943 }
944
945 // Check for displacement overflow.
946 if (!isInt<32>(Disp))
947 break;
948
949 AM.IndexReg = IndexReg;
950 AM.Scale = Scale;
951 AM.Disp = (uint32_t)Disp;
952 GEPs.push_back(V);
953
954 if (const GetElementPtrInst *GEP =
955 dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
956 // Ok, the GEP indices were covered by constant-offset and scaled-index
957 // addressing. Update the address state and move on to examining the base.
958 V = GEP;
959 goto redo_gep;
960 } else if (X86SelectAddress(U->getOperand(0), AM)) {
961 return true;
962 }
963
964 // If we couldn't merge the gep value into this addr mode, revert back to
965 // our address and just match the value instead of completely failing.
966 AM = SavedAM;
967
968 for (const Value *I : reverse(GEPs))
969 if (handleConstantAddresses(I, AM))
970 return true;
971
972 return false;
973 unsupported_gep:
974 // Ok, the GEP indices weren't all covered.
975 break;
976 }
977 }
978
979 return handleConstantAddresses(V, AM);
980}
981
982/// X86SelectCallAddress - Attempt to fill in an address from the given value.
983///
984bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
985 const User *U = nullptr;
986 unsigned Opcode = Instruction::UserOp1;
987 const Instruction *I = dyn_cast<Instruction>(V);
988 // Record if the value is defined in the same basic block.
989 //
990 // This information is crucial to know whether or not folding an
991 // operand is valid.
992 // Indeed, FastISel generates or reuses a virtual register for all
993 // operands of all instructions it selects. Obviously, the definition and
994 // its uses must use the same virtual register otherwise the produced
995 // code is incorrect.
996 // Before instruction selection, FunctionLoweringInfo::set sets the virtual
997 // registers for values that are alive across basic blocks. This ensures
998 // that the values are consistently set between across basic block, even
999 // if different instruction selection mechanisms are used (e.g., a mix of
1000 // SDISel and FastISel).
1001 // For values local to a basic block, the instruction selection process
1002 // generates these virtual registers with whatever method is appropriate
1003 // for its needs. In particular, FastISel and SDISel do not share the way
1004 // local virtual registers are set.
1005 // Therefore, this is impossible (or at least unsafe) to share values
1006 // between basic blocks unless they use the same instruction selection
1007 // method, which is not guarantee for X86.
1008 // Moreover, things like hasOneUse could not be used accurately, if we
1009 // allow to reference values across basic blocks whereas they are not
1010 // alive across basic blocks initially.
1011 bool InMBB = true;
1012 if (I) {
1013 Opcode = I->getOpcode();
1014 U = I;
1015 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1016 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1017 Opcode = C->getOpcode();
1018 U = C;
1019 }
1020
1021 switch (Opcode) {
1022 default: break;
1023 case Instruction::BitCast:
1024 // Look past bitcasts if its operand is in the same BB.
1025 if (InMBB)
1026 return X86SelectCallAddress(U->getOperand(0), AM);
1027 break;
1028
1029 case Instruction::IntToPtr:
1030 // Look past no-op inttoptrs if its operand is in the same BB.
1031 if (InMBB &&
1032 TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1033 TLI.getPointerTy(DL))
1034 return X86SelectCallAddress(U->getOperand(0), AM);
1035 break;
1036
1037 case Instruction::PtrToInt:
1038 // Look past no-op ptrtoints if its operand is in the same BB.
1039 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1040 return X86SelectCallAddress(U->getOperand(0), AM);
1041 break;
1042 }
1043
1044 // Handle constant address.
1045 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1046 // Can't handle alternate code models yet.
1047 if (TM.getCodeModel() != CodeModel::Small)
1048 return false;
1049
1050 // RIP-relative addresses can't have additional register operands.
1051 if (Subtarget->isPICStyleRIPRel() &&
1052 (AM.Base.Reg != 0 || AM.IndexReg != 0))
1053 return false;
1054
1055 // Can't handle TLS.
1056 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1057 if (GVar->isThreadLocal())
1058 return false;
1059
1060 // Okay, we've committed to selecting this global. Set up the basic address.
1061 AM.GV = GV;
1062
1063 // Return a direct reference to the global. Fastisel can handle calls to
1064 // functions that require loads, such as dllimport and nonlazybind
1065 // functions.
1066 if (Subtarget->isPICStyleRIPRel()) {
1067 // Use rip-relative addressing if we can. Above we verified that the
1068 // base and index registers are unused.
1069 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1070 AM.Base.Reg = X86::RIP;
1071 } else {
1072 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1073 }
1074
1075 return true;
1076 }
1077
1078 // If all else fails, try to materialize the value in a register.
1079 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1080 auto GetCallRegForValue = [this](const Value *V) {
1081 Register Reg = getRegForValue(V);
1082
1083 // In 64-bit mode, we need a 64-bit register even if pointers are 32 bits.
1084 if (Reg && Subtarget->isTarget64BitILP32()) {
1085 Register CopyReg = createResultReg(&X86::GR32RegClass);
1086 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32rr),
1087 CopyReg)
1088 .addReg(Reg);
1089
1090 Register ExtReg = createResultReg(&X86::GR64RegClass);
1091 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1092 TII.get(TargetOpcode::SUBREG_TO_REG), ExtReg)
1093 .addImm(0)
1094 .addReg(CopyReg)
1095 .addImm(X86::sub_32bit);
1096 Reg = ExtReg;
1097 }
1098
1099 return Reg;
1100 };
1101
1102 if (AM.Base.Reg == 0) {
1103 AM.Base.Reg = GetCallRegForValue(V);
1104 return AM.Base.Reg != 0;
1105 }
1106 if (AM.IndexReg == 0) {
1107 assert(AM.Scale == 1 && "Scale with no index!");
1108 AM.IndexReg = GetCallRegForValue(V);
1109 return AM.IndexReg != 0;
1110 }
1111 }
1112
1113 return false;
1114}
1115
1116
1117/// X86SelectStore - Select and emit code to implement store instructions.
1118bool X86FastISel::X86SelectStore(const Instruction *I) {
1119 // Atomic stores need special handling.
1120 const StoreInst *S = cast<StoreInst>(I);
1121
1122 if (S->isAtomic())
1123 return false;
1124
1125 const Value *PtrV = I->getOperand(1);
1126 if (TLI.supportSwiftError()) {
1127 // Swifterror values can come from either a function parameter with
1128 // swifterror attribute or an alloca with swifterror attribute.
1129 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1130 if (Arg->hasSwiftErrorAttr())
1131 return false;
1132 }
1133
1134 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1135 if (Alloca->isSwiftError())
1136 return false;
1137 }
1138 }
1139
1140 const Value *Val = S->getValueOperand();
1141 const Value *Ptr = S->getPointerOperand();
1142
1143 MVT VT;
1144 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1145 return false;
1146
1147 Align Alignment = S->getAlign();
1148 Align ABIAlignment = DL.getABITypeAlign(Val->getType());
1149 bool Aligned = Alignment >= ABIAlignment;
1150
1151 X86AddressMode AM;
1152 if (!X86SelectAddress(Ptr, AM))
1153 return false;
1154
1155 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1156}
1157
1158/// X86SelectRet - Select and emit code to implement ret instructions.
1159bool X86FastISel::X86SelectRet(const Instruction *I) {
1160 const ReturnInst *Ret = cast<ReturnInst>(I);
1161 const Function &F = *I->getParent()->getParent();
1162 const X86MachineFunctionInfo *X86MFInfo =
1163 FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1164
1165 if (!FuncInfo.CanLowerReturn)
1166 return false;
1167
1168 if (TLI.supportSwiftError() &&
1169 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1170 return false;
1171
1172 if (TLI.supportSplitCSR(FuncInfo.MF))
1173 return false;
1174
1175 CallingConv::ID CC = F.getCallingConv();
1176 if (CC != CallingConv::C &&
1177 CC != CallingConv::Fast &&
1178 CC != CallingConv::Tail &&
1185 return false;
1186
1187 // Don't handle popping bytes if they don't fit the ret's immediate.
1188 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1189 return false;
1190
1191 // fastcc with -tailcallopt is intended to provide a guaranteed
1192 // tail call optimization. Fastisel doesn't know how to do that.
1193 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
1195 return false;
1196
1197 // Let SDISel handle vararg functions.
1198 if (F.isVarArg())
1199 return false;
1200
1201 // Build a list of return value registers.
1203
1204 if (Ret->getNumOperands() > 0) {
1206 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1207
1208 // Analyze operands of the call, assigning locations to each operand.
1210 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1211 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1212
1213 const Value *RV = Ret->getOperand(0);
1214 Register Reg = getRegForValue(RV);
1215 if (Reg == 0)
1216 return false;
1217
1218 // Only handle a single return value for now.
1219 if (ValLocs.size() != 1)
1220 return false;
1221
1222 CCValAssign &VA = ValLocs[0];
1223
1224 // Don't bother handling odd stuff for now.
1225 if (VA.getLocInfo() != CCValAssign::Full)
1226 return false;
1227 // Only handle register returns for now.
1228 if (!VA.isRegLoc())
1229 return false;
1230
1231 // The calling-convention tables for x87 returns don't tell
1232 // the whole story.
1233 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1234 return false;
1235
1236 unsigned SrcReg = Reg + VA.getValNo();
1237 EVT SrcVT = TLI.getValueType(DL, RV->getType());
1238 EVT DstVT = VA.getValVT();
1239 // Special handling for extended integers.
1240 if (SrcVT != DstVT) {
1241 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1242 return false;
1243
1244 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1245 return false;
1246
1247 assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1248
1249 if (SrcVT == MVT::i1) {
1250 if (Outs[0].Flags.isSExt())
1251 return false;
1252 // TODO
1253 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg);
1254 SrcVT = MVT::i8;
1255 }
1256 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1258 // TODO
1259 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg);
1260 }
1261
1262 // Make the copy.
1263 Register DstReg = VA.getLocReg();
1264 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1265 // Avoid a cross-class copy. This is very unlikely.
1266 if (!SrcRC->contains(DstReg))
1267 return false;
1268 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1269 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1270
1271 // Add register to return instruction.
1272 RetRegs.push_back(VA.getLocReg());
1273 }
1274
1275 // Swift calling convention does not require we copy the sret argument
1276 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1277
1278 // All x86 ABIs require that for returning structs by value we copy
1279 // the sret argument into %rax/%eax (depending on ABI) for the return.
1280 // We saved the argument into a virtual register in the entry block,
1281 // so now we copy the value out and into %rax/%eax.
1282 if (F.hasStructRetAttr() && CC != CallingConv::Swift &&
1284 Register Reg = X86MFInfo->getSRetReturnReg();
1285 assert(Reg &&
1286 "SRetReturnReg should have been set in LowerFormalArguments()!");
1287 unsigned RetReg = Subtarget->isTarget64BitLP64() ? X86::RAX : X86::EAX;
1288 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1289 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1290 RetRegs.push_back(RetReg);
1291 }
1292
1293 // Now emit the RET.
1295 if (X86MFInfo->getBytesToPopOnReturn()) {
1296 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1297 TII.get(Subtarget->is64Bit() ? X86::RETI64 : X86::RETI32))
1298 .addImm(X86MFInfo->getBytesToPopOnReturn());
1299 } else {
1300 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1301 TII.get(Subtarget->is64Bit() ? X86::RET64 : X86::RET32));
1302 }
1303 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1304 MIB.addReg(RetRegs[i], RegState::Implicit);
1305 return true;
1306}
1307
1308/// X86SelectLoad - Select and emit code to implement load instructions.
1309///
1310bool X86FastISel::X86SelectLoad(const Instruction *I) {
1311 const LoadInst *LI = cast<LoadInst>(I);
1312
1313 // Atomic loads need special handling.
1314 if (LI->isAtomic())
1315 return false;
1316
1317 const Value *SV = I->getOperand(0);
1318 if (TLI.supportSwiftError()) {
1319 // Swifterror values can come from either a function parameter with
1320 // swifterror attribute or an alloca with swifterror attribute.
1321 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1322 if (Arg->hasSwiftErrorAttr())
1323 return false;
1324 }
1325
1326 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1327 if (Alloca->isSwiftError())
1328 return false;
1329 }
1330 }
1331
1332 MVT VT;
1333 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1334 return false;
1335
1336 const Value *Ptr = LI->getPointerOperand();
1337
1338 X86AddressMode AM;
1339 if (!X86SelectAddress(Ptr, AM))
1340 return false;
1341
1342 unsigned ResultReg = 0;
1343 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1344 LI->getAlign().value()))
1345 return false;
1346
1347 updateValueMap(I, ResultReg);
1348 return true;
1349}
1350
1351static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1352 bool HasAVX512 = Subtarget->hasAVX512();
1353 bool HasAVX = Subtarget->hasAVX();
1354 bool HasSSE1 = Subtarget->hasSSE1();
1355 bool HasSSE2 = Subtarget->hasSSE2();
1356
1357 switch (VT.getSimpleVT().SimpleTy) {
1358 default: return 0;
1359 case MVT::i8: return X86::CMP8rr;
1360 case MVT::i16: return X86::CMP16rr;
1361 case MVT::i32: return X86::CMP32rr;
1362 case MVT::i64: return X86::CMP64rr;
1363 case MVT::f32:
1364 return HasAVX512 ? X86::VUCOMISSZrr
1365 : HasAVX ? X86::VUCOMISSrr
1366 : HasSSE1 ? X86::UCOMISSrr
1367 : 0;
1368 case MVT::f64:
1369 return HasAVX512 ? X86::VUCOMISDZrr
1370 : HasAVX ? X86::VUCOMISDrr
1371 : HasSSE2 ? X86::UCOMISDrr
1372 : 0;
1373 }
1374}
1375
1376/// If we have a comparison with RHS as the RHS of the comparison, return an
1377/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
1378static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1379 switch (VT.getSimpleVT().SimpleTy) {
1380 // Otherwise, we can't fold the immediate into this comparison.
1381 default:
1382 return 0;
1383 case MVT::i8:
1384 return X86::CMP8ri;
1385 case MVT::i16:
1386 return X86::CMP16ri;
1387 case MVT::i32:
1388 return X86::CMP32ri;
1389 case MVT::i64:
1390 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1391 // field.
1392 return isInt<32>(RHSC->getSExtValue()) ? X86::CMP64ri32 : 0;
1393 }
1394}
1395
1396bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1397 const DebugLoc &CurMIMD) {
1398 Register Op0Reg = getRegForValue(Op0);
1399 if (Op0Reg == 0) return false;
1400
1401 // Handle 'null' like i32/i64 0.
1402 if (isa<ConstantPointerNull>(Op1))
1403 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1404
1405 // We have two options: compare with register or immediate. If the RHS of
1406 // the compare is an immediate that we can fold into this compare, use
1407 // CMPri, otherwise use CMPrr.
1408 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1409 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1410 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareImmOpc))
1411 .addReg(Op0Reg)
1412 .addImm(Op1C->getSExtValue());
1413 return true;
1414 }
1415 }
1416
1417 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1418 if (CompareOpc == 0) return false;
1419
1420 Register Op1Reg = getRegForValue(Op1);
1421 if (Op1Reg == 0) return false;
1422 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurMIMD, TII.get(CompareOpc))
1423 .addReg(Op0Reg)
1424 .addReg(Op1Reg);
1425
1426 return true;
1427}
1428
1429bool X86FastISel::X86SelectCmp(const Instruction *I) {
1430 const CmpInst *CI = cast<CmpInst>(I);
1431
1432 MVT VT;
1433 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1434 return false;
1435
1436 // Below code only works for scalars.
1437 if (VT.isVector())
1438 return false;
1439
1440 // Try to optimize or fold the cmp.
1441 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1442 unsigned ResultReg = 0;
1443 switch (Predicate) {
1444 default: break;
1445 case CmpInst::FCMP_FALSE: {
1446 ResultReg = createResultReg(&X86::GR32RegClass);
1447 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV32r0),
1448 ResultReg);
1449 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, X86::sub_8bit);
1450 if (!ResultReg)
1451 return false;
1452 break;
1453 }
1454 case CmpInst::FCMP_TRUE: {
1455 ResultReg = createResultReg(&X86::GR8RegClass);
1456 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri),
1457 ResultReg).addImm(1);
1458 break;
1459 }
1460 }
1461
1462 if (ResultReg) {
1463 updateValueMap(I, ResultReg);
1464 return true;
1465 }
1466
1467 const Value *LHS = CI->getOperand(0);
1468 const Value *RHS = CI->getOperand(1);
1469
1470 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1471 // We don't have to materialize a zero constant for this case and can just use
1472 // %x again on the RHS.
1473 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1474 const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1475 if (RHSC && RHSC->isNullValue())
1476 RHS = LHS;
1477 }
1478
1479 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1480 static const uint16_t SETFOpcTable[2][3] = {
1481 { X86::COND_E, X86::COND_NP, X86::AND8rr },
1482 { X86::COND_NE, X86::COND_P, X86::OR8rr }
1483 };
1484 const uint16_t *SETFOpc = nullptr;
1485 switch (Predicate) {
1486 default: break;
1487 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1488 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1489 }
1490
1491 ResultReg = createResultReg(&X86::GR8RegClass);
1492 if (SETFOpc) {
1493 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1494 return false;
1495
1496 Register FlagReg1 = createResultReg(&X86::GR8RegClass);
1497 Register FlagReg2 = createResultReg(&X86::GR8RegClass);
1498 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1499 FlagReg1).addImm(SETFOpc[0]);
1500 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1501 FlagReg2).addImm(SETFOpc[1]);
1502 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(SETFOpc[2]),
1503 ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1504 updateValueMap(I, ResultReg);
1505 return true;
1506 }
1507
1509 bool SwapArgs;
1510 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1511 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1512
1513 if (SwapArgs)
1514 std::swap(LHS, RHS);
1515
1516 // Emit a compare of LHS/RHS.
1517 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1518 return false;
1519
1520 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
1521 ResultReg).addImm(CC);
1522 updateValueMap(I, ResultReg);
1523 return true;
1524}
1525
1526bool X86FastISel::X86SelectZExt(const Instruction *I) {
1527 EVT DstVT = TLI.getValueType(DL, I->getType());
1528 if (!TLI.isTypeLegal(DstVT))
1529 return false;
1530
1531 Register ResultReg = getRegForValue(I->getOperand(0));
1532 if (ResultReg == 0)
1533 return false;
1534
1535 // Handle zero-extension from i1 to i8, which is common.
1536 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1537 if (SrcVT == MVT::i1) {
1538 // Set the high bits to zero.
1539 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
1540 SrcVT = MVT::i8;
1541
1542 if (ResultReg == 0)
1543 return false;
1544 }
1545
1546 if (DstVT == MVT::i64) {
1547 // Handle extension to 64-bits via sub-register shenanigans.
1548 unsigned MovInst;
1549
1550 switch (SrcVT.SimpleTy) {
1551 case MVT::i8: MovInst = X86::MOVZX32rr8; break;
1552 case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1553 case MVT::i32: MovInst = X86::MOV32rr; break;
1554 default: llvm_unreachable("Unexpected zext to i64 source type");
1555 }
1556
1557 Register Result32 = createResultReg(&X86::GR32RegClass);
1558 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovInst), Result32)
1559 .addReg(ResultReg);
1560
1561 ResultReg = createResultReg(&X86::GR64RegClass);
1562 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::SUBREG_TO_REG),
1563 ResultReg)
1564 .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1565 } else if (DstVT == MVT::i16) {
1566 // i8->i16 doesn't exist in the autogenerated isel table. Need to zero
1567 // extend to 32-bits and then extract down to 16-bits.
1568 Register Result32 = createResultReg(&X86::GR32RegClass);
1569 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVZX32rr8),
1570 Result32).addReg(ResultReg);
1571
1572 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
1573 } else if (DstVT != MVT::i8) {
1574 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1575 ResultReg);
1576 if (ResultReg == 0)
1577 return false;
1578 }
1579
1580 updateValueMap(I, ResultReg);
1581 return true;
1582}
1583
1584bool X86FastISel::X86SelectSExt(const Instruction *I) {
1585 EVT DstVT = TLI.getValueType(DL, I->getType());
1586 if (!TLI.isTypeLegal(DstVT))
1587 return false;
1588
1589 Register ResultReg = getRegForValue(I->getOperand(0));
1590 if (ResultReg == 0)
1591 return false;
1592
1593 // Handle sign-extension from i1 to i8.
1594 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1595 if (SrcVT == MVT::i1) {
1596 // Set the high bits to zero.
1597 Register ZExtReg = fastEmitZExtFromI1(MVT::i8, ResultReg);
1598 if (ZExtReg == 0)
1599 return false;
1600
1601 // Negate the result to make an 8-bit sign extended value.
1602 ResultReg = createResultReg(&X86::GR8RegClass);
1603 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::NEG8r),
1604 ResultReg).addReg(ZExtReg);
1605
1606 SrcVT = MVT::i8;
1607 }
1608
1609 if (DstVT == MVT::i16) {
1610 // i8->i16 doesn't exist in the autogenerated isel table. Need to sign
1611 // extend to 32-bits and then extract down to 16-bits.
1612 Register Result32 = createResultReg(&X86::GR32RegClass);
1613 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOVSX32rr8),
1614 Result32).addReg(ResultReg);
1615
1616 ResultReg = fastEmitInst_extractsubreg(MVT::i16, Result32, X86::sub_16bit);
1617 } else if (DstVT != MVT::i8) {
1618 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::SIGN_EXTEND,
1619 ResultReg);
1620 if (ResultReg == 0)
1621 return false;
1622 }
1623
1624 updateValueMap(I, ResultReg);
1625 return true;
1626}
1627
1628bool X86FastISel::X86SelectBranch(const Instruction *I) {
1629 // Unconditional branches are selected by tablegen-generated code.
1630 // Handle a conditional branch.
1631 const BranchInst *BI = cast<BranchInst>(I);
1632 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1633 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1634
1635 // Fold the common case of a conditional branch with a comparison
1636 // in the same block (values defined on other blocks may not have
1637 // initialized registers).
1639 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1640 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1641 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1642
1643 // Try to optimize or fold the cmp.
1644 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1645 switch (Predicate) {
1646 default: break;
1647 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, MIMD.getDL()); return true;
1648 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, MIMD.getDL()); return true;
1649 }
1650
1651 const Value *CmpLHS = CI->getOperand(0);
1652 const Value *CmpRHS = CI->getOperand(1);
1653
1654 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1655 // 0.0.
1656 // We don't have to materialize a zero constant for this case and can just
1657 // use %x again on the RHS.
1658 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1659 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1660 if (CmpRHSC && CmpRHSC->isNullValue())
1661 CmpRHS = CmpLHS;
1662 }
1663
1664 // Try to take advantage of fallthrough opportunities.
1665 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1666 std::swap(TrueMBB, FalseMBB);
1668 }
1669
1670 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1671 // code check. Instead two branch instructions are required to check all
1672 // the flags. First we change the predicate to a supported condition code,
1673 // which will be the first branch. Later one we will emit the second
1674 // branch.
1675 bool NeedExtraBranch = false;
1676 switch (Predicate) {
1677 default: break;
1678 case CmpInst::FCMP_OEQ:
1679 std::swap(TrueMBB, FalseMBB);
1680 [[fallthrough]];
1681 case CmpInst::FCMP_UNE:
1682 NeedExtraBranch = true;
1684 break;
1685 }
1686
1687 bool SwapArgs;
1688 std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
1689 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1690
1691 if (SwapArgs)
1692 std::swap(CmpLHS, CmpRHS);
1693
1694 // Emit a compare of the LHS and RHS, setting the flags.
1695 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1696 return false;
1697
1698 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1699 .addMBB(TrueMBB).addImm(CC);
1700
1701 // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1702 // to UNE above).
1703 if (NeedExtraBranch) {
1704 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1705 .addMBB(TrueMBB).addImm(X86::COND_P);
1706 }
1707
1708 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1709 return true;
1710 }
1711 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1712 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1713 // typically happen for _Bool and C++ bools.
1714 MVT SourceVT;
1715 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1716 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1717 unsigned TestOpc = 0;
1718 switch (SourceVT.SimpleTy) {
1719 default: break;
1720 case MVT::i8: TestOpc = X86::TEST8ri; break;
1721 case MVT::i16: TestOpc = X86::TEST16ri; break;
1722 case MVT::i32: TestOpc = X86::TEST32ri; break;
1723 case MVT::i64: TestOpc = X86::TEST64ri32; break;
1724 }
1725 if (TestOpc) {
1726 Register OpReg = getRegForValue(TI->getOperand(0));
1727 if (OpReg == 0) return false;
1728
1729 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TestOpc))
1730 .addReg(OpReg).addImm(1);
1731
1732 unsigned JmpCond = X86::COND_NE;
1733 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1734 std::swap(TrueMBB, FalseMBB);
1735 JmpCond = X86::COND_E;
1736 }
1737
1738 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1739 .addMBB(TrueMBB).addImm(JmpCond);
1740
1741 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1742 return true;
1743 }
1744 }
1745 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1746 // Fake request the condition, otherwise the intrinsic might be completely
1747 // optimized away.
1748 Register TmpReg = getRegForValue(BI->getCondition());
1749 if (TmpReg == 0)
1750 return false;
1751
1752 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1753 .addMBB(TrueMBB).addImm(CC);
1754 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1755 return true;
1756 }
1757
1758 // Otherwise do a clumsy setcc and re-test it.
1759 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1760 // in an explicit cast, so make sure to handle that correctly.
1761 Register OpReg = getRegForValue(BI->getCondition());
1762 if (OpReg == 0) return false;
1763
1764 // In case OpReg is a K register, COPY to a GPR
1765 if (MRI.getRegClass(OpReg) == &X86::VK1RegClass) {
1766 unsigned KOpReg = OpReg;
1767 OpReg = createResultReg(&X86::GR32RegClass);
1768 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1769 TII.get(TargetOpcode::COPY), OpReg)
1770 .addReg(KOpReg);
1771 OpReg = fastEmitInst_extractsubreg(MVT::i8, OpReg, X86::sub_8bit);
1772 }
1773 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
1774 .addReg(OpReg)
1775 .addImm(1);
1776 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::JCC_1))
1777 .addMBB(TrueMBB).addImm(X86::COND_NE);
1778 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1779 return true;
1780}
1781
1782bool X86FastISel::X86SelectShift(const Instruction *I) {
1783 unsigned CReg = 0, OpReg = 0;
1784 const TargetRegisterClass *RC = nullptr;
1785 if (I->getType()->isIntegerTy(8)) {
1786 CReg = X86::CL;
1787 RC = &X86::GR8RegClass;
1788 switch (I->getOpcode()) {
1789 case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1790 case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1791 case Instruction::Shl: OpReg = X86::SHL8rCL; break;
1792 default: return false;
1793 }
1794 } else if (I->getType()->isIntegerTy(16)) {
1795 CReg = X86::CX;
1796 RC = &X86::GR16RegClass;
1797 switch (I->getOpcode()) {
1798 default: llvm_unreachable("Unexpected shift opcode");
1799 case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1800 case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1801 case Instruction::Shl: OpReg = X86::SHL16rCL; break;
1802 }
1803 } else if (I->getType()->isIntegerTy(32)) {
1804 CReg = X86::ECX;
1805 RC = &X86::GR32RegClass;
1806 switch (I->getOpcode()) {
1807 default: llvm_unreachable("Unexpected shift opcode");
1808 case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1809 case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1810 case Instruction::Shl: OpReg = X86::SHL32rCL; break;
1811 }
1812 } else if (I->getType()->isIntegerTy(64)) {
1813 CReg = X86::RCX;
1814 RC = &X86::GR64RegClass;
1815 switch (I->getOpcode()) {
1816 default: llvm_unreachable("Unexpected shift opcode");
1817 case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1818 case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1819 case Instruction::Shl: OpReg = X86::SHL64rCL; break;
1820 }
1821 } else {
1822 return false;
1823 }
1824
1825 MVT VT;
1826 if (!isTypeLegal(I->getType(), VT))
1827 return false;
1828
1829 Register Op0Reg = getRegForValue(I->getOperand(0));
1830 if (Op0Reg == 0) return false;
1831
1832 Register Op1Reg = getRegForValue(I->getOperand(1));
1833 if (Op1Reg == 0) return false;
1834 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
1835 CReg).addReg(Op1Reg);
1836
1837 // The shift instruction uses X86::CL. If we defined a super-register
1838 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1839 if (CReg != X86::CL)
1840 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1841 TII.get(TargetOpcode::KILL), X86::CL)
1842 .addReg(CReg, RegState::Kill);
1843
1844 Register ResultReg = createResultReg(RC);
1845 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(OpReg), ResultReg)
1846 .addReg(Op0Reg);
1847 updateValueMap(I, ResultReg);
1848 return true;
1849}
1850
1851bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1852 const static unsigned NumTypes = 4; // i8, i16, i32, i64
1853 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
1854 const static bool S = true; // IsSigned
1855 const static bool U = false; // !IsSigned
1856 const static unsigned Copy = TargetOpcode::COPY;
1857 // For the X86 DIV/IDIV instruction, in most cases the dividend
1858 // (numerator) must be in a specific register pair highreg:lowreg,
1859 // producing the quotient in lowreg and the remainder in highreg.
1860 // For most data types, to set up the instruction, the dividend is
1861 // copied into lowreg, and lowreg is sign-extended or zero-extended
1862 // into highreg. The exception is i8, where the dividend is defined
1863 // as a single register rather than a register pair, and we
1864 // therefore directly sign-extend or zero-extend the dividend into
1865 // lowreg, instead of copying, and ignore the highreg.
1866 const static struct DivRemEntry {
1867 // The following portion depends only on the data type.
1868 const TargetRegisterClass *RC;
1869 unsigned LowInReg; // low part of the register pair
1870 unsigned HighInReg; // high part of the register pair
1871 // The following portion depends on both the data type and the operation.
1872 struct DivRemResult {
1873 unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
1874 unsigned OpSignExtend; // Opcode for sign-extending lowreg into
1875 // highreg, or copying a zero into highreg.
1876 unsigned OpCopy; // Opcode for copying dividend into lowreg, or
1877 // zero/sign-extending into lowreg for i8.
1878 unsigned DivRemResultReg; // Register containing the desired result.
1879 bool IsOpSigned; // Whether to use signed or unsigned form.
1880 } ResultTable[NumOps];
1881 } OpTable[NumTypes] = {
1882 { &X86::GR8RegClass, X86::AX, 0, {
1883 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
1884 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
1885 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
1886 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
1887 }
1888 }, // i8
1889 { &X86::GR16RegClass, X86::AX, X86::DX, {
1890 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
1891 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
1892 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
1893 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
1894 }
1895 }, // i16
1896 { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1897 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
1898 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
1899 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
1900 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
1901 }
1902 }, // i32
1903 { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1904 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
1905 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
1906 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
1907 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
1908 }
1909 }, // i64
1910 };
1911
1912 MVT VT;
1913 if (!isTypeLegal(I->getType(), VT))
1914 return false;
1915
1916 unsigned TypeIndex, OpIndex;
1917 switch (VT.SimpleTy) {
1918 default: return false;
1919 case MVT::i8: TypeIndex = 0; break;
1920 case MVT::i16: TypeIndex = 1; break;
1921 case MVT::i32: TypeIndex = 2; break;
1922 case MVT::i64: TypeIndex = 3;
1923 if (!Subtarget->is64Bit())
1924 return false;
1925 break;
1926 }
1927
1928 switch (I->getOpcode()) {
1929 default: llvm_unreachable("Unexpected div/rem opcode");
1930 case Instruction::SDiv: OpIndex = 0; break;
1931 case Instruction::SRem: OpIndex = 1; break;
1932 case Instruction::UDiv: OpIndex = 2; break;
1933 case Instruction::URem: OpIndex = 3; break;
1934 }
1935
1936 const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1937 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1938 Register Op0Reg = getRegForValue(I->getOperand(0));
1939 if (Op0Reg == 0)
1940 return false;
1941 Register Op1Reg = getRegForValue(I->getOperand(1));
1942 if (Op1Reg == 0)
1943 return false;
1944
1945 // Move op0 into low-order input register.
1946 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1947 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1948 // Zero-extend or sign-extend into high-order input register.
1949 if (OpEntry.OpSignExtend) {
1950 if (OpEntry.IsOpSigned)
1951 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1952 TII.get(OpEntry.OpSignExtend));
1953 else {
1954 Register Zero32 = createResultReg(&X86::GR32RegClass);
1955 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1956 TII.get(X86::MOV32r0), Zero32);
1957
1958 // Copy the zero into the appropriate sub/super/identical physical
1959 // register. Unfortunately the operations needed are not uniform enough
1960 // to fit neatly into the table above.
1961 if (VT == MVT::i16) {
1962 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1963 TII.get(Copy), TypeEntry.HighInReg)
1964 .addReg(Zero32, 0, X86::sub_16bit);
1965 } else if (VT == MVT::i32) {
1966 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1967 TII.get(Copy), TypeEntry.HighInReg)
1968 .addReg(Zero32);
1969 } else if (VT == MVT::i64) {
1970 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1971 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1972 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1973 }
1974 }
1975 }
1976 // Generate the DIV/IDIV instruction.
1977 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1978 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1979 // For i8 remainder, we can't reference ah directly, as we'll end
1980 // up with bogus copies like %r9b = COPY %ah. Reference ax
1981 // instead to prevent ah references in a rex instruction.
1982 //
1983 // The current assumption of the fast register allocator is that isel
1984 // won't generate explicit references to the GR8_NOREX registers. If
1985 // the allocator and/or the backend get enhanced to be more robust in
1986 // that regard, this can be, and should be, removed.
1987 unsigned ResultReg = 0;
1988 if ((I->getOpcode() == Instruction::SRem ||
1989 I->getOpcode() == Instruction::URem) &&
1990 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1991 Register SourceSuperReg = createResultReg(&X86::GR16RegClass);
1992 Register ResultSuperReg = createResultReg(&X86::GR16RegClass);
1993 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1994 TII.get(Copy), SourceSuperReg).addReg(X86::AX);
1995
1996 // Shift AX right by 8 bits instead of using AH.
1997 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SHR16ri),
1998 ResultSuperReg).addReg(SourceSuperReg).addImm(8);
1999
2000 // Now reference the 8-bit subreg of the result.
2001 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
2002 X86::sub_8bit);
2003 }
2004 // Copy the result out of the physreg if we haven't already.
2005 if (!ResultReg) {
2006 ResultReg = createResultReg(TypeEntry.RC);
2007 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Copy), ResultReg)
2008 .addReg(OpEntry.DivRemResultReg);
2009 }
2010 updateValueMap(I, ResultReg);
2011
2012 return true;
2013}
2014
2015/// Emit a conditional move instruction (if the are supported) to lower
2016/// the select.
2017bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
2018 // Check if the subtarget supports these instructions.
2019 if (!Subtarget->canUseCMOV())
2020 return false;
2021
2022 // FIXME: Add support for i8.
2023 if (RetVT < MVT::i16 || RetVT > MVT::i64)
2024 return false;
2025
2026 const Value *Cond = I->getOperand(0);
2027 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2028 bool NeedTest = true;
2030
2031 // Optimize conditions coming from a compare if both instructions are in the
2032 // same basic block (values defined in other basic blocks may not have
2033 // initialized registers).
2034 const auto *CI = dyn_cast<CmpInst>(Cond);
2035 if (CI && (CI->getParent() == I->getParent())) {
2036 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2037
2038 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
2039 static const uint16_t SETFOpcTable[2][3] = {
2040 { X86::COND_NP, X86::COND_E, X86::TEST8rr },
2041 { X86::COND_P, X86::COND_NE, X86::OR8rr }
2042 };
2043 const uint16_t *SETFOpc = nullptr;
2044 switch (Predicate) {
2045 default: break;
2046 case CmpInst::FCMP_OEQ:
2047 SETFOpc = &SETFOpcTable[0][0];
2049 break;
2050 case CmpInst::FCMP_UNE:
2051 SETFOpc = &SETFOpcTable[1][0];
2053 break;
2054 }
2055
2056 bool NeedSwap;
2057 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(Predicate);
2058 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
2059
2060 const Value *CmpLHS = CI->getOperand(0);
2061 const Value *CmpRHS = CI->getOperand(1);
2062 if (NeedSwap)
2063 std::swap(CmpLHS, CmpRHS);
2064
2065 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2066 // Emit a compare of the LHS and RHS, setting the flags.
2067 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2068 return false;
2069
2070 if (SETFOpc) {
2071 Register FlagReg1 = createResultReg(&X86::GR8RegClass);
2072 Register FlagReg2 = createResultReg(&X86::GR8RegClass);
2073 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2074 FlagReg1).addImm(SETFOpc[0]);
2075 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2076 FlagReg2).addImm(SETFOpc[1]);
2077 auto const &II = TII.get(SETFOpc[2]);
2078 if (II.getNumDefs()) {
2079 Register TmpReg = createResultReg(&X86::GR8RegClass);
2080 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, TmpReg)
2081 .addReg(FlagReg2).addReg(FlagReg1);
2082 } else {
2083 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
2084 .addReg(FlagReg2).addReg(FlagReg1);
2085 }
2086 }
2087 NeedTest = false;
2088 } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2089 // Fake request the condition, otherwise the intrinsic might be completely
2090 // optimized away.
2091 Register TmpReg = getRegForValue(Cond);
2092 if (TmpReg == 0)
2093 return false;
2094
2095 NeedTest = false;
2096 }
2097
2098 if (NeedTest) {
2099 // Selects operate on i1, however, CondReg is 8 bits width and may contain
2100 // garbage. Indeed, only the less significant bit is supposed to be
2101 // accurate. If we read more than the lsb, we may see non-zero values
2102 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2103 // the select. This is achieved by performing TEST against 1.
2104 Register CondReg = getRegForValue(Cond);
2105 if (CondReg == 0)
2106 return false;
2107
2108 // In case OpReg is a K register, COPY to a GPR
2109 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2110 unsigned KCondReg = CondReg;
2111 CondReg = createResultReg(&X86::GR32RegClass);
2112 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2113 TII.get(TargetOpcode::COPY), CondReg)
2114 .addReg(KCondReg);
2115 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
2116 }
2117 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
2118 .addReg(CondReg)
2119 .addImm(1);
2120 }
2121
2122 const Value *LHS = I->getOperand(1);
2123 const Value *RHS = I->getOperand(2);
2124
2125 Register RHSReg = getRegForValue(RHS);
2126 Register LHSReg = getRegForValue(LHS);
2127 if (!LHSReg || !RHSReg)
2128 return false;
2129
2130 const TargetRegisterInfo &TRI = *Subtarget->getRegisterInfo();
2131 unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(*RC)/8);
2132 Register ResultReg = fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
2133 updateValueMap(I, ResultReg);
2134 return true;
2135}
2136
2137/// Emit SSE or AVX instructions to lower the select.
2138///
2139/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2140/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2141/// SSE instructions are available. If AVX is available, try to use a VBLENDV.
2142bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2143 // Optimize conditions coming from a compare if both instructions are in the
2144 // same basic block (values defined in other basic blocks may not have
2145 // initialized registers).
2146 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2147 if (!CI || (CI->getParent() != I->getParent()))
2148 return false;
2149
2150 if (I->getType() != CI->getOperand(0)->getType() ||
2151 !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2152 (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2153 return false;
2154
2155 const Value *CmpLHS = CI->getOperand(0);
2156 const Value *CmpRHS = CI->getOperand(1);
2157 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2158
2159 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2160 // We don't have to materialize a zero constant for this case and can just use
2161 // %x again on the RHS.
2162 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2163 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2164 if (CmpRHSC && CmpRHSC->isNullValue())
2165 CmpRHS = CmpLHS;
2166 }
2167
2168 unsigned CC;
2169 bool NeedSwap;
2170 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2171 if (CC > 7 && !Subtarget->hasAVX())
2172 return false;
2173
2174 if (NeedSwap)
2175 std::swap(CmpLHS, CmpRHS);
2176
2177 const Value *LHS = I->getOperand(1);
2178 const Value *RHS = I->getOperand(2);
2179
2180 Register LHSReg = getRegForValue(LHS);
2181 Register RHSReg = getRegForValue(RHS);
2182 Register CmpLHSReg = getRegForValue(CmpLHS);
2183 Register CmpRHSReg = getRegForValue(CmpRHS);
2184 if (!LHSReg || !RHSReg || !CmpLHSReg || !CmpRHSReg)
2185 return false;
2186
2187 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2188 unsigned ResultReg;
2189
2190 if (Subtarget->hasAVX512()) {
2191 // If we have AVX512 we can use a mask compare and masked movss/sd.
2192 const TargetRegisterClass *VR128X = &X86::VR128XRegClass;
2193 const TargetRegisterClass *VK1 = &X86::VK1RegClass;
2194
2195 unsigned CmpOpcode =
2196 (RetVT == MVT::f32) ? X86::VCMPSSZrr : X86::VCMPSDZrr;
2197 Register CmpReg = fastEmitInst_rri(CmpOpcode, VK1, CmpLHSReg, CmpRHSReg,
2198 CC);
2199
2200 // Need an IMPLICIT_DEF for the input that is used to generate the upper
2201 // bits of the result register since its not based on any of the inputs.
2202 Register ImplicitDefReg = createResultReg(VR128X);
2203 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2204 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2205
2206 // Place RHSReg is the passthru of the masked movss/sd operation and put
2207 // LHS in the input. The mask input comes from the compare.
2208 unsigned MovOpcode =
2209 (RetVT == MVT::f32) ? X86::VMOVSSZrrk : X86::VMOVSDZrrk;
2210 unsigned MovReg = fastEmitInst_rrrr(MovOpcode, VR128X, RHSReg, CmpReg,
2211 ImplicitDefReg, LHSReg);
2212
2213 ResultReg = createResultReg(RC);
2214 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2215 TII.get(TargetOpcode::COPY), ResultReg).addReg(MovReg);
2216
2217 } else if (Subtarget->hasAVX()) {
2218 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2219
2220 // If we have AVX, create 1 blendv instead of 3 logic instructions.
2221 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2222 // uses XMM0 as the selection register. That may need just as many
2223 // instructions as the AND/ANDN/OR sequence due to register moves, so
2224 // don't bother.
2225 unsigned CmpOpcode =
2226 (RetVT == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2227 unsigned BlendOpcode =
2228 (RetVT == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2229
2230 Register CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpRHSReg,
2231 CC);
2232 Register VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, LHSReg,
2233 CmpReg);
2234 ResultReg = createResultReg(RC);
2235 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2236 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2237 } else {
2238 // Choose the SSE instruction sequence based on data type (float or double).
2239 static const uint16_t OpcTable[2][4] = {
2240 { X86::CMPSSrr, X86::ANDPSrr, X86::ANDNPSrr, X86::ORPSrr },
2241 { X86::CMPSDrr, X86::ANDPDrr, X86::ANDNPDrr, X86::ORPDrr }
2242 };
2243
2244 const uint16_t *Opc = nullptr;
2245 switch (RetVT.SimpleTy) {
2246 default: return false;
2247 case MVT::f32: Opc = &OpcTable[0][0]; break;
2248 case MVT::f64: Opc = &OpcTable[1][0]; break;
2249 }
2250
2251 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2252 Register CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpRHSReg, CC);
2253 Register AndReg = fastEmitInst_rr(Opc[1], VR128, CmpReg, LHSReg);
2254 Register AndNReg = fastEmitInst_rr(Opc[2], VR128, CmpReg, RHSReg);
2255 Register OrReg = fastEmitInst_rr(Opc[3], VR128, AndNReg, AndReg);
2256 ResultReg = createResultReg(RC);
2257 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2258 TII.get(TargetOpcode::COPY), ResultReg).addReg(OrReg);
2259 }
2260 updateValueMap(I, ResultReg);
2261 return true;
2262}
2263
2264bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2265 // These are pseudo CMOV instructions and will be later expanded into control-
2266 // flow.
2267 unsigned Opc;
2268 switch (RetVT.SimpleTy) {
2269 default: return false;
2270 case MVT::i8: Opc = X86::CMOV_GR8; break;
2271 case MVT::i16: Opc = X86::CMOV_GR16; break;
2272 case MVT::i32: Opc = X86::CMOV_GR32; break;
2273 case MVT::f16:
2274 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR16X : X86::CMOV_FR16; break;
2275 case MVT::f32:
2276 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR32X : X86::CMOV_FR32; break;
2277 case MVT::f64:
2278 Opc = Subtarget->hasAVX512() ? X86::CMOV_FR64X : X86::CMOV_FR64; break;
2279 }
2280
2281 const Value *Cond = I->getOperand(0);
2283
2284 // Optimize conditions coming from a compare if both instructions are in the
2285 // same basic block (values defined in other basic blocks may not have
2286 // initialized registers).
2287 const auto *CI = dyn_cast<CmpInst>(Cond);
2288 if (CI && (CI->getParent() == I->getParent())) {
2289 bool NeedSwap;
2290 std::tie(CC, NeedSwap) = X86::getX86ConditionCode(CI->getPredicate());
2292 return false;
2293
2294 const Value *CmpLHS = CI->getOperand(0);
2295 const Value *CmpRHS = CI->getOperand(1);
2296
2297 if (NeedSwap)
2298 std::swap(CmpLHS, CmpRHS);
2299
2300 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2301 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2302 return false;
2303 } else {
2304 Register CondReg = getRegForValue(Cond);
2305 if (CondReg == 0)
2306 return false;
2307
2308 // In case OpReg is a K register, COPY to a GPR
2309 if (MRI.getRegClass(CondReg) == &X86::VK1RegClass) {
2310 unsigned KCondReg = CondReg;
2311 CondReg = createResultReg(&X86::GR32RegClass);
2312 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2313 TII.get(TargetOpcode::COPY), CondReg)
2314 .addReg(KCondReg);
2315 CondReg = fastEmitInst_extractsubreg(MVT::i8, CondReg, X86::sub_8bit);
2316 }
2317 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TEST8ri))
2318 .addReg(CondReg)
2319 .addImm(1);
2320 }
2321
2322 const Value *LHS = I->getOperand(1);
2323 const Value *RHS = I->getOperand(2);
2324
2325 Register LHSReg = getRegForValue(LHS);
2326 Register RHSReg = getRegForValue(RHS);
2327 if (!LHSReg || !RHSReg)
2328 return false;
2329
2330 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2331
2332 Register ResultReg =
2333 fastEmitInst_rri(Opc, RC, RHSReg, LHSReg, CC);
2334 updateValueMap(I, ResultReg);
2335 return true;
2336}
2337
2338bool X86FastISel::X86SelectSelect(const Instruction *I) {
2339 MVT RetVT;
2340 if (!isTypeLegal(I->getType(), RetVT))
2341 return false;
2342
2343 // Check if we can fold the select.
2344 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2345 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2346 const Value *Opnd = nullptr;
2347 switch (Predicate) {
2348 default: break;
2349 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2350 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
2351 }
2352 // No need for a select anymore - this is an unconditional move.
2353 if (Opnd) {
2354 Register OpReg = getRegForValue(Opnd);
2355 if (OpReg == 0)
2356 return false;
2357 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2358 Register ResultReg = createResultReg(RC);
2359 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2360 TII.get(TargetOpcode::COPY), ResultReg)
2361 .addReg(OpReg);
2362 updateValueMap(I, ResultReg);
2363 return true;
2364 }
2365 }
2366
2367 // First try to use real conditional move instructions.
2368 if (X86FastEmitCMoveSelect(RetVT, I))
2369 return true;
2370
2371 // Try to use a sequence of SSE instructions to simulate a conditional move.
2372 if (X86FastEmitSSESelect(RetVT, I))
2373 return true;
2374
2375 // Fall-back to pseudo conditional move instructions, which will be later
2376 // converted to control-flow.
2377 if (X86FastEmitPseudoSelect(RetVT, I))
2378 return true;
2379
2380 return false;
2381}
2382
2383// Common code for X86SelectSIToFP and X86SelectUIToFP.
2384bool X86FastISel::X86SelectIntToFP(const Instruction *I, bool IsSigned) {
2385 // The target-independent selection algorithm in FastISel already knows how
2386 // to select a SINT_TO_FP if the target is SSE but not AVX.
2387 // Early exit if the subtarget doesn't have AVX.
2388 // Unsigned conversion requires avx512.
2389 bool HasAVX512 = Subtarget->hasAVX512();
2390 if (!Subtarget->hasAVX() || (!IsSigned && !HasAVX512))
2391 return false;
2392
2393 // TODO: We could sign extend narrower types.
2394 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
2395 if (SrcVT != MVT::i32 && SrcVT != MVT::i64)
2396 return false;
2397
2398 // Select integer to float/double conversion.
2399 Register OpReg = getRegForValue(I->getOperand(0));
2400 if (OpReg == 0)
2401 return false;
2402
2403 unsigned Opcode;
2404
2405 static const uint16_t SCvtOpc[2][2][2] = {
2406 { { X86::VCVTSI2SSrr, X86::VCVTSI642SSrr },
2407 { X86::VCVTSI2SDrr, X86::VCVTSI642SDrr } },
2408 { { X86::VCVTSI2SSZrr, X86::VCVTSI642SSZrr },
2409 { X86::VCVTSI2SDZrr, X86::VCVTSI642SDZrr } },
2410 };
2411 static const uint16_t UCvtOpc[2][2] = {
2412 { X86::VCVTUSI2SSZrr, X86::VCVTUSI642SSZrr },
2413 { X86::VCVTUSI2SDZrr, X86::VCVTUSI642SDZrr },
2414 };
2415 bool Is64Bit = SrcVT == MVT::i64;
2416
2417 if (I->getType()->isDoubleTy()) {
2418 // s/uitofp int -> double
2419 Opcode = IsSigned ? SCvtOpc[HasAVX512][1][Is64Bit] : UCvtOpc[1][Is64Bit];
2420 } else if (I->getType()->isFloatTy()) {
2421 // s/uitofp int -> float
2422 Opcode = IsSigned ? SCvtOpc[HasAVX512][0][Is64Bit] : UCvtOpc[0][Is64Bit];
2423 } else
2424 return false;
2425
2426 MVT DstVT = TLI.getValueType(DL, I->getType()).getSimpleVT();
2427 const TargetRegisterClass *RC = TLI.getRegClassFor(DstVT);
2428 Register ImplicitDefReg = createResultReg(RC);
2429 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2430 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2431 Register ResultReg = fastEmitInst_rr(Opcode, RC, ImplicitDefReg, OpReg);
2432 updateValueMap(I, ResultReg);
2433 return true;
2434}
2435
2436bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2437 return X86SelectIntToFP(I, /*IsSigned*/true);
2438}
2439
2440bool X86FastISel::X86SelectUIToFP(const Instruction *I) {
2441 return X86SelectIntToFP(I, /*IsSigned*/false);
2442}
2443
2444// Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2445bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2446 unsigned TargetOpc,
2447 const TargetRegisterClass *RC) {
2448 assert((I->getOpcode() == Instruction::FPExt ||
2449 I->getOpcode() == Instruction::FPTrunc) &&
2450 "Instruction must be an FPExt or FPTrunc!");
2451 bool HasAVX = Subtarget->hasAVX();
2452
2453 Register OpReg = getRegForValue(I->getOperand(0));
2454 if (OpReg == 0)
2455 return false;
2456
2457 unsigned ImplicitDefReg;
2458 if (HasAVX) {
2459 ImplicitDefReg = createResultReg(RC);
2460 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2461 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2462
2463 }
2464
2465 Register ResultReg = createResultReg(RC);
2467 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpc),
2468 ResultReg);
2469
2470 if (HasAVX)
2471 MIB.addReg(ImplicitDefReg);
2472
2473 MIB.addReg(OpReg);
2474 updateValueMap(I, ResultReg);
2475 return true;
2476}
2477
2478bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2479 if (Subtarget->hasSSE2() && I->getType()->isDoubleTy() &&
2480 I->getOperand(0)->getType()->isFloatTy()) {
2481 bool HasAVX512 = Subtarget->hasAVX512();
2482 // fpext from float to double.
2483 unsigned Opc =
2484 HasAVX512 ? X86::VCVTSS2SDZrr
2485 : Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2486 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f64));
2487 }
2488
2489 return false;
2490}
2491
2492bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2493 if (Subtarget->hasSSE2() && I->getType()->isFloatTy() &&
2494 I->getOperand(0)->getType()->isDoubleTy()) {
2495 bool HasAVX512 = Subtarget->hasAVX512();
2496 // fptrunc from double to float.
2497 unsigned Opc =
2498 HasAVX512 ? X86::VCVTSD2SSZrr
2499 : Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2500 return X86SelectFPExtOrFPTrunc(I, Opc, TLI.getRegClassFor(MVT::f32));
2501 }
2502
2503 return false;
2504}
2505
2506bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2507 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2508 EVT DstVT = TLI.getValueType(DL, I->getType());
2509
2510 // This code only handles truncation to byte.
2511 if (DstVT != MVT::i8 && DstVT != MVT::i1)
2512 return false;
2513 if (!TLI.isTypeLegal(SrcVT))
2514 return false;
2515
2516 Register InputReg = getRegForValue(I->getOperand(0));
2517 if (!InputReg)
2518 // Unhandled operand. Halt "fast" selection and bail.
2519 return false;
2520
2521 if (SrcVT == MVT::i8) {
2522 // Truncate from i8 to i1; no code needed.
2523 updateValueMap(I, InputReg);
2524 return true;
2525 }
2526
2527 // Issue an extract_subreg.
2528 Register ResultReg = fastEmitInst_extractsubreg(MVT::i8, InputReg,
2529 X86::sub_8bit);
2530 if (!ResultReg)
2531 return false;
2532
2533 updateValueMap(I, ResultReg);
2534 return true;
2535}
2536
2537bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2538 return Len <= (Subtarget->is64Bit() ? 32 : 16);
2539}
2540
2541bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2542 X86AddressMode SrcAM, uint64_t Len) {
2543
2544 // Make sure we don't bloat code by inlining very large memcpy's.
2545 if (!IsMemcpySmall(Len))
2546 return false;
2547
2548 bool i64Legal = Subtarget->is64Bit();
2549
2550 // We don't care about alignment here since we just emit integer accesses.
2551 while (Len) {
2552 MVT VT;
2553 if (Len >= 8 && i64Legal)
2554 VT = MVT::i64;
2555 else if (Len >= 4)
2556 VT = MVT::i32;
2557 else if (Len >= 2)
2558 VT = MVT::i16;
2559 else
2560 VT = MVT::i8;
2561
2562 unsigned Reg;
2563 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2564 RV &= X86FastEmitStore(VT, Reg, DestAM);
2565 assert(RV && "Failed to emit load or store??");
2566 (void)RV;
2567
2568 unsigned Size = VT.getSizeInBits()/8;
2569 Len -= Size;
2570 DestAM.Disp += Size;
2571 SrcAM.Disp += Size;
2572 }
2573
2574 return true;
2575}
2576
2577bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2578 // FIXME: Handle more intrinsics.
2579 switch (II->getIntrinsicID()) {
2580 default: return false;
2581 case Intrinsic::convert_from_fp16:
2582 case Intrinsic::convert_to_fp16: {
2583 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2584 return false;
2585
2586 const Value *Op = II->getArgOperand(0);
2587 Register InputReg = getRegForValue(Op);
2588 if (InputReg == 0)
2589 return false;
2590
2591 // F16C only allows converting from float to half and from half to float.
2592 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2593 if (IsFloatToHalf) {
2594 if (!Op->getType()->isFloatTy())
2595 return false;
2596 } else {
2597 if (!II->getType()->isFloatTy())
2598 return false;
2599 }
2600
2601 unsigned ResultReg = 0;
2602 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2603 if (IsFloatToHalf) {
2604 // 'InputReg' is implicitly promoted from register class FR32 to
2605 // register class VR128 by method 'constrainOperandRegClass' which is
2606 // directly called by 'fastEmitInst_ri'.
2607 // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2608 // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2609 // It's consistent with the other FP instructions, which are usually
2610 // controlled by MXCSR.
2611 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPS2PHZ128rr
2612 : X86::VCVTPS2PHrr;
2613 InputReg = fastEmitInst_ri(Opc, RC, InputReg, 4);
2614
2615 // Move the lower 32-bits of ResultReg to another register of class GR32.
2616 Opc = Subtarget->hasAVX512() ? X86::VMOVPDI2DIZrr
2617 : X86::VMOVPDI2DIrr;
2618 ResultReg = createResultReg(&X86::GR32RegClass);
2619 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
2620 .addReg(InputReg, RegState::Kill);
2621
2622 // The result value is in the lower 16-bits of ResultReg.
2623 unsigned RegIdx = X86::sub_16bit;
2624 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, RegIdx);
2625 } else {
2626 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2627 // Explicitly zero-extend the input to 32-bit.
2628 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::ZERO_EXTEND, InputReg);
2629
2630 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2631 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2632 InputReg);
2633
2634 unsigned Opc = Subtarget->hasVLX() ? X86::VCVTPH2PSZ128rr
2635 : X86::VCVTPH2PSrr;
2636 InputReg = fastEmitInst_r(Opc, RC, InputReg);
2637
2638 // The result value is in the lower 32-bits of ResultReg.
2639 // Emit an explicit copy from register class VR128 to register class FR32.
2640 ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
2641 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2642 TII.get(TargetOpcode::COPY), ResultReg)
2643 .addReg(InputReg, RegState::Kill);
2644 }
2645
2646 updateValueMap(II, ResultReg);
2647 return true;
2648 }
2649 case Intrinsic::frameaddress: {
2650 MachineFunction *MF = FuncInfo.MF;
2651 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2652 return false;
2653
2655
2656 MVT VT;
2657 if (!isTypeLegal(RetTy, VT))
2658 return false;
2659
2660 unsigned Opc;
2661 const TargetRegisterClass *RC = nullptr;
2662
2663 switch (VT.SimpleTy) {
2664 default: llvm_unreachable("Invalid result type for frameaddress.");
2665 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2666 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2667 }
2668
2669 // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2670 // we get the wrong frame register.
2671 MachineFrameInfo &MFI = MF->getFrameInfo();
2672 MFI.setFrameAddressIsTaken(true);
2673
2674 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2675 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2676 assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2677 (FrameReg == X86::EBP && VT == MVT::i32)) &&
2678 "Invalid Frame Register!");
2679
2680 // Always make a copy of the frame register to a vreg first, so that we
2681 // never directly reference the frame register (the TwoAddressInstruction-
2682 // Pass doesn't like that).
2683 Register SrcReg = createResultReg(RC);
2684 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2685 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2686
2687 // Now recursively load from the frame address.
2688 // movq (%rbp), %rax
2689 // movq (%rax), %rax
2690 // movq (%rax), %rax
2691 // ...
2692 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2693 while (Depth--) {
2694 Register DestReg = createResultReg(RC);
2695 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2696 TII.get(Opc), DestReg), SrcReg);
2697 SrcReg = DestReg;
2698 }
2699
2700 updateValueMap(II, SrcReg);
2701 return true;
2702 }
2703 case Intrinsic::memcpy: {
2704 const MemCpyInst *MCI = cast<MemCpyInst>(II);
2705 // Don't handle volatile or variable length memcpys.
2706 if (MCI->isVolatile())
2707 return false;
2708
2709 if (isa<ConstantInt>(MCI->getLength())) {
2710 // Small memcpy's are common enough that we want to do them
2711 // without a call if possible.
2712 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2713 if (IsMemcpySmall(Len)) {
2714 X86AddressMode DestAM, SrcAM;
2715 if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2716 !X86SelectAddress(MCI->getRawSource(), SrcAM))
2717 return false;
2718 TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2719 return true;
2720 }
2721 }
2722
2723 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2724 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2725 return false;
2726
2727 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2728 return false;
2729
2730 return lowerCallTo(II, "memcpy", II->arg_size() - 1);
2731 }
2732 case Intrinsic::memset: {
2733 const MemSetInst *MSI = cast<MemSetInst>(II);
2734
2735 if (MSI->isVolatile())
2736 return false;
2737
2738 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2739 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2740 return false;
2741
2742 if (MSI->getDestAddressSpace() > 255)
2743 return false;
2744
2745 return lowerCallTo(II, "memset", II->arg_size() - 1);
2746 }
2747 case Intrinsic::stackprotector: {
2748 // Emit code to store the stack guard onto the stack.
2749 EVT PtrTy = TLI.getPointerTy(DL);
2750
2751 const Value *Op1 = II->getArgOperand(0); // The guard's value.
2752 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2753
2754 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2755
2756 // Grab the frame index.
2757 X86AddressMode AM;
2758 if (!X86SelectAddress(Slot, AM)) return false;
2759 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2760 return true;
2761 }
2762 case Intrinsic::dbg_declare: {
2763 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2764 X86AddressMode AM;
2765 assert(DI->getAddress() && "Null address should be checked earlier!");
2766 if (!X86SelectAddress(DI->getAddress(), AM))
2767 return false;
2768 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2769 assert(DI->getVariable()->isValidLocationForIntrinsic(MIMD.getDL()) &&
2770 "Expected inlined-at fields to agree");
2771 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II), AM)
2772 .addImm(0)
2773 .addMetadata(DI->getVariable())
2774 .addMetadata(DI->getExpression());
2775 return true;
2776 }
2777 case Intrinsic::trap: {
2778 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::TRAP));
2779 return true;
2780 }
2781 case Intrinsic::sqrt: {
2782 if (!Subtarget->hasSSE1())
2783 return false;
2784
2785 Type *RetTy = II->getCalledFunction()->getReturnType();
2786
2787 MVT VT;
2788 if (!isTypeLegal(RetTy, VT))
2789 return false;
2790
2791 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2792 // is not generated by FastISel yet.
2793 // FIXME: Update this code once tablegen can handle it.
2794 static const uint16_t SqrtOpc[3][2] = {
2795 { X86::SQRTSSr, X86::SQRTSDr },
2796 { X86::VSQRTSSr, X86::VSQRTSDr },
2797 { X86::VSQRTSSZr, X86::VSQRTSDZr },
2798 };
2799 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2800 Subtarget->hasAVX() ? 1 :
2801 0;
2802 unsigned Opc;
2803 switch (VT.SimpleTy) {
2804 default: return false;
2805 case MVT::f32: Opc = SqrtOpc[AVXLevel][0]; break;
2806 case MVT::f64: Opc = SqrtOpc[AVXLevel][1]; break;
2807 }
2808
2809 const Value *SrcVal = II->getArgOperand(0);
2810 Register SrcReg = getRegForValue(SrcVal);
2811
2812 if (SrcReg == 0)
2813 return false;
2814
2815 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2816 unsigned ImplicitDefReg = 0;
2817 if (AVXLevel > 0) {
2818 ImplicitDefReg = createResultReg(RC);
2819 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2820 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2821 }
2822
2823 Register ResultReg = createResultReg(RC);
2825 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
2826 ResultReg);
2827
2828 if (ImplicitDefReg)
2829 MIB.addReg(ImplicitDefReg);
2830
2831 MIB.addReg(SrcReg);
2832
2833 updateValueMap(II, ResultReg);
2834 return true;
2835 }
2836 case Intrinsic::sadd_with_overflow:
2837 case Intrinsic::uadd_with_overflow:
2838 case Intrinsic::ssub_with_overflow:
2839 case Intrinsic::usub_with_overflow:
2840 case Intrinsic::smul_with_overflow:
2841 case Intrinsic::umul_with_overflow: {
2842 // This implements the basic lowering of the xalu with overflow intrinsics
2843 // into add/sub/mul followed by either seto or setb.
2844 const Function *Callee = II->getCalledFunction();
2845 auto *Ty = cast<StructType>(Callee->getReturnType());
2846 Type *RetTy = Ty->getTypeAtIndex(0U);
2847 assert(Ty->getTypeAtIndex(1)->isIntegerTy() &&
2848 Ty->getTypeAtIndex(1)->getScalarSizeInBits() == 1 &&
2849 "Overflow value expected to be an i1");
2850
2851 MVT VT;
2852 if (!isTypeLegal(RetTy, VT))
2853 return false;
2854
2855 if (VT < MVT::i8 || VT > MVT::i64)
2856 return false;
2857
2858 const Value *LHS = II->getArgOperand(0);
2859 const Value *RHS = II->getArgOperand(1);
2860
2861 // Canonicalize immediate to the RHS.
2862 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) && II->isCommutative())
2863 std::swap(LHS, RHS);
2864
2865 unsigned BaseOpc, CondCode;
2866 switch (II->getIntrinsicID()) {
2867 default: llvm_unreachable("Unexpected intrinsic!");
2868 case Intrinsic::sadd_with_overflow:
2869 BaseOpc = ISD::ADD; CondCode = X86::COND_O; break;
2870 case Intrinsic::uadd_with_overflow:
2871 BaseOpc = ISD::ADD; CondCode = X86::COND_B; break;
2872 case Intrinsic::ssub_with_overflow:
2873 BaseOpc = ISD::SUB; CondCode = X86::COND_O; break;
2874 case Intrinsic::usub_with_overflow:
2875 BaseOpc = ISD::SUB; CondCode = X86::COND_B; break;
2876 case Intrinsic::smul_with_overflow:
2877 BaseOpc = X86ISD::SMUL; CondCode = X86::COND_O; break;
2878 case Intrinsic::umul_with_overflow:
2879 BaseOpc = X86ISD::UMUL; CondCode = X86::COND_O; break;
2880 }
2881
2882 Register LHSReg = getRegForValue(LHS);
2883 if (LHSReg == 0)
2884 return false;
2885
2886 unsigned ResultReg = 0;
2887 // Check if we have an immediate version.
2888 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2889 static const uint16_t Opc[2][4] = {
2890 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2891 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2892 };
2893
2894 if (CI->isOne() && (BaseOpc == ISD::ADD || BaseOpc == ISD::SUB) &&
2895 CondCode == X86::COND_O) {
2896 // We can use INC/DEC.
2897 ResultReg = createResultReg(TLI.getRegClassFor(VT));
2898 bool IsDec = BaseOpc == ISD::SUB;
2899 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2900 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2901 .addReg(LHSReg);
2902 } else
2903 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, CI->getZExtValue());
2904 }
2905
2906 unsigned RHSReg;
2907 if (!ResultReg) {
2908 RHSReg = getRegForValue(RHS);
2909 if (RHSReg == 0)
2910 return false;
2911 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, RHSReg);
2912 }
2913
2914 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2915 // it manually.
2916 if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2917 static const uint16_t MULOpc[] =
2918 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2919 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2920 // First copy the first operand into RAX, which is an implicit input to
2921 // the X86::MUL*r instruction.
2922 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2923 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2924 .addReg(LHSReg);
2925 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2926 TLI.getRegClassFor(VT), RHSReg);
2927 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2928 static const uint16_t MULOpc[] =
2929 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2930 if (VT == MVT::i8) {
2931 // Copy the first operand into AL, which is an implicit input to the
2932 // X86::IMUL8r instruction.
2933 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2934 TII.get(TargetOpcode::COPY), X86::AL)
2935 .addReg(LHSReg);
2936 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg);
2937 } else
2938 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2939 TLI.getRegClassFor(VT), LHSReg, RHSReg);
2940 }
2941
2942 if (!ResultReg)
2943 return false;
2944
2945 // Assign to a GPR since the overflow return value is lowered to a SETcc.
2946 Register ResultReg2 = createResultReg(&X86::GR8RegClass);
2947 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2948 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::SETCCr),
2949 ResultReg2).addImm(CondCode);
2950
2951 updateValueMap(II, ResultReg, 2);
2952 return true;
2953 }
2954 case Intrinsic::x86_sse_cvttss2si:
2955 case Intrinsic::x86_sse_cvttss2si64:
2956 case Intrinsic::x86_sse2_cvttsd2si:
2957 case Intrinsic::x86_sse2_cvttsd2si64: {
2958 bool IsInputDouble;
2959 switch (II->getIntrinsicID()) {
2960 default: llvm_unreachable("Unexpected intrinsic.");
2961 case Intrinsic::x86_sse_cvttss2si:
2962 case Intrinsic::x86_sse_cvttss2si64:
2963 if (!Subtarget->hasSSE1())
2964 return false;
2965 IsInputDouble = false;
2966 break;
2967 case Intrinsic::x86_sse2_cvttsd2si:
2968 case Intrinsic::x86_sse2_cvttsd2si64:
2969 if (!Subtarget->hasSSE2())
2970 return false;
2971 IsInputDouble = true;
2972 break;
2973 }
2974
2975 Type *RetTy = II->getCalledFunction()->getReturnType();
2976 MVT VT;
2977 if (!isTypeLegal(RetTy, VT))
2978 return false;
2979
2980 static const uint16_t CvtOpc[3][2][2] = {
2981 { { X86::CVTTSS2SIrr, X86::CVTTSS2SI64rr },
2982 { X86::CVTTSD2SIrr, X86::CVTTSD2SI64rr } },
2983 { { X86::VCVTTSS2SIrr, X86::VCVTTSS2SI64rr },
2984 { X86::VCVTTSD2SIrr, X86::VCVTTSD2SI64rr } },
2985 { { X86::VCVTTSS2SIZrr, X86::VCVTTSS2SI64Zrr },
2986 { X86::VCVTTSD2SIZrr, X86::VCVTTSD2SI64Zrr } },
2987 };
2988 unsigned AVXLevel = Subtarget->hasAVX512() ? 2 :
2989 Subtarget->hasAVX() ? 1 :
2990 0;
2991 unsigned Opc;
2992 switch (VT.SimpleTy) {
2993 default: llvm_unreachable("Unexpected result type.");
2994 case MVT::i32: Opc = CvtOpc[AVXLevel][IsInputDouble][0]; break;
2995 case MVT::i64: Opc = CvtOpc[AVXLevel][IsInputDouble][1]; break;
2996 }
2997
2998 // Check if we can fold insertelement instructions into the convert.
2999 const Value *Op = II->getArgOperand(0);
3000 while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
3001 const Value *Index = IE->getOperand(2);
3002 if (!isa<ConstantInt>(Index))
3003 break;
3004 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
3005
3006 if (Idx == 0) {
3007 Op = IE->getOperand(1);
3008 break;
3009 }
3010 Op = IE->getOperand(0);
3011 }
3012
3013 Register Reg = getRegForValue(Op);
3014 if (Reg == 0)
3015 return false;
3016
3017 Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3018 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg)
3019 .addReg(Reg);
3020
3021 updateValueMap(II, ResultReg);
3022 return true;
3023 }
3024 case Intrinsic::x86_sse42_crc32_32_8:
3025 case Intrinsic::x86_sse42_crc32_32_16:
3026 case Intrinsic::x86_sse42_crc32_32_32:
3027 case Intrinsic::x86_sse42_crc32_64_64: {
3028 if (!Subtarget->hasCRC32())
3029 return false;
3030
3031 Type *RetTy = II->getCalledFunction()->getReturnType();
3032
3033 MVT VT;
3034 if (!isTypeLegal(RetTy, VT))
3035 return false;
3036
3037 unsigned Opc;
3038 const TargetRegisterClass *RC = nullptr;
3039
3040 switch (II->getIntrinsicID()) {
3041 default:
3042 llvm_unreachable("Unexpected intrinsic.");
3043 case Intrinsic::x86_sse42_crc32_32_8:
3044 Opc = X86::CRC32r32r8;
3045 RC = &X86::GR32RegClass;
3046 break;
3047 case Intrinsic::x86_sse42_crc32_32_16:
3048 Opc = X86::CRC32r32r16;
3049 RC = &X86::GR32RegClass;
3050 break;
3051 case Intrinsic::x86_sse42_crc32_32_32:
3052 Opc = X86::CRC32r32r32;
3053 RC = &X86::GR32RegClass;
3054 break;
3055 case Intrinsic::x86_sse42_crc32_64_64:
3056 Opc = X86::CRC32r64r64;
3057 RC = &X86::GR64RegClass;
3058 break;
3059 }
3060
3061 const Value *LHS = II->getArgOperand(0);
3062 const Value *RHS = II->getArgOperand(1);
3063
3064 Register LHSReg = getRegForValue(LHS);
3065 Register RHSReg = getRegForValue(RHS);
3066 if (!LHSReg || !RHSReg)
3067 return false;
3068
3069 Register ResultReg = fastEmitInst_rr(Opc, RC, LHSReg, RHSReg);
3070 if (!ResultReg)
3071 return false;
3072
3073 updateValueMap(II, ResultReg);
3074 return true;
3075 }
3076 }
3077}
3078
3079bool X86FastISel::fastLowerArguments() {
3080 if (!FuncInfo.CanLowerReturn)
3081 return false;
3082
3083 const Function *F = FuncInfo.Fn;
3084 if (F->isVarArg())
3085 return false;
3086
3087 CallingConv::ID CC = F->getCallingConv();
3088 if (CC != CallingConv::C)
3089 return false;
3090
3091 if (Subtarget->isCallingConvWin64(CC))
3092 return false;
3093
3094 if (!Subtarget->is64Bit())
3095 return false;
3096
3097 if (Subtarget->useSoftFloat())
3098 return false;
3099
3100 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
3101 unsigned GPRCnt = 0;
3102 unsigned FPRCnt = 0;
3103 for (auto const &Arg : F->args()) {
3104 if (Arg.hasAttribute(Attribute::ByVal) ||
3105 Arg.hasAttribute(Attribute::InReg) ||
3106 Arg.hasAttribute(Attribute::StructRet) ||
3107 Arg.hasAttribute(Attribute::SwiftSelf) ||
3108 Arg.hasAttribute(Attribute::SwiftAsync) ||
3109 Arg.hasAttribute(Attribute::SwiftError) ||
3110 Arg.hasAttribute(Attribute::Nest))
3111 return false;
3112
3113 Type *ArgTy = Arg.getType();
3114 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3115 return false;
3116
3117 EVT ArgVT = TLI.getValueType(DL, ArgTy);
3118 if (!ArgVT.isSimple()) return false;
3119 switch (ArgVT.getSimpleVT().SimpleTy) {
3120 default: return false;
3121 case MVT::i32:
3122 case MVT::i64:
3123 ++GPRCnt;
3124 break;
3125 case MVT::f32:
3126 case MVT::f64:
3127 if (!Subtarget->hasSSE1())
3128 return false;
3129 ++FPRCnt;
3130 break;
3131 }
3132
3133 if (GPRCnt > 6)
3134 return false;
3135
3136 if (FPRCnt > 8)
3137 return false;
3138 }
3139
3140 static const MCPhysReg GPR32ArgRegs[] = {
3141 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
3142 };
3143 static const MCPhysReg GPR64ArgRegs[] = {
3144 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
3145 };
3146 static const MCPhysReg XMMArgRegs[] = {
3147 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3148 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3149 };
3150
3151 unsigned GPRIdx = 0;
3152 unsigned FPRIdx = 0;
3153 for (auto const &Arg : F->args()) {
3154 MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
3155 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
3156 unsigned SrcReg;
3157 switch (VT.SimpleTy) {
3158 default: llvm_unreachable("Unexpected value type.");
3159 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
3160 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
3161 case MVT::f32: [[fallthrough]];
3162 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
3163 }
3164 Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3165 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3166 // Without this, EmitLiveInCopies may eliminate the livein if its only
3167 // use is a bitcast (which isn't turned into an instruction).
3168 Register ResultReg = createResultReg(RC);
3169 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3170 TII.get(TargetOpcode::COPY), ResultReg)
3171 .addReg(DstReg, getKillRegState(true));
3172 updateValueMap(&Arg, ResultReg);
3173 }
3174 return true;
3175}
3176
3177static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
3179 const CallBase *CB) {
3180 if (Subtarget->is64Bit())
3181 return 0;
3182 if (Subtarget->getTargetTriple().isOSMSVCRT())
3183 return 0;
3184 if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
3187 return 0;
3188
3189 if (CB)
3190 if (CB->arg_empty() || !CB->paramHasAttr(0, Attribute::StructRet) ||
3191 CB->paramHasAttr(0, Attribute::InReg) || Subtarget->isTargetMCU())
3192 return 0;
3193
3194 return 4;
3195}
3196
3197bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3198 auto &OutVals = CLI.OutVals;
3199 auto &OutFlags = CLI.OutFlags;
3200 auto &OutRegs = CLI.OutRegs;
3201 auto &Ins = CLI.Ins;
3202 auto &InRegs = CLI.InRegs;
3203 CallingConv::ID CC = CLI.CallConv;
3204 bool &IsTailCall = CLI.IsTailCall;
3205 bool IsVarArg = CLI.IsVarArg;
3206 const Value *Callee = CLI.Callee;
3207 MCSymbol *Symbol = CLI.Symbol;
3208 const auto *CB = CLI.CB;
3209
3210 bool Is64Bit = Subtarget->is64Bit();
3211 bool IsWin64 = Subtarget->isCallingConvWin64(CC);
3212
3213 // Call / invoke instructions with NoCfCheck attribute require special
3214 // handling.
3215 if (CB && CB->doesNoCfCheck())
3216 return false;
3217
3218 // Functions with no_caller_saved_registers that need special handling.
3219 if ((CB && isa<CallInst>(CB) && CB->hasFnAttr("no_caller_saved_registers")))
3220 return false;
3221
3222 // Functions with no_callee_saved_registers that need special handling.
3223 if ((CB && CB->hasFnAttr("no_callee_saved_registers")))
3224 return false;
3225
3226 // Indirect calls with CFI checks need special handling.
3227 if (CB && CB->isIndirectCall() && CB->getOperandBundle(LLVMContext::OB_kcfi))
3228 return false;
3229
3230 // Functions using thunks for indirect calls need to use SDISel.
3231 if (Subtarget->useIndirectThunkCalls())
3232 return false;
3233
3234 // Handle only C, fastcc, and webkit_js calling conventions for now.
3235 switch (CC) {
3236 default: return false;
3237 case CallingConv::C:
3238 case CallingConv::Fast:
3239 case CallingConv::Tail:
3241 case CallingConv::Swift:
3246 case CallingConv::Win64:
3249 break;
3250 }
3251
3252 // Allow SelectionDAG isel to handle tail calls.
3253 if (IsTailCall)
3254 return false;
3255
3256 // fastcc with -tailcallopt is intended to provide a guaranteed
3257 // tail call optimization. Fastisel doesn't know how to do that.
3258 if ((CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) ||
3260 return false;
3261
3262 // Don't know how to handle Win64 varargs yet. Nothing special needed for
3263 // x86-32. Special handling for x86-64 is implemented.
3264 if (IsVarArg && IsWin64)
3265 return false;
3266
3267 // Don't know about inalloca yet.
3268 if (CLI.CB && CLI.CB->hasInAllocaArgument())
3269 return false;
3270
3271 for (auto Flag : CLI.OutFlags)
3272 if (Flag.isSwiftError() || Flag.isPreallocated())
3273 return false;
3274
3275 SmallVector<MVT, 16> OutVTs;
3277
3278 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3279 // instruction. This is safe because it is common to all FastISel supported
3280 // calling conventions on x86.
3281 for (int i = 0, e = OutVals.size(); i != e; ++i) {
3282 Value *&Val = OutVals[i];
3283 ISD::ArgFlagsTy Flags = OutFlags[i];
3284 if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3285 if (CI->getBitWidth() < 32) {
3286 if (Flags.isSExt())
3288 else
3290 }
3291 }
3292
3293 // Passing bools around ends up doing a trunc to i1 and passing it.
3294 // Codegen this as an argument + "and 1".
3295 MVT VT;
3296 auto *TI = dyn_cast<TruncInst>(Val);
3297 unsigned ResultReg;
3298 if (TI && TI->getType()->isIntegerTy(1) && CLI.CB &&
3299 (TI->getParent() == CLI.CB->getParent()) && TI->hasOneUse()) {
3300 Value *PrevVal = TI->getOperand(0);
3301 ResultReg = getRegForValue(PrevVal);
3302
3303 if (!ResultReg)
3304 return false;
3305
3306 if (!isTypeLegal(PrevVal->getType(), VT))
3307 return false;
3308
3309 ResultReg = fastEmit_ri(VT, VT, ISD::AND, ResultReg, 1);
3310 } else {
3311 if (!isTypeLegal(Val->getType(), VT) ||
3312 (VT.isVector() && VT.getVectorElementType() == MVT::i1))
3313 return false;
3314 ResultReg = getRegForValue(Val);
3315 }
3316
3317 if (!ResultReg)
3318 return false;
3319
3320 ArgRegs.push_back(ResultReg);
3321 OutVTs.push_back(VT);
3322 }
3323
3324 // Analyze operands of the call, assigning locations to each operand.
3326 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3327
3328 // Allocate shadow area for Win64
3329 if (IsWin64)
3330 CCInfo.AllocateStack(32, Align(8));
3331
3332 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3333
3334 // Get a count of how many bytes are to be pushed on the stack.
3335 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3336
3337 // Issue CALLSEQ_START
3338 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3339 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackDown))
3340 .addImm(NumBytes).addImm(0).addImm(0);
3341
3342 // Walk the register/memloc assignments, inserting copies/loads.
3343 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3344 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3345 CCValAssign const &VA = ArgLocs[i];
3346 const Value *ArgVal = OutVals[VA.getValNo()];
3347 MVT ArgVT = OutVTs[VA.getValNo()];
3348
3349 if (ArgVT == MVT::x86mmx)
3350 return false;
3351
3352 unsigned ArgReg = ArgRegs[VA.getValNo()];
3353
3354 // Promote the value if needed.
3355 switch (VA.getLocInfo()) {
3356 case CCValAssign::Full: break;
3357 case CCValAssign::SExt: {
3358 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3359 "Unexpected extend");
3360
3361 if (ArgVT == MVT::i1)
3362 return false;
3363
3364 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3365 ArgVT, ArgReg);
3366 assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3367 ArgVT = VA.getLocVT();
3368 break;
3369 }
3370 case CCValAssign::ZExt: {
3371 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3372 "Unexpected extend");
3373
3374 // Handle zero-extension from i1 to i8, which is common.
3375 if (ArgVT == MVT::i1) {
3376 // Set the high bits to zero.
3377 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg);
3378 ArgVT = MVT::i8;
3379
3380 if (ArgReg == 0)
3381 return false;
3382 }
3383
3384 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3385 ArgVT, ArgReg);
3386 assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3387 ArgVT = VA.getLocVT();
3388 break;
3389 }
3390 case CCValAssign::AExt: {
3391 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3392 "Unexpected extend");
3393 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3394 ArgVT, ArgReg);
3395 if (!Emitted)
3396 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3397 ArgVT, ArgReg);
3398 if (!Emitted)
3399 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3400 ArgVT, ArgReg);
3401
3402 assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3403 ArgVT = VA.getLocVT();
3404 break;
3405 }
3406 case CCValAssign::BCvt: {
3407 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg);
3408 assert(ArgReg && "Failed to emit a bitcast!");
3409 ArgVT = VA.getLocVT();
3410 break;
3411 }
3412 case CCValAssign::VExt:
3413 // VExt has not been implemented, so this should be impossible to reach
3414 // for now. However, fallback to Selection DAG isel once implemented.
3415 return false;
3419 case CCValAssign::FPExt:
3420 case CCValAssign::Trunc:
3421 llvm_unreachable("Unexpected loc info!");
3423 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3424 // support this.
3425 return false;
3426 }
3427
3428 if (VA.isRegLoc()) {
3429 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3430 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3431 OutRegs.push_back(VA.getLocReg());
3432 } else {
3433 assert(VA.isMemLoc() && "Unknown value location!");
3434
3435 // Don't emit stores for undef values.
3436 if (isa<UndefValue>(ArgVal))
3437 continue;
3438
3439 unsigned LocMemOffset = VA.getLocMemOffset();
3440 X86AddressMode AM;
3441 AM.Base.Reg = RegInfo->getStackRegister();
3442 AM.Disp = LocMemOffset;
3443 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3444 Align Alignment = DL.getABITypeAlign(ArgVal->getType());
3445 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3446 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3447 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3448 if (Flags.isByVal()) {
3449 X86AddressMode SrcAM;
3450 SrcAM.Base.Reg = ArgReg;
3451 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3452 return false;
3453 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3454 // If this is a really simple value, emit this with the Value* version
3455 // of X86FastEmitStore. If it isn't simple, we don't want to do this,
3456 // as it can cause us to reevaluate the argument.
3457 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3458 return false;
3459 } else {
3460 if (!X86FastEmitStore(ArgVT, ArgReg, AM, MMO))
3461 return false;
3462 }
3463 }
3464 }
3465
3466 // ELF / PIC requires GOT in the EBX register before function calls via PLT
3467 // GOT pointer.
3468 if (Subtarget->isPICStyleGOT()) {
3469 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3470 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3471 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3472 }
3473
3474 if (Is64Bit && IsVarArg && !IsWin64) {
3475 // From AMD64 ABI document:
3476 // For calls that may call functions that use varargs or stdargs
3477 // (prototype-less calls or calls to functions containing ellipsis (...) in
3478 // the declaration) %al is used as hidden argument to specify the number
3479 // of SSE registers used. The contents of %al do not need to match exactly
3480 // the number of registers, but must be an ubound on the number of SSE
3481 // registers used and is in the range 0 - 8 inclusive.
3482
3483 // Count the number of XMM registers allocated.
3484 static const MCPhysReg XMMArgRegs[] = {
3485 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3486 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3487 };
3488 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3489 assert((Subtarget->hasSSE1() || !NumXMMRegs)
3490 && "SSE registers cannot be used when SSE is disabled");
3491 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV8ri),
3492 X86::AL).addImm(NumXMMRegs);
3493 }
3494
3495 // Materialize callee address in a register. FIXME: GV address can be
3496 // handled with a CALLpcrel32 instead.
3497 X86AddressMode CalleeAM;
3498 if (!X86SelectCallAddress(Callee, CalleeAM))
3499 return false;
3500
3501 unsigned CalleeOp = 0;
3502 const GlobalValue *GV = nullptr;
3503 if (CalleeAM.GV != nullptr) {
3504 GV = CalleeAM.GV;
3505 } else if (CalleeAM.Base.Reg != 0) {
3506 CalleeOp = CalleeAM.Base.Reg;
3507 } else
3508 return false;
3509
3510 // Issue the call.
3512 if (CalleeOp) {
3513 // Register-indirect call.
3514 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3515 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc))
3516 .addReg(CalleeOp);
3517 } else {
3518 // Direct call.
3519 assert(GV && "Not a direct call");
3520 // See if we need any target-specific flags on the GV operand.
3521 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3522
3523 // This will be a direct call, or an indirect call through memory for
3524 // NonLazyBind calls or dllimport calls.
3525 bool NeedLoad = OpFlags == X86II::MO_DLLIMPORT ||
3526 OpFlags == X86II::MO_GOTPCREL ||
3527 OpFlags == X86II::MO_GOTPCREL_NORELAX ||
3528 OpFlags == X86II::MO_COFFSTUB;
3529 unsigned CallOpc = NeedLoad
3530 ? (Is64Bit ? X86::CALL64m : X86::CALL32m)
3531 : (Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32);
3532
3533 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(CallOpc));
3534 if (NeedLoad)
3535 MIB.addReg(Is64Bit ? X86::RIP : 0).addImm(1).addReg(0);
3536 if (Symbol)
3537 MIB.addSym(Symbol, OpFlags);
3538 else
3539 MIB.addGlobalAddress(GV, 0, OpFlags);
3540 if (NeedLoad)
3541 MIB.addReg(0);
3542 }
3543
3544 // Add a register mask operand representing the call-preserved registers.
3545 // Proper defs for return values will be added by setPhysRegsDeadExcept().
3546 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3547
3548 // Add an implicit use GOT pointer in EBX.
3549 if (Subtarget->isPICStyleGOT())
3550 MIB.addReg(X86::EBX, RegState::Implicit);
3551
3552 if (Is64Bit && IsVarArg && !IsWin64)
3553 MIB.addReg(X86::AL, RegState::Implicit);
3554
3555 // Add implicit physical register uses to the call.
3556 for (auto Reg : OutRegs)
3557 MIB.addReg(Reg, RegState::Implicit);
3558
3559 // Issue CALLSEQ_END
3560 unsigned NumBytesForCalleeToPop =
3561 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3562 TM.Options.GuaranteedTailCallOpt)
3563 ? NumBytes // Callee pops everything.
3564 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CB);
3565 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3566 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(AdjStackUp))
3567 .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3568
3569 // Now handle call return values.
3571 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3572 CLI.RetTy->getContext());
3573 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3574
3575 // Copy all of the result registers out of their specified physreg.
3576 Register ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3577 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3578 CCValAssign &VA = RVLocs[i];
3579 EVT CopyVT = VA.getValVT();
3580 unsigned CopyReg = ResultReg + i;
3581 Register SrcReg = VA.getLocReg();
3582
3583 // If this is x86-64, and we disabled SSE, we can't return FP values
3584 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3585 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3586 report_fatal_error("SSE register return with SSE disabled");
3587 }
3588
3589 // If we prefer to use the value in xmm registers, copy it out as f80 and
3590 // use a truncate to move it from fp stack reg to xmm reg.
3591 if ((SrcReg == X86::FP0 || SrcReg == X86::FP1) &&
3592 isScalarFPTypeInSSEReg(VA.getValVT())) {
3593 CopyVT = MVT::f80;
3594 CopyReg = createResultReg(&X86::RFP80RegClass);
3595 }
3596
3597 // Copy out the result.
3598 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3599 TII.get(TargetOpcode::COPY), CopyReg).addReg(SrcReg);
3600 InRegs.push_back(VA.getLocReg());
3601
3602 // Round the f80 to the right size, which also moves it to the appropriate
3603 // xmm register. This is accomplished by storing the f80 value in memory
3604 // and then loading it back.
3605 if (CopyVT != VA.getValVT()) {
3606 EVT ResVT = VA.getValVT();
3607 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3608 unsigned MemSize = ResVT.getSizeInBits()/8;
3609 int FI = MFI.CreateStackObject(MemSize, Align(MemSize), false);
3610 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3611 TII.get(Opc)), FI)
3612 .addReg(CopyReg);
3613 Opc = ResVT == MVT::f32 ? X86::MOVSSrm_alt : X86::MOVSDrm_alt;
3614 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3615 TII.get(Opc), ResultReg + i), FI);
3616 }
3617 }
3618
3619 CLI.ResultReg = ResultReg;
3620 CLI.NumResultRegs = RVLocs.size();
3621 CLI.Call = MIB;
3622
3623 return true;
3624}
3625
3626bool
3627X86FastISel::fastSelectInstruction(const Instruction *I) {
3628 switch (I->getOpcode()) {
3629 default: break;
3630 case Instruction::Load:
3631 return X86SelectLoad(I);
3632 case Instruction::Store:
3633 return X86SelectStore(I);
3634 case Instruction::Ret:
3635 return X86SelectRet(I);
3636 case Instruction::ICmp:
3637 case Instruction::FCmp:
3638 return X86SelectCmp(I);
3639 case Instruction::ZExt:
3640 return X86SelectZExt(I);
3641 case Instruction::SExt:
3642 return X86SelectSExt(I);
3643 case Instruction::Br:
3644 return X86SelectBranch(I);
3645 case Instruction::LShr:
3646 case Instruction::AShr:
3647 case Instruction::Shl:
3648 return X86SelectShift(I);
3649 case Instruction::SDiv:
3650 case Instruction::UDiv:
3651 case Instruction::SRem:
3652 case Instruction::URem:
3653 return X86SelectDivRem(I);
3654 case Instruction::Select:
3655 return X86SelectSelect(I);
3656 case Instruction::Trunc:
3657 return X86SelectTrunc(I);
3658 case Instruction::FPExt:
3659 return X86SelectFPExt(I);
3660 case Instruction::FPTrunc:
3661 return X86SelectFPTrunc(I);
3662 case Instruction::SIToFP:
3663 return X86SelectSIToFP(I);
3664 case Instruction::UIToFP:
3665 return X86SelectUIToFP(I);
3666 case Instruction::IntToPtr: // Deliberate fall-through.
3667 case Instruction::PtrToInt: {
3668 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3669 EVT DstVT = TLI.getValueType(DL, I->getType());
3670 if (DstVT.bitsGT(SrcVT))
3671 return X86SelectZExt(I);
3672 if (DstVT.bitsLT(SrcVT))
3673 return X86SelectTrunc(I);
3674 Register Reg = getRegForValue(I->getOperand(0));
3675 if (Reg == 0) return false;
3676 updateValueMap(I, Reg);
3677 return true;
3678 }
3679 case Instruction::BitCast: {
3680 // Select SSE2/AVX bitcasts between 128/256/512 bit vector types.
3681 if (!Subtarget->hasSSE2())
3682 return false;
3683
3684 MVT SrcVT, DstVT;
3685 if (!isTypeLegal(I->getOperand(0)->getType(), SrcVT) ||
3686 !isTypeLegal(I->getType(), DstVT))
3687 return false;
3688
3689 // Only allow vectors that use xmm/ymm/zmm.
3690 if (!SrcVT.isVector() || !DstVT.isVector() ||
3691 SrcVT.getVectorElementType() == MVT::i1 ||
3692 DstVT.getVectorElementType() == MVT::i1)
3693 return false;
3694
3695 Register Reg = getRegForValue(I->getOperand(0));
3696 if (!Reg)
3697 return false;
3698
3699 // Emit a reg-reg copy so we don't propagate cached known bits information
3700 // with the wrong VT if we fall out of fast isel after selecting this.
3701 const TargetRegisterClass *DstClass = TLI.getRegClassFor(DstVT);
3702 Register ResultReg = createResultReg(DstClass);
3703 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3704 TII.get(TargetOpcode::COPY), ResultReg).addReg(Reg);
3705
3706 updateValueMap(I, ResultReg);
3707 return true;
3708 }
3709 }
3710
3711 return false;
3712}
3713
3714unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3715 if (VT > MVT::i64)
3716 return 0;
3717
3718 uint64_t Imm = CI->getZExtValue();
3719 if (Imm == 0) {
3720 Register SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3721 switch (VT.SimpleTy) {
3722 default: llvm_unreachable("Unexpected value type");
3723 case MVT::i1:
3724 case MVT::i8:
3725 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, X86::sub_8bit);
3726 case MVT::i16:
3727 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, X86::sub_16bit);
3728 case MVT::i32:
3729 return SrcReg;
3730 case MVT::i64: {
3731 Register ResultReg = createResultReg(&X86::GR64RegClass);
3732 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3733 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3734 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3735 return ResultReg;
3736 }
3737 }
3738 }
3739
3740 unsigned Opc = 0;
3741 switch (VT.SimpleTy) {
3742 default: llvm_unreachable("Unexpected value type");
3743 case MVT::i1:
3744 VT = MVT::i8;
3745 [[fallthrough]];
3746 case MVT::i8: Opc = X86::MOV8ri; break;
3747 case MVT::i16: Opc = X86::MOV16ri; break;
3748 case MVT::i32: Opc = X86::MOV32ri; break;
3749 case MVT::i64: {
3750 if (isUInt<32>(Imm))
3751 Opc = X86::MOV32ri64;
3752 else if (isInt<32>(Imm))
3753 Opc = X86::MOV64ri32;
3754 else
3755 Opc = X86::MOV64ri;
3756 break;
3757 }
3758 }
3759 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3760}
3761
3762unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3763 if (CFP->isNullValue())
3764 return fastMaterializeFloatZero(CFP);
3765
3766 // Can't handle alternate code models yet.
3767 CodeModel::Model CM = TM.getCodeModel();
3768 if (CM != CodeModel::Small && CM != CodeModel::Large)
3769 return 0;
3770
3771 // Get opcode and regclass of the output for the given load instruction.
3772 unsigned Opc = 0;
3773 bool HasSSE1 = Subtarget->hasSSE1();
3774 bool HasSSE2 = Subtarget->hasSSE2();
3775 bool HasAVX = Subtarget->hasAVX();
3776 bool HasAVX512 = Subtarget->hasAVX512();
3777 switch (VT.SimpleTy) {
3778 default: return 0;
3779 case MVT::f32:
3780 Opc = HasAVX512 ? X86::VMOVSSZrm_alt
3781 : HasAVX ? X86::VMOVSSrm_alt
3782 : HasSSE1 ? X86::MOVSSrm_alt
3783 : X86::LD_Fp32m;
3784 break;
3785 case MVT::f64:
3786 Opc = HasAVX512 ? X86::VMOVSDZrm_alt
3787 : HasAVX ? X86::VMOVSDrm_alt
3788 : HasSSE2 ? X86::MOVSDrm_alt
3789 : X86::LD_Fp64m;
3790 break;
3791 case MVT::f80:
3792 // No f80 support yet.
3793 return 0;
3794 }
3795
3796 // MachineConstantPool wants an explicit alignment.
3797 Align Alignment = DL.getPrefTypeAlign(CFP->getType());
3798
3799 // x86-32 PIC requires a PIC base register for constant pools.
3800 unsigned PICBase = 0;
3801 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3802 if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3803 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3804 else if (OpFlag == X86II::MO_GOTOFF)
3805 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3806 else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
3807 PICBase = X86::RIP;
3808
3809 // Create the load from the constant pool.
3810 unsigned CPI = MCP.getConstantPoolIndex(CFP, Alignment);
3811 Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
3812
3813 // Large code model only applies to 64-bit mode.
3814 if (Subtarget->is64Bit() && CM == CodeModel::Large) {
3815 Register AddrReg = createResultReg(&X86::GR64RegClass);
3816 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri),
3817 AddrReg)
3818 .addConstantPoolIndex(CPI, 0, OpFlag);
3819 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3820 TII.get(Opc), ResultReg);
3821 addRegReg(MIB, AddrReg, false, PICBase, false);
3822 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3824 MachineMemOperand::MOLoad, DL.getPointerSize(), Alignment);
3825 MIB->addMemOperand(*FuncInfo.MF, MMO);
3826 return ResultReg;
3827 }
3828
3830 TII.get(Opc), ResultReg),
3831 CPI, PICBase, OpFlag);
3832 return ResultReg;
3833}
3834
3835unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3836 // Can't handle alternate code models yet.
3837 if (TM.getCodeModel() != CodeModel::Small)
3838 return 0;
3839
3840 // Materialize addresses with LEA/MOV instructions.
3841 X86AddressMode AM;
3842 if (X86SelectAddress(GV, AM)) {
3843 // If the expression is just a basereg, then we're done, otherwise we need
3844 // to emit an LEA.
3846 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3847 return AM.Base.Reg;
3848
3849 Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3850 if (TM.getRelocationModel() == Reloc::Static &&
3851 TLI.getPointerTy(DL) == MVT::i64) {
3852 // The displacement code could be more than 32 bits away so we need to use
3853 // an instruction with a 64 bit immediate
3854 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(X86::MOV64ri),
3855 ResultReg)
3856 .addGlobalAddress(GV);
3857 } else {
3858 unsigned Opc =
3859 TLI.getPointerTy(DL) == MVT::i32
3860 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3861 : X86::LEA64r;
3862 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3863 TII.get(Opc), ResultReg), AM);
3864 }
3865 return ResultReg;
3866 }
3867 return 0;
3868}
3869
3870unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3871 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3872
3873 // Only handle simple types.
3874 if (!CEVT.isSimple())
3875 return 0;
3876 MVT VT = CEVT.getSimpleVT();
3877
3878 if (const auto *CI = dyn_cast<ConstantInt>(C))
3879 return X86MaterializeInt(CI, VT);
3880 if (const auto *CFP = dyn_cast<ConstantFP>(C))
3881 return X86MaterializeFP(CFP, VT);
3882 if (const auto *GV = dyn_cast<GlobalValue>(C))
3883 return X86MaterializeGV(GV, VT);
3884 if (isa<UndefValue>(C)) {
3885 unsigned Opc = 0;
3886 switch (VT.SimpleTy) {
3887 default:
3888 break;
3889 case MVT::f32:
3890 if (!Subtarget->hasSSE1())
3891 Opc = X86::LD_Fp032;
3892 break;
3893 case MVT::f64:
3894 if (!Subtarget->hasSSE2())
3895 Opc = X86::LD_Fp064;
3896 break;
3897 case MVT::f80:
3898 Opc = X86::LD_Fp080;
3899 break;
3900 }
3901
3902 if (Opc) {
3903 Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3904 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
3905 ResultReg);
3906 return ResultReg;
3907 }
3908 }
3909
3910 return 0;
3911}
3912
3913unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3914 // Fail on dynamic allocas. At this point, getRegForValue has already
3915 // checked its CSE maps, so if we're here trying to handle a dynamic
3916 // alloca, we're not going to succeed. X86SelectAddress has a
3917 // check for dynamic allocas, because it's called directly from
3918 // various places, but targetMaterializeAlloca also needs a check
3919 // in order to avoid recursion between getRegForValue,
3920 // X86SelectAddrss, and targetMaterializeAlloca.
3921 if (!FuncInfo.StaticAllocaMap.count(C))
3922 return 0;
3923 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3924
3925 X86AddressMode AM;
3926 if (!X86SelectAddress(C, AM))
3927 return 0;
3928 unsigned Opc =
3929 TLI.getPointerTy(DL) == MVT::i32
3930 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3931 : X86::LEA64r;
3932 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3933 Register ResultReg = createResultReg(RC);
3934 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3935 TII.get(Opc), ResultReg), AM);
3936 return ResultReg;
3937}
3938
3939unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3940 MVT VT;
3941 if (!isTypeLegal(CF->getType(), VT))
3942 return 0;
3943
3944 // Get opcode and regclass for the given zero.
3945 bool HasSSE1 = Subtarget->hasSSE1();
3946 bool HasSSE2 = Subtarget->hasSSE2();
3947 bool HasAVX512 = Subtarget->hasAVX512();
3948 unsigned Opc = 0;
3949 switch (VT.SimpleTy) {
3950 default: return 0;
3951 case MVT::f16:
3952 Opc = HasAVX512 ? X86::AVX512_FsFLD0SH : X86::FsFLD0SH;
3953 break;
3954 case MVT::f32:
3955 Opc = HasAVX512 ? X86::AVX512_FsFLD0SS
3956 : HasSSE1 ? X86::FsFLD0SS
3957 : X86::LD_Fp032;
3958 break;
3959 case MVT::f64:
3960 Opc = HasAVX512 ? X86::AVX512_FsFLD0SD
3961 : HasSSE2 ? X86::FsFLD0SD
3962 : X86::LD_Fp064;
3963 break;
3964 case MVT::f80:
3965 // No f80 support yet.
3966 return 0;
3967 }
3968
3969 Register ResultReg = createResultReg(TLI.getRegClassFor(VT));
3970 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), ResultReg);
3971 return ResultReg;
3972}
3973
3974
3975bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3976 const LoadInst *LI) {
3977 const Value *Ptr = LI->getPointerOperand();
3978 X86AddressMode AM;
3979 if (!X86SelectAddress(Ptr, AM))
3980 return false;
3981
3982 const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3983
3984 unsigned Size = DL.getTypeAllocSize(LI->getType());
3985
3987 AM.getFullAddress(AddrOps);
3988
3990 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, LI->getAlign(),
3991 /*AllowCommute=*/true);
3992 if (!Result)
3993 return false;
3994
3995 // The index register could be in the wrong register class. Unfortunately,
3996 // foldMemoryOperandImpl could have commuted the instruction so its not enough
3997 // to just look at OpNo + the offset to the index reg. We actually need to
3998 // scan the instruction to find the index reg and see if its the correct reg
3999 // class.
4000 unsigned OperandNo = 0;
4001 for (MachineInstr::mop_iterator I = Result->operands_begin(),
4002 E = Result->operands_end(); I != E; ++I, ++OperandNo) {
4003 MachineOperand &MO = *I;
4004 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
4005 continue;
4006 // Found the index reg, now try to rewrite it.
4007 Register IndexReg = constrainOperandRegClass(Result->getDesc(),
4008 MO.getReg(), OperandNo);
4009 if (IndexReg == MO.getReg())
4010 continue;
4011 MO.setReg(IndexReg);
4012 }
4013
4014 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
4015 Result->cloneInstrSymbols(*FuncInfo.MF, *MI);
4017 removeDeadCode(I, std::next(I));
4018 return true;
4019}
4020
4021unsigned X86FastISel::fastEmitInst_rrrr(unsigned MachineInstOpcode,
4022 const TargetRegisterClass *RC,
4023 unsigned Op0, unsigned Op1,
4024 unsigned Op2, unsigned Op3) {
4025 const MCInstrDesc &II = TII.get(MachineInstOpcode);
4026
4027 Register ResultReg = createResultReg(RC);
4028 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
4029 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
4030 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2);
4031 Op3 = constrainOperandRegClass(II, Op3, II.getNumDefs() + 3);
4032
4033 if (II.getNumDefs() >= 1)
4034 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
4035 .addReg(Op0)
4036 .addReg(Op1)
4037 .addReg(Op2)
4038 .addReg(Op3);
4039 else {
4040 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
4041 .addReg(Op0)
4042 .addReg(Op1)
4043 .addReg(Op2)
4044 .addReg(Op3);
4045 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TargetOpcode::COPY),
4046 ResultReg)
4047 .addReg(II.implicit_defs()[0]);
4048 }
4049 return ResultReg;
4050}
4051
4052
4053namespace llvm {
4055 const TargetLibraryInfo *libInfo) {
4056 return new X86FastISel(funcInfo, libInfo);
4057 }
4058}
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
amdgpu Simplify well known AMD library false FunctionCallee Callee
amdgpu Simplify well known AMD library false FunctionCallee Value * Arg
SmallVector< MachineOperand, 4 > Cond
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
return RetTy
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
uint64_t Size
bool End
Definition: ELF_riscv.cpp:464
This file defines the FastISel class.
Hexagon Common GEP
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
unsigned const TargetRegisterInfo * TRI
typename CallsiteContextGraph< DerivedCCG, FuncTy, CallTy >::FuncInfo FuncInfo
const char LLVMTargetMachineRef TM
@ SI
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
unsigned OpIndex
@ Flags
Definition: TextStubV5.cpp:93
static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC)
If we have a comparison with RHS as the RHS of the comparison, return an opcode that works for the co...
static std::pair< unsigned, bool > getX86SSEConditionCode(CmpInst::Predicate Predicate)
static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget, CallingConv::ID CC, const CallBase *CB)
static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget)
static void X86SelectAddress(const MachineInstr &I, const MachineRegisterInfo &MRI, X86AddressMode &AM)
Value * RHS
Value * LHS
an instruction to allocate memory on the stack
Definition: Instructions.h:58
This class represents an incoming formal argument to a Function.
Definition: Argument.h:28
LLVM Basic Block Representation.
Definition: BasicBlock.h:56
InstListType::const_iterator const_iterator
Definition: BasicBlock.h:88
Conditional or Unconditional Branch instruction.
BasicBlock * getSuccessor(unsigned i) const
Value * getCondition() const
CCState - This class holds information needed while lowering arguments and return values.
CCValAssign - Represent assignment of one arg/retval to a location.
bool isRegLoc() const
Register getLocReg() const
LocInfo getLocInfo() const
bool isMemLoc() const
int64_t getLocMemOffset() const
unsigned getValNo() const
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1190
bool arg_empty() const
Definition: InstrTypes.h:1354
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1412
bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const
Determine whether the argument or parameter has the given attribute.
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1357
unsigned arg_size() const
Definition: InstrTypes.h:1355
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:701
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:711
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
Definition: InstrTypes.h:714
@ FCMP_TRUE
1 1 1 1 Always true (always folded)
Definition: InstrTypes.h:728
@ FCMP_OLT
0 1 0 0 True if ordered and less than
Definition: InstrTypes.h:717
@ FCMP_ULE
1 1 0 1 True if unordered, less than, or equal
Definition: InstrTypes.h:726
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
Definition: InstrTypes.h:715
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
Definition: InstrTypes.h:716
@ FCMP_ULT
1 1 0 0 True if unordered or less than
Definition: InstrTypes.h:725
@ FCMP_ONE
0 1 1 0 True if ordered and operands are unequal
Definition: InstrTypes.h:719
@ FCMP_UEQ
1 0 0 1 True if unordered or equal
Definition: InstrTypes.h:722
@ FCMP_UGT
1 0 1 0 True if unordered or greater than
Definition: InstrTypes.h:723
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
Definition: InstrTypes.h:718
@ FCMP_ORD
0 1 1 1 True if ordered (no nans)
Definition: InstrTypes.h:720
@ ICMP_NE
not equal
Definition: InstrTypes.h:733
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
Definition: InstrTypes.h:727
@ FCMP_UGE
1 0 1 1 True if unordered, greater than, or equal
Definition: InstrTypes.h:724
@ FCMP_FALSE
0 0 0 0 Always false (always folded)
Definition: InstrTypes.h:713
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
Definition: InstrTypes.h:721
Predicate getInversePredicate() const
For example, EQ -> NE, UGT -> ULE, SLT -> SGE, OEQ -> UNE, UGT -> OLE, OLT -> UGE,...
Definition: InstrTypes.h:825
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:801
A constant value that is initialized with an expression using other constant values.
Definition: Constants.h:997
static Constant * getZExt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2103
static Constant * getSExt(Constant *C, Type *Ty, bool OnlyIfReduced=false)
Definition: Constants.cpp:2089
ConstantFP - Floating Point Values [float, double].
Definition: Constants.h:260
This is the shared class of boolean and integer constants.
Definition: Constants.h:78
int64_t getSExtValue() const
Return the constant as a 64-bit integer value after it has been sign extended as appropriate for the ...
Definition: Constants.h:151
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition: Constants.h:145
This is an important base class in LLVM.
Definition: Constant.h:41
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
Definition: Constants.cpp:356
bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition: Constants.cpp:76
bool isValidLocationForIntrinsic(const DILocation *DL) const
Check that a location is valid for this variable.
This represents the llvm.dbg.declare instruction.
Value * getAddress() const
DILocalVariable * getVariable() const
DIExpression * getExpression() const
A debug info location.
Definition: DebugLoc.h:33
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition: FastISel.h:66
virtual unsigned fastMaterializeFloatZero(const ConstantFP *CF)
Emit the floating-point constant +0.0 in a register using target- specific logic.
Definition: FastISel.h:476
virtual bool fastLowerIntrinsicCall(const IntrinsicInst *II)
This method is called by target-independent code to do target- specific intrinsic lowering.
Definition: FastISel.cpp:1849
virtual bool tryToFoldLoadIntoMI(MachineInstr *, unsigned, const LoadInst *)
The specified machine instr operand is a vreg, and that vreg is being provided by the specified load ...
Definition: FastISel.h:300
virtual unsigned fastMaterializeConstant(const Constant *C)
Emit a constant in a register using target-specific logic, such as constant pool loads.
Definition: FastISel.h:469
virtual bool fastLowerCall(CallLoweringInfo &CLI)
This method is called by target-independent code to do target- specific call lowering.
Definition: FastISel.cpp:1847
virtual bool fastLowerArguments()
This method is called by target-independent code to do target- specific argument lowering.
Definition: FastISel.cpp:1845
virtual bool fastSelectInstruction(const Instruction *I)=0
This method is called by target-independent code when the normal FastISel process fails to select an ...
const TargetMachine & TM
Definition: FastISel.h:209
virtual unsigned fastMaterializeAlloca(const AllocaInst *C)
Emit an alloca address in a register using target-specific logic.
Definition: FastISel.h:472
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
Type * getReturnType() const
Returns the type of the ret val.
Definition: Function.h:179
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:940
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:365
bool isAtomic() const LLVM_READONLY
Return true if this instruction has an AtomicOrdering of unordered or higher.
const BasicBlock * getParent() const
Definition: Instruction.h:90
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:47
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Definition: IntrinsicInst.h:54
An instruction for reading from memory.
Definition: Instructions.h:177
Value * getPointerOperand()
Definition: Instructions.h:264
Align getAlign() const
Return the alignment of the access that is being performed.
Definition: Instructions.h:220
bool usesWindowsCFI() const
Definition: MCAsmInfo.h:797
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
unsigned getNumOperands() const
Return the number of declared MachineOperands for this MachineInstruction.
Definition: MCInstrDesc.h:237
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
Definition: MCInstrDesc.h:248
ArrayRef< MCPhysReg > implicit_defs() const
Return a list of registers that are potentially written by any instance of this machine instruction.
Definition: MCInstrDesc.h:580
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition: MCSymbol.h:41
Machine Value Type.
SimpleValueType SimpleTy
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
TypeSize getStoreSize() const
Return the number of bytes overwritten by a store of the specified value type.
MVT getVectorElementType() const
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
void setFrameAddressIsTaken(bool T)
void setStackProtectorIndex(int I)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
const LLVMTargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addMetadata(const MDNode *MD) const
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addConstantPoolIndex(unsigned Idx, int Offset=0, unsigned TargetFlags=0) const
const MachineInstrBuilder & addRegMask(const uint32_t *Mask) const
const MachineInstrBuilder & addGlobalAddress(const GlobalValue *GV, int64_t Offset=0, unsigned TargetFlags=0) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
Representation of each machine instruction.
Definition: MachineInstr.h:68
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:519
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:513
void addMemOperand(MachineFunction &MF, MachineMemOperand *MO)
Add a MachineMemOperand to the machine instruction.
A description of a memory reference used in the backend.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
void setReg(Register Reg)
Change the register this operand corresponds to.
Register getReg() const
getReg - Returns the register number.
This class wraps the llvm.memcpy intrinsic.
Value * getLength() const
Value * getRawDest() const
unsigned getDestAddressSpace() const
bool isVolatile() const
This class wraps the llvm.memset and llvm.memset.inline intrinsics.
Value * getRawSource() const
Return the arguments to the instruction.
unsigned getSourceAddressSpace() const
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Return a value (possibly void), from a function.
size_t size() const
Definition: SmallVector.h:91
void push_back(const T &Elt)
Definition: SmallVector.h:416
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
An instruction for storing to memory.
Definition: Instructions.h:301
Align getAlign() const
Definition: Instructions.h:345
Value * getValueOperand()
Definition: Instructions.h:390
Value * getPointerOperand()
Definition: Instructions.h:393
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition: DataLayout.h:623
TypeSize getElementOffset(unsigned Idx) const
Definition: DataLayout.h:652
Class to represent struct types.
Definition: DerivedTypes.h:213
Provides information about what library functions are available for the current target.
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
bool contains(Register Reg) const
Return true if the specified register is included in this register class.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
bool isOSMSVCRT() const
Is this a "Windows" OS targeting a "MSVCRT.dll" environment.
Definition: Triple.h:627
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:265
bool isArrayTy() const
True if this is an instance of ArrayType.
Definition: Type.h:253
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:154
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:250
static IntegerType * getInt32Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:229
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
Value * getOperand(unsigned i) const
Definition: User.h:169
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1069
MachineInstr * foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI, ArrayRef< unsigned > Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS=nullptr, VirtRegMap *VRM=nullptr) const override
foldMemoryOperand - If this target supports it, fold a load or store of the specified stack slot into...
X86MachineFunctionInfo - This class is derived from MachineFunction and contains private X86 target-s...
bool hasSSE1() const
Definition: X86Subtarget.h:199
bool isTargetMCU() const
Definition: X86Subtarget.h:308
const Triple & getTargetTriple() const
Definition: X86Subtarget.h:289
bool hasAVX512() const
Definition: X86Subtarget.h:207
bool hasSSE2() const
Definition: X86Subtarget.h:200
bool hasAVX() const
Definition: X86Subtarget.h:205
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ X86_64_SysV
The C convention as specified in the x86-64 supplement to the System V ABI, used on most non-Windows ...
Definition: CallingConv.h:148
@ HiPE
Used by the High-Performance Erlang Compiler (HiPE).
Definition: CallingConv.h:53
@ Swift
Calling convention for Swift.
Definition: CallingConv.h:69
@ CFGuard_Check
Special calling convention on Windows for calling the Control Guard Check ICall funtion.
Definition: CallingConv.h:82
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
Definition: CallingConv.h:50
@ X86_ThisCall
Similar to X86_StdCall.
Definition: CallingConv.h:119
@ X86_StdCall
stdcall is mostly used by the Win32 API.
Definition: CallingConv.h:96
@ WebKit_JS
Used for stack based JavaScript calls.
Definition: CallingConv.h:56
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ Tail
Attemps to make calls as fast as possible while guaranteeing that tail call optimization can always b...
Definition: CallingConv.h:76
@ Win64
The C convention as implemented on Windows/x86-64 and AArch64.
Definition: CallingConv.h:156
@ SwiftTail
This follows the Swift calling convention in how arguments are passed but guarantees tail calls will ...
Definition: CallingConv.h:87
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ X86_FastCall
'fast' analog of X86_StdCall.
Definition: CallingConv.h:100
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition: ISDOpcodes.h:40
@ ADD
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:239
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:779
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
Definition: ISDOpcodes.h:898
@ SIGN_EXTEND
Conversion operators.
Definition: ISDOpcodes.h:773
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
Definition: ISDOpcodes.h:619
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:776
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:679
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
Definition: ISDOpcodes.h:1447
Flag
These should be considered private to the implementation of the MCInstrDesc class.
Definition: MCInstrDesc.h:148
Predicate
Predicate - These are "(BI << 5) | BO" for various predicates.
Definition: PPCPredicates.h:26
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ Kill
The last use of a register.
Reg
All possible values of the reg field in the ModR/M byte.
@ MO_GOTPCREL_NORELAX
MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL relocations are guaranteed to...
Definition: X86BaseInfo.h:447
@ MO_GOTOFF
MO_GOTOFF - On a symbol operand this indicates that the immediate is the offset to the location of th...
Definition: X86BaseInfo.h:434
@ MO_COFFSTUB
MO_COFFSTUB - On a symbol operand "FOO", this indicates that the reference is actually to the "....
Definition: X86BaseInfo.h:575
@ MO_DLLIMPORT
MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the reference is actually to the "__imp...
Definition: X86BaseInfo.h:537
@ MO_PIC_BASE_OFFSET
MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the immediate should get the value of th...
Definition: X86BaseInfo.h:420
@ MO_GOTPCREL
MO_GOTPCREL - On a symbol operand this indicates that the immediate is offset to the GOT entry for th...
Definition: X86BaseInfo.h:442
@ LAST_VALID_COND
Definition: X86BaseInfo.h:97
@ AddrIndexReg
Definition: X86BaseInfo.h:34
std::pair< CondCode, bool > getX86ConditionCode(CmpInst::Predicate Predicate)
Return a pair of condition code for the given predicate and whether the instruction operands should b...
bool isCalleePop(CallingConv::ID CallingConv, bool is64Bit, bool IsVarArg, bool GuaranteeTCO)
Determines whether the callee is required to pop its own arguments.
FastISel * createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo)
unsigned getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand=false)
Return a cmov opcode for the given register size in bytes, and operand type.
constexpr double e
Definition: MathExtras.h:31
@ Emitted
Assigned address, still materializing.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
static bool isGlobalStubReference(unsigned char TargetFlag)
isGlobalStubReference - Return true if the specified TargetFlag operand is a reference to a stub for ...
Definition: X86InstrInfo.h:82
static bool isGlobalRelativeToPICBase(unsigned char TargetFlag)
isGlobalRelativeToPICBase - Return true if the specified global value reference is relative to a 32-b...
Definition: X86InstrInfo.h:100
Register constrainOperandRegClass(const MachineFunction &MF, const TargetRegisterInfo &TRI, MachineRegisterInfo &MRI, const TargetInstrInfo &TII, const RegisterBankInfo &RBI, MachineInstr &InsertPt, const TargetRegisterClass &RegClass, MachineOperand &RegMO)
Constrain the Register operand OpIdx, so that it is now constrained to the TargetRegisterClass passed...
Definition: Utils.cpp:53
void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
auto successors(const MachineBasicBlock *BB)
bool RetCC_X86(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
static const MachineInstrBuilder & addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset=0, bool mem=true)
addFrameReference - This function is used to add a reference to the base of an abstract object on the...
static const MachineInstrBuilder & addFullAddress(const MachineInstrBuilder &MIB, const X86AddressMode &AM)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1826
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:511
static const MachineInstrBuilder & addConstantPoolReference(const MachineInstrBuilder &MIB, unsigned CPI, unsigned GlobalBaseReg, unsigned char OpFlags)
addConstantPoolReference - This function is used to add a reference to the base of a constant value s...
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:145
static const MachineInstrBuilder & addRegReg(const MachineInstrBuilder &MIB, unsigned Reg1, bool isKill1, unsigned Reg2, bool isKill2)
addRegReg - This function is used to add a memory reference of the form: [Reg + Reg].
unsigned getKillRegState(bool B)
gep_type_iterator gep_type_begin(const User *GEP)
bool CC_X86(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State)
static const MachineInstrBuilder & addDirectMem(const MachineInstrBuilder &MIB, unsigned Reg)
addDirectMem - This function is used to add a direct memory reference to the current instruction – th...
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition: Alignment.h:85
Extended Value Type.
Definition: ValueTypes.h:34
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition: ValueTypes.h:129
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
Definition: ValueTypes.h:267
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition: ValueTypes.h:283
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition: ValueTypes.h:351
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:299
static MachinePointerInfo getStack(MachineFunction &MF, int64_t Offset, uint8_t ID=0)
Stack pointer relative access.
static MachinePointerInfo getConstantPool(MachineFunction &MF)
Return a MachinePointerInfo record that refers to the constant pool.
X86AddressMode - This struct holds a generalized full x86 address mode.
void getFullAddress(SmallVectorImpl< MachineOperand > &MO)
const GlobalValue * GV
union llvm::X86AddressMode::@599 Base
enum llvm::X86AddressMode::@598 BaseType