LLVM 18.0.0git
ARMTargetTransformInfo.cpp
Go to the documentation of this file.
1//===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10#include "ARMSubtarget.h"
12#include "llvm/ADT/APInt.h"
19#include "llvm/IR/BasicBlock.h"
20#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/Instruction.h"
25#include "llvm/IR/Intrinsics.h"
26#include "llvm/IR/IntrinsicsARM.h"
28#include "llvm/IR/Type.h"
37#include <algorithm>
38#include <cassert>
39#include <cstdint>
40#include <optional>
41#include <utility>
42
43using namespace llvm;
44
45#define DEBUG_TYPE "armtti"
46
48 "enable-arm-maskedldst", cl::Hidden, cl::init(true),
49 cl::desc("Enable the generation of masked loads and stores"));
50
52 "disable-arm-loloops", cl::Hidden, cl::init(false),
53 cl::desc("Disable the generation of low-overhead loops"));
54
55static cl::opt<bool>
56 AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true),
57 cl::desc("Enable the generation of WLS loops"));
58
60
62
64
65/// Convert a vector load intrinsic into a simple llvm load instruction.
66/// This is beneficial when the underlying object being addressed comes
67/// from a constant, since we get constant-folding for free.
68static Value *simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign,
69 InstCombiner::BuilderTy &Builder) {
70 auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
71
72 if (!IntrAlign)
73 return nullptr;
74
75 unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign
76 ? MemAlign
77 : IntrAlign->getLimitedValue();
78
79 if (!isPowerOf2_32(Alignment))
80 return nullptr;
81
82 auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
83 PointerType::get(II.getType(), 0));
84 return Builder.CreateAlignedLoad(II.getType(), BCastInst, Align(Alignment));
85}
86
88 const Function *Callee) const {
89 const TargetMachine &TM = getTLI()->getTargetMachine();
90 const FeatureBitset &CallerBits =
91 TM.getSubtargetImpl(*Caller)->getFeatureBits();
92 const FeatureBitset &CalleeBits =
93 TM.getSubtargetImpl(*Callee)->getFeatureBits();
94
95 // To inline a callee, all features not in the allowed list must match exactly.
96 bool MatchExact = (CallerBits & ~InlineFeaturesAllowed) ==
97 (CalleeBits & ~InlineFeaturesAllowed);
98 // For features in the allowed list, the callee's features must be a subset of
99 // the callers'.
100 bool MatchSubset = ((CallerBits & CalleeBits) & InlineFeaturesAllowed) ==
101 (CalleeBits & InlineFeaturesAllowed);
102 return MatchExact && MatchSubset;
103}
104
107 ScalarEvolution *SE) const {
108 if (ST->hasMVEIntegerOps())
110
111 if (L->getHeader()->getParent()->hasOptSize())
112 return TTI::AMK_None;
113
114 if (ST->isMClass() && ST->isThumb2() &&
115 L->getNumBlocks() == 1)
116 return TTI::AMK_PreIndexed;
117
118 return TTI::AMK_None;
119}
120
121std::optional<Instruction *>
123 using namespace PatternMatch;
124 Intrinsic::ID IID = II.getIntrinsicID();
125 switch (IID) {
126 default:
127 break;
128 case Intrinsic::arm_neon_vld1: {
129 Align MemAlign =
132 if (Value *V = simplifyNeonVld1(II, MemAlign.value(), IC.Builder)) {
133 return IC.replaceInstUsesWith(II, V);
134 }
135 break;
136 }
137
138 case Intrinsic::arm_neon_vld2:
139 case Intrinsic::arm_neon_vld3:
140 case Intrinsic::arm_neon_vld4:
141 case Intrinsic::arm_neon_vld2lane:
142 case Intrinsic::arm_neon_vld3lane:
143 case Intrinsic::arm_neon_vld4lane:
144 case Intrinsic::arm_neon_vst1:
145 case Intrinsic::arm_neon_vst2:
146 case Intrinsic::arm_neon_vst3:
147 case Intrinsic::arm_neon_vst4:
148 case Intrinsic::arm_neon_vst2lane:
149 case Intrinsic::arm_neon_vst3lane:
150 case Intrinsic::arm_neon_vst4lane: {
151 Align MemAlign =
154 unsigned AlignArg = II.arg_size() - 1;
155 Value *AlignArgOp = II.getArgOperand(AlignArg);
156 MaybeAlign Align = cast<ConstantInt>(AlignArgOp)->getMaybeAlignValue();
157 if (Align && *Align < MemAlign) {
158 return IC.replaceOperand(
159 II, AlignArg,
161 false));
162 }
163 break;
164 }
165
166 case Intrinsic::arm_mve_pred_i2v: {
167 Value *Arg = II.getArgOperand(0);
168 Value *ArgArg;
169 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
170 PatternMatch::m_Value(ArgArg))) &&
171 II.getType() == ArgArg->getType()) {
172 return IC.replaceInstUsesWith(II, ArgArg);
173 }
174 Constant *XorMask;
175 if (match(Arg, m_Xor(PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_v2i>(
176 PatternMatch::m_Value(ArgArg)),
177 PatternMatch::m_Constant(XorMask))) &&
178 II.getType() == ArgArg->getType()) {
179 if (auto *CI = dyn_cast<ConstantInt>(XorMask)) {
180 if (CI->getValue().trunc(16).isAllOnes()) {
181 auto TrueVector = IC.Builder.CreateVectorSplat(
182 cast<FixedVectorType>(II.getType())->getNumElements(),
183 IC.Builder.getTrue());
184 return BinaryOperator::Create(Instruction::Xor, ArgArg, TrueVector);
185 }
186 }
187 }
188 KnownBits ScalarKnown(32);
189 if (IC.SimplifyDemandedBits(&II, 0, APInt::getLowBitsSet(32, 16),
190 ScalarKnown, 0)) {
191 return &II;
192 }
193 break;
194 }
195 case Intrinsic::arm_mve_pred_v2i: {
196 Value *Arg = II.getArgOperand(0);
197 Value *ArgArg;
198 if (match(Arg, PatternMatch::m_Intrinsic<Intrinsic::arm_mve_pred_i2v>(
199 PatternMatch::m_Value(ArgArg)))) {
200 return IC.replaceInstUsesWith(II, ArgArg);
201 }
202 if (!II.getMetadata(LLVMContext::MD_range)) {
203 Type *IntTy32 = Type::getInt32Ty(II.getContext());
204 Metadata *M[] = {
206 ConstantAsMetadata::get(ConstantInt::get(IntTy32, 0x10000))};
207 II.setMetadata(LLVMContext::MD_range, MDNode::get(II.getContext(), M));
208 II.setMetadata(LLVMContext::MD_noundef,
209 MDNode::get(II.getContext(), std::nullopt));
210 return &II;
211 }
212 break;
213 }
214 case Intrinsic::arm_mve_vadc:
215 case Intrinsic::arm_mve_vadc_predicated: {
216 unsigned CarryOp =
217 (II.getIntrinsicID() == Intrinsic::arm_mve_vadc_predicated) ? 3 : 2;
218 assert(II.getArgOperand(CarryOp)->getType()->getScalarSizeInBits() == 32 &&
219 "Bad type for intrinsic!");
220
221 KnownBits CarryKnown(32);
222 if (IC.SimplifyDemandedBits(&II, CarryOp, APInt::getOneBitSet(32, 29),
223 CarryKnown)) {
224 return &II;
225 }
226 break;
227 }
228 case Intrinsic::arm_mve_vmldava: {
229 Instruction *I = cast<Instruction>(&II);
230 if (I->hasOneUse()) {
231 auto *User = cast<Instruction>(*I->user_begin());
232 Value *OpZ;
233 if (match(User, m_c_Add(m_Specific(I), m_Value(OpZ))) &&
234 match(I->getOperand(3), m_Zero())) {
235 Value *OpX = I->getOperand(4);
236 Value *OpY = I->getOperand(5);
237 Type *OpTy = OpX->getType();
238
240 Value *V =
241 IC.Builder.CreateIntrinsic(Intrinsic::arm_mve_vmldava, {OpTy},
242 {I->getOperand(0), I->getOperand(1),
243 I->getOperand(2), OpZ, OpX, OpY});
244
246 return IC.eraseInstFromFunction(*User);
247 }
248 }
249 return std::nullopt;
250 }
251 }
252 return std::nullopt;
253}
254
256 InstCombiner &IC, IntrinsicInst &II, APInt OrigDemandedElts,
257 APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3,
258 std::function<void(Instruction *, unsigned, APInt, APInt &)>
259 SimplifyAndSetOp) const {
260
261 // Compute the demanded bits for a narrowing MVE intrinsic. The TopOpc is the
262 // opcode specifying a Top/Bottom instruction, which can change between
263 // instructions.
264 auto SimplifyNarrowInstrTopBottom =[&](unsigned TopOpc) {
265 unsigned NumElts = cast<FixedVectorType>(II.getType())->getNumElements();
266 unsigned IsTop = cast<ConstantInt>(II.getOperand(TopOpc))->getZExtValue();
267
268 // The only odd/even lanes of operand 0 will only be demanded depending
269 // on whether this is a top/bottom instruction.
270 APInt DemandedElts =
271 APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
272 : APInt::getHighBitsSet(2, 1));
273 SimplifyAndSetOp(&II, 0, OrigDemandedElts & DemandedElts, UndefElts);
274 // The other lanes will be defined from the inserted elements.
275 UndefElts &= APInt::getSplat(NumElts, !IsTop ? APInt::getLowBitsSet(2, 1)
276 : APInt::getHighBitsSet(2, 1));
277 return std::nullopt;
278 };
279
280 switch (II.getIntrinsicID()) {
281 default:
282 break;
283 case Intrinsic::arm_mve_vcvt_narrow:
284 SimplifyNarrowInstrTopBottom(2);
285 break;
286 case Intrinsic::arm_mve_vqmovn:
287 SimplifyNarrowInstrTopBottom(4);
288 break;
289 case Intrinsic::arm_mve_vshrn:
290 SimplifyNarrowInstrTopBottom(7);
291 break;
292 }
293
294 return std::nullopt;
295}
296
299 assert(Ty->isIntegerTy());
300
301 unsigned Bits = Ty->getPrimitiveSizeInBits();
302 if (Bits == 0 || Imm.getActiveBits() >= 64)
303 return 4;
304
305 int64_t SImmVal = Imm.getSExtValue();
306 uint64_t ZImmVal = Imm.getZExtValue();
307 if (!ST->isThumb()) {
308 if ((SImmVal >= 0 && SImmVal < 65536) ||
309 (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
310 (ARM_AM::getSOImmVal(~ZImmVal) != -1))
311 return 1;
312 return ST->hasV6T2Ops() ? 2 : 3;
313 }
314 if (ST->isThumb2()) {
315 if ((SImmVal >= 0 && SImmVal < 65536) ||
316 (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
317 (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
318 return 1;
319 return ST->hasV6T2Ops() ? 2 : 3;
320 }
321 // Thumb1, any i8 imm cost 1.
322 if (Bits == 8 || (SImmVal >= 0 && SImmVal < 256))
323 return 1;
324 if ((~SImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
325 return 2;
326 // Load from constantpool.
327 return 3;
328}
329
330// Constants smaller than 256 fit in the immediate field of
331// Thumb1 instructions so we return a zero cost and 1 otherwise.
333 const APInt &Imm, Type *Ty) {
334 if (Imm.isNonNegative() && Imm.getLimitedValue() < 256)
335 return 0;
336
337 return 1;
338}
339
340// Checks whether Inst is part of a min(max()) or max(min()) pattern
341// that will match to an SSAT instruction. Returns the instruction being
342// saturated, or null if no saturation pattern was found.
343static Value *isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm) {
344 Value *LHS, *RHS;
345 ConstantInt *C;
347
348 if (InstSPF == SPF_SMAX &&
350 C->getValue() == Imm && Imm.isNegative() && Imm.isNegatedPowerOf2()) {
351
352 auto isSSatMin = [&](Value *MinInst) {
353 if (isa<SelectInst>(MinInst)) {
354 Value *MinLHS, *MinRHS;
355 ConstantInt *MinC;
356 SelectPatternFlavor MinSPF =
357 matchSelectPattern(MinInst, MinLHS, MinRHS).Flavor;
358 if (MinSPF == SPF_SMIN &&
360 MinC->getValue() == ((-Imm) - 1))
361 return true;
362 }
363 return false;
364 };
365
366 if (isSSatMin(Inst->getOperand(1)))
367 return cast<Instruction>(Inst->getOperand(1))->getOperand(1);
368 if (Inst->hasNUses(2) &&
369 (isSSatMin(*Inst->user_begin()) || isSSatMin(*(++Inst->user_begin()))))
370 return Inst->getOperand(1);
371 }
372 return nullptr;
373}
374
375// Look for a FP Saturation pattern, where the instruction can be simplified to
376// a fptosi.sat. max(min(fptosi)). The constant in this case is always free.
377static bool isFPSatMinMaxPattern(Instruction *Inst, const APInt &Imm) {
378 if (Imm.getBitWidth() != 64 ||
379 Imm != APInt::getHighBitsSet(64, 33)) // -2147483648
380 return false;
381 Value *FP = isSSATMinMaxPattern(Inst, Imm);
382 if (!FP && isa<ICmpInst>(Inst) && Inst->hasOneUse())
383 FP = isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm);
384 if (!FP)
385 return false;
386 return isa<FPToSIInst>(FP);
387}
388
390 const APInt &Imm, Type *Ty,
392 Instruction *Inst) {
393 // Division by a constant can be turned into multiplication, but only if we
394 // know it's constant. So it's not so much that the immediate is cheap (it's
395 // not), but that the alternative is worse.
396 // FIXME: this is probably unneeded with GlobalISel.
397 if ((Opcode == Instruction::SDiv || Opcode == Instruction::UDiv ||
398 Opcode == Instruction::SRem || Opcode == Instruction::URem) &&
399 Idx == 1)
400 return 0;
401
402 // Leave any gep offsets for the CodeGenPrepare, which will do a better job at
403 // splitting any large offsets.
404 if (Opcode == Instruction::GetElementPtr && Idx != 0)
405 return 0;
406
407 if (Opcode == Instruction::And) {
408 // UXTB/UXTH
409 if (Imm == 255 || Imm == 65535)
410 return 0;
411 // Conversion to BIC is free, and means we can use ~Imm instead.
412 return std::min(getIntImmCost(Imm, Ty, CostKind),
413 getIntImmCost(~Imm, Ty, CostKind));
414 }
415
416 if (Opcode == Instruction::Add)
417 // Conversion to SUB is free, and means we can use -Imm instead.
418 return std::min(getIntImmCost(Imm, Ty, CostKind),
419 getIntImmCost(-Imm, Ty, CostKind));
420
421 if (Opcode == Instruction::ICmp && Imm.isNegative() &&
422 Ty->getIntegerBitWidth() == 32) {
423 int64_t NegImm = -Imm.getSExtValue();
424 if (ST->isThumb2() && NegImm < 1<<12)
425 // icmp X, #-C -> cmn X, #C
426 return 0;
427 if (ST->isThumb() && NegImm < 1<<8)
428 // icmp X, #-C -> adds X, #C
429 return 0;
430 }
431
432 // xor a, -1 can always be folded to MVN
433 if (Opcode == Instruction::Xor && Imm.isAllOnes())
434 return 0;
435
436 // Ensures negative constant of min(max()) or max(min()) patterns that
437 // match to SSAT instructions don't get hoisted
438 if (Inst && ((ST->hasV6Ops() && !ST->isThumb()) || ST->isThumb2()) &&
439 Ty->getIntegerBitWidth() <= 32) {
440 if (isSSATMinMaxPattern(Inst, Imm) ||
441 (isa<ICmpInst>(Inst) && Inst->hasOneUse() &&
442 isSSATMinMaxPattern(cast<Instruction>(*Inst->user_begin()), Imm)))
443 return 0;
444 }
445
446 if (Inst && ST->hasVFP2Base() && isFPSatMinMaxPattern(Inst, Imm))
447 return 0;
448
449 // We can convert <= -1 to < 0, which is generally quite cheap.
450 if (Inst && Opcode == Instruction::ICmp && Idx == 1 && Imm.isAllOnes()) {
451 ICmpInst::Predicate Pred = cast<ICmpInst>(Inst)->getPredicate();
452 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE)
453 return std::min(getIntImmCost(Imm, Ty, CostKind),
454 getIntImmCost(Imm + 1, Ty, CostKind));
455 }
456
457 return getIntImmCost(Imm, Ty, CostKind);
458}
459
462 const Instruction *I) {
464 (ST->hasNEON() || ST->hasMVEIntegerOps())) {
465 // FIXME: The vectorizer is highly sensistive to the cost of these
466 // instructions, which suggests that it may be using the costs incorrectly.
467 // But, for now, just make them free to avoid performance regressions for
468 // vector targets.
469 return 0;
470 }
471 return BaseT::getCFInstrCost(Opcode, CostKind, I);
472}
473
475 Type *Src,
478 const Instruction *I) {
479 int ISD = TLI->InstructionOpcodeToISD(Opcode);
480 assert(ISD && "Invalid opcode");
481
482 // TODO: Allow non-throughput costs that aren't binary.
483 auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
485 return Cost == 0 ? 0 : 1;
486 return Cost;
487 };
488 auto IsLegalFPType = [this](EVT VT) {
489 EVT EltVT = VT.getScalarType();
490 return (EltVT == MVT::f32 && ST->hasVFP2Base()) ||
491 (EltVT == MVT::f64 && ST->hasFP64()) ||
492 (EltVT == MVT::f16 && ST->hasFullFP16());
493 };
494
495 EVT SrcTy = TLI->getValueType(DL, Src);
496 EVT DstTy = TLI->getValueType(DL, Dst);
497
498 if (!SrcTy.isSimple() || !DstTy.isSimple())
499 return AdjustCost(
500 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
501
502 // Extending masked load/Truncating masked stores is expensive because we
503 // currently don't split them. This means that we'll likely end up
504 // loading/storing each element individually (hence the high cost).
505 if ((ST->hasMVEIntegerOps() &&
506 (Opcode == Instruction::Trunc || Opcode == Instruction::ZExt ||
507 Opcode == Instruction::SExt)) ||
508 (ST->hasMVEFloatOps() &&
509 (Opcode == Instruction::FPExt || Opcode == Instruction::FPTrunc) &&
510 IsLegalFPType(SrcTy) && IsLegalFPType(DstTy)))
511 if (CCH == TTI::CastContextHint::Masked && DstTy.getSizeInBits() > 128)
512 return 2 * DstTy.getVectorNumElements() *
514
515 // The extend of other kinds of load is free
516 if (CCH == TTI::CastContextHint::Normal ||
518 static const TypeConversionCostTblEntry LoadConversionTbl[] = {
519 {ISD::SIGN_EXTEND, MVT::i32, MVT::i16, 0},
520 {ISD::ZERO_EXTEND, MVT::i32, MVT::i16, 0},
521 {ISD::SIGN_EXTEND, MVT::i32, MVT::i8, 0},
522 {ISD::ZERO_EXTEND, MVT::i32, MVT::i8, 0},
523 {ISD::SIGN_EXTEND, MVT::i16, MVT::i8, 0},
524 {ISD::ZERO_EXTEND, MVT::i16, MVT::i8, 0},
525 {ISD::SIGN_EXTEND, MVT::i64, MVT::i32, 1},
526 {ISD::ZERO_EXTEND, MVT::i64, MVT::i32, 1},
527 {ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 1},
528 {ISD::ZERO_EXTEND, MVT::i64, MVT::i16, 1},
529 {ISD::SIGN_EXTEND, MVT::i64, MVT::i8, 1},
530 {ISD::ZERO_EXTEND, MVT::i64, MVT::i8, 1},
531 };
532 if (const auto *Entry = ConvertCostTableLookup(
533 LoadConversionTbl, ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
534 return AdjustCost(Entry->Cost);
535
536 static const TypeConversionCostTblEntry MVELoadConversionTbl[] = {
537 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0},
538 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0},
539 {ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 0},
540 {ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 0},
541 {ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 0},
542 {ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 0},
543 // The following extend from a legal type to an illegal type, so need to
544 // split the load. This introduced an extra load operation, but the
545 // extend is still "free".
546 {ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1},
547 {ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1},
548 {ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 3},
549 {ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 3},
550 {ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1},
551 {ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1},
552 };
553 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
554 if (const auto *Entry =
555 ConvertCostTableLookup(MVELoadConversionTbl, ISD,
556 DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
557 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
558 }
559
560 static const TypeConversionCostTblEntry MVEFLoadConversionTbl[] = {
561 // FPExtends are similar but also require the VCVT instructions.
562 {ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, 1},
563 {ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, 3},
564 };
565 if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
566 if (const auto *Entry =
567 ConvertCostTableLookup(MVEFLoadConversionTbl, ISD,
568 DstTy.getSimpleVT(), SrcTy.getSimpleVT()))
569 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
570 }
571
572 // The truncate of a store is free. This is the mirror of extends above.
573 static const TypeConversionCostTblEntry MVEStoreConversionTbl[] = {
574 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i16, 0},
575 {ISD::TRUNCATE, MVT::v4i32, MVT::v4i8, 0},
576 {ISD::TRUNCATE, MVT::v8i16, MVT::v8i8, 0},
577 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i16, 1},
578 {ISD::TRUNCATE, MVT::v8i32, MVT::v8i8, 1},
579 {ISD::TRUNCATE, MVT::v16i32, MVT::v16i8, 3},
580 {ISD::TRUNCATE, MVT::v16i16, MVT::v16i8, 1},
581 };
582 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
583 if (const auto *Entry =
584 ConvertCostTableLookup(MVEStoreConversionTbl, ISD,
585 SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
586 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
587 }
588
589 static const TypeConversionCostTblEntry MVEFStoreConversionTbl[] = {
590 {ISD::FP_ROUND, MVT::v4f32, MVT::v4f16, 1},
591 {ISD::FP_ROUND, MVT::v8f32, MVT::v8f16, 3},
592 };
593 if (SrcTy.isVector() && ST->hasMVEFloatOps()) {
594 if (const auto *Entry =
595 ConvertCostTableLookup(MVEFStoreConversionTbl, ISD,
596 SrcTy.getSimpleVT(), DstTy.getSimpleVT()))
597 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
598 }
599 }
600
601 // NEON vector operations that can extend their inputs.
602 if ((ISD == ISD::SIGN_EXTEND || ISD == ISD::ZERO_EXTEND) &&
603 I && I->hasOneUse() && ST->hasNEON() && SrcTy.isVector()) {
604 static const TypeConversionCostTblEntry NEONDoubleWidthTbl[] = {
605 // vaddl
606 { ISD::ADD, MVT::v4i32, MVT::v4i16, 0 },
607 { ISD::ADD, MVT::v8i16, MVT::v8i8, 0 },
608 // vsubl
609 { ISD::SUB, MVT::v4i32, MVT::v4i16, 0 },
610 { ISD::SUB, MVT::v8i16, MVT::v8i8, 0 },
611 // vmull
612 { ISD::MUL, MVT::v4i32, MVT::v4i16, 0 },
613 { ISD::MUL, MVT::v8i16, MVT::v8i8, 0 },
614 // vshll
615 { ISD::SHL, MVT::v4i32, MVT::v4i16, 0 },
616 { ISD::SHL, MVT::v8i16, MVT::v8i8, 0 },
617 };
618
619 auto *User = cast<Instruction>(*I->user_begin());
620 int UserISD = TLI->InstructionOpcodeToISD(User->getOpcode());
621 if (auto *Entry = ConvertCostTableLookup(NEONDoubleWidthTbl, UserISD,
622 DstTy.getSimpleVT(),
623 SrcTy.getSimpleVT())) {
624 return AdjustCost(Entry->Cost);
625 }
626 }
627
628 // Single to/from double precision conversions.
629 if (Src->isVectorTy() && ST->hasNEON() &&
630 ((ISD == ISD::FP_ROUND && SrcTy.getScalarType() == MVT::f64 &&
631 DstTy.getScalarType() == MVT::f32) ||
632 (ISD == ISD::FP_EXTEND && SrcTy.getScalarType() == MVT::f32 &&
633 DstTy.getScalarType() == MVT::f64))) {
634 static const CostTblEntry NEONFltDblTbl[] = {
635 // Vector fptrunc/fpext conversions.
636 {ISD::FP_ROUND, MVT::v2f64, 2},
637 {ISD::FP_EXTEND, MVT::v2f32, 2},
638 {ISD::FP_EXTEND, MVT::v4f32, 4}};
639
640 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
641 if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
642 return AdjustCost(LT.first * Entry->Cost);
643 }
644
645 // Some arithmetic, load and store operations have specific instructions
646 // to cast up/down their types automatically at no extra cost.
647 // TODO: Get these tables to know at least what the related operations are.
648 static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
649 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
650 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
651 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
652 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
653 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
654 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
655
656 // The number of vmovl instructions for the extension.
657 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
658 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
659 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
660 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
661 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 3 },
662 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 3 },
663 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
664 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
665 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
666 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
667 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
668 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
669 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
670 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
671 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
672 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
673 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
674 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
675
676 // Operations that we legalize using splitting.
677 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
678 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
679
680 // Vector float <-> i32 conversions.
681 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
682 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
683
684 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
685 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
686 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
687 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
688 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
689 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
690 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
691 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
692 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
693 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
694 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
695 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
696 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
697 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
698 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
699 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
700 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
701 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
702 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
703 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
704
705 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
706 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
707 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 },
708 { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 },
709 { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
710 { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
711
712 // Vector double <-> i32 conversions.
713 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
714 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
715
716 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
717 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
718 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
719 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
720 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
721 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
722
723 { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
724 { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
725 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 },
726 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 },
727 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 },
728 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 }
729 };
730
731 if (SrcTy.isVector() && ST->hasNEON()) {
732 if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
733 DstTy.getSimpleVT(),
734 SrcTy.getSimpleVT()))
735 return AdjustCost(Entry->Cost);
736 }
737
738 // Scalar float to integer conversions.
739 static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
740 { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 },
741 { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 },
742 { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 },
743 { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 },
744 { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 },
745 { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 },
746 { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 },
747 { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 },
748 { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 },
749 { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 },
750 { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 },
751 { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 },
752 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 },
753 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 },
754 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 },
755 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 },
756 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 },
757 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 },
758 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 },
759 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 }
760 };
761 if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
762 if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
763 DstTy.getSimpleVT(),
764 SrcTy.getSimpleVT()))
765 return AdjustCost(Entry->Cost);
766 }
767
768 // Scalar integer to float conversions.
769 static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
770 { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 },
771 { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 },
772 { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 },
773 { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 },
774 { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 },
775 { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 },
776 { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 },
777 { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 },
778 { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 },
779 { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 },
780 { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 },
781 { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 },
782 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 },
783 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 },
784 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 },
785 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 },
786 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 },
787 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 },
788 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 },
789 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 }
790 };
791
792 if (SrcTy.isInteger() && ST->hasNEON()) {
793 if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
794 ISD, DstTy.getSimpleVT(),
795 SrcTy.getSimpleVT()))
796 return AdjustCost(Entry->Cost);
797 }
798
799 // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
800 // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
801 // are linearised so take more.
802 static const TypeConversionCostTblEntry MVEVectorConversionTbl[] = {
803 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
804 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1 },
805 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
806 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2 },
807 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i8, 10 },
808 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i8, 2 },
809 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
810 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1 },
811 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 10 },
812 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2 },
813 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 8 },
814 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 2 },
815 };
816
817 if (SrcTy.isVector() && ST->hasMVEIntegerOps()) {
818 if (const auto *Entry = ConvertCostTableLookup(MVEVectorConversionTbl,
819 ISD, DstTy.getSimpleVT(),
820 SrcTy.getSimpleVT()))
821 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind);
822 }
823
824 if (ISD == ISD::FP_ROUND || ISD == ISD::FP_EXTEND) {
825 // As general rule, fp converts that were not matched above are scalarized
826 // and cost 1 vcvt for each lane, so long as the instruction is available.
827 // If not it will become a series of function calls.
828 const InstructionCost CallCost =
829 getCallInstrCost(nullptr, Dst, {Src}, CostKind);
830 int Lanes = 1;
831 if (SrcTy.isFixedLengthVector())
832 Lanes = SrcTy.getVectorNumElements();
833
834 if (IsLegalFPType(SrcTy) && IsLegalFPType(DstTy))
835 return Lanes;
836 else
837 return Lanes * CallCost;
838 }
839
840 if (ISD == ISD::TRUNCATE && ST->hasMVEIntegerOps() &&
841 SrcTy.isFixedLengthVector()) {
842 // Treat a truncate with larger than legal source (128bits for MVE) as
843 // expensive, 2 instructions per lane.
844 if ((SrcTy.getScalarType() == MVT::i8 ||
845 SrcTy.getScalarType() == MVT::i16 ||
846 SrcTy.getScalarType() == MVT::i32) &&
847 SrcTy.getSizeInBits() > 128 &&
848 SrcTy.getSizeInBits() > DstTy.getSizeInBits())
849 return SrcTy.getVectorNumElements() * 2;
850 }
851
852 // Scalar integer conversion costs.
853 static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
854 // i16 -> i64 requires two dependent operations.
855 { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
856
857 // Truncates on i64 are assumed to be free.
858 { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 },
859 { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 },
860 { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 },
861 { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 }
862 };
863
864 if (SrcTy.isInteger()) {
865 if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
866 DstTy.getSimpleVT(),
867 SrcTy.getSimpleVT()))
868 return AdjustCost(Entry->Cost);
869 }
870
871 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
873 : 1;
874 return AdjustCost(
875 BaseCost * BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
876}
877
880 unsigned Index, Value *Op0,
881 Value *Op1) {
882 // Penalize inserting into an D-subregister. We end up with a three times
883 // lower estimated throughput on swift.
884 if (ST->hasSlowLoadDSubregister() && Opcode == Instruction::InsertElement &&
885 ValTy->isVectorTy() && ValTy->getScalarSizeInBits() <= 32)
886 return 3;
887
888 if (ST->hasNEON() && (Opcode == Instruction::InsertElement ||
889 Opcode == Instruction::ExtractElement)) {
890 // Cross-class copies are expensive on many microarchitectures,
891 // so assume they are expensive by default.
892 if (cast<VectorType>(ValTy)->getElementType()->isIntegerTy())
893 return 3;
894
895 // Even if it's not a cross class copy, this likely leads to mixing
896 // of NEON and VFP code and should be therefore penalized.
897 if (ValTy->isVectorTy() &&
898 ValTy->getScalarSizeInBits() <= 32)
899 return std::max<InstructionCost>(
900 BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1),
901 2U);
902 }
903
904 if (ST->hasMVEIntegerOps() && (Opcode == Instruction::InsertElement ||
905 Opcode == Instruction::ExtractElement)) {
906 // Integer cross-lane moves are more expensive than float, which can
907 // sometimes just be vmovs. Integer involve being passes to GPR registers,
908 // causing more of a delay.
909 std::pair<InstructionCost, MVT> LT =
911 return LT.first * (ValTy->getScalarType()->isIntegerTy() ? 4 : 1);
912 }
913
914 return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1);
915}
916
918 Type *CondTy,
919 CmpInst::Predicate VecPred,
921 const Instruction *I) {
922 int ISD = TLI->InstructionOpcodeToISD(Opcode);
923
924 // Thumb scalar code size cost for select.
925 if (CostKind == TTI::TCK_CodeSize && ISD == ISD::SELECT &&
926 ST->isThumb() && !ValTy->isVectorTy()) {
927 // Assume expensive structs.
928 if (TLI->getValueType(DL, ValTy, true) == MVT::Other)
929 return TTI::TCC_Expensive;
930
931 // Select costs can vary because they:
932 // - may require one or more conditional mov (including an IT),
933 // - can't operate directly on immediates,
934 // - require live flags, which we can't copy around easily.
936
937 // Possible IT instruction for Thumb2, or more for Thumb1.
938 ++Cost;
939
940 // i1 values may need rematerialising by using mov immediates and/or
941 // flag setting instructions.
942 if (ValTy->isIntegerTy(1))
943 ++Cost;
944
945 return Cost;
946 }
947
948 // If this is a vector min/max/abs, use the cost of that intrinsic directly
949 // instead. Hopefully when min/max intrinsics are more prevalent this code
950 // will not be needed.
951 const Instruction *Sel = I;
952 if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && Sel &&
953 Sel->hasOneUse())
954 Sel = cast<Instruction>(Sel->user_back());
955 if (Sel && ValTy->isVectorTy() &&
956 (ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy())) {
957 const Value *LHS, *RHS;
959 unsigned IID = 0;
960 switch (SPF) {
961 case SPF_ABS:
962 IID = Intrinsic::abs;
963 break;
964 case SPF_SMIN:
965 IID = Intrinsic::smin;
966 break;
967 case SPF_SMAX:
968 IID = Intrinsic::smax;
969 break;
970 case SPF_UMIN:
971 IID = Intrinsic::umin;
972 break;
973 case SPF_UMAX:
974 IID = Intrinsic::umax;
975 break;
976 case SPF_FMINNUM:
977 IID = Intrinsic::minnum;
978 break;
979 case SPF_FMAXNUM:
980 IID = Intrinsic::maxnum;
981 break;
982 default:
983 break;
984 }
985 if (IID) {
986 // The ICmp is free, the select gets the cost of the min/max/etc
987 if (Sel != I)
988 return 0;
989 IntrinsicCostAttributes CostAttrs(IID, ValTy, {ValTy, ValTy});
990 return getIntrinsicInstrCost(CostAttrs, CostKind);
991 }
992 }
993
994 // On NEON a vector select gets lowered to vbsl.
995 if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT && CondTy) {
996 // Lowering of some vector selects is currently far from perfect.
997 static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
998 { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
999 { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
1000 { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
1001 };
1002
1003 EVT SelCondTy = TLI->getValueType(DL, CondTy);
1004 EVT SelValTy = TLI->getValueType(DL, ValTy);
1005 if (SelCondTy.isSimple() && SelValTy.isSimple()) {
1006 if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
1007 SelCondTy.getSimpleVT(),
1008 SelValTy.getSimpleVT()))
1009 return Entry->Cost;
1010 }
1011
1012 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1013 return LT.first;
1014 }
1015
1016 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy() &&
1017 (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
1018 cast<FixedVectorType>(ValTy)->getNumElements() > 1) {
1019 FixedVectorType *VecValTy = cast<FixedVectorType>(ValTy);
1020 FixedVectorType *VecCondTy = dyn_cast_or_null<FixedVectorType>(CondTy);
1021 if (!VecCondTy)
1022 VecCondTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(VecValTy));
1023
1024 // If we don't have mve.fp any fp operations will need to be scalarized.
1025 if (Opcode == Instruction::FCmp && !ST->hasMVEFloatOps()) {
1026 // One scalaization insert, one scalarization extract and the cost of the
1027 // fcmps.
1028 return BaseT::getScalarizationOverhead(VecValTy, /*Insert*/ false,
1029 /*Extract*/ true, CostKind) +
1030 BaseT::getScalarizationOverhead(VecCondTy, /*Insert*/ true,
1031 /*Extract*/ false, CostKind) +
1032 VecValTy->getNumElements() *
1033 getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
1034 VecCondTy->getScalarType(), VecPred,
1035 CostKind, I);
1036 }
1037
1038 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1039 int BaseCost = ST->getMVEVectorCostFactor(CostKind);
1040 // There are two types - the input that specifies the type of the compare
1041 // and the output vXi1 type. Because we don't know how the output will be
1042 // split, we may need an expensive shuffle to get two in sync. This has the
1043 // effect of making larger than legal compares (v8i32 for example)
1044 // expensive.
1045 if (LT.second.isVector() && LT.second.getVectorNumElements() > 2) {
1046 if (LT.first > 1)
1047 return LT.first * BaseCost +
1048 BaseT::getScalarizationOverhead(VecCondTy, /*Insert*/ true,
1049 /*Extract*/ false, CostKind);
1050 return BaseCost;
1051 }
1052 }
1053
1054 // Default to cheap (throughput/size of 1 instruction) but adjust throughput
1055 // for "multiple beats" potentially needed by MVE instructions.
1056 int BaseCost = 1;
1057 if (ST->hasMVEIntegerOps() && ValTy->isVectorTy())
1058 BaseCost = ST->getMVEVectorCostFactor(CostKind);
1059
1060 return BaseCost *
1061 BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
1062}
1063
1065 ScalarEvolution *SE,
1066 const SCEV *Ptr) {
1067 // Address computations in vectorized code with non-consecutive addresses will
1068 // likely result in more instructions compared to scalar code where the
1069 // computation can more often be merged into the index mode. The resulting
1070 // extra micro-ops can significantly decrease throughput.
1071 unsigned NumVectorInstToHideOverhead = 10;
1072 int MaxMergeDistance = 64;
1073
1074 if (ST->hasNEON()) {
1075 if (Ty->isVectorTy() && SE &&
1076 !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
1077 return NumVectorInstToHideOverhead;
1078
1079 // In many cases the address computation is not merged into the instruction
1080 // addressing mode.
1081 return 1;
1082 }
1083 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
1084}
1085
1087 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1088 // If a VCTP is part of a chain, it's already profitable and shouldn't be
1089 // optimized, else LSR may block tail-predication.
1090 switch (II->getIntrinsicID()) {
1091 case Intrinsic::arm_mve_vctp8:
1092 case Intrinsic::arm_mve_vctp16:
1093 case Intrinsic::arm_mve_vctp32:
1094 case Intrinsic::arm_mve_vctp64:
1095 return true;
1096 default:
1097 break;
1098 }
1099 }
1100 return false;
1101}
1102
1103bool ARMTTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
1104 if (!EnableMaskedLoadStores || !ST->hasMVEIntegerOps())
1105 return false;
1106
1107 if (auto *VecTy = dyn_cast<FixedVectorType>(DataTy)) {
1108 // Don't support v2i1 yet.
1109 if (VecTy->getNumElements() == 2)
1110 return false;
1111
1112 // We don't support extending fp types.
1113 unsigned VecWidth = DataTy->getPrimitiveSizeInBits();
1114 if (VecWidth != 128 && VecTy->getElementType()->isFloatingPointTy())
1115 return false;
1116 }
1117
1118 unsigned EltWidth = DataTy->getScalarSizeInBits();
1119 return (EltWidth == 32 && Alignment >= 4) ||
1120 (EltWidth == 16 && Alignment >= 2) || (EltWidth == 8);
1121}
1122
1124 if (!EnableMaskedGatherScatters || !ST->hasMVEIntegerOps())
1125 return false;
1126
1127 unsigned EltWidth = Ty->getScalarSizeInBits();
1128 return ((EltWidth == 32 && Alignment >= 4) ||
1129 (EltWidth == 16 && Alignment >= 2) || EltWidth == 8);
1130}
1131
1132/// Given a memcpy/memset/memmove instruction, return the number of memory
1133/// operations performed, via querying findOptimalMemOpLowering. Returns -1 if a
1134/// call is used.
1136 MemOp MOp;
1137 unsigned DstAddrSpace = ~0u;
1138 unsigned SrcAddrSpace = ~0u;
1139 const Function *F = I->getParent()->getParent();
1140
1141 if (const auto *MC = dyn_cast<MemTransferInst>(I)) {
1142 ConstantInt *C = dyn_cast<ConstantInt>(MC->getLength());
1143 // If 'size' is not a constant, a library call will be generated.
1144 if (!C)
1145 return -1;
1146
1147 const unsigned Size = C->getValue().getZExtValue();
1148 const Align DstAlign = *MC->getDestAlign();
1149 const Align SrcAlign = *MC->getSourceAlign();
1150
1151 MOp = MemOp::Copy(Size, /*DstAlignCanChange*/ false, DstAlign, SrcAlign,
1152 /*IsVolatile*/ false);
1153 DstAddrSpace = MC->getDestAddressSpace();
1154 SrcAddrSpace = MC->getSourceAddressSpace();
1155 }
1156 else if (const auto *MS = dyn_cast<MemSetInst>(I)) {
1157 ConstantInt *C = dyn_cast<ConstantInt>(MS->getLength());
1158 // If 'size' is not a constant, a library call will be generated.
1159 if (!C)
1160 return -1;
1161
1162 const unsigned Size = C->getValue().getZExtValue();
1163 const Align DstAlign = *MS->getDestAlign();
1164
1165 MOp = MemOp::Set(Size, /*DstAlignCanChange*/ false, DstAlign,
1166 /*IsZeroMemset*/ false, /*IsVolatile*/ false);
1167 DstAddrSpace = MS->getDestAddressSpace();
1168 }
1169 else
1170 llvm_unreachable("Expected a memcpy/move or memset!");
1171
1172 unsigned Limit, Factor = 2;
1173 switch(I->getIntrinsicID()) {
1174 case Intrinsic::memcpy:
1175 Limit = TLI->getMaxStoresPerMemcpy(F->hasMinSize());
1176 break;
1177 case Intrinsic::memmove:
1178 Limit = TLI->getMaxStoresPerMemmove(F->hasMinSize());
1179 break;
1180 case Intrinsic::memset:
1181 Limit = TLI->getMaxStoresPerMemset(F->hasMinSize());
1182 Factor = 1;
1183 break;
1184 default:
1185 llvm_unreachable("Expected a memcpy/move or memset!");
1186 }
1187
1188 // MemOps will be poplulated with a list of data types that needs to be
1189 // loaded and stored. That's why we multiply the number of elements by 2 to
1190 // get the cost for this memcpy.
1191 std::vector<EVT> MemOps;
1192 if (getTLI()->findOptimalMemOpLowering(
1193 MemOps, Limit, MOp, DstAddrSpace,
1194 SrcAddrSpace, F->getAttributes()))
1195 return MemOps.size() * Factor;
1196
1197 // If we can't find an optimal memop lowering, return the default cost
1198 return -1;
1199}
1200
1202 int NumOps = getNumMemOps(cast<IntrinsicInst>(I));
1203
1204 // To model the cost of a library call, we assume 1 for the call, and
1205 // 3 for the argument setup.
1206 if (NumOps == -1)
1207 return 4;
1208 return NumOps;
1209}
1210
1212 VectorType *Tp, ArrayRef<int> Mask,
1214 int Index, VectorType *SubTp,
1216 Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp);
1217 if (ST->hasNEON()) {
1218 if (Kind == TTI::SK_Broadcast) {
1219 static const CostTblEntry NEONDupTbl[] = {
1220 // VDUP handles these cases.
1221 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1222 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1223 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1224 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1225 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
1226 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
1227
1228 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
1229 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
1230 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
1231 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1}};
1232
1233 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
1234 if (const auto *Entry =
1235 CostTableLookup(NEONDupTbl, ISD::VECTOR_SHUFFLE, LT.second))
1236 return LT.first * Entry->Cost;
1237 }
1238 if (Kind == TTI::SK_Reverse) {
1239 static const CostTblEntry NEONShuffleTbl[] = {
1240 // Reverse shuffle cost one instruction if we are shuffling within a
1241 // double word (vrev) or two if we shuffle a quad word (vrev, vext).
1242 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1243 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1244 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1245 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1246 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 1},
1247 {ISD::VECTOR_SHUFFLE, MVT::v8i8, 1},
1248
1249 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
1250 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
1251 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
1252 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
1253
1254 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
1255 if (const auto *Entry =
1256 CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second))
1257 return LT.first * Entry->Cost;
1258 }
1259 if (Kind == TTI::SK_Select) {
1260 static const CostTblEntry NEONSelShuffleTbl[] = {
1261 // Select shuffle cost table for ARM. Cost is the number of
1262 // instructions
1263 // required to create the shuffled vector.
1264
1265 {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
1266 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
1267 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
1268 {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
1269
1270 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
1271 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
1272 {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
1273
1274 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
1275
1276 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
1277
1278 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
1279 if (const auto *Entry = CostTableLookup(NEONSelShuffleTbl,
1280 ISD::VECTOR_SHUFFLE, LT.second))
1281 return LT.first * Entry->Cost;
1282 }
1283 }
1284 if (ST->hasMVEIntegerOps()) {
1285 if (Kind == TTI::SK_Broadcast) {
1286 static const CostTblEntry MVEDupTbl[] = {
1287 // VDUP handles these cases.
1288 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
1289 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
1290 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 1},
1291 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
1292 {ISD::VECTOR_SHUFFLE, MVT::v8f16, 1}};
1293
1294 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
1295 if (const auto *Entry = CostTableLookup(MVEDupTbl, ISD::VECTOR_SHUFFLE,
1296 LT.second))
1297 return LT.first * Entry->Cost *
1299 }
1300
1301 if (!Mask.empty()) {
1302 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
1303 if (LT.second.isVector() &&
1304 Mask.size() <= LT.second.getVectorNumElements() &&
1305 (isVREVMask(Mask, LT.second, 16) || isVREVMask(Mask, LT.second, 32) ||
1306 isVREVMask(Mask, LT.second, 64)))
1307 return ST->getMVEVectorCostFactor(TTI::TCK_RecipThroughput) * LT.first;
1308 }
1309 }
1310
1311 int BaseCost = ST->hasMVEIntegerOps() && Tp->isVectorTy()
1313 : 1;
1314 return BaseCost *
1315 BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
1316}
1317
1319 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
1322 const Instruction *CxtI) {
1323 int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
1324 if (ST->isThumb() && CostKind == TTI::TCK_CodeSize && Ty->isIntegerTy(1)) {
1325 // Make operations on i1 relatively expensive as this often involves
1326 // combining predicates. AND and XOR should be easier to handle with IT
1327 // blocks.
1328 switch (ISDOpcode) {
1329 default:
1330 break;
1331 case ISD::AND:
1332 case ISD::XOR:
1333 return 2;
1334 case ISD::OR:
1335 return 3;
1336 }
1337 }
1338
1339 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
1340
1341 if (ST->hasNEON()) {
1342 const unsigned FunctionCallDivCost = 20;
1343 const unsigned ReciprocalDivCost = 10;
1344 static const CostTblEntry CostTbl[] = {
1345 // Division.
1346 // These costs are somewhat random. Choose a cost of 20 to indicate that
1347 // vectorizing devision (added function call) is going to be very expensive.
1348 // Double registers types.
1349 { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
1350 { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
1351 { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
1352 { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
1353 { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
1354 { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
1355 { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
1356 { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
1357 { ISD::SDIV, MVT::v4i16, ReciprocalDivCost},
1358 { ISD::UDIV, MVT::v4i16, ReciprocalDivCost},
1359 { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
1360 { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
1361 { ISD::SDIV, MVT::v8i8, ReciprocalDivCost},
1362 { ISD::UDIV, MVT::v8i8, ReciprocalDivCost},
1363 { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost},
1364 { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost},
1365 // Quad register types.
1366 { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
1367 { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
1368 { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
1369 { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
1370 { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
1371 { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
1372 { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
1373 { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
1374 { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
1375 { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
1376 { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
1377 { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
1378 { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
1379 { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
1380 { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
1381 { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
1382 // Multiplication.
1383 };
1384
1385 if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
1386 return LT.first * Entry->Cost;
1387
1389 Opcode, Ty, CostKind, Op1Info, Op2Info);
1390
1391 // This is somewhat of a hack. The problem that we are facing is that SROA
1392 // creates a sequence of shift, and, or instructions to construct values.
1393 // These sequences are recognized by the ISel and have zero-cost. Not so for
1394 // the vectorized code. Because we have support for v2i64 but not i64 those
1395 // sequences look particularly beneficial to vectorize.
1396 // To work around this we increase the cost of v2i64 operations to make them
1397 // seem less beneficial.
1398 if (LT.second == MVT::v2i64 && Op2Info.isUniform() && Op2Info.isConstant())
1399 Cost += 4;
1400
1401 return Cost;
1402 }
1403
1404 // If this operation is a shift on arm/thumb2, it might well be folded into
1405 // the following instruction, hence having a cost of 0.
1406 auto LooksLikeAFreeShift = [&]() {
1407 if (ST->isThumb1Only() || Ty->isVectorTy())
1408 return false;
1409
1410 if (!CxtI || !CxtI->hasOneUse() || !CxtI->isShift())
1411 return false;
1412 if (!Op2Info.isUniform() || !Op2Info.isConstant())
1413 return false;
1414
1415 // Folded into a ADC/ADD/AND/BIC/CMP/EOR/MVN/ORR/ORN/RSB/SBC/SUB
1416 switch (cast<Instruction>(CxtI->user_back())->getOpcode()) {
1417 case Instruction::Add:
1418 case Instruction::Sub:
1419 case Instruction::And:
1420 case Instruction::Xor:
1421 case Instruction::Or:
1422 case Instruction::ICmp:
1423 return true;
1424 default:
1425 return false;
1426 }
1427 };
1428 if (LooksLikeAFreeShift())
1429 return 0;
1430
1431 // Default to cheap (throughput/size of 1 instruction) but adjust throughput
1432 // for "multiple beats" potentially needed by MVE instructions.
1433 int BaseCost = 1;
1434 if (ST->hasMVEIntegerOps() && Ty->isVectorTy())
1435 BaseCost = ST->getMVEVectorCostFactor(CostKind);
1436
1437 // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
1438 // without treating floats as more expensive that scalars or increasing the
1439 // costs for custom operations. The results is also multiplied by the
1440 // MVEVectorCostFactor where appropriate.
1441 if (TLI->isOperationLegalOrCustomOrPromote(ISDOpcode, LT.second))
1442 return LT.first * BaseCost;
1443
1444 // Else this is expand, assume that we need to scalarize this op.
1445 if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
1446 unsigned Num = VTy->getNumElements();
1449 // Return the cost of multiple scalar invocation plus the cost of
1450 // inserting and extracting the values.
1451 SmallVector<Type *> Tys(Args.size(), Ty);
1452 return BaseT::getScalarizationOverhead(VTy, Args, Tys, CostKind) +
1453 Num * Cost;
1454 }
1455
1456 return BaseCost;
1457}
1458
1460 MaybeAlign Alignment,
1461 unsigned AddressSpace,
1463 TTI::OperandValueInfo OpInfo,
1464 const Instruction *I) {
1465 // TODO: Handle other cost kinds.
1467 return 1;
1468
1469 // Type legalization can't handle structs
1470 if (TLI->getValueType(DL, Src, true) == MVT::Other)
1471 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1472 CostKind);
1473
1474 if (ST->hasNEON() && Src->isVectorTy() &&
1475 (Alignment && *Alignment != Align(16)) &&
1476 cast<VectorType>(Src)->getElementType()->isDoubleTy()) {
1477 // Unaligned loads/stores are extremely inefficient.
1478 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
1479 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
1480 return LT.first * 4;
1481 }
1482
1483 // MVE can optimize a fpext(load(4xhalf)) using an extending integer load.
1484 // Same for stores.
1485 if (ST->hasMVEFloatOps() && isa<FixedVectorType>(Src) && I &&
1486 ((Opcode == Instruction::Load && I->hasOneUse() &&
1487 isa<FPExtInst>(*I->user_begin())) ||
1488 (Opcode == Instruction::Store && isa<FPTruncInst>(I->getOperand(0))))) {
1489 FixedVectorType *SrcVTy = cast<FixedVectorType>(Src);
1490 Type *DstTy =
1491 Opcode == Instruction::Load
1492 ? (*I->user_begin())->getType()
1493 : cast<Instruction>(I->getOperand(0))->getOperand(0)->getType();
1494 if (SrcVTy->getNumElements() == 4 && SrcVTy->getScalarType()->isHalfTy() &&
1495 DstTy->getScalarType()->isFloatTy())
1496 return ST->getMVEVectorCostFactor(CostKind);
1497 }
1498
1499 int BaseCost = ST->hasMVEIntegerOps() && Src->isVectorTy()
1501 : 1;
1502 return BaseCost * BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1503 CostKind, OpInfo, I);
1504}
1505
1507ARMTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
1508 unsigned AddressSpace,
1510 if (ST->hasMVEIntegerOps()) {
1511 if (Opcode == Instruction::Load && isLegalMaskedLoad(Src, Alignment))
1512 return ST->getMVEVectorCostFactor(CostKind);
1513 if (Opcode == Instruction::Store && isLegalMaskedStore(Src, Alignment))
1514 return ST->getMVEVectorCostFactor(CostKind);
1515 }
1516 if (!isa<FixedVectorType>(Src))
1517 return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
1518 CostKind);
1519 // Scalar cost, which is currently very high due to the efficiency of the
1520 // generated code.
1521 return cast<FixedVectorType>(Src)->getNumElements() * 8;
1522}
1523
1525 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
1526 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
1527 bool UseMaskForCond, bool UseMaskForGaps) {
1528 assert(Factor >= 2 && "Invalid interleave factor");
1529 assert(isa<VectorType>(VecTy) && "Expect a vector type");
1530
1531 // vldN/vstN doesn't support vector types of i64/f64 element.
1532 bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
1533
1534 if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits &&
1535 !UseMaskForCond && !UseMaskForGaps) {
1536 unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
1537 auto *SubVecTy =
1538 FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);
1539
1540 // vldN/vstN only support legal vector types of size 64 or 128 in bits.
1541 // Accesses having vector types that are a multiple of 128 bits can be
1542 // matched to more than one vldN/vstN instruction.
1543 int BaseCost =
1544 ST->hasMVEIntegerOps() ? ST->getMVEVectorCostFactor(CostKind) : 1;
1545 if (NumElts % Factor == 0 &&
1546 TLI->isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL))
1547 return Factor * BaseCost * TLI->getNumInterleavedAccesses(SubVecTy, DL);
1548
1549 // Some smaller than legal interleaved patterns are cheap as we can make
1550 // use of the vmovn or vrev patterns to interleave a standard load. This is
1551 // true for v4i8, v8i8 and v4i16 at least (but not for v4f16 as it is
1552 // promoted differently). The cost of 2 here is then a load and vrev or
1553 // vmovn.
1554 if (ST->hasMVEIntegerOps() && Factor == 2 && NumElts / Factor > 2 &&
1555 VecTy->isIntOrIntVectorTy() &&
1556 DL.getTypeSizeInBits(SubVecTy).getFixedValue() <= 64)
1557 return 2 * BaseCost;
1558 }
1559
1560 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1561 Alignment, AddressSpace, CostKind,
1562 UseMaskForCond, UseMaskForGaps);
1563}
1564
1566 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
1567 Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
1568 using namespace PatternMatch;
1569 if (!ST->hasMVEIntegerOps() || !EnableMaskedGatherScatters)
1570 return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1571 Alignment, CostKind, I);
1572
1573 assert(DataTy->isVectorTy() && "Can't do gather/scatters on scalar!");
1574 auto *VTy = cast<FixedVectorType>(DataTy);
1575
1576 // TODO: Splitting, once we do that.
1577
1578 unsigned NumElems = VTy->getNumElements();
1579 unsigned EltSize = VTy->getScalarSizeInBits();
1580 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(DataTy);
1581
1582 // For now, it is assumed that for the MVE gather instructions the loads are
1583 // all effectively serialised. This means the cost is the scalar cost
1584 // multiplied by the number of elements being loaded. This is possibly very
1585 // conservative, but even so we still end up vectorising loops because the
1586 // cost per iteration for many loops is lower than for scalar loops.
1587 InstructionCost VectorCost =
1588 NumElems * LT.first * ST->getMVEVectorCostFactor(CostKind);
1589 // The scalarization cost should be a lot higher. We use the number of vector
1590 // elements plus the scalarization overhead. If masking is required then a lot
1591 // of little blocks will be needed and potentially a scalarized p0 mask,
1592 // greatly increasing the cost.
1593 InstructionCost ScalarCost =
1594 NumElems * LT.first + (VariableMask ? NumElems * 5 : 0) +
1595 BaseT::getScalarizationOverhead(VTy, /*Insert*/ true, /*Extract*/ false,
1596 CostKind) +
1597 BaseT::getScalarizationOverhead(VTy, /*Insert*/ false, /*Extract*/ true,
1598 CostKind);
1599
1600 if (EltSize < 8 || Alignment < EltSize / 8)
1601 return ScalarCost;
1602
1603 unsigned ExtSize = EltSize;
1604 // Check whether there's a single user that asks for an extended type
1605 if (I != nullptr) {
1606 // Dependent of the caller of this function, a gather instruction will
1607 // either have opcode Instruction::Load or be a call to the masked_gather
1608 // intrinsic
1609 if ((I->getOpcode() == Instruction::Load ||
1610 match(I, m_Intrinsic<Intrinsic::masked_gather>())) &&
1611 I->hasOneUse()) {
1612 const User *Us = *I->users().begin();
1613 if (isa<ZExtInst>(Us) || isa<SExtInst>(Us)) {
1614 // only allow valid type combinations
1615 unsigned TypeSize =
1616 cast<Instruction>(Us)->getType()->getScalarSizeInBits();
1617 if (((TypeSize == 32 && (EltSize == 8 || EltSize == 16)) ||
1618 (TypeSize == 16 && EltSize == 8)) &&
1619 TypeSize * NumElems == 128) {
1620 ExtSize = TypeSize;
1621 }
1622 }
1623 }
1624 // Check whether the input data needs to be truncated
1625 TruncInst *T;
1626 if ((I->getOpcode() == Instruction::Store ||
1627 match(I, m_Intrinsic<Intrinsic::masked_scatter>())) &&
1628 (T = dyn_cast<TruncInst>(I->getOperand(0)))) {
1629 // Only allow valid type combinations
1630 unsigned TypeSize = T->getOperand(0)->getType()->getScalarSizeInBits();
1631 if (((EltSize == 16 && TypeSize == 32) ||
1632 (EltSize == 8 && (TypeSize == 32 || TypeSize == 16))) &&
1633 TypeSize * NumElems == 128)
1634 ExtSize = TypeSize;
1635 }
1636 }
1637
1638 if (ExtSize * NumElems != 128 || NumElems < 4)
1639 return ScalarCost;
1640
1641 // Any (aligned) i32 gather will not need to be scalarised.
1642 if (ExtSize == 32)
1643 return VectorCost;
1644 // For smaller types, we need to ensure that the gep's inputs are correctly
1645 // extended from a small enough value. Other sizes (including i64) are
1646 // scalarized for now.
1647 if (ExtSize != 8 && ExtSize != 16)
1648 return ScalarCost;
1649
1650 if (const auto *BC = dyn_cast<BitCastInst>(Ptr))
1651 Ptr = BC->getOperand(0);
1652 if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1653 if (GEP->getNumOperands() != 2)
1654 return ScalarCost;
1655 unsigned Scale = DL.getTypeAllocSize(GEP->getResultElementType());
1656 // Scale needs to be correct (which is only relevant for i16s).
1657 if (Scale != 1 && Scale * 8 != ExtSize)
1658 return ScalarCost;
1659 // And we need to zext (not sext) the indexes from a small enough type.
1660 if (const auto *ZExt = dyn_cast<ZExtInst>(GEP->getOperand(1))) {
1661 if (ZExt->getOperand(0)->getType()->getScalarSizeInBits() <= ExtSize)
1662 return VectorCost;
1663 }
1664 return ScalarCost;
1665 }
1666 return ScalarCost;
1667}
1668
1671 std::optional<FastMathFlags> FMF,
1673
1674 EVT ValVT = TLI->getValueType(DL, ValTy);
1675 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1676 unsigned EltSize = ValVT.getScalarSizeInBits();
1677
1678 // In general floating point reductions are a series of elementwise
1679 // operations, with free extracts on each step. These are either in-order or
1680 // treewise depending on whether that is allowed by the fast math flags.
1681 if ((ISD == ISD::FADD || ISD == ISD::FMUL) &&
1682 ((EltSize == 32 && ST->hasVFP2Base()) ||
1683 (EltSize == 64 && ST->hasFP64()) ||
1684 (EltSize == 16 && ST->hasFullFP16()))) {
1685 unsigned NumElts = cast<FixedVectorType>(ValTy)->getNumElements();
1686 unsigned VecLimit = ST->hasMVEFloatOps() ? 128 : (ST->hasNEON() ? 64 : -1);
1687 InstructionCost VecCost = 0;
1688 while (!TTI::requiresOrderedReduction(FMF) && isPowerOf2_32(NumElts) &&
1689 NumElts * EltSize > VecLimit) {
1690 Type *VecTy = FixedVectorType::get(ValTy->getElementType(), NumElts / 2);
1691 VecCost += getArithmeticInstrCost(Opcode, VecTy, CostKind);
1692 NumElts /= 2;
1693 }
1694
1695 // For fp16 we need to extract the upper lane elements. MVE can add a
1696 // VREV+FMIN/MAX to perform another vector step instead.
1697 InstructionCost ExtractCost = 0;
1698 if (!TTI::requiresOrderedReduction(FMF) && ST->hasMVEFloatOps() &&
1699 ValVT.getVectorElementType() == MVT::f16 && NumElts == 8) {
1700 VecCost += ST->getMVEVectorCostFactor(CostKind) * 2;
1701 NumElts /= 2;
1702 } else if (ValVT.getVectorElementType() == MVT::f16)
1703 ExtractCost = NumElts / 2;
1704
1705 return VecCost + ExtractCost +
1706 NumElts *
1708 }
1709
1710 if ((ISD == ISD::AND || ISD == ISD::OR || ISD == ISD::XOR) &&
1711 (EltSize == 64 || EltSize == 32 || EltSize == 16 || EltSize == 8)) {
1712 unsigned NumElts = cast<FixedVectorType>(ValTy)->getNumElements();
1713 unsigned VecLimit =
1714 ST->hasMVEIntegerOps() ? 128 : (ST->hasNEON() ? 64 : -1);
1715 InstructionCost VecCost = 0;
1716 while (isPowerOf2_32(NumElts) && NumElts * EltSize > VecLimit) {
1717 Type *VecTy = FixedVectorType::get(ValTy->getElementType(), NumElts / 2);
1718 VecCost += getArithmeticInstrCost(Opcode, VecTy, CostKind);
1719 NumElts /= 2;
1720 }
1721 // For i16/i8, MVE will perform a VREV + VORR/VAND/VEOR for the 64bit vector
1722 // step.
1723 if (ST->hasMVEIntegerOps() && ValVT.getScalarSizeInBits() <= 16 &&
1724 NumElts * EltSize == 64) {
1725 Type *VecTy = FixedVectorType::get(ValTy->getElementType(), NumElts);
1726 VecCost += ST->getMVEVectorCostFactor(CostKind) +
1727 getArithmeticInstrCost(Opcode, VecTy, CostKind);
1728 NumElts /= 2;
1729 }
1730
1731 // From here we extract the elements and perform the and/or/xor.
1732 InstructionCost ExtractCost = NumElts;
1733 return VecCost + ExtractCost +
1734 (NumElts - 1) * getArithmeticInstrCost(
1735 Opcode, ValTy->getElementType(), CostKind);
1736 }
1737
1738 if (!ST->hasMVEIntegerOps() || !ValVT.isSimple() || ISD != ISD::ADD ||
1740 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1741
1742 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1743
1744 static const CostTblEntry CostTblAdd[]{
1745 {ISD::ADD, MVT::v16i8, 1},
1746 {ISD::ADD, MVT::v8i16, 1},
1747 {ISD::ADD, MVT::v4i32, 1},
1748 };
1749 if (const auto *Entry = CostTableLookup(CostTblAdd, ISD, LT.second))
1750 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first;
1751
1752 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
1753}
1754
1756 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy,
1758 EVT ValVT = TLI->getValueType(DL, ValTy);
1759 EVT ResVT = TLI->getValueType(DL, ResTy);
1760
1761 int ISD = TLI->InstructionOpcodeToISD(Opcode);
1762
1763 switch (ISD) {
1764 case ISD::ADD:
1765 if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) {
1766 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1767
1768 // The legal cases are:
1769 // VADDV u/s 8/16/32
1770 // VADDLV u/s 32
1771 // Codegen currently cannot always handle larger than legal vectors very
1772 // well, especially for predicated reductions where the mask needs to be
1773 // split, so restrict to 128bit or smaller input types.
1774 unsigned RevVTSize = ResVT.getSizeInBits();
1775 if (ValVT.getSizeInBits() <= 128 &&
1776 ((LT.second == MVT::v16i8 && RevVTSize <= 32) ||
1777 (LT.second == MVT::v8i16 && RevVTSize <= 32) ||
1778 (LT.second == MVT::v4i32 && RevVTSize <= 64)))
1779 return ST->getMVEVectorCostFactor(CostKind) * LT.first;
1780 }
1781 break;
1782 default:
1783 break;
1784 }
1785 return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy, FMF,
1786 CostKind);
1787}
1788
1791 VectorType *ValTy,
1793 EVT ValVT = TLI->getValueType(DL, ValTy);
1794 EVT ResVT = TLI->getValueType(DL, ResTy);
1795
1796 if (ST->hasMVEIntegerOps() && ValVT.isSimple() && ResVT.isSimple()) {
1797 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
1798
1799 // The legal cases are:
1800 // VMLAV u/s 8/16/32
1801 // VMLALV u/s 16/32
1802 // Codegen currently cannot always handle larger than legal vectors very
1803 // well, especially for predicated reductions where the mask needs to be
1804 // split, so restrict to 128bit or smaller input types.
1805 unsigned RevVTSize = ResVT.getSizeInBits();
1806 if (ValVT.getSizeInBits() <= 128 &&
1807 ((LT.second == MVT::v16i8 && RevVTSize <= 32) ||
1808 (LT.second == MVT::v8i16 && RevVTSize <= 64) ||
1809 (LT.second == MVT::v4i32 && RevVTSize <= 64)))
1810 return ST->getMVEVectorCostFactor(CostKind) * LT.first;
1811 }
1812
1813 return BaseT::getMulAccReductionCost(IsUnsigned, ResTy, ValTy, CostKind);
1814}
1815
1818 FastMathFlags FMF,
1820 EVT ValVT = TLI->getValueType(DL, Ty);
1821
1822 // In general floating point reductions are a series of elementwise
1823 // operations, with free extracts on each step. These are either in-order or
1824 // treewise depending on whether that is allowed by the fast math flags.
1825 if ((IID == Intrinsic::minnum || IID == Intrinsic::maxnum) &&
1826 ((ValVT.getVectorElementType() == MVT::f32 && ST->hasVFP2Base()) ||
1827 (ValVT.getVectorElementType() == MVT::f64 && ST->hasFP64()) ||
1828 (ValVT.getVectorElementType() == MVT::f16 && ST->hasFullFP16()))) {
1829 unsigned NumElts = cast<FixedVectorType>(Ty)->getNumElements();
1830 unsigned EltSize = ValVT.getScalarSizeInBits();
1831 unsigned VecLimit = ST->hasMVEFloatOps() ? 128 : (ST->hasNEON() ? 64 : -1);
1832 InstructionCost VecCost;
1833 while (isPowerOf2_32(NumElts) && NumElts * EltSize > VecLimit) {
1834 Type *VecTy = FixedVectorType::get(Ty->getElementType(), NumElts/2);
1835 IntrinsicCostAttributes ICA(IID, VecTy, {VecTy, VecTy}, FMF);
1836 VecCost += getIntrinsicInstrCost(ICA, CostKind);
1837 NumElts /= 2;
1838 }
1839
1840 // For fp16 we need to extract the upper lane elements. MVE can add a
1841 // VREV+FMIN/MAX to perform another vector step instead.
1842 InstructionCost ExtractCost = 0;
1843 if (ST->hasMVEFloatOps() && ValVT.getVectorElementType() == MVT::f16 &&
1844 NumElts == 8) {
1845 VecCost += ST->getMVEVectorCostFactor(CostKind) * 2;
1846 NumElts /= 2;
1847 } else if (ValVT.getVectorElementType() == MVT::f16)
1848 ExtractCost = cast<FixedVectorType>(Ty)->getNumElements() / 2;
1849
1851 {Ty->getElementType(), Ty->getElementType()},
1852 FMF);
1853 return VecCost + ExtractCost +
1854 (NumElts - 1) * getIntrinsicInstrCost(ICA, CostKind);
1855 }
1856
1857 if (IID == Intrinsic::smin || IID == Intrinsic::smax ||
1858 IID == Intrinsic::umin || IID == Intrinsic::umax) {
1859 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
1860
1861 // All costs are the same for u/s min/max. These lower to vminv, which are
1862 // given a slightly higher cost as they tend to take multiple cycles for
1863 // smaller type sizes.
1864 static const CostTblEntry CostTblAdd[]{
1865 {ISD::SMIN, MVT::v16i8, 4},
1866 {ISD::SMIN, MVT::v8i16, 3},
1867 {ISD::SMIN, MVT::v4i32, 2},
1868 };
1869 if (const auto *Entry = CostTableLookup(CostTblAdd, ISD::SMIN, LT.second))
1870 return Entry->Cost * ST->getMVEVectorCostFactor(CostKind) * LT.first;
1871 }
1872
1873 return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
1874}
1875
1879 switch (ICA.getID()) {
1880 case Intrinsic::get_active_lane_mask:
1881 // Currently we make a somewhat optimistic assumption that
1882 // active_lane_mask's are always free. In reality it may be freely folded
1883 // into a tail predicated loop, expanded into a VCPT or expanded into a lot
1884 // of add/icmp code. We may need to improve this in the future, but being
1885 // able to detect if it is free or not involves looking at a lot of other
1886 // code. We currently assume that the vectorizer inserted these, and knew
1887 // what it was doing in adding one.
1888 if (ST->hasMVEIntegerOps())
1889 return 0;
1890 break;
1891 case Intrinsic::sadd_sat:
1892 case Intrinsic::ssub_sat:
1893 case Intrinsic::uadd_sat:
1894 case Intrinsic::usub_sat: {
1895 if (!ST->hasMVEIntegerOps())
1896 break;
1897 Type *VT = ICA.getReturnType();
1898
1899 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT);
1900 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
1901 LT.second == MVT::v16i8) {
1902 // This is a base cost of 1 for the vqadd, plus 3 extract shifts if we
1903 // need to extend the type, as it uses shr(qadd(shl, shl)).
1904 unsigned Instrs =
1905 LT.second.getScalarSizeInBits() == VT->getScalarSizeInBits() ? 1 : 4;
1906 return LT.first * ST->getMVEVectorCostFactor(CostKind) * Instrs;
1907 }
1908 break;
1909 }
1910 case Intrinsic::abs:
1911 case Intrinsic::smin:
1912 case Intrinsic::smax:
1913 case Intrinsic::umin:
1914 case Intrinsic::umax: {
1915 if (!ST->hasMVEIntegerOps())
1916 break;
1917 Type *VT = ICA.getReturnType();
1918
1919 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT);
1920 if (LT.second == MVT::v4i32 || LT.second == MVT::v8i16 ||
1921 LT.second == MVT::v16i8)
1922 return LT.first * ST->getMVEVectorCostFactor(CostKind);
1923 break;
1924 }
1925 case Intrinsic::minnum:
1926 case Intrinsic::maxnum: {
1927 if (!ST->hasMVEFloatOps())
1928 break;
1929 Type *VT = ICA.getReturnType();
1930 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VT);
1931 if (LT.second == MVT::v4f32 || LT.second == MVT::v8f16)
1932 return LT.first * ST->getMVEVectorCostFactor(CostKind);
1933 break;
1934 }
1935 case Intrinsic::fptosi_sat:
1936 case Intrinsic::fptoui_sat: {
1937 if (ICA.getArgTypes().empty())
1938 break;
1939 bool IsSigned = ICA.getID() == Intrinsic::fptosi_sat;
1940 auto LT = getTypeLegalizationCost(ICA.getArgTypes()[0]);
1941 EVT MTy = TLI->getValueType(DL, ICA.getReturnType());
1942 // Check for the legal types, with the corect subtarget features.
1943 if ((ST->hasVFP2Base() && LT.second == MVT::f32 && MTy == MVT::i32) ||
1944 (ST->hasFP64() && LT.second == MVT::f64 && MTy == MVT::i32) ||
1945 (ST->hasFullFP16() && LT.second == MVT::f16 && MTy == MVT::i32))
1946 return LT.first;
1947
1948 // Equally for MVE vector types
1949 if (ST->hasMVEFloatOps() &&
1950 (LT.second == MVT::v4f32 || LT.second == MVT::v8f16) &&
1951 LT.second.getScalarSizeInBits() == MTy.getScalarSizeInBits())
1952 return LT.first * ST->getMVEVectorCostFactor(CostKind);
1953
1954 // Otherwise we use a legal convert followed by a min+max
1955 if (((ST->hasVFP2Base() && LT.second == MVT::f32) ||
1956 (ST->hasFP64() && LT.second == MVT::f64) ||
1957 (ST->hasFullFP16() && LT.second == MVT::f16) ||
1958 (ST->hasMVEFloatOps() &&
1959 (LT.second == MVT::v4f32 || LT.second == MVT::v8f16))) &&
1960 LT.second.getScalarSizeInBits() >= MTy.getScalarSizeInBits()) {
1961 Type *LegalTy = Type::getIntNTy(ICA.getReturnType()->getContext(),
1962 LT.second.getScalarSizeInBits());
1964 LT.second.isVector() ? ST->getMVEVectorCostFactor(CostKind) : 1;
1965 IntrinsicCostAttributes Attrs1(IsSigned ? Intrinsic::smin
1966 : Intrinsic::umin,
1967 LegalTy, {LegalTy, LegalTy});
1969 IntrinsicCostAttributes Attrs2(IsSigned ? Intrinsic::smax
1970 : Intrinsic::umax,
1971 LegalTy, {LegalTy, LegalTy});
1973 return LT.first * Cost;
1974 }
1975 break;
1976 }
1977 }
1978
1980}
1981
1983 if (!F->isIntrinsic())
1984 return BaseT::isLoweredToCall(F);
1985
1986 // Assume all Arm-specific intrinsics map to an instruction.
1987 if (F->getName().startswith("llvm.arm"))
1988 return false;
1989
1990 switch (F->getIntrinsicID()) {
1991 default: break;
1992 case Intrinsic::powi:
1993 case Intrinsic::sin:
1994 case Intrinsic::cos:
1995 case Intrinsic::pow:
1996 case Intrinsic::log:
1997 case Intrinsic::log10:
1998 case Intrinsic::log2:
1999 case Intrinsic::exp:
2000 case Intrinsic::exp2:
2001 return true;
2002 case Intrinsic::sqrt:
2003 case Intrinsic::fabs:
2004 case Intrinsic::copysign:
2005 case Intrinsic::floor:
2006 case Intrinsic::ceil:
2007 case Intrinsic::trunc:
2008 case Intrinsic::rint:
2009 case Intrinsic::nearbyint:
2010 case Intrinsic::round:
2011 case Intrinsic::canonicalize:
2012 case Intrinsic::lround:
2013 case Intrinsic::llround:
2014 case Intrinsic::lrint:
2015 case Intrinsic::llrint:
2016 if (F->getReturnType()->isDoubleTy() && !ST->hasFP64())
2017 return true;
2018 if (F->getReturnType()->isHalfTy() && !ST->hasFullFP16())
2019 return true;
2020 // Some operations can be handled by vector instructions and assume
2021 // unsupported vectors will be expanded into supported scalar ones.
2022 // TODO Handle scalar operations properly.
2023 return !ST->hasFPARMv8Base() && !ST->hasVFP2Base();
2024 case Intrinsic::masked_store:
2025 case Intrinsic::masked_load:
2026 case Intrinsic::masked_gather:
2027 case Intrinsic::masked_scatter:
2028 return !ST->hasMVEIntegerOps();
2029 case Intrinsic::sadd_with_overflow:
2030 case Intrinsic::uadd_with_overflow:
2031 case Intrinsic::ssub_with_overflow:
2032 case Intrinsic::usub_with_overflow:
2033 case Intrinsic::sadd_sat:
2034 case Intrinsic::uadd_sat:
2035 case Intrinsic::ssub_sat:
2036 case Intrinsic::usub_sat:
2037 return false;
2038 }
2039
2040 return BaseT::isLoweredToCall(F);
2041}
2042
2044 unsigned ISD = TLI->InstructionOpcodeToISD(I.getOpcode());
2045 EVT VT = TLI->getValueType(DL, I.getType(), true);
2046 if (TLI->getOperationAction(ISD, VT) == TargetLowering::LibCall)
2047 return true;
2048
2049 // Check if an intrinsic will be lowered to a call and assume that any
2050 // other CallInst will generate a bl.
2051 if (auto *Call = dyn_cast<CallInst>(&I)) {
2052 if (auto *II = dyn_cast<IntrinsicInst>(Call)) {
2053 switch(II->getIntrinsicID()) {
2054 case Intrinsic::memcpy:
2055 case Intrinsic::memset:
2056 case Intrinsic::memmove:
2057 return getNumMemOps(II) == -1;
2058 default:
2059 if (const Function *F = Call->getCalledFunction())
2060 return isLoweredToCall(F);
2061 }
2062 }
2063 return true;
2064 }
2065
2066 // FPv5 provides conversions between integer, double-precision,
2067 // single-precision, and half-precision formats.
2068 switch (I.getOpcode()) {
2069 default:
2070 break;
2071 case Instruction::FPToSI:
2072 case Instruction::FPToUI:
2073 case Instruction::SIToFP:
2074 case Instruction::UIToFP:
2075 case Instruction::FPTrunc:
2076 case Instruction::FPExt:
2077 return !ST->hasFPARMv8Base();
2078 }
2079
2080 // FIXME: Unfortunately the approach of checking the Operation Action does
2081 // not catch all cases of Legalization that use library calls. Our
2082 // Legalization step categorizes some transformations into library calls as
2083 // Custom, Expand or even Legal when doing type legalization. So for now
2084 // we have to special case for instance the SDIV of 64bit integers and the
2085 // use of floating point emulation.
2086 if (VT.isInteger() && VT.getSizeInBits() >= 64) {
2087 switch (ISD) {
2088 default:
2089 break;
2090 case ISD::SDIV:
2091 case ISD::UDIV:
2092 case ISD::SREM:
2093 case ISD::UREM:
2094 case ISD::SDIVREM:
2095 case ISD::UDIVREM:
2096 return true;
2097 }
2098 }
2099
2100 // Assume all other non-float operations are supported.
2101 if (!VT.isFloatingPoint())
2102 return false;
2103
2104 // We'll need a library call to handle most floats when using soft.
2105 if (TLI->useSoftFloat()) {
2106 switch (I.getOpcode()) {
2107 default:
2108 return true;
2109 case Instruction::Alloca:
2110 case Instruction::Load:
2111 case Instruction::Store:
2112 case Instruction::Select:
2113 case Instruction::PHI:
2114 return false;
2115 }
2116 }
2117
2118 // We'll need a libcall to perform double precision operations on a single
2119 // precision only FPU.
2120 if (I.getType()->isDoubleTy() && !ST->hasFP64())
2121 return true;
2122
2123 // Likewise for half precision arithmetic.
2124 if (I.getType()->isHalfTy() && !ST->hasFullFP16())
2125 return true;
2126
2127 return false;
2128}
2129
2131 AssumptionCache &AC,
2132 TargetLibraryInfo *LibInfo,
2133 HardwareLoopInfo &HWLoopInfo) {
2134 // Low-overhead branches are only supported in the 'low-overhead branch'
2135 // extension of v8.1-m.
2136 if (!ST->hasLOB() || DisableLowOverheadLoops) {
2137 LLVM_DEBUG(dbgs() << "ARMHWLoops: Disabled\n");
2138 return false;
2139 }
2140
2142 LLVM_DEBUG(dbgs() << "ARMHWLoops: No BETC\n");
2143 return false;
2144 }
2145
2146 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2147 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2148 LLVM_DEBUG(dbgs() << "ARMHWLoops: Uncomputable BETC\n");
2149 return false;
2150 }
2151
2152 const SCEV *TripCountSCEV =
2153 SE.getAddExpr(BackedgeTakenCount,
2154 SE.getOne(BackedgeTakenCount->getType()));
2155
2156 // We need to store the trip count in LR, a 32-bit register.
2157 if (SE.getUnsignedRangeMax(TripCountSCEV).getBitWidth() > 32) {
2158 LLVM_DEBUG(dbgs() << "ARMHWLoops: Trip count does not fit into 32bits\n");
2159 return false;
2160 }
2161
2162 // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
2163 // point in generating a hardware loop if that's going to happen.
2164
2165 auto IsHardwareLoopIntrinsic = [](Instruction &I) {
2166 if (auto *Call = dyn_cast<IntrinsicInst>(&I)) {
2167 switch (Call->getIntrinsicID()) {
2168 default:
2169 break;
2170 case Intrinsic::start_loop_iterations:
2171 case Intrinsic::test_start_loop_iterations:
2172 case Intrinsic::loop_decrement:
2173 case Intrinsic::loop_decrement_reg:
2174 return true;
2175 }
2176 }
2177 return false;
2178 };
2179
2180 // Scan the instructions to see if there's any that we know will turn into a
2181 // call or if this loop is already a low-overhead loop or will become a tail
2182 // predicated loop.
2183 bool IsTailPredLoop = false;
2184 auto ScanLoop = [&](Loop *L) {
2185 for (auto *BB : L->getBlocks()) {
2186 for (auto &I : *BB) {
2187 if (maybeLoweredToCall(I) || IsHardwareLoopIntrinsic(I) ||
2188 isa<InlineAsm>(I)) {
2189 LLVM_DEBUG(dbgs() << "ARMHWLoops: Bad instruction: " << I << "\n");
2190 return false;
2191 }
2192 if (auto *II = dyn_cast<IntrinsicInst>(&I))
2193 IsTailPredLoop |=
2194 II->getIntrinsicID() == Intrinsic::get_active_lane_mask ||
2195 II->getIntrinsicID() == Intrinsic::arm_mve_vctp8 ||
2196 II->getIntrinsicID() == Intrinsic::arm_mve_vctp16 ||
2197 II->getIntrinsicID() == Intrinsic::arm_mve_vctp32 ||
2198 II->getIntrinsicID() == Intrinsic::arm_mve_vctp64;
2199 }
2200 }
2201 return true;
2202 };
2203
2204 // Visit inner loops.
2205 for (auto *Inner : *L)
2206 if (!ScanLoop(Inner))
2207 return false;
2208
2209 if (!ScanLoop(L))
2210 return false;
2211
2212 // TODO: Check whether the trip count calculation is expensive. If L is the
2213 // inner loop but we know it has a low trip count, calculating that trip
2214 // count (in the parent loop) may be detrimental.
2215
2216 LLVMContext &C = L->getHeader()->getContext();
2217 HWLoopInfo.CounterInReg = true;
2218 HWLoopInfo.IsNestingLegal = false;
2219 HWLoopInfo.PerformEntryTest = AllowWLSLoops && !IsTailPredLoop;
2220 HWLoopInfo.CountType = Type::getInt32Ty(C);
2221 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
2222 return true;
2223}
2224
2225static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount) {
2226 // We don't allow icmp's, and because we only look at single block loops,
2227 // we simply count the icmps, i.e. there should only be 1 for the backedge.
2228 if (isa<ICmpInst>(&I) && ++ICmpCount > 1)
2229 return false;
2230 // FIXME: This is a workaround for poor cost modelling. Min/Max intrinsics are
2231 // not currently canonical, but soon will be. Code without them uses icmp, and
2232 // so is not tail predicated as per the condition above. In order to get the
2233 // same performance we treat min and max the same as an icmp for tailpred
2234 // purposes for the moment (we often rely on non-tailpred and higher VF's to
2235 // pick more optimial instructions like VQDMULH. They need to be recognized
2236 // directly by the vectorizer).
2237 if (auto *II = dyn_cast<IntrinsicInst>(&I))
2238 if ((II->getIntrinsicID() == Intrinsic::smin ||
2239 II->getIntrinsicID() == Intrinsic::smax ||
2240 II->getIntrinsicID() == Intrinsic::umin ||
2241 II->getIntrinsicID() == Intrinsic::umax) &&
2242 ++ICmpCount > 1)
2243 return false;
2244
2245 if (isa<FCmpInst>(&I))
2246 return false;
2247
2248 // We could allow extending/narrowing FP loads/stores, but codegen is
2249 // too inefficient so reject this for now.
2250 if (isa<FPExtInst>(&I) || isa<FPTruncInst>(&I))
2251 return false;
2252
2253 // Extends have to be extending-loads
2254 if (isa<SExtInst>(&I) || isa<ZExtInst>(&I) )
2255 if (!I.getOperand(0)->hasOneUse() || !isa<LoadInst>(I.getOperand(0)))
2256 return false;
2257
2258 // Truncs have to be narrowing-stores
2259 if (isa<TruncInst>(&I) )
2260 if (!I.hasOneUse() || !isa<StoreInst>(*I.user_begin()))
2261 return false;
2262
2263 return true;
2264}
2265
2266// To set up a tail-predicated loop, we need to know the total number of
2267// elements processed by that loop. Thus, we need to determine the element
2268// size and:
2269// 1) it should be uniform for all operations in the vector loop, so we
2270// e.g. don't want any widening/narrowing operations.
2271// 2) it should be smaller than i64s because we don't have vector operations
2272// that work on i64s.
2273// 3) we don't want elements to be reversed or shuffled, to make sure the
2274// tail-predication masks/predicates the right lanes.
2275//
2277 const DataLayout &DL,
2278 const LoopAccessInfo *LAI) {
2279 LLVM_DEBUG(dbgs() << "Tail-predication: checking allowed instructions\n");
2280
2281 // If there are live-out values, it is probably a reduction. We can predicate
2282 // most reduction operations freely under MVE using a combination of
2283 // prefer-predicated-reduction-select and inloop reductions. We limit this to
2284 // floating point and integer reductions, but don't check for operators
2285 // specifically here. If the value ends up not being a reduction (and so the
2286 // vectorizer cannot tailfold the loop), we should fall back to standard
2287 // vectorization automatically.
2289 LiveOuts = llvm::findDefsUsedOutsideOfLoop(L);
2290 bool ReductionsDisabled =
2293
2294 for (auto *I : LiveOuts) {
2295 if (!I->getType()->isIntegerTy() && !I->getType()->isFloatTy() &&
2296 !I->getType()->isHalfTy()) {
2297 LLVM_DEBUG(dbgs() << "Don't tail-predicate loop with non-integer/float "
2298 "live-out value\n");
2299 return false;
2300 }
2301 if (ReductionsDisabled) {
2302 LLVM_DEBUG(dbgs() << "Reductions not enabled\n");
2303 return false;
2304 }
2305 }
2306
2307 // Next, check that all instructions can be tail-predicated.
2308 PredicatedScalarEvolution PSE = LAI->getPSE();
2310 int ICmpCount = 0;
2311
2312 for (BasicBlock *BB : L->blocks()) {
2313 for (Instruction &I : BB->instructionsWithoutDebug()) {
2314 if (isa<PHINode>(&I))
2315 continue;
2316 if (!canTailPredicateInstruction(I, ICmpCount)) {
2317 LLVM_DEBUG(dbgs() << "Instruction not allowed: "; I.dump());
2318 return false;
2319 }
2320
2321 Type *T = I.getType();
2322 if (T->getScalarSizeInBits() > 32) {
2323 LLVM_DEBUG(dbgs() << "Unsupported Type: "; T->dump());
2324 return false;
2325 }
2326 if (isa<StoreInst>(I) || isa<LoadInst>(I)) {
2328 Type *AccessTy = getLoadStoreType(&I);
2329 int64_t NextStride = getPtrStride(PSE, AccessTy, Ptr, L).value_or(0);
2330 if (NextStride == 1) {
2331 // TODO: for now only allow consecutive strides of 1. We could support
2332 // other strides as long as it is uniform, but let's keep it simple
2333 // for now.
2334 continue;
2335 } else if (NextStride == -1 ||
2336 (NextStride == 2 && MVEMaxSupportedInterleaveFactor >= 2) ||
2337 (NextStride == 4 && MVEMaxSupportedInterleaveFactor >= 4)) {
2339 << "Consecutive strides of 2 found, vld2/vstr2 can't "
2340 "be tail-predicated\n.");
2341 return false;
2342 // TODO: don't tail predicate if there is a reversed load?
2343 } else if (EnableMaskedGatherScatters) {
2344 // Gather/scatters do allow loading from arbitrary strides, at
2345 // least if they are loop invariant.
2346 // TODO: Loop variant strides should in theory work, too, but
2347 // this requires further testing.
2348 const SCEV *PtrScev = PSE.getSE()->getSCEV(Ptr);
2349 if (auto AR = dyn_cast<SCEVAddRecExpr>(PtrScev)) {
2350 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
2351 if (PSE.getSE()->isLoopInvariant(Step, L))
2352 continue;
2353 }
2354 }
2355 LLVM_DEBUG(dbgs() << "Bad stride found, can't "
2356 "tail-predicate\n.");
2357 return false;
2358 }
2359 }
2360 }
2361
2362 LLVM_DEBUG(dbgs() << "tail-predication: all instructions allowed!\n");
2363 return true;
2364}
2365
2367 if (!EnableTailPredication) {
2368 LLVM_DEBUG(dbgs() << "Tail-predication not enabled.\n");
2369 return false;
2370 }
2371
2372 // Creating a predicated vector loop is the first step for generating a
2373 // tail-predicated hardware loop, for which we need the MVE masked
2374 // load/stores instructions:
2375 if (!ST->hasMVEIntegerOps())
2376 return false;
2377
2378 LoopVectorizationLegality *LVL = TFI->LVL;
2379 Loop *L = LVL->getLoop();
2380
2381 // For now, restrict this to single block loops.
2382 if (L->getNumBlocks() > 1) {
2383 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: not a single block "
2384 "loop.\n");
2385 return false;
2386 }
2387
2388 assert(L->isInnermost() && "preferPredicateOverEpilogue: inner-loop expected");
2389
2390 LoopInfo *LI = LVL->getLoopInfo();
2391 HardwareLoopInfo HWLoopInfo(L);
2392 if (!HWLoopInfo.canAnalyze(*LI)) {
2393 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2394 "analyzable.\n");
2395 return false;
2396 }
2397
2400
2401 // This checks if we have the low-overhead branch architecture
2402 // extension, and if we will create a hardware-loop:
2403 if (!isHardwareLoopProfitable(L, *SE, *AC, TFI->TLI, HWLoopInfo)) {
2404 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2405 "profitable.\n");
2406 return false;
2407 }
2408
2409 DominatorTree *DT = LVL->getDominatorTree();
2410 if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT)) {
2411 LLVM_DEBUG(dbgs() << "preferPredicateOverEpilogue: hardware-loop is not "
2412 "a candidate.\n");
2413 return false;
2414 }
2415
2416 return canTailPredicateLoop(L, LI, *SE, DL, LVL->getLAI());
2417}
2418
2420ARMTTIImpl::getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const {
2421 if (!ST->hasMVEIntegerOps() || !EnableTailPredication)
2423
2424 // Intrinsic @llvm.get.active.lane.mask is supported.
2425 // It is used in the MVETailPredication pass, which requires the number of
2426 // elements processed by this vector loop to setup the tail-predicated
2427 // loop.
2429}
2433 // Enable Upper bound unrolling universally, not dependant upon the conditions
2434 // below.
2435 UP.UpperBound = true;
2436
2437 // Only currently enable these preferences for M-Class cores.
2438 if (!ST->isMClass())
2439 return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);
2440
2441 // Disable loop unrolling for Oz and Os.
2442 UP.OptSizeThreshold = 0;
2444 if (L->getHeader()->getParent()->hasOptSize())
2445 return;
2446
2447 SmallVector<BasicBlock*, 4> ExitingBlocks;
2448 L->getExitingBlocks(ExitingBlocks);
2449 LLVM_DEBUG(dbgs() << "Loop has:\n"
2450 << "Blocks: " << L->getNumBlocks() << "\n"
2451 << "Exit blocks: " << ExitingBlocks.size() << "\n");
2452
2453 // Only allow another exit other than the latch. This acts as an early exit
2454 // as it mirrors the profitability calculation of the runtime unroller.
2455 if (ExitingBlocks.size() > 2)
2456 return;
2457
2458 // Limit the CFG of the loop body for targets with a branch predictor.
2459 // Allowing 4 blocks permits if-then-else diamonds in the body.
2460 if (ST->hasBranchPredictor() && L->getNumBlocks() > 4)
2461 return;
2462
2463 // Don't unroll vectorized loops, including the remainder loop
2464 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
2465 return;
2466
2467 // Scan the loop: don't unroll loops with calls as this could prevent
2468 // inlining.
2470 for (auto *BB : L->getBlocks()) {
2471 for (auto &I : *BB) {
2472 // Don't unroll vectorised loop. MVE does not benefit from it as much as
2473 // scalar code.
2474 if (I.getType()->isVectorTy())
2475 return;
2476
2477 if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
2478 if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
2479 if (!isLoweredToCall(F))
2480 continue;
2481 }
2482 return;
2483 }
2484
2485 SmallVector<const Value*, 4> Operands(I.operand_values());
2488 }
2489 }
2490
2491 // On v6m cores, there are very few registers available. We can easily end up
2492 // spilling and reloading more registers in an unrolled loop. Look at the
2493 // number of LCSSA phis as a rough measure of how many registers will need to
2494 // be live out of the loop, reducing the default unroll count if more than 1
2495 // value is needed. In the long run, all of this should be being learnt by a
2496 // machine.
2497 unsigned UnrollCount = 4;
2498 if (ST->isThumb1Only()) {
2499 unsigned ExitingValues = 0;
2501 L->getExitBlocks(ExitBlocks);
2502 for (auto *Exit : ExitBlocks) {
2503 // Count the number of LCSSA phis. Exclude values coming from GEP's as
2504 // only the last is expected to be needed for address operands.
2505 unsigned LiveOuts = count_if(Exit->phis(), [](auto &PH) {
2506 return PH.getNumOperands() != 1 ||
2507 !isa<GetElementPtrInst>(PH.getOperand(0));
2508 });
2509 ExitingValues = ExitingValues < LiveOuts ? LiveOuts : ExitingValues;
2510 }
2511 if (ExitingValues)
2512 UnrollCount /= ExitingValues;
2513 if (UnrollCount <= 1)
2514 return;
2515 }
2516
2517 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
2518 LLVM_DEBUG(dbgs() << "Default Runtime Unroll Count: " << UnrollCount << "\n");
2519
2520 UP.Partial = true;
2521 UP.Runtime = true;
2522 UP.UnrollRemainder = true;
2524 UP.UnrollAndJam = true;
2526
2527 // Force unrolling small loops can be very useful because of the branch
2528 // taken cost of the backedge.
2529 if (Cost < 12)
2530 UP.Force = true;
2531}
2532
2536}
2537
2538bool ARMTTIImpl::preferInLoopReduction(unsigned Opcode, Type *Ty,
2539 TTI::ReductionFlags Flags) const {
2540 if (!ST->hasMVEIntegerOps())
2541 return false;
2542
2543 unsigned ScalarBits = Ty->getScalarSizeInBits();
2544 switch (Opcode) {
2545 case Instruction::Add:
2546 return ScalarBits <= 64;
2547 default:
2548 return false;
2549 }
2550}
2551
2553 unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const {
2554 if (!ST->hasMVEIntegerOps())
2555 return false;
2556 return true;
2557}
2558
2560 int64_t BaseOffset,
2561 bool HasBaseReg, int64_t Scale,
2562 unsigned AddrSpace) const {
2564 AM.BaseGV = BaseGV;
2565 AM.BaseOffs = BaseOffset;
2566 AM.HasBaseReg = HasBaseReg;
2567 AM.Scale = Scale;
2568 if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace)) {
2569 if (ST->hasFPAO())
2570 return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
2571 return 0;
2572 }
2573 return -1;
2574}
2575
2576bool ARMTTIImpl::hasArmWideBranch(bool Thumb) const {
2577 if (Thumb) {
2578 // B.W is available in any Thumb2-supporting target, and also in every
2579 // version of Armv8-M, even Baseline which does not include the rest of
2580 // Thumb2.
2581 return ST->isThumb2() || ST->hasV8MBaselineOps();
2582 } else {
2583 // B is available in all versions of the Arm ISA, so the only question is
2584 // whether that ISA is available at all.
2585 return ST->hasARMOps();
2586 }
2587}
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file implements a class to represent arbitrary precision integral constant values and operations...
cl::opt< unsigned > MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden, cl::desc("Maximum interleave factor for MVE VLDn to generate."), cl::init(2))
static Value * isSSATMinMaxPattern(Instruction *Inst, const APInt &Imm)
static cl::opt< bool > AllowWLSLoops("allow-arm-wlsloops", cl::Hidden, cl::init(true), cl::desc("Enable the generation of WLS loops"))
static Value * simplifyNeonVld1(const IntrinsicInst &II, unsigned MemAlign, InstCombiner::BuilderTy &Builder)
Convert a vector load intrinsic into a simple llvm load instruction.
static bool isFPSatMinMaxPattern(Instruction *Inst, const APInt &Imm)
cl::opt< bool > EnableMaskedGatherScatters
static bool canTailPredicateInstruction(Instruction &I, int &ICmpCount)
cl::opt< unsigned > MVEMaxSupportedInterleaveFactor
cl::opt< TailPredication::Mode > EnableTailPredication
static cl::opt< bool > DisableLowOverheadLoops("disable-arm-loloops", cl::Hidden, cl::init(false), cl::desc("Disable the generation of low-overhead loops"))
static bool canTailPredicateLoop(Loop *L, LoopInfo *LI, ScalarEvolution &SE, const DataLayout &DL, const LoopAccessInfo *LAI)
static cl::opt< bool > EnableMaskedLoadStores("enable-arm-maskedldst", cl::Hidden, cl::init(true), cl::desc("Enable the generation of masked loads and stores"))
This file a TargetTransformInfo::Concept conforming object specific to the ARM target machine.
assume Assume Builder
static cl::opt< TargetTransformInfo::TargetCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(TargetTransformInfo::TCK_RecipThroughput), cl::values(clEnumValN(TargetTransformInfo::TCK_RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(TargetTransformInfo::TCK_Latency, "latency", "Instruction latency"), clEnumValN(TargetTransformInfo::TCK_CodeSize, "code-size", "Code size"), clEnumValN(TargetTransformInfo::TCK_SizeAndLatency, "size-latency", "Code size and latency")))
Cost tables and simple lookup functions.
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
uint64_t Size
Hexagon Common GEP
This file provides the interface for the instcombine pass implementation.
static cl::opt< unsigned > UnrollCount("unroll-count", cl::Hidden, cl::desc("Use this unroll count for all loops including those with " "unroll_count pragma values, for testing purposes"))
This file defines the LoopVectorizationLegality class.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
mir Rename Register Operands
static const Function * getCalledFunction(const Value *V, bool &IsNoBuiltin)
if(VerifyEach)
const char LLVMTargetMachineRef TM
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
static SymbolRef::Type getType(const Symbol *Sym)
Definition: TapiFile.cpp:40
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:76
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1433
static APInt getSplat(unsigned NewLen, const APInt &V)
Return a value containing V broadcasted over NewLen bits.
Definition: APInt.cpp:620
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition: APInt.h:284
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition: APInt.h:274
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition: APInt.h:217
bool hasARMOps() const
Definition: ARMSubtarget.h:324
bool isThumb1Only() const
Definition: ARMSubtarget.h:423
bool hasFPARMv8Base() const
Definition: ARMSubtarget.h:333
bool isThumb2() const
Definition: ARMSubtarget.h:424
bool hasVFP2Base() const
Definition: ARMSubtarget.h:330
bool isMClass() const
Definition: ARMSubtarget.h:425
unsigned getMVEVectorCostFactor(TargetTransformInfo::TargetCostKind CostKind) const
Definition: ARMSubtarget.h:548
bool preferInLoopReduction(unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const
InstructionCost getAddressComputationCost(Type *Val, ScalarEvolution *SE, const SCEV *Ptr)
bool maybeLoweredToCall(Instruction &I)
TailFoldingStyle getPreferredTailFoldingStyle(bool IVUpdateMayOverflow=true) const
bool isLegalMaskedStore(Type *DataTy, Align Alignment)
bool isLegalMaskedLoad(Type *DataTy, Align Alignment)
InstructionCost getMemcpyCost(const Instruction *I)
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args=std::nullopt)
InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind)
bool isLoweredToCall(const Function *F)
InstructionCost getMulAccReductionCost(bool IsUnsigned, Type *ResTy, VectorType *ValTy, TTI::TargetCostKind CostKind)
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind)
bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo)
int getNumMemOps(const IntrinsicInst *I) const
Given a memcpy/memset/memmove instruction, return the number of memory operations performed,...
std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind)
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args=ArrayRef< const Value * >(), const Instruction *CxtI=nullptr)
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE)
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind)
bool hasArmWideBranch(bool Thumb) const
bool preferPredicateOverEpilogue(TailFoldingInfo *TFI)
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind, Instruction *Inst=nullptr)
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
bool isLegalMaskedGather(Type *Ty, Align Alignment)
bool areInlineCompatible(const Function *Caller, const Function *Callee) const
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false)
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) const
getScalingFactorCost - Return the cost of the scaling used in addressing mode represented by AM.
TTI::AddressingModeKind getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const
InstructionCost getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty)
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy, FastMathFlags FMF, TTI::TargetCostKind CostKind)
bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const
std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind)
bool isProfitableLSRChainElement(Instruction *I)
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr)
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP)
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Op0, Value *Op1)
unsigned getNumInterleavedAccesses(VectorType *VecTy, const DataLayout &DL) const
Returns the number of interleaved accesses that will be generated when lowering accesses of the given...
bool isLegalInterleavedAccessType(unsigned Factor, FixedVectorType *VecTy, Align Alignment, const DataLayout &DL) const
Returns true if VecTy is a legal interleaved access type.
bool useSoftFloat() const override
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition: BasicBlock.h:56
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind)
Get intrinsic cost based on arguments.
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false)
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE)
Definition: BasicTTIImpl.h:547
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *DataTy, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind)
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Op0, Value *Op1)
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args=ArrayRef< const Value * >(), const Instruction *CxtI=nullptr)
Definition: BasicTTIImpl.h:856
TTI::ShuffleKind improveShuffleKindFromMask(TTI::ShuffleKind Kind, ArrayRef< int > Mask, VectorType *Ty, int &Index, VectorType *&SubTy) const
Definition: BasicTTIImpl.h:934
InstructionCost getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind)
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind)
Try to calculate op costs for min/max reduction operations.
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr)
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args=std::nullopt)
Definition: BasicTTIImpl.h:978
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *, const SCEV *)
InstructionCost getScalarizationOverhead(VectorType *InTy, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind)
Estimate the overhead of scalarizing an instruction.
Definition: BasicTTIImpl.h:727
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I=nullptr)
Definition: BasicTTIImpl.h:334
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP)
Definition: BasicTTIImpl.h:619
InstructionCost getMulAccReductionCost(bool IsUnsigned, Type *ResTy, VectorType *Ty, TTI::TargetCostKind CostKind)
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind)
Compute a cost of the given call instruction.
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind)
std::pair< InstructionCost, MVT > getTypeLegalizationCost(Type *Ty) const
Estimate the cost of type-legalization and the legalized type.
Definition: BasicTTIImpl.h:820
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name=Twine(), Instruction *InsertBefore=nullptr)
Construct a binary instruction, given the opcode and the two operands.
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1357
unsigned arg_size() const
Definition: InstrTypes.h:1355
static Type * makeCmpResultType(Type *opnd_type)
Create a result type for fcmp/icmp.
Definition: InstrTypes.h:1058
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:711
@ ICMP_SLE
signed less or equal
Definition: InstrTypes.h:741
@ ICMP_SGT
signed greater than
Definition: InstrTypes.h:738
static ConstantAsMetadata * get(Constant *C)
Definition: Metadata.h:419
This is the shared class of boolean and integer constants.
Definition: Constants.h:78
static Constant * get(Type *Ty, uint64_t V, bool IsSigned=false)
If Ty is a vector type, return a Constant with a splat of the given value.
Definition: Constants.cpp:888
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:136
This is an important base class in LLVM.
Definition: Constant.h:41
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
TypeSize getTypeAllocSize(Type *Ty) const
Returns the offset in bytes between successive objects of the specified type, including alignment pad...
Definition: DataLayout.h:504
TypeSize getTypeSizeInBits(Type *Ty) const
Size examples:
Definition: DataLayout.h:672
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:166
Convenience struct for specifying and reasoning about fast-math flags.
Definition: FMF.h:20
Container class for subtarget features.
Class to represent fixed width SIMD vectors.
Definition: DerivedTypes.h:536
unsigned getNumElements() const
Definition: DerivedTypes.h:579
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
Definition: Type.cpp:693
Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
Definition: IRBuilder.cpp:1223
ConstantInt * getTrue()
Get the constant value for i1 true.
Definition: IRBuilder.h:452
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, Instruction *FMFSource=nullptr, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Definition: IRBuilder.cpp:941
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
Definition: IRBuilder.h:180
The core instruction combiner logic.
Definition: InstCombiner.h:46
const DataLayout & getDataLayout() const
Definition: InstCombiner.h:379
virtual Instruction * eraseInstFromFunction(Instruction &I)=0
Combiner aware instruction erasure.
DominatorTree & getDominatorTree() const
Definition: InstCombiner.h:378
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Definition: InstCombiner.h:424
virtual bool SimplifyDemandedBits(Instruction *I, unsigned OpNo, const APInt &DemandedMask, KnownBits &Known, unsigned Depth=0)=0
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
Definition: InstCombiner.h:448
BuilderTy & Builder
Definition: InstCombiner.h:59
AssumptionCache & getAssumptionCache() const
Definition: InstCombiner.h:376
Instruction * user_back()
Specialize the methods defined in Value, as we know that an instruction can only be used by other ins...
Definition: Instruction.h:87
MDNode * getMetadata(unsigned KindID) const
Get the metadata of given kind attached to this Instruction.
Definition: Instruction.h:302
void setMetadata(unsigned KindID, MDNode *Node)
Set the metadata of the specified kind to the specified node.
Definition: Metadata.cpp:1521
bool isShift() const
Definition: Instruction.h:202
const SmallVectorImpl< Type * > & getArgTypes() const
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:47
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
Definition: IntrinsicInst.h:54
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
Drive the analysis of memory accesses in the loop.
const PredicatedScalarEvolution & getPSE() const
Used to add runtime SCEV checks.
LoopVectorizationLegality checks if it is legal to vectorize a loop, and to what vectorization factor...
AssumptionCache * getAssumptionCache() const
const LoopAccessInfo * getLAI() const
ScalarEvolution * getScalarEvolution() const
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:47
static MDTuple * get(LLVMContext &Context, ArrayRef< Metadata * > MDs)
Definition: Metadata.h:1416
Root of the metadata hierarchy.
Definition: Metadata.h:61
The optimization diagnostic interface.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
ScalarEvolution * getSE() const
Returns the ScalarEvolution analysis used.
This class represents an analyzed expression in the program.
Type * getType() const
Return the LLVM type of this SCEV expression.
The main scalar evolution driver.
const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
const SCEV * getOne(Type *Ty)
Return a SCEV for the constant 1 of a specific type.
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
bool hasLoopInvariantBackedgeTakenCount(const Loop *L)
Return true if the specified loop has an analyzable loop-invariant backedge-taken count.
APInt getUnsignedRangeMax(const SCEV *S)
Determine the max of the unsigned range for a particular SCEV.
const SCEV * getAddExpr(SmallVectorImpl< const SCEV * > &Ops, SCEV::NoWrapFlags Flags=SCEV::FlagAnyWrap, unsigned Depth=0)
Get a canonical add expression, or something simpler if possible.
size_t size() const
Definition: SmallVector.h:91
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1200
Provides information about what library functions are available for the current target.
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
const TargetMachine & getTargetMachine() const
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:78
bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr, int64_t MergeDistance) const
bool isLoweredToCall(const Function *F) const
InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TTI::TargetCostKind CostKind)
TargetCostKind
The kind of cost model.
@ TCK_RecipThroughput
Reciprocal throughput.
@ TCK_CodeSize
Instruction code size.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
static bool requiresOrderedReduction(std::optional< FastMathFlags > FMF)
A helper function to determine the type of reduction algorithm used for a given Opcode and set of Fas...
@ TCC_Expensive
The cost of a 'div' instruction on x86.
ShuffleKind
The various kinds of shuffle patterns for vector queries.
@ SK_Select
Selects elements from the corresponding lane of either source operand.
@ SK_Broadcast
Broadcast element 0 to all other elements.
@ SK_Reverse
Reverse the order of the vector.
CastContextHint
Represents a hint about the context in which a cast is used.
@ Masked
The cast is used with a masked load/store.
@ Normal
The cast is used with a normal load/store.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
unsigned getIntegerBitWidth() const
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:265
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:234
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition: Type.h:154
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
Definition: Type.h:143
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:129
static IntegerType * getInt32Ty(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:228
bool isFPOrFPVectorTy() const
Return true if this is a FP type or a vector of FP.
Definition: Type.h:216
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
Definition: Type.h:348
Value * getOperand(unsigned i) const
Definition: User.h:169
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
user_iterator user_begin()
Definition: Value.h:397
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
bool hasNUses(unsigned N) const
Return true if this Value has exactly N uses.
Definition: Value.cpp:149
LLVMContext & getContext() const
All values hold a context through their type.
Definition: Value.cpp:1069
Base class of all SIMD vector types.
Definition: DerivedTypes.h:400
Type * getElementType() const
Definition: DerivedTypes.h:433
constexpr ScalarTy getFixedValue() const
Definition: TypeSize.h:182
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
int getSOImmVal(unsigned Arg)
getSOImmVal - Given a 32-bit immediate, if it is something that can fit into an shifter_operand immed...
bool isThumbImmShiftedVal(unsigned V)
isThumbImmShiftedVal - Return true if the specified value can be obtained by left shifting a 8-bit im...
int getT2SOImmVal(unsigned Arg)
getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit into a Thumb-2 shifter_oper...
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
@ ADD
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:239
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
Definition: ISDOpcodes.h:787
@ FADD
Simple binary floating point operators.
Definition: ISDOpcodes.h:390
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
Definition: ISDOpcodes.h:255
@ SIGN_EXTEND
Conversion operators.
Definition: ISDOpcodes.h:774
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
Definition: ISDOpcodes.h:727
@ SHL
Shift and rotation operations.
Definition: ISDOpcodes.h:705
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
Definition: ISDOpcodes.h:600
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:777
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition: ISDOpcodes.h:674
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
Definition: ISDOpcodes.h:885
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
Definition: ISDOpcodes.h:833
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:680
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
Definition: ISDOpcodes.h:866
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Definition: ISDOpcodes.h:783
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:144
BinaryOp_match< LHS, RHS, Instruction::Xor > m_Xor(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
Definition: PatternMatch.h:780
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:147
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:76
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
Definition: PatternMatch.h:545
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:445
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
const CostTblEntryT< CostType > * CostTableLookup(ArrayRef< CostTblEntryT< CostType > > Tbl, int ISD, MVT Ty)
Find in cost table.
Definition: CostTable.h:35
bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name)
Returns true if Name is applied to TheLoop and enabled.
Definition: LoopInfo.cpp:1084
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
AddressSpace
Definition: NVPTXBaseInfo.h:21
Align getKnownAlignment(Value *V, const DataLayout &DL, const Instruction *CxtI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr)
Try to infer an alignment for the specified pointer.
Definition: Local.h:241
SmallVector< Instruction *, 8 > findDefsUsedOutsideOfLoop(Loop *L)
Returns the instructions that use values defined in the loop.
Definition: LoopUtils.cpp:123
SelectPatternFlavor
Specific patterns of select instructions we can match.
@ SPF_ABS
Floating point maxnum.
@ SPF_FMAXNUM
Floating point minnum.
@ SPF_UMIN
Signed minimum.
@ SPF_UMAX
Signed maximum.
@ SPF_SMAX
Unsigned minimum.
@ SPF_FMINNUM
Unsigned maximum.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:264
SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, Instruction::CastOps *CastOp=nullptr, unsigned Depth=0)
Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind and providing the out param...
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
auto count_if(R &&Range, UnaryPredicate P)
Wrapper function around std::count_if to count the number of times an element satisfying a given pred...
Definition: STLExtras.h:1926
bool isVREVMask(ArrayRef< int > M, EVT VT, unsigned BlockSize)
isVREVMask - Check if a vector shuffle corresponds to a VREV instruction with the specified blocksize...
InstructionCost Cost
@ DataWithoutLaneMask
Same as Data, but avoids using the get.active.lane.mask intrinsic to calculate the mask and instead i...
@ Data
Use predicate only to mask operations on data in the loop.
Type * getLoadStoreType(Value *I)
A helper function that returns the type of a load or store instruction.
const TypeConversionCostTblEntryT< CostType > * ConvertCostTableLookup(ArrayRef< TypeConversionCostTblEntryT< CostType > > Tbl, int ISD, MVT Dst, MVT Src)
Find in type conversion cost table.
Definition: CostTable.h:66
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition: Alignment.h:85
Cost Table Entry.
Definition: CostTable.h:25
Extended Value Type.
Definition: ValueTypes.h:34
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition: ValueTypes.h:129
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition: ValueTypes.h:139
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition: ValueTypes.h:351
uint64_t getScalarSizeInBits() const
Definition: ValueTypes.h:363
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:299
bool isFixedLengthVector() const
Definition: ValueTypes.h:170
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:160
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
Definition: ValueTypes.h:306
EVT getVectorElementType() const
Given a vector type, return the type of each element.
Definition: ValueTypes.h:311
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
Definition: ValueTypes.h:319
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition: ValueTypes.h:144
Attributes of a target dependent hardware loop.
bool canAnalyze(LoopInfo &LI)
bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI, DominatorTree &DT, bool ForceNestedLoop=false, bool ForceHardwareLoopPHI=false)
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
SelectPatternFlavor Flavor
TargetLibraryInfo * TLI
LoopVectorizationLegality * LVL
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg If BaseGV is null...
Flags describing the kind of vector reduction.
Parameters that control the generic loop unrolling transformation.
bool UpperBound
Allow using trip count upper bound to unroll loops.
bool Force
Apply loop unroll on any kind of loop (mainly to loops that fail runtime unrolling).
unsigned PartialOptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size, like OptSizeThreshold,...
unsigned DefaultUnrollRuntimeCount
Default unroll count for loops with run-time trip count.
unsigned UnrollAndJamInnerLoopThreshold
Threshold for unroll and jam, for inner loop size.
bool UnrollAndJam
Allow unroll and jam. Used to enable unroll and jam for the target.
bool UnrollRemainder
Allow unrolling of all the iterations of the runtime loop remainder.
bool Runtime
Allow runtime unrolling (unrolling of loops to expand the size of the loop body even when the number ...
bool Partial
Allow partial unrolling (unrolling of loops to expand the size of the loop body, not only to eliminat...
unsigned OptSizeThreshold
The cost threshold for the unrolled loop when optimizing for size (set to UINT_MAX to disable).
Type Conversion Cost Table.
Definition: CostTable.h:55