LLVM 20.0.0git
HexagonInstrInfo.cpp
Go to the documentation of this file.
1//===- HexagonInstrInfo.cpp - Hexagon Instruction Information -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the Hexagon implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "HexagonInstrInfo.h"
16#include "HexagonRegisterInfo.h"
17#include "HexagonSubtarget.h"
18#include "llvm/ADT/ArrayRef.h"
22#include "llvm/ADT/StringRef.h"
42#include "llvm/IR/DebugLoc.h"
44#include "llvm/MC/MCAsmInfo.h"
46#include "llvm/MC/MCInstrDesc.h"
50#include "llvm/Support/Debug.h"
55#include <cassert>
56#include <cctype>
57#include <cstdint>
58#include <cstring>
59#include <iterator>
60#include <optional>
61#include <string>
62#include <utility>
63
64using namespace llvm;
65
66#define DEBUG_TYPE "hexagon-instrinfo"
67
68#define GET_INSTRINFO_CTOR_DTOR
69#define GET_INSTRMAP_INFO
71#include "HexagonGenDFAPacketizer.inc"
72#include "HexagonGenInstrInfo.inc"
73
74cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
75 cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
76 "packetization boundary."));
77
78static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
79 cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
80
82 "disable-hexagon-nv-schedule", cl::Hidden,
83 cl::desc("Disable schedule adjustment for new value stores."));
84
86 "enable-timing-class-latency", cl::Hidden, cl::init(false),
87 cl::desc("Enable timing class latency"));
88
90 "enable-alu-forwarding", cl::Hidden, cl::init(true),
91 cl::desc("Enable vec alu forwarding"));
92
94 "enable-acc-forwarding", cl::Hidden, cl::init(true),
95 cl::desc("Enable vec acc forwarding"));
96
97static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
98 cl::init(true), cl::Hidden,
99 cl::desc("branch relax asm"));
100
101static cl::opt<bool>
102 UseDFAHazardRec("dfa-hazard-rec", cl::init(true), cl::Hidden,
103 cl::desc("Use the DFA based hazard recognizer."));
104
105/// Constants for Hexagon instructions.
106const int Hexagon_MEMW_OFFSET_MAX = 4095;
107const int Hexagon_MEMW_OFFSET_MIN = -4096;
108const int Hexagon_MEMD_OFFSET_MAX = 8191;
109const int Hexagon_MEMD_OFFSET_MIN = -8192;
110const int Hexagon_MEMH_OFFSET_MAX = 2047;
111const int Hexagon_MEMH_OFFSET_MIN = -2048;
112const int Hexagon_MEMB_OFFSET_MAX = 1023;
113const int Hexagon_MEMB_OFFSET_MIN = -1024;
114const int Hexagon_ADDI_OFFSET_MAX = 32767;
115const int Hexagon_ADDI_OFFSET_MIN = -32768;
116
117// Pin the vtable to this file.
118void HexagonInstrInfo::anchor() {}
119
121 : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
122 Subtarget(ST) {}
123
124namespace llvm {
125namespace HexagonFUnits {
126 bool isSlot0Only(unsigned units);
127}
128}
129
130static bool isIntRegForSubInst(Register Reg) {
131 return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
132 (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
133}
134
135static bool isDblRegForSubInst(Register Reg, const HexagonRegisterInfo &HRI) {
136 return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_lo)) &&
137 isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::isub_hi));
138}
139
140/// Calculate number of instructions excluding the debug instructions.
143 unsigned Count = 0;
144 for (; MIB != MIE; ++MIB) {
145 if (!MIB->isDebugInstr())
146 ++Count;
147 }
148 return Count;
149}
150
151// Check if the A2_tfrsi instruction is cheap or not. If the operand has
152// to be constant-extendend it is not cheap since it occupies two slots
153// in a packet.
155 // Enable the following steps only at Os/Oz
156 if (!(MI.getMF()->getFunction().hasOptSize()))
157 return MI.isAsCheapAsAMove();
158
159 if (MI.getOpcode() == Hexagon::A2_tfrsi) {
160 auto Op = MI.getOperand(1);
161 // If the instruction has a global address as operand, it is not cheap
162 // since the operand will be constant extended.
163 if (Op.isGlobal())
164 return false;
165 // If the instruction has an operand of size > 16bits, its will be
166 // const-extended and hence, it is not cheap.
167 if (Op.isImm()) {
168 int64_t Imm = Op.getImm();
169 if (!isInt<16>(Imm))
170 return false;
171 }
172 }
173 return MI.isAsCheapAsAMove();
174}
175
176// Do not sink floating point instructions that updates USR register.
177// Example:
178// feclearexcept
179// F2_conv_w2sf
180// fetestexcept
181// MachineSink sinks F2_conv_w2sf and we are not able to catch exceptions.
182// TODO: On some of these floating point instructions, USR is marked as Use.
183// In reality, these instructions also Def the USR. If USR is marked as Def,
184// some of the assumptions in assembler packetization are broken.
186 // Assumption: A floating point instruction that reads the USR will write
187 // the USR as well.
188 if (isFloat(MI) && MI.hasRegisterImplicitUseOperand(Hexagon::USR))
189 return false;
190 return true;
191}
192
193/// Find the hardware loop instruction used to set-up the specified loop.
194/// On Hexagon, we have two instructions used to set-up the hardware loop
195/// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
196/// to indicate the end of a loop.
198 unsigned EndLoopOp, MachineBasicBlock *TargetBB,
200 unsigned LOOPi;
201 unsigned LOOPr;
202 if (EndLoopOp == Hexagon::ENDLOOP0) {
203 LOOPi = Hexagon::J2_loop0i;
204 LOOPr = Hexagon::J2_loop0r;
205 } else { // EndLoopOp == Hexagon::EndLOOP1
206 LOOPi = Hexagon::J2_loop1i;
207 LOOPr = Hexagon::J2_loop1r;
208 }
209
210 // The loop set-up instruction will be in a predecessor block
211 for (MachineBasicBlock *PB : BB->predecessors()) {
212 // If this has been visited, already skip it.
213 if (!Visited.insert(PB).second)
214 continue;
215 if (PB == BB)
216 continue;
217 for (MachineInstr &I : llvm::reverse(PB->instrs())) {
218 unsigned Opc = I.getOpcode();
219 if (Opc == LOOPi || Opc == LOOPr)
220 return &I;
221 // We've reached a different loop, which means the loop01 has been
222 // removed.
223 if (Opc == EndLoopOp && I.getOperand(0).getMBB() != TargetBB)
224 return nullptr;
225 }
226 // Check the predecessors for the LOOP instruction.
227 if (MachineInstr *Loop = findLoopInstr(PB, EndLoopOp, TargetBB, Visited))
228 return Loop;
229 }
230 return nullptr;
231}
232
233/// Gather register def/uses from MI.
234/// This treats possible (predicated) defs as actually happening ones
235/// (conservatively).
236static inline void parseOperands(const MachineInstr &MI,
238 Defs.clear();
239 Uses.clear();
240
241 for (const MachineOperand &MO : MI.operands()) {
242 if (!MO.isReg())
243 continue;
244
245 Register Reg = MO.getReg();
246 if (!Reg)
247 continue;
248
249 if (MO.isUse())
250 Uses.push_back(MO.getReg());
251
252 if (MO.isDef())
253 Defs.push_back(MO.getReg());
254 }
255}
256
257// Position dependent, so check twice for swap.
258static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
259 switch (Ga) {
261 default:
262 return false;
264 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
266 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
267 Gb == HexagonII::HSIG_A);
269 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
272 return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
273 Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
274 Gb == HexagonII::HSIG_A);
276 return (Gb == HexagonII::HSIG_A);
278 return (Gb == HexagonII::HSIG_Compound);
279 }
280 return false;
281}
282
283/// isLoadFromStackSlot - If the specified machine instruction is a direct
284/// load from a stack slot, return the virtual or physical register number of
285/// the destination along with the FrameIndex of the loaded stack slot. If
286/// not, return 0. This predicate must return 0 if the instruction has
287/// any side effects other than loading from the stack slot.
289 int &FrameIndex) const {
290 switch (MI.getOpcode()) {
291 default:
292 break;
293 case Hexagon::L2_loadri_io:
294 case Hexagon::L2_loadrd_io:
295 case Hexagon::V6_vL32b_ai:
296 case Hexagon::V6_vL32b_nt_ai:
297 case Hexagon::V6_vL32Ub_ai:
298 case Hexagon::LDriw_pred:
299 case Hexagon::LDriw_ctr:
300 case Hexagon::PS_vloadrq_ai:
301 case Hexagon::PS_vloadrw_ai:
302 case Hexagon::PS_vloadrw_nt_ai: {
303 const MachineOperand OpFI = MI.getOperand(1);
304 if (!OpFI.isFI())
305 return 0;
306 const MachineOperand OpOff = MI.getOperand(2);
307 if (!OpOff.isImm() || OpOff.getImm() != 0)
308 return 0;
309 FrameIndex = OpFI.getIndex();
310 return MI.getOperand(0).getReg();
311 }
312
313 case Hexagon::L2_ploadrit_io:
314 case Hexagon::L2_ploadrif_io:
315 case Hexagon::L2_ploadrdt_io:
316 case Hexagon::L2_ploadrdf_io: {
317 const MachineOperand OpFI = MI.getOperand(2);
318 if (!OpFI.isFI())
319 return 0;
320 const MachineOperand OpOff = MI.getOperand(3);
321 if (!OpOff.isImm() || OpOff.getImm() != 0)
322 return 0;
323 FrameIndex = OpFI.getIndex();
324 return MI.getOperand(0).getReg();
325 }
326 }
327
328 return 0;
329}
330
331/// isStoreToStackSlot - If the specified machine instruction is a direct
332/// store to a stack slot, return the virtual or physical register number of
333/// the source reg along with the FrameIndex of the loaded stack slot. If
334/// not, return 0. This predicate must return 0 if the instruction has
335/// any side effects other than storing to the stack slot.
337 int &FrameIndex) const {
338 switch (MI.getOpcode()) {
339 default:
340 break;
341 case Hexagon::S2_storerb_io:
342 case Hexagon::S2_storerh_io:
343 case Hexagon::S2_storeri_io:
344 case Hexagon::S2_storerd_io:
345 case Hexagon::V6_vS32b_ai:
346 case Hexagon::V6_vS32Ub_ai:
347 case Hexagon::STriw_pred:
348 case Hexagon::STriw_ctr:
349 case Hexagon::PS_vstorerq_ai:
350 case Hexagon::PS_vstorerw_ai: {
351 const MachineOperand &OpFI = MI.getOperand(0);
352 if (!OpFI.isFI())
353 return 0;
354 const MachineOperand &OpOff = MI.getOperand(1);
355 if (!OpOff.isImm() || OpOff.getImm() != 0)
356 return 0;
357 FrameIndex = OpFI.getIndex();
358 return MI.getOperand(2).getReg();
359 }
360
361 case Hexagon::S2_pstorerbt_io:
362 case Hexagon::S2_pstorerbf_io:
363 case Hexagon::S2_pstorerht_io:
364 case Hexagon::S2_pstorerhf_io:
365 case Hexagon::S2_pstorerit_io:
366 case Hexagon::S2_pstorerif_io:
367 case Hexagon::S2_pstorerdt_io:
368 case Hexagon::S2_pstorerdf_io: {
369 const MachineOperand &OpFI = MI.getOperand(1);
370 if (!OpFI.isFI())
371 return 0;
372 const MachineOperand &OpOff = MI.getOperand(2);
373 if (!OpOff.isImm() || OpOff.getImm() != 0)
374 return 0;
375 FrameIndex = OpFI.getIndex();
376 return MI.getOperand(3).getReg();
377 }
378 }
379
380 return 0;
381}
382
383/// This function checks if the instruction or bundle of instructions
384/// has load from stack slot and returns frameindex and machine memory
385/// operand of that instruction if true.
387 const MachineInstr &MI,
389 if (MI.isBundle()) {
390 const MachineBasicBlock *MBB = MI.getParent();
392 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
393 if (TargetInstrInfo::hasLoadFromStackSlot(*MII, Accesses))
394 return true;
395 return false;
396 }
397
399}
400
401/// This function checks if the instruction or bundle of instructions
402/// has store to stack slot and returns frameindex and machine memory
403/// operand of that instruction if true.
405 const MachineInstr &MI,
407 if (MI.isBundle()) {
408 const MachineBasicBlock *MBB = MI.getParent();
410 for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
411 if (TargetInstrInfo::hasStoreToStackSlot(*MII, Accesses))
412 return true;
413 return false;
414 }
415
417}
418
419/// This function can analyze one/two way branching only and should (mostly) be
420/// called by target independent side.
421/// First entry is always the opcode of the branching instruction, except when
422/// the Cond vector is supposed to be empty, e.g., when analyzeBranch fails, a
423/// BB with only unconditional jump. Subsequent entries depend upon the opcode,
424/// e.g. Jump_c p will have
425/// Cond[0] = Jump_c
426/// Cond[1] = p
427/// HW-loop ENDLOOP:
428/// Cond[0] = ENDLOOP
429/// Cond[1] = MBB
430/// New value jump:
431/// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
432/// Cond[1] = R
433/// Cond[2] = Imm
436 MachineBasicBlock *&FBB,
438 bool AllowModify) const {
439 TBB = nullptr;
440 FBB = nullptr;
441 Cond.clear();
442
443 // If the block has no terminators, it just falls into the block after it.
445 if (I == MBB.instr_begin())
446 return false;
447
448 // A basic block may looks like this:
449 //
450 // [ insn
451 // EH_LABEL
452 // insn
453 // insn
454 // insn
455 // EH_LABEL
456 // insn ]
457 //
458 // It has two succs but does not have a terminator
459 // Don't know how to handle it.
460 do {
461 --I;
462 if (I->isEHLabel())
463 // Don't analyze EH branches.
464 return true;
465 } while (I != MBB.instr_begin());
466
467 I = MBB.instr_end();
468 --I;
469
470 while (I->isDebugInstr()) {
471 if (I == MBB.instr_begin())
472 return false;
473 --I;
474 }
475
476 bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
477 I->getOperand(0).isMBB();
478 // Delete the J2_jump if it's equivalent to a fall-through.
479 if (AllowModify && JumpToBlock &&
480 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
481 LLVM_DEBUG(dbgs() << "\nErasing the jump to successor block\n";);
482 I->eraseFromParent();
483 I = MBB.instr_end();
484 if (I == MBB.instr_begin())
485 return false;
486 --I;
487 }
488 if (!isUnpredicatedTerminator(*I))
489 return false;
490
491 // Get the last instruction in the block.
492 MachineInstr *LastInst = &*I;
493 MachineInstr *SecondLastInst = nullptr;
494 // Find one more terminator if present.
495 while (true) {
496 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
497 if (!SecondLastInst)
498 SecondLastInst = &*I;
499 else
500 // This is a third branch.
501 return true;
502 }
503 if (I == MBB.instr_begin())
504 break;
505 --I;
506 }
507
508 int LastOpcode = LastInst->getOpcode();
509 int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
510 // If the branch target is not a basic block, it could be a tail call.
511 // (It is, if the target is a function.)
512 if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
513 return true;
514 if (SecLastOpcode == Hexagon::J2_jump &&
515 !SecondLastInst->getOperand(0).isMBB())
516 return true;
517
518 bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
519 bool LastOpcodeHasNVJump = isNewValueJump(*LastInst);
520
521 if (LastOpcodeHasJMP_c && !LastInst->getOperand(1).isMBB())
522 return true;
523
524 // If there is only one terminator instruction, process it.
525 if (LastInst && !SecondLastInst) {
526 if (LastOpcode == Hexagon::J2_jump) {
527 TBB = LastInst->getOperand(0).getMBB();
528 return false;
529 }
530 if (isEndLoopN(LastOpcode)) {
531 TBB = LastInst->getOperand(0).getMBB();
532 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
533 Cond.push_back(LastInst->getOperand(0));
534 return false;
535 }
536 if (LastOpcodeHasJMP_c) {
537 TBB = LastInst->getOperand(1).getMBB();
538 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
539 Cond.push_back(LastInst->getOperand(0));
540 return false;
541 }
542 // Only supporting rr/ri versions of new-value jumps.
543 if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
544 TBB = LastInst->getOperand(2).getMBB();
545 Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
546 Cond.push_back(LastInst->getOperand(0));
547 Cond.push_back(LastInst->getOperand(1));
548 return false;
549 }
550 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
551 << " with one jump\n";);
552 // Otherwise, don't know what this is.
553 return true;
554 }
555
556 bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
557 bool SecLastOpcodeHasNVJump = isNewValueJump(*SecondLastInst);
558 if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
559 if (!SecondLastInst->getOperand(1).isMBB())
560 return true;
561 TBB = SecondLastInst->getOperand(1).getMBB();
562 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
563 Cond.push_back(SecondLastInst->getOperand(0));
564 FBB = LastInst->getOperand(0).getMBB();
565 return false;
566 }
567
568 // Only supporting rr/ri versions of new-value jumps.
569 if (SecLastOpcodeHasNVJump &&
570 (SecondLastInst->getNumExplicitOperands() == 3) &&
571 (LastOpcode == Hexagon::J2_jump)) {
572 TBB = SecondLastInst->getOperand(2).getMBB();
573 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
574 Cond.push_back(SecondLastInst->getOperand(0));
575 Cond.push_back(SecondLastInst->getOperand(1));
576 FBB = LastInst->getOperand(0).getMBB();
577 return false;
578 }
579
580 // If the block ends with two Hexagon:JMPs, handle it. The second one is not
581 // executed, so remove it.
582 if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
583 TBB = SecondLastInst->getOperand(0).getMBB();
584 I = LastInst->getIterator();
585 if (AllowModify)
586 I->eraseFromParent();
587 return false;
588 }
589
590 // If the block ends with an ENDLOOP, and J2_jump, handle it.
591 if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
592 TBB = SecondLastInst->getOperand(0).getMBB();
593 Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
594 Cond.push_back(SecondLastInst->getOperand(0));
595 FBB = LastInst->getOperand(0).getMBB();
596 return false;
597 }
598 LLVM_DEBUG(dbgs() << "\nCant analyze " << printMBBReference(MBB)
599 << " with two jumps";);
600 // Otherwise, can't handle this.
601 return true;
602}
603
605 int *BytesRemoved) const {
606 assert(!BytesRemoved && "code size not handled");
607
608 LLVM_DEBUG(dbgs() << "\nRemoving branches out of " << printMBBReference(MBB));
610 unsigned Count = 0;
611 while (I != MBB.begin()) {
612 --I;
613 if (I->isDebugInstr())
614 continue;
615 // Only removing branches from end of MBB.
616 if (!I->isBranch())
617 return Count;
618 if (Count && (I->getOpcode() == Hexagon::J2_jump))
619 llvm_unreachable("Malformed basic block: unconditional branch not last");
620 MBB.erase(&MBB.back());
621 I = MBB.end();
622 ++Count;
623 }
624 return Count;
625}
626
631 const DebugLoc &DL,
632 int *BytesAdded) const {
633 unsigned BOpc = Hexagon::J2_jump;
634 unsigned BccOpc = Hexagon::J2_jumpt;
635 assert(validateBranchCond(Cond) && "Invalid branching condition");
636 assert(TBB && "insertBranch must not be told to insert a fallthrough");
637 assert(!BytesAdded && "code size not handled");
638
639 // Check if reverseBranchCondition has asked to reverse this branch
640 // If we want to reverse the branch an odd number of times, we want
641 // J2_jumpf.
642 if (!Cond.empty() && Cond[0].isImm())
643 BccOpc = Cond[0].getImm();
644
645 if (!FBB) {
646 if (Cond.empty()) {
647 // Due to a bug in TailMerging/CFG Optimization, we need to add a
648 // special case handling of a predicated jump followed by an
649 // unconditional jump. If not, Tail Merging and CFG Optimization go
650 // into an infinite loop.
651 MachineBasicBlock *NewTBB, *NewFBB;
653 auto Term = MBB.getFirstTerminator();
654 if (Term != MBB.end() && isPredicated(*Term) &&
655 !analyzeBranch(MBB, NewTBB, NewFBB, Cond, false) &&
659 return insertBranch(MBB, TBB, nullptr, Cond, DL);
660 }
661 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
662 } else if (isEndLoopN(Cond[0].getImm())) {
663 int EndLoopOp = Cond[0].getImm();
664 assert(Cond[1].isMBB());
665 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
666 // Check for it, and change the BB target if needed.
668 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
669 VisitedBBs);
670 assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
671 Loop->getOperand(0).setMBB(TBB);
672 // Add the ENDLOOP after the finding the LOOP0.
673 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
674 } else if (isNewValueJump(Cond[0].getImm())) {
675 assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
676 // New value jump
677 // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
678 // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
679 unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
680 LLVM_DEBUG(dbgs() << "\nInserting NVJump for "
682 if (Cond[2].isReg()) {
683 unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
684 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
685 addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
686 } else if(Cond[2].isImm()) {
687 BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
688 addImm(Cond[2].getImm()).addMBB(TBB);
689 } else
690 llvm_unreachable("Invalid condition for branching");
691 } else {
692 assert((Cond.size() == 2) && "Malformed cond vector");
693 const MachineOperand &RO = Cond[1];
694 unsigned Flags = getUndefRegState(RO.isUndef());
695 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
696 }
697 return 1;
698 }
699 assert((!Cond.empty()) &&
700 "Cond. cannot be empty when multiple branchings are required");
701 assert((!isNewValueJump(Cond[0].getImm())) &&
702 "NV-jump cannot be inserted with another branch");
703 // Special case for hardware loops. The condition is a basic block.
704 if (isEndLoopN(Cond[0].getImm())) {
705 int EndLoopOp = Cond[0].getImm();
706 assert(Cond[1].isMBB());
707 // Since we're adding an ENDLOOP, there better be a LOOP instruction.
708 // Check for it, and change the BB target if needed.
710 MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, Cond[1].getMBB(),
711 VisitedBBs);
712 assert(Loop != nullptr && "Inserting an ENDLOOP without a LOOP");
713 Loop->getOperand(0).setMBB(TBB);
714 // Add the ENDLOOP after the finding the LOOP0.
715 BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
716 } else {
717 const MachineOperand &RO = Cond[1];
718 unsigned Flags = getUndefRegState(RO.isUndef());
719 BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
720 }
721 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
722
723 return 2;
724}
725
726namespace {
727class HexagonPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
728 MachineInstr *Loop, *EndLoop;
729 MachineFunction *MF;
730 const HexagonInstrInfo *TII;
731 int64_t TripCount;
732 Register LoopCount;
733 DebugLoc DL;
734
735public:
736 HexagonPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop)
737 : Loop(Loop), EndLoop(EndLoop), MF(Loop->getParent()->getParent()),
738 TII(MF->getSubtarget<HexagonSubtarget>().getInstrInfo()),
739 DL(Loop->getDebugLoc()) {
740 // Inspect the Loop instruction up-front, as it may be deleted when we call
741 // createTripCountGreaterCondition.
742 TripCount = Loop->getOpcode() == Hexagon::J2_loop0r
743 ? -1
744 : Loop->getOperand(1).getImm();
745 if (TripCount == -1)
746 LoopCount = Loop->getOperand(1).getReg();
747 }
748
749 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
750 // Only ignore the terminator.
751 return MI == EndLoop;
752 }
753
754 std::optional<bool> createTripCountGreaterCondition(
755 int TC, MachineBasicBlock &MBB,
757 if (TripCount == -1) {
758 // Check if we're done with the loop.
759 Register Done = TII->createVR(MF, MVT::i1);
760 MachineInstr *NewCmp = BuildMI(&MBB, DL,
761 TII->get(Hexagon::C2_cmpgtui), Done)
762 .addReg(LoopCount)
763 .addImm(TC);
764 Cond.push_back(MachineOperand::CreateImm(Hexagon::J2_jumpf));
765 Cond.push_back(NewCmp->getOperand(0));
766 return {};
767 }
768
769 return TripCount > TC;
770 }
771
772 void setPreheader(MachineBasicBlock *NewPreheader) override {
773 NewPreheader->splice(NewPreheader->getFirstTerminator(), Loop->getParent(),
774 Loop);
775 }
776
777 void adjustTripCount(int TripCountAdjust) override {
778 // If the loop trip count is a compile-time value, then just change the
779 // value.
780 if (Loop->getOpcode() == Hexagon::J2_loop0i ||
781 Loop->getOpcode() == Hexagon::J2_loop1i) {
782 int64_t TripCount = Loop->getOperand(1).getImm() + TripCountAdjust;
783 assert(TripCount > 0 && "Can't create an empty or negative loop!");
784 Loop->getOperand(1).setImm(TripCount);
785 return;
786 }
787
788 // The loop trip count is a run-time value. We generate code to subtract
789 // one from the trip count, and update the loop instruction.
790 Register LoopCount = Loop->getOperand(1).getReg();
791 Register NewLoopCount = TII->createVR(MF, MVT::i32);
792 BuildMI(*Loop->getParent(), Loop, Loop->getDebugLoc(),
793 TII->get(Hexagon::A2_addi), NewLoopCount)
794 .addReg(LoopCount)
795 .addImm(TripCountAdjust);
796 Loop->getOperand(1).setReg(NewLoopCount);
797 }
798
799 void disposed(LiveIntervals *LIS) override {
800 if (LIS)
802 Loop->eraseFromParent();
803 }
804};
805} // namespace
806
807std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
809 // We really "analyze" only hardware loops right now.
811
812 if (I != LoopBB->end() && isEndLoopN(I->getOpcode())) {
814 MachineInstr *LoopInst = findLoopInstr(
815 LoopBB, I->getOpcode(), I->getOperand(0).getMBB(), VisitedBBs);
816 if (LoopInst)
817 return std::make_unique<HexagonPipelinerLoopInfo>(LoopInst, &*I);
818 }
819 return nullptr;
820}
821
823 unsigned NumCycles, unsigned ExtraPredCycles,
824 BranchProbability Probability) const {
825 return nonDbgBBSize(&MBB) <= 3;
826}
827
829 unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
830 unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
831 const {
832 return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
833}
834
836 unsigned NumInstrs, BranchProbability Probability) const {
837 return NumInstrs <= 4;
838}
839
840static void getLiveInRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
842 const MachineBasicBlock &B = *MI.getParent();
843 Regs.addLiveIns(B);
844 auto E = MachineBasicBlock::const_iterator(MI.getIterator());
845 for (auto I = B.begin(); I != E; ++I) {
846 Clobbers.clear();
847 Regs.stepForward(*I, Clobbers);
848 }
849}
850
851static void getLiveOutRegsAt(LivePhysRegs &Regs, const MachineInstr &MI) {
852 const MachineBasicBlock &B = *MI.getParent();
853 Regs.addLiveOuts(B);
854 auto E = ++MachineBasicBlock::const_iterator(MI.getIterator()).getReverse();
855 for (auto I = B.rbegin(); I != E; ++I)
856 Regs.stepBackward(*I);
857}
858
861 const DebugLoc &DL, MCRegister DestReg,
862 MCRegister SrcReg, bool KillSrc,
863 bool RenamableDest,
864 bool RenamableSrc) const {
865 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
866 unsigned KillFlag = getKillRegState(KillSrc);
867
868 if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
869 BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg)
870 .addReg(SrcReg, KillFlag);
871 return;
872 }
873 if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
874 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg)
875 .addReg(SrcReg, KillFlag);
876 return;
877 }
878 if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
879 // Map Pd = Ps to Pd = or(Ps, Ps).
880 BuildMI(MBB, I, DL, get(Hexagon::C2_or), DestReg)
881 .addReg(SrcReg).addReg(SrcReg, KillFlag);
882 return;
883 }
884 if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
885 Hexagon::IntRegsRegClass.contains(SrcReg)) {
886 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
887 .addReg(SrcReg, KillFlag);
888 return;
889 }
890 if (Hexagon::IntRegsRegClass.contains(DestReg) &&
891 Hexagon::CtrRegsRegClass.contains(SrcReg)) {
892 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrcrr), DestReg)
893 .addReg(SrcReg, KillFlag);
894 return;
895 }
896 if (Hexagon::ModRegsRegClass.contains(DestReg) &&
897 Hexagon::IntRegsRegClass.contains(SrcReg)) {
898 BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg)
899 .addReg(SrcReg, KillFlag);
900 return;
901 }
902 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
903 Hexagon::IntRegsRegClass.contains(DestReg)) {
904 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
905 .addReg(SrcReg, KillFlag);
906 return;
907 }
908 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
909 Hexagon::PredRegsRegClass.contains(DestReg)) {
910 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg)
911 .addReg(SrcReg, KillFlag);
912 return;
913 }
914 if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
915 Hexagon::IntRegsRegClass.contains(DestReg)) {
916 BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg)
917 .addReg(SrcReg, KillFlag);
918 return;
919 }
920 if (Hexagon::HvxVRRegClass.contains(SrcReg, DestReg)) {
921 BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
922 addReg(SrcReg, KillFlag);
923 return;
924 }
925 if (Hexagon::HvxWRRegClass.contains(SrcReg, DestReg)) {
926 LivePhysRegs LiveAtMI(HRI);
927 getLiveInRegsAt(LiveAtMI, *I);
928 Register SrcLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
929 Register SrcHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
930 unsigned UndefLo = getUndefRegState(!LiveAtMI.contains(SrcLo));
931 unsigned UndefHi = getUndefRegState(!LiveAtMI.contains(SrcHi));
932 BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg)
933 .addReg(SrcHi, KillFlag | UndefHi)
934 .addReg(SrcLo, KillFlag | UndefLo);
935 return;
936 }
937 if (Hexagon::HvxQRRegClass.contains(SrcReg, DestReg)) {
938 BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg)
939 .addReg(SrcReg)
940 .addReg(SrcReg, KillFlag);
941 return;
942 }
943 if (Hexagon::HvxQRRegClass.contains(SrcReg) &&
944 Hexagon::HvxVRRegClass.contains(DestReg)) {
945 llvm_unreachable("Unimplemented pred to vec");
946 return;
947 }
948 if (Hexagon::HvxQRRegClass.contains(DestReg) &&
949 Hexagon::HvxVRRegClass.contains(SrcReg)) {
950 llvm_unreachable("Unimplemented vec to pred");
951 return;
952 }
953
954#ifndef NDEBUG
955 // Show the invalid registers to ease debugging.
956 dbgs() << "Invalid registers for copy in " << printMBBReference(MBB) << ": "
957 << printReg(DestReg, &HRI) << " = " << printReg(SrcReg, &HRI) << '\n';
958#endif
959 llvm_unreachable("Unimplemented");
960}
961
964 Register SrcReg, bool isKill, int FI,
965 const TargetRegisterClass *RC,
966 const TargetRegisterInfo *TRI,
967 Register VReg,
968 MachineInstr::MIFlag Flags) const {
971 MachineFrameInfo &MFI = MF.getFrameInfo();
972 unsigned KillFlag = getKillRegState(isKill);
973
976 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
977
978 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
979 BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
980 .addFrameIndex(FI).addImm(0)
981 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
982 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
983 BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
984 .addFrameIndex(FI).addImm(0)
985 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
986 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
987 BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
988 .addFrameIndex(FI).addImm(0)
989 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
990 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
991 BuildMI(MBB, I, DL, get(Hexagon::STriw_ctr))
992 .addFrameIndex(FI).addImm(0)
993 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
994 } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
995 BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerq_ai))
996 .addFrameIndex(FI).addImm(0)
997 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
998 } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
999 BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerv_ai))
1000 .addFrameIndex(FI).addImm(0)
1001 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
1002 } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
1003 BuildMI(MBB, I, DL, get(Hexagon::PS_vstorerw_ai))
1004 .addFrameIndex(FI).addImm(0)
1005 .addReg(SrcReg, KillFlag).addMemOperand(MMO);
1006 } else {
1007 llvm_unreachable("Unimplemented");
1008 }
1009}
1010
1013 int FI, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI,
1014 Register VReg, MachineInstr::MIFlag Flags) const {
1016 MachineFunction &MF = *MBB.getParent();
1017 MachineFrameInfo &MFI = MF.getFrameInfo();
1018
1021 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
1022
1023 if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
1024 BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
1025 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1026 } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
1027 BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
1028 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1029 } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
1030 BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
1031 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1032 } else if (Hexagon::ModRegsRegClass.hasSubClassEq(RC)) {
1033 BuildMI(MBB, I, DL, get(Hexagon::LDriw_ctr), DestReg)
1034 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1035 } else if (Hexagon::HvxQRRegClass.hasSubClassEq(RC)) {
1036 BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrq_ai), DestReg)
1037 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1038 } else if (Hexagon::HvxVRRegClass.hasSubClassEq(RC)) {
1039 BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrv_ai), DestReg)
1040 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1041 } else if (Hexagon::HvxWRRegClass.hasSubClassEq(RC)) {
1042 BuildMI(MBB, I, DL, get(Hexagon::PS_vloadrw_ai), DestReg)
1043 .addFrameIndex(FI).addImm(0).addMemOperand(MMO);
1044 } else {
1045 llvm_unreachable("Can't store this register to stack slot");
1046 }
1047}
1048
1049/// expandPostRAPseudo - This function is called for all pseudo instructions
1050/// that remain after register allocation. Many pseudo instructions are
1051/// created to help register allocation. This is the place to convert them
1052/// into real instructions. The target can edit MI in place, or it can insert
1053/// new instructions and erase MI. The function should return true if
1054/// anything was changed.
1056 MachineBasicBlock &MBB = *MI.getParent();
1057 MachineFunction &MF = *MBB.getParent();
1059 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1060 LivePhysRegs LiveIn(HRI), LiveOut(HRI);
1061 DebugLoc DL = MI.getDebugLoc();
1062 unsigned Opc = MI.getOpcode();
1063
1064 auto RealCirc = [&](unsigned Opc, bool HasImm, unsigned MxOp) {
1065 Register Mx = MI.getOperand(MxOp).getReg();
1066 Register CSx = (Mx == Hexagon::M0 ? Hexagon::CS0 : Hexagon::CS1);
1067 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrrcr), CSx)
1068 .add(MI.getOperand((HasImm ? 5 : 4)));
1069 auto MIB = BuildMI(MBB, MI, DL, get(Opc)).add(MI.getOperand(0))
1070 .add(MI.getOperand(1)).add(MI.getOperand(2)).add(MI.getOperand(3));
1071 if (HasImm)
1072 MIB.add(MI.getOperand(4));
1073 MIB.addReg(CSx, RegState::Implicit);
1074 MBB.erase(MI);
1075 return true;
1076 };
1077
1078 auto UseAligned = [&](const MachineInstr &MI, Align NeedAlign) {
1079 if (MI.memoperands().empty())
1080 return false;
1081 return all_of(MI.memoperands(), [NeedAlign](const MachineMemOperand *MMO) {
1082 return MMO->getAlign() >= NeedAlign;
1083 });
1084 };
1085
1086 switch (Opc) {
1087 case Hexagon::PS_call_instrprof_custom: {
1088 auto Op0 = MI.getOperand(0);
1089 assert(Op0.isGlobal() &&
1090 "First operand must be a global containing handler name.");
1091 const GlobalValue *NameVar = Op0.getGlobal();
1092 const GlobalVariable *GV = dyn_cast<GlobalVariable>(NameVar);
1093 auto *Arr = cast<ConstantDataArray>(GV->getInitializer());
1094 StringRef NameStr = Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
1095
1096 MachineOperand &Op1 = MI.getOperand(1);
1097 // Set R0 with the imm value to be passed to the custom profiling handler.
1098 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrsi), Hexagon::R0)
1099 .addImm(Op1.getImm());
1100 // The call to the custom handler is being treated as a special one as the
1101 // callee is responsible for saving and restoring all the registers
1102 // (including caller saved registers) it needs to modify. This is
1103 // done to reduce the impact of instrumentation on the code being
1104 // instrumented/profiled.
1105 // NOTE: R14, R15 and R28 are reserved for PLT handling. These registers
1106 // are in the Def list of the Hexagon::PS_call_instrprof_custom and
1107 // therefore will be handled appropriately duing register allocation.
1108
1109 // TODO: It may be a good idea to add a separate pseudo instruction for
1110 // static relocation which doesn't need to reserve r14, r15 and r28.
1111
1112 auto MIB = BuildMI(MBB, MI, DL, get(Hexagon::J2_call))
1114 .addDef(Hexagon::R29, RegState::ImplicitDefine)
1115 .addDef(Hexagon::R30, RegState::ImplicitDefine)
1116 .addDef(Hexagon::R14, RegState::ImplicitDefine)
1117 .addDef(Hexagon::R15, RegState::ImplicitDefine)
1118 .addDef(Hexagon::R28, RegState::ImplicitDefine);
1119 const char *cstr = MF.createExternalSymbolName(NameStr);
1120 MIB.addExternalSymbol(cstr);
1121 MBB.erase(MI);
1122 return true;
1123 }
1124 case TargetOpcode::COPY: {
1125 MachineOperand &MD = MI.getOperand(0);
1126 MachineOperand &MS = MI.getOperand(1);
1127 MachineBasicBlock::iterator MBBI = MI.getIterator();
1128 if (MD.getReg() != MS.getReg() && !MS.isUndef()) {
1129 copyPhysReg(MBB, MI, DL, MD.getReg(), MS.getReg(), MS.isKill());
1130 std::prev(MBBI)->copyImplicitOps(*MBB.getParent(), MI);
1131 }
1132 MBB.erase(MBBI);
1133 return true;
1134 }
1135 case Hexagon::PS_aligna:
1136 BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI.getOperand(0).getReg())
1137 .addReg(HRI.getFrameRegister())
1138 .addImm(-MI.getOperand(1).getImm());
1139 MBB.erase(MI);
1140 return true;
1141 case Hexagon::V6_vassignp: {
1142 Register SrcReg = MI.getOperand(1).getReg();
1143 Register DstReg = MI.getOperand(0).getReg();
1144 Register SrcLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1145 Register SrcHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1146 getLiveInRegsAt(LiveIn, MI);
1147 unsigned UndefLo = getUndefRegState(!LiveIn.contains(SrcLo));
1148 unsigned UndefHi = getUndefRegState(!LiveIn.contains(SrcHi));
1149 unsigned Kill = getKillRegState(MI.getOperand(1).isKill());
1150 BuildMI(MBB, MI, DL, get(Hexagon::V6_vcombine), DstReg)
1151 .addReg(SrcHi, UndefHi)
1152 .addReg(SrcLo, Kill | UndefLo);
1153 MBB.erase(MI);
1154 return true;
1155 }
1156 case Hexagon::V6_lo: {
1157 Register SrcReg = MI.getOperand(1).getReg();
1158 Register DstReg = MI.getOperand(0).getReg();
1159 Register SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::vsub_lo);
1160 copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI.getOperand(1).isKill());
1161 MBB.erase(MI);
1162 MRI.clearKillFlags(SrcSubLo);
1163 return true;
1164 }
1165 case Hexagon::V6_hi: {
1166 Register SrcReg = MI.getOperand(1).getReg();
1167 Register DstReg = MI.getOperand(0).getReg();
1168 Register SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::vsub_hi);
1169 copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI.getOperand(1).isKill());
1170 MBB.erase(MI);
1171 MRI.clearKillFlags(SrcSubHi);
1172 return true;
1173 }
1174 case Hexagon::PS_vloadrv_ai: {
1175 Register DstReg = MI.getOperand(0).getReg();
1176 const MachineOperand &BaseOp = MI.getOperand(1);
1177 assert(BaseOp.getSubReg() == 0);
1178 int Offset = MI.getOperand(2).getImm();
1179 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1180 unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai
1181 : Hexagon::V6_vL32Ub_ai;
1182 BuildMI(MBB, MI, DL, get(NewOpc), DstReg)
1183 .addReg(BaseOp.getReg(), getRegState(BaseOp))
1184 .addImm(Offset)
1185 .cloneMemRefs(MI);
1186 MBB.erase(MI);
1187 return true;
1188 }
1189 case Hexagon::PS_vloadrw_ai: {
1190 Register DstReg = MI.getOperand(0).getReg();
1191 const MachineOperand &BaseOp = MI.getOperand(1);
1192 assert(BaseOp.getSubReg() == 0);
1193 int Offset = MI.getOperand(2).getImm();
1194 unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1195 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1196 unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vL32b_ai
1197 : Hexagon::V6_vL32Ub_ai;
1198 BuildMI(MBB, MI, DL, get(NewOpc),
1199 HRI.getSubReg(DstReg, Hexagon::vsub_lo))
1200 .addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill)
1201 .addImm(Offset)
1202 .cloneMemRefs(MI);
1203 BuildMI(MBB, MI, DL, get(NewOpc),
1204 HRI.getSubReg(DstReg, Hexagon::vsub_hi))
1205 .addReg(BaseOp.getReg(), getRegState(BaseOp))
1206 .addImm(Offset + VecOffset)
1207 .cloneMemRefs(MI);
1208 MBB.erase(MI);
1209 return true;
1210 }
1211 case Hexagon::PS_vstorerv_ai: {
1212 const MachineOperand &SrcOp = MI.getOperand(2);
1213 assert(SrcOp.getSubReg() == 0);
1214 const MachineOperand &BaseOp = MI.getOperand(0);
1215 assert(BaseOp.getSubReg() == 0);
1216 int Offset = MI.getOperand(1).getImm();
1217 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1218 unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai
1219 : Hexagon::V6_vS32Ub_ai;
1220 BuildMI(MBB, MI, DL, get(NewOpc))
1221 .addReg(BaseOp.getReg(), getRegState(BaseOp))
1222 .addImm(Offset)
1224 .cloneMemRefs(MI);
1225 MBB.erase(MI);
1226 return true;
1227 }
1228 case Hexagon::PS_vstorerw_ai: {
1229 Register SrcReg = MI.getOperand(2).getReg();
1230 const MachineOperand &BaseOp = MI.getOperand(0);
1231 assert(BaseOp.getSubReg() == 0);
1232 int Offset = MI.getOperand(1).getImm();
1233 unsigned VecOffset = HRI.getSpillSize(Hexagon::HvxVRRegClass);
1234 Align NeedAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
1235 unsigned NewOpc = UseAligned(MI, NeedAlign) ? Hexagon::V6_vS32b_ai
1236 : Hexagon::V6_vS32Ub_ai;
1237 BuildMI(MBB, MI, DL, get(NewOpc))
1238 .addReg(BaseOp.getReg(), getRegState(BaseOp) & ~RegState::Kill)
1239 .addImm(Offset)
1240 .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_lo))
1241 .cloneMemRefs(MI);
1242 BuildMI(MBB, MI, DL, get(NewOpc))
1243 .addReg(BaseOp.getReg(), getRegState(BaseOp))
1244 .addImm(Offset + VecOffset)
1245 .addReg(HRI.getSubReg(SrcReg, Hexagon::vsub_hi))
1246 .cloneMemRefs(MI);
1247 MBB.erase(MI);
1248 return true;
1249 }
1250 case Hexagon::PS_true: {
1251 Register Reg = MI.getOperand(0).getReg();
1252 BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
1253 .addReg(Reg, RegState::Undef)
1254 .addReg(Reg, RegState::Undef);
1255 MBB.erase(MI);
1256 return true;
1257 }
1258 case Hexagon::PS_false: {
1259 Register Reg = MI.getOperand(0).getReg();
1260 BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
1261 .addReg(Reg, RegState::Undef)
1262 .addReg(Reg, RegState::Undef);
1263 MBB.erase(MI);
1264 return true;
1265 }
1266 case Hexagon::PS_qtrue: {
1267 BuildMI(MBB, MI, DL, get(Hexagon::V6_veqw), MI.getOperand(0).getReg())
1268 .addReg(Hexagon::V0, RegState::Undef)
1269 .addReg(Hexagon::V0, RegState::Undef);
1270 MBB.erase(MI);
1271 return true;
1272 }
1273 case Hexagon::PS_qfalse: {
1274 BuildMI(MBB, MI, DL, get(Hexagon::V6_vgtw), MI.getOperand(0).getReg())
1275 .addReg(Hexagon::V0, RegState::Undef)
1276 .addReg(Hexagon::V0, RegState::Undef);
1277 MBB.erase(MI);
1278 return true;
1279 }
1280 case Hexagon::PS_vdd0: {
1281 Register Vd = MI.getOperand(0).getReg();
1282 BuildMI(MBB, MI, DL, get(Hexagon::V6_vsubw_dv), Vd)
1284 .addReg(Vd, RegState::Undef);
1285 MBB.erase(MI);
1286 return true;
1287 }
1288 case Hexagon::PS_vmulw: {
1289 // Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
1290 Register DstReg = MI.getOperand(0).getReg();
1291 Register Src1Reg = MI.getOperand(1).getReg();
1292 Register Src2Reg = MI.getOperand(2).getReg();
1293 Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1294 Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1295 Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1296 Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1297 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1298 HRI.getSubReg(DstReg, Hexagon::isub_hi))
1299 .addReg(Src1SubHi)
1300 .addReg(Src2SubHi);
1301 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_mpyi),
1302 HRI.getSubReg(DstReg, Hexagon::isub_lo))
1303 .addReg(Src1SubLo)
1304 .addReg(Src2SubLo);
1305 MBB.erase(MI);
1306 MRI.clearKillFlags(Src1SubHi);
1307 MRI.clearKillFlags(Src1SubLo);
1308 MRI.clearKillFlags(Src2SubHi);
1309 MRI.clearKillFlags(Src2SubLo);
1310 return true;
1311 }
1312 case Hexagon::PS_vmulw_acc: {
1313 // Expand 64-bit vector multiply with addition into 2 scalar multiplies.
1314 Register DstReg = MI.getOperand(0).getReg();
1315 Register Src1Reg = MI.getOperand(1).getReg();
1316 Register Src2Reg = MI.getOperand(2).getReg();
1317 Register Src3Reg = MI.getOperand(3).getReg();
1318 Register Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::isub_hi);
1319 Register Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::isub_lo);
1320 Register Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::isub_hi);
1321 Register Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::isub_lo);
1322 Register Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::isub_hi);
1323 Register Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::isub_lo);
1324 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1325 HRI.getSubReg(DstReg, Hexagon::isub_hi))
1326 .addReg(Src1SubHi)
1327 .addReg(Src2SubHi)
1328 .addReg(Src3SubHi);
1329 BuildMI(MBB, MI, MI.getDebugLoc(), get(Hexagon::M2_maci),
1330 HRI.getSubReg(DstReg, Hexagon::isub_lo))
1331 .addReg(Src1SubLo)
1332 .addReg(Src2SubLo)
1333 .addReg(Src3SubLo);
1334 MBB.erase(MI);
1335 MRI.clearKillFlags(Src1SubHi);
1336 MRI.clearKillFlags(Src1SubLo);
1337 MRI.clearKillFlags(Src2SubHi);
1338 MRI.clearKillFlags(Src2SubLo);
1339 MRI.clearKillFlags(Src3SubHi);
1340 MRI.clearKillFlags(Src3SubLo);
1341 return true;
1342 }
1343 case Hexagon::PS_pselect: {
1344 const MachineOperand &Op0 = MI.getOperand(0);
1345 const MachineOperand &Op1 = MI.getOperand(1);
1346 const MachineOperand &Op2 = MI.getOperand(2);
1347 const MachineOperand &Op3 = MI.getOperand(3);
1348 Register Rd = Op0.getReg();
1349 Register Pu = Op1.getReg();
1350 Register Rs = Op2.getReg();
1351 Register Rt = Op3.getReg();
1352 DebugLoc DL = MI.getDebugLoc();
1353 unsigned K1 = getKillRegState(Op1.isKill());
1354 unsigned K2 = getKillRegState(Op2.isKill());
1355 unsigned K3 = getKillRegState(Op3.isKill());
1356 if (Rd != Rs)
1357 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
1358 .addReg(Pu, (Rd == Rt) ? K1 : 0)
1359 .addReg(Rs, K2);
1360 if (Rd != Rt)
1361 BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
1362 .addReg(Pu, K1)
1363 .addReg(Rt, K3);
1364 MBB.erase(MI);
1365 return true;
1366 }
1367 case Hexagon::PS_vselect: {
1368 const MachineOperand &Op0 = MI.getOperand(0);
1369 const MachineOperand &Op1 = MI.getOperand(1);
1370 const MachineOperand &Op2 = MI.getOperand(2);
1371 const MachineOperand &Op3 = MI.getOperand(3);
1372 getLiveOutRegsAt(LiveOut, MI);
1373 bool IsDestLive = !LiveOut.available(MRI, Op0.getReg());
1374 Register PReg = Op1.getReg();
1375 assert(Op1.getSubReg() == 0);
1376 unsigned PState = getRegState(Op1);
1377
1378 if (Op0.getReg() != Op2.getReg()) {
1379 unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1380 : PState;
1381 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vcmov))
1382 .add(Op0)
1383 .addReg(PReg, S)
1384 .add(Op2);
1385 if (IsDestLive)
1386 T.addReg(Op0.getReg(), RegState::Implicit);
1387 IsDestLive = true;
1388 }
1389 if (Op0.getReg() != Op3.getReg()) {
1390 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vncmov))
1391 .add(Op0)
1392 .addReg(PReg, PState)
1393 .add(Op3);
1394 if (IsDestLive)
1395 T.addReg(Op0.getReg(), RegState::Implicit);
1396 }
1397 MBB.erase(MI);
1398 return true;
1399 }
1400 case Hexagon::PS_wselect: {
1401 MachineOperand &Op0 = MI.getOperand(0);
1402 MachineOperand &Op1 = MI.getOperand(1);
1403 MachineOperand &Op2 = MI.getOperand(2);
1404 MachineOperand &Op3 = MI.getOperand(3);
1405 getLiveOutRegsAt(LiveOut, MI);
1406 bool IsDestLive = !LiveOut.available(MRI, Op0.getReg());
1407 Register PReg = Op1.getReg();
1408 assert(Op1.getSubReg() == 0);
1409 unsigned PState = getRegState(Op1);
1410
1411 if (Op0.getReg() != Op2.getReg()) {
1412 unsigned S = Op0.getReg() != Op3.getReg() ? PState & ~RegState::Kill
1413 : PState;
1414 Register SrcLo = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_lo);
1415 Register SrcHi = HRI.getSubReg(Op2.getReg(), Hexagon::vsub_hi);
1416 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vccombine))
1417 .add(Op0)
1418 .addReg(PReg, S)
1419 .addReg(SrcHi)
1420 .addReg(SrcLo);
1421 if (IsDestLive)
1422 T.addReg(Op0.getReg(), RegState::Implicit);
1423 IsDestLive = true;
1424 }
1425 if (Op0.getReg() != Op3.getReg()) {
1426 Register SrcLo = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_lo);
1427 Register SrcHi = HRI.getSubReg(Op3.getReg(), Hexagon::vsub_hi);
1428 auto T = BuildMI(MBB, MI, DL, get(Hexagon::V6_vnccombine))
1429 .add(Op0)
1430 .addReg(PReg, PState)
1431 .addReg(SrcHi)
1432 .addReg(SrcLo);
1433 if (IsDestLive)
1434 T.addReg(Op0.getReg(), RegState::Implicit);
1435 }
1436 MBB.erase(MI);
1437 return true;
1438 }
1439
1440 case Hexagon::PS_crash: {
1441 // Generate a misaligned load that is guaranteed to cause a crash.
1442 class CrashPseudoSourceValue : public PseudoSourceValue {
1443 public:
1444 CrashPseudoSourceValue(const TargetMachine &TM)
1445 : PseudoSourceValue(TargetCustom, TM) {}
1446
1447 bool isConstant(const MachineFrameInfo *) const override {
1448 return false;
1449 }
1450 bool isAliased(const MachineFrameInfo *) const override {
1451 return false;
1452 }
1453 bool mayAlias(const MachineFrameInfo *) const override {
1454 return false;
1455 }
1456 void printCustom(raw_ostream &OS) const override {
1457 OS << "MisalignedCrash";
1458 }
1459 };
1460
1461 static const CrashPseudoSourceValue CrashPSV(MF.getTarget());
1463 MachinePointerInfo(&CrashPSV),
1465 Align(1));
1466 BuildMI(MBB, MI, DL, get(Hexagon::PS_loadrdabs), Hexagon::D13)
1467 .addImm(0xBADC0FEE) // Misaligned load.
1468 .addMemOperand(MMO);
1469 MBB.erase(MI);
1470 return true;
1471 }
1472
1473 case Hexagon::PS_tailcall_i:
1474 MI.setDesc(get(Hexagon::J2_jump));
1475 return true;
1476 case Hexagon::PS_tailcall_r:
1477 case Hexagon::PS_jmpret:
1478 MI.setDesc(get(Hexagon::J2_jumpr));
1479 return true;
1480 case Hexagon::PS_jmprett:
1481 MI.setDesc(get(Hexagon::J2_jumprt));
1482 return true;
1483 case Hexagon::PS_jmpretf:
1484 MI.setDesc(get(Hexagon::J2_jumprf));
1485 return true;
1486 case Hexagon::PS_jmprettnewpt:
1487 MI.setDesc(get(Hexagon::J2_jumprtnewpt));
1488 return true;
1489 case Hexagon::PS_jmpretfnewpt:
1490 MI.setDesc(get(Hexagon::J2_jumprfnewpt));
1491 return true;
1492 case Hexagon::PS_jmprettnew:
1493 MI.setDesc(get(Hexagon::J2_jumprtnew));
1494 return true;
1495 case Hexagon::PS_jmpretfnew:
1496 MI.setDesc(get(Hexagon::J2_jumprfnew));
1497 return true;
1498
1499 case Hexagon::PS_loadrub_pci:
1500 return RealCirc(Hexagon::L2_loadrub_pci, /*HasImm*/true, /*MxOp*/4);
1501 case Hexagon::PS_loadrb_pci:
1502 return RealCirc(Hexagon::L2_loadrb_pci, /*HasImm*/true, /*MxOp*/4);
1503 case Hexagon::PS_loadruh_pci:
1504 return RealCirc(Hexagon::L2_loadruh_pci, /*HasImm*/true, /*MxOp*/4);
1505 case Hexagon::PS_loadrh_pci:
1506 return RealCirc(Hexagon::L2_loadrh_pci, /*HasImm*/true, /*MxOp*/4);
1507 case Hexagon::PS_loadri_pci:
1508 return RealCirc(Hexagon::L2_loadri_pci, /*HasImm*/true, /*MxOp*/4);
1509 case Hexagon::PS_loadrd_pci:
1510 return RealCirc(Hexagon::L2_loadrd_pci, /*HasImm*/true, /*MxOp*/4);
1511 case Hexagon::PS_loadrub_pcr:
1512 return RealCirc(Hexagon::L2_loadrub_pcr, /*HasImm*/false, /*MxOp*/3);
1513 case Hexagon::PS_loadrb_pcr:
1514 return RealCirc(Hexagon::L2_loadrb_pcr, /*HasImm*/false, /*MxOp*/3);
1515 case Hexagon::PS_loadruh_pcr:
1516 return RealCirc(Hexagon::L2_loadruh_pcr, /*HasImm*/false, /*MxOp*/3);
1517 case Hexagon::PS_loadrh_pcr:
1518 return RealCirc(Hexagon::L2_loadrh_pcr, /*HasImm*/false, /*MxOp*/3);
1519 case Hexagon::PS_loadri_pcr:
1520 return RealCirc(Hexagon::L2_loadri_pcr, /*HasImm*/false, /*MxOp*/3);
1521 case Hexagon::PS_loadrd_pcr:
1522 return RealCirc(Hexagon::L2_loadrd_pcr, /*HasImm*/false, /*MxOp*/3);
1523 case Hexagon::PS_storerb_pci:
1524 return RealCirc(Hexagon::S2_storerb_pci, /*HasImm*/true, /*MxOp*/3);
1525 case Hexagon::PS_storerh_pci:
1526 return RealCirc(Hexagon::S2_storerh_pci, /*HasImm*/true, /*MxOp*/3);
1527 case Hexagon::PS_storerf_pci:
1528 return RealCirc(Hexagon::S2_storerf_pci, /*HasImm*/true, /*MxOp*/3);
1529 case Hexagon::PS_storeri_pci:
1530 return RealCirc(Hexagon::S2_storeri_pci, /*HasImm*/true, /*MxOp*/3);
1531 case Hexagon::PS_storerd_pci:
1532 return RealCirc(Hexagon::S2_storerd_pci, /*HasImm*/true, /*MxOp*/3);
1533 case Hexagon::PS_storerb_pcr:
1534 return RealCirc(Hexagon::S2_storerb_pcr, /*HasImm*/false, /*MxOp*/2);
1535 case Hexagon::PS_storerh_pcr:
1536 return RealCirc(Hexagon::S2_storerh_pcr, /*HasImm*/false, /*MxOp*/2);
1537 case Hexagon::PS_storerf_pcr:
1538 return RealCirc(Hexagon::S2_storerf_pcr, /*HasImm*/false, /*MxOp*/2);
1539 case Hexagon::PS_storeri_pcr:
1540 return RealCirc(Hexagon::S2_storeri_pcr, /*HasImm*/false, /*MxOp*/2);
1541 case Hexagon::PS_storerd_pcr:
1542 return RealCirc(Hexagon::S2_storerd_pcr, /*HasImm*/false, /*MxOp*/2);
1543 }
1544
1545 return false;
1546}
1547
1550 MachineBasicBlock &MBB = *MI.getParent();
1551 const DebugLoc &DL = MI.getDebugLoc();
1552 unsigned Opc = MI.getOpcode();
1554
1555 switch (Opc) {
1556 case Hexagon::V6_vgathermh_pseudo:
1557 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermh))
1558 .add(MI.getOperand(2))
1559 .add(MI.getOperand(3))
1560 .add(MI.getOperand(4));
1561 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1562 .add(MI.getOperand(0))
1563 .addImm(MI.getOperand(1).getImm())
1564 .addReg(Hexagon::VTMP);
1565 MBB.erase(MI);
1566 return First.getInstrIterator();
1567
1568 case Hexagon::V6_vgathermw_pseudo:
1569 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermw))
1570 .add(MI.getOperand(2))
1571 .add(MI.getOperand(3))
1572 .add(MI.getOperand(4));
1573 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1574 .add(MI.getOperand(0))
1575 .addImm(MI.getOperand(1).getImm())
1576 .addReg(Hexagon::VTMP);
1577 MBB.erase(MI);
1578 return First.getInstrIterator();
1579
1580 case Hexagon::V6_vgathermhw_pseudo:
1581 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhw))
1582 .add(MI.getOperand(2))
1583 .add(MI.getOperand(3))
1584 .add(MI.getOperand(4));
1585 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1586 .add(MI.getOperand(0))
1587 .addImm(MI.getOperand(1).getImm())
1588 .addReg(Hexagon::VTMP);
1589 MBB.erase(MI);
1590 return First.getInstrIterator();
1591
1592 case Hexagon::V6_vgathermhq_pseudo:
1593 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhq))
1594 .add(MI.getOperand(2))
1595 .add(MI.getOperand(3))
1596 .add(MI.getOperand(4))
1597 .add(MI.getOperand(5));
1598 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1599 .add(MI.getOperand(0))
1600 .addImm(MI.getOperand(1).getImm())
1601 .addReg(Hexagon::VTMP);
1602 MBB.erase(MI);
1603 return First.getInstrIterator();
1604
1605 case Hexagon::V6_vgathermwq_pseudo:
1606 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermwq))
1607 .add(MI.getOperand(2))
1608 .add(MI.getOperand(3))
1609 .add(MI.getOperand(4))
1610 .add(MI.getOperand(5));
1611 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1612 .add(MI.getOperand(0))
1613 .addImm(MI.getOperand(1).getImm())
1614 .addReg(Hexagon::VTMP);
1615 MBB.erase(MI);
1616 return First.getInstrIterator();
1617
1618 case Hexagon::V6_vgathermhwq_pseudo:
1619 First = BuildMI(MBB, MI, DL, get(Hexagon::V6_vgathermhwq))
1620 .add(MI.getOperand(2))
1621 .add(MI.getOperand(3))
1622 .add(MI.getOperand(4))
1623 .add(MI.getOperand(5));
1624 BuildMI(MBB, MI, DL, get(Hexagon::V6_vS32b_new_ai))
1625 .add(MI.getOperand(0))
1626 .addImm(MI.getOperand(1).getImm())
1627 .addReg(Hexagon::VTMP);
1628 MBB.erase(MI);
1629 return First.getInstrIterator();
1630 }
1631
1632 return MI.getIterator();
1633}
1634
1635// We indicate that we want to reverse the branch by
1636// inserting the reversed branching opcode.
1639 if (Cond.empty())
1640 return true;
1641 assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
1642 unsigned opcode = Cond[0].getImm();
1643 //unsigned temp;
1644 assert(get(opcode).isBranch() && "Should be a branching condition.");
1645 if (isEndLoopN(opcode))
1646 return true;
1647 unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
1648 Cond[0].setImm(NewOpcode);
1649 return false;
1650}
1651
1654 DebugLoc DL;
1655 BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
1656}
1657
1660}
1661
1662// Returns true if an instruction is predicated irrespective of the predicate
1663// sense. For example, all of the following will return true.
1664// if (p0) R1 = add(R2, R3)
1665// if (!p0) R1 = add(R2, R3)
1666// if (p0.new) R1 = add(R2, R3)
1667// if (!p0.new) R1 = add(R2, R3)
1668// Note: New-value stores are not included here as in the current
1669// implementation, we don't need to check their predicate sense.
1671 const uint64_t F = MI.getDesc().TSFlags;
1673}
1674
1677 if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
1678 isEndLoopN(Cond[0].getImm())) {
1679 LLVM_DEBUG(dbgs() << "\nCannot predicate:"; MI.dump(););
1680 return false;
1681 }
1682 int Opc = MI.getOpcode();
1683 assert (isPredicable(MI) && "Expected predicable instruction");
1684 bool invertJump = predOpcodeHasNot(Cond);
1685
1686 // We have to predicate MI "in place", i.e. after this function returns,
1687 // MI will need to be transformed into a predicated form. To avoid com-
1688 // plicated manipulations with the operands (handling tied operands,
1689 // etc.), build a new temporary instruction, then overwrite MI with it.
1690
1691 MachineBasicBlock &B = *MI.getParent();
1692 DebugLoc DL = MI.getDebugLoc();
1693 unsigned PredOpc = getCondOpcode(Opc, invertJump);
1694 MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
1695 unsigned NOp = 0, NumOps = MI.getNumOperands();
1696 while (NOp < NumOps) {
1697 MachineOperand &Op = MI.getOperand(NOp);
1698 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1699 break;
1700 T.add(Op);
1701 NOp++;
1702 }
1703
1704 Register PredReg;
1705 unsigned PredRegPos, PredRegFlags;
1706 bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
1707 (void)GotPredReg;
1708 assert(GotPredReg);
1709 T.addReg(PredReg, PredRegFlags);
1710 while (NOp < NumOps)
1711 T.add(MI.getOperand(NOp++));
1712
1713 MI.setDesc(get(PredOpc));
1714 while (unsigned n = MI.getNumOperands())
1715 MI.removeOperand(n-1);
1716 for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
1717 MI.addOperand(T->getOperand(i));
1718
1719 MachineBasicBlock::instr_iterator TI = T->getIterator();
1720 B.erase(TI);
1721
1722 MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
1723 MRI.clearKillFlags(PredReg);
1724 return true;
1725}
1726
1728 ArrayRef<MachineOperand> Pred2) const {
1729 // TODO: Fix this
1730 return false;
1731}
1732
1734 std::vector<MachineOperand> &Pred,
1735 bool SkipDead) const {
1736 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1737
1738 for (const MachineOperand &MO : MI.operands()) {
1739 if (MO.isReg()) {
1740 if (!MO.isDef())
1741 continue;
1742 const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
1743 if (RC == &Hexagon::PredRegsRegClass) {
1744 Pred.push_back(MO);
1745 return true;
1746 }
1747 continue;
1748 } else if (MO.isRegMask()) {
1749 for (Register PR : Hexagon::PredRegsRegClass) {
1750 if (!MI.modifiesRegister(PR, &HRI))
1751 continue;
1752 Pred.push_back(MO);
1753 return true;
1754 }
1755 }
1756 }
1757 return false;
1758}
1759
1761 if (!MI.getDesc().isPredicable())
1762 return false;
1763
1764 if (MI.isCall() || isTailCall(MI)) {
1765 if (!Subtarget.usePredicatedCalls())
1766 return false;
1767 }
1768
1769 // HVX loads are not predicable on v60, but are on v62.
1770 if (!Subtarget.hasV62Ops()) {
1771 switch (MI.getOpcode()) {
1772 case Hexagon::V6_vL32b_ai:
1773 case Hexagon::V6_vL32b_pi:
1774 case Hexagon::V6_vL32b_ppu:
1775 case Hexagon::V6_vL32b_cur_ai:
1776 case Hexagon::V6_vL32b_cur_pi:
1777 case Hexagon::V6_vL32b_cur_ppu:
1778 case Hexagon::V6_vL32b_nt_ai:
1779 case Hexagon::V6_vL32b_nt_pi:
1780 case Hexagon::V6_vL32b_nt_ppu:
1781 case Hexagon::V6_vL32b_tmp_ai:
1782 case Hexagon::V6_vL32b_tmp_pi:
1783 case Hexagon::V6_vL32b_tmp_ppu:
1784 case Hexagon::V6_vL32b_nt_cur_ai:
1785 case Hexagon::V6_vL32b_nt_cur_pi:
1786 case Hexagon::V6_vL32b_nt_cur_ppu:
1787 case Hexagon::V6_vL32b_nt_tmp_ai:
1788 case Hexagon::V6_vL32b_nt_tmp_pi:
1789 case Hexagon::V6_vL32b_nt_tmp_ppu:
1790 return false;
1791 }
1792 }
1793 return true;
1794}
1795
1797 const MachineBasicBlock *MBB,
1798 const MachineFunction &MF) const {
1799 // Debug info is never a scheduling boundary. It's necessary to be explicit
1800 // due to the special treatment of IT instructions below, otherwise a
1801 // dbg_value followed by an IT will result in the IT instruction being
1802 // considered a scheduling hazard, which is wrong. It should be the actual
1803 // instruction preceding the dbg_value instruction(s), just like it is
1804 // when debug info is not present.
1805 if (MI.isDebugInstr())
1806 return false;
1807
1808 // Throwing call is a boundary.
1809 if (MI.isCall()) {
1810 // Don't mess around with no return calls.
1811 if (doesNotReturn(MI))
1812 return true;
1813 // If any of the block's successors is a landing pad, this could be a
1814 // throwing call.
1815 for (auto *I : MBB->successors())
1816 if (I->isEHPad())
1817 return true;
1818 }
1819
1820 // Terminators and labels can't be scheduled around.
1821 if (MI.getDesc().isTerminator() || MI.isPosition())
1822 return true;
1823
1824 // INLINEASM_BR can jump to another block
1825 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
1826 return true;
1827
1828 if (MI.isInlineAsm() && !ScheduleInlineAsm)
1829 return true;
1830
1831 return false;
1832}
1833
1834/// Measure the specified inline asm to determine an approximation of its
1835/// length.
1836/// Comments (which run till the next SeparatorString or newline) do not
1837/// count as an instruction.
1838/// Any other non-whitespace text is considered an instruction, with
1839/// multiple instructions separated by SeparatorString or newlines.
1840/// Variable-length instructions are not handled here; this function
1841/// may be overloaded in the target code to do that.
1842/// Hexagon counts the number of ##'s and adjust for that many
1843/// constant exenders.
1845 const MCAsmInfo &MAI,
1846 const TargetSubtargetInfo *STI) const {
1847 StringRef AStr(Str);
1848 // Count the number of instructions in the asm.
1849 bool atInsnStart = true;
1850 unsigned Length = 0;
1851 const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
1852 for (; *Str; ++Str) {
1853 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
1854 strlen(MAI.getSeparatorString())) == 0)
1855 atInsnStart = true;
1856 if (atInsnStart && !isSpace(static_cast<unsigned char>(*Str))) {
1857 Length += MaxInstLength;
1858 atInsnStart = false;
1859 }
1860 if (atInsnStart && strncmp(Str, MAI.getCommentString().data(),
1861 MAI.getCommentString().size()) == 0)
1862 atInsnStart = false;
1863 }
1864
1865 // Add to size number of constant extenders seen * 4.
1866 StringRef Occ("##");
1867 Length += AStr.count(Occ)*4;
1868 return Length;
1869}
1870
1873 const InstrItineraryData *II, const ScheduleDAG *DAG) const {
1874 if (UseDFAHazardRec)
1875 return new HexagonHazardRecognizer(II, this, Subtarget);
1877}
1878
1879/// For a comparison instruction, return the source registers in
1880/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
1881/// compares against in CmpValue. Return true if the comparison instruction
1882/// can be analyzed.
1884 Register &SrcReg2, int64_t &Mask,
1885 int64_t &Value) const {
1886 unsigned Opc = MI.getOpcode();
1887
1888 // Set mask and the first source register.
1889 switch (Opc) {
1890 case Hexagon::C2_cmpeq:
1891 case Hexagon::C2_cmpeqp:
1892 case Hexagon::C2_cmpgt:
1893 case Hexagon::C2_cmpgtp:
1894 case Hexagon::C2_cmpgtu:
1895 case Hexagon::C2_cmpgtup:
1896 case Hexagon::C4_cmpneq:
1897 case Hexagon::C4_cmplte:
1898 case Hexagon::C4_cmplteu:
1899 case Hexagon::C2_cmpeqi:
1900 case Hexagon::C2_cmpgti:
1901 case Hexagon::C2_cmpgtui:
1902 case Hexagon::C4_cmpneqi:
1903 case Hexagon::C4_cmplteui:
1904 case Hexagon::C4_cmpltei:
1905 SrcReg = MI.getOperand(1).getReg();
1906 Mask = ~0;
1907 break;
1908 case Hexagon::A4_cmpbeq:
1909 case Hexagon::A4_cmpbgt:
1910 case Hexagon::A4_cmpbgtu:
1911 case Hexagon::A4_cmpbeqi:
1912 case Hexagon::A4_cmpbgti:
1913 case Hexagon::A4_cmpbgtui:
1914 SrcReg = MI.getOperand(1).getReg();
1915 Mask = 0xFF;
1916 break;
1917 case Hexagon::A4_cmpheq:
1918 case Hexagon::A4_cmphgt:
1919 case Hexagon::A4_cmphgtu:
1920 case Hexagon::A4_cmpheqi:
1921 case Hexagon::A4_cmphgti:
1922 case Hexagon::A4_cmphgtui:
1923 SrcReg = MI.getOperand(1).getReg();
1924 Mask = 0xFFFF;
1925 break;
1926 }
1927
1928 // Set the value/second source register.
1929 switch (Opc) {
1930 case Hexagon::C2_cmpeq:
1931 case Hexagon::C2_cmpeqp:
1932 case Hexagon::C2_cmpgt:
1933 case Hexagon::C2_cmpgtp:
1934 case Hexagon::C2_cmpgtu:
1935 case Hexagon::C2_cmpgtup:
1936 case Hexagon::A4_cmpbeq:
1937 case Hexagon::A4_cmpbgt:
1938 case Hexagon::A4_cmpbgtu:
1939 case Hexagon::A4_cmpheq:
1940 case Hexagon::A4_cmphgt:
1941 case Hexagon::A4_cmphgtu:
1942 case Hexagon::C4_cmpneq:
1943 case Hexagon::C4_cmplte:
1944 case Hexagon::C4_cmplteu:
1945 SrcReg2 = MI.getOperand(2).getReg();
1946 Value = 0;
1947 return true;
1948
1949 case Hexagon::C2_cmpeqi:
1950 case Hexagon::C2_cmpgtui:
1951 case Hexagon::C2_cmpgti:
1952 case Hexagon::C4_cmpneqi:
1953 case Hexagon::C4_cmplteui:
1954 case Hexagon::C4_cmpltei:
1955 case Hexagon::A4_cmpbeqi:
1956 case Hexagon::A4_cmpbgti:
1957 case Hexagon::A4_cmpbgtui:
1958 case Hexagon::A4_cmpheqi:
1959 case Hexagon::A4_cmphgti:
1960 case Hexagon::A4_cmphgtui: {
1961 SrcReg2 = 0;
1962 const MachineOperand &Op2 = MI.getOperand(2);
1963 if (!Op2.isImm())
1964 return false;
1965 Value = MI.getOperand(2).getImm();
1966 return true;
1967 }
1968 }
1969
1970 return false;
1971}
1972
1974 const MachineInstr &MI,
1975 unsigned *PredCost) const {
1976 return getInstrTimingClassLatency(ItinData, MI);
1977}
1978
1980 const TargetSubtargetInfo &STI) const {
1982 return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
1983}
1984
1985// Inspired by this pair:
1986// %r13 = L2_loadri_io %r29, 136; mem:LD4[FixedStack0]
1987// S2_storeri_io %r29, 132, killed %r1; flags: mem:ST4[FixedStack1]
1988// Currently AA considers the addresses in these instructions to be aliasing.
1990 const MachineInstr &MIa, const MachineInstr &MIb) const {
1993 return false;
1994
1995 // Instructions that are pure loads, not loads and stores like memops are not
1996 // dependent.
1997 if (MIa.mayLoad() && !isMemOp(MIa) && MIb.mayLoad() && !isMemOp(MIb))
1998 return true;
1999
2000 // Get the base register in MIa.
2001 unsigned BasePosA, OffsetPosA;
2002 if (!getBaseAndOffsetPosition(MIa, BasePosA, OffsetPosA))
2003 return false;
2004 const MachineOperand &BaseA = MIa.getOperand(BasePosA);
2005 Register BaseRegA = BaseA.getReg();
2006 unsigned BaseSubA = BaseA.getSubReg();
2007
2008 // Get the base register in MIb.
2009 unsigned BasePosB, OffsetPosB;
2010 if (!getBaseAndOffsetPosition(MIb, BasePosB, OffsetPosB))
2011 return false;
2012 const MachineOperand &BaseB = MIb.getOperand(BasePosB);
2013 Register BaseRegB = BaseB.getReg();
2014 unsigned BaseSubB = BaseB.getSubReg();
2015
2016 if (BaseRegA != BaseRegB || BaseSubA != BaseSubB)
2017 return false;
2018
2019 // Get the access sizes.
2020 unsigned SizeA = getMemAccessSize(MIa);
2021 unsigned SizeB = getMemAccessSize(MIb);
2022
2023 // Get the offsets. Handle immediates only for now.
2024 const MachineOperand &OffA = MIa.getOperand(OffsetPosA);
2025 const MachineOperand &OffB = MIb.getOperand(OffsetPosB);
2026 if (!MIa.getOperand(OffsetPosA).isImm() ||
2027 !MIb.getOperand(OffsetPosB).isImm())
2028 return false;
2029 int OffsetA = isPostIncrement(MIa) ? 0 : OffA.getImm();
2030 int OffsetB = isPostIncrement(MIb) ? 0 : OffB.getImm();
2031
2032 // This is a mem access with the same base register and known offsets from it.
2033 // Reason about it.
2034 if (OffsetA > OffsetB) {
2035 uint64_t OffDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
2036 return SizeB <= OffDiff;
2037 }
2038 if (OffsetA < OffsetB) {
2039 uint64_t OffDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
2040 return SizeA <= OffDiff;
2041 }
2042
2043 return false;
2044}
2045
2046/// If the instruction is an increment of a constant value, return the amount.
2048 int &Value) const {
2049 if (isPostIncrement(MI)) {
2050 unsigned BasePos = 0, OffsetPos = 0;
2051 if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
2052 return false;
2053 const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
2054 if (OffsetOp.isImm()) {
2055 Value = OffsetOp.getImm();
2056 return true;
2057 }
2058 } else if (MI.getOpcode() == Hexagon::A2_addi) {
2059 const MachineOperand &AddOp = MI.getOperand(2);
2060 if (AddOp.isImm()) {
2061 Value = AddOp.getImm();
2062 return true;
2063 }
2064 }
2065
2066 return false;
2067}
2068
2069std::pair<unsigned, unsigned>
2071 return std::make_pair(TF & ~HexagonII::MO_Bitmasks,
2073}
2074
2077 using namespace HexagonII;
2078
2079 static const std::pair<unsigned, const char*> Flags[] = {
2080 {MO_PCREL, "hexagon-pcrel"},
2081 {MO_GOT, "hexagon-got"},
2082 {MO_LO16, "hexagon-lo16"},
2083 {MO_HI16, "hexagon-hi16"},
2084 {MO_GPREL, "hexagon-gprel"},
2085 {MO_GDGOT, "hexagon-gdgot"},
2086 {MO_GDPLT, "hexagon-gdplt"},
2087 {MO_IE, "hexagon-ie"},
2088 {MO_IEGOT, "hexagon-iegot"},
2089 {MO_TPREL, "hexagon-tprel"}
2090 };
2091 return ArrayRef(Flags);
2092}
2093
2096 using namespace HexagonII;
2097
2098 static const std::pair<unsigned, const char*> Flags[] = {
2099 {HMOTF_ConstExtended, "hexagon-ext"}
2100 };
2101 return ArrayRef(Flags);
2102}
2103
2106 const TargetRegisterClass *TRC;
2107 if (VT == MVT::i1) {
2108 TRC = &Hexagon::PredRegsRegClass;
2109 } else if (VT == MVT::i32 || VT == MVT::f32) {
2110 TRC = &Hexagon::IntRegsRegClass;
2111 } else if (VT == MVT::i64 || VT == MVT::f64) {
2112 TRC = &Hexagon::DoubleRegsRegClass;
2113 } else {
2114 llvm_unreachable("Cannot handle this register class");
2115 }
2116
2117 Register NewReg = MRI.createVirtualRegister(TRC);
2118 return NewReg;
2119}
2120
2123}
2124
2126 const uint64_t F = MI.getDesc().TSFlags;
2128}
2129
2132}
2133
2135 return !isTC1(MI) && !isTC2Early(MI) && !MI.getDesc().mayLoad() &&
2136 !MI.getDesc().mayStore() &&
2137 MI.getDesc().getOpcode() != Hexagon::S2_allocframe &&
2138 MI.getDesc().getOpcode() != Hexagon::L2_deallocframe &&
2139 !isMemOp(MI) && !MI.isBranch() && !MI.isReturn() && !MI.isCall();
2140}
2141
2142// Return true if the instruction is a compound branch instruction.
2144 return getType(MI) == HexagonII::TypeCJ && MI.isBranch();
2145}
2146
2147// TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
2148// isFPImm and later getFPImm as well.
2150 const uint64_t F = MI.getDesc().TSFlags;
2152 if (isExtended) // Instruction must be extended.
2153 return true;
2154
2155 unsigned isExtendable =
2157 if (!isExtendable)
2158 return false;
2159
2160 if (MI.isCall())
2161 return false;
2162
2163 short ExtOpNum = getCExtOpNum(MI);
2164 const MachineOperand &MO = MI.getOperand(ExtOpNum);
2165 // Use MO operand flags to determine if MO
2166 // has the HMOTF_ConstExtended flag set.
2168 return true;
2169 // If this is a Machine BB address we are talking about, and it is
2170 // not marked as extended, say so.
2171 if (MO.isMBB())
2172 return false;
2173
2174 // We could be using an instruction with an extendable immediate and shoehorn
2175 // a global address into it. If it is a global address it will be constant
2176 // extended. We do this for COMBINE.
2177 if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
2178 MO.isJTI() || MO.isCPI() || MO.isFPImm())
2179 return true;
2180
2181 // If the extendable operand is not 'Immediate' type, the instruction should
2182 // have 'isExtended' flag set.
2183 assert(MO.isImm() && "Extendable operand must be Immediate type");
2184
2185 int64_t Value = MO.getImm();
2187 int32_t SValue = Value;
2188 int32_t MinValue = getMinValue(MI);
2189 int32_t MaxValue = getMaxValue(MI);
2190 return SValue < MinValue || SValue > MaxValue;
2191 }
2192 uint32_t UValue = Value;
2193 uint32_t MinValue = getMinValue(MI);
2194 uint32_t MaxValue = getMaxValue(MI);
2195 return UValue < MinValue || UValue > MaxValue;
2196}
2197
2199 switch (MI.getOpcode()) {
2200 case Hexagon::L4_return:
2201 case Hexagon::L4_return_t:
2202 case Hexagon::L4_return_f:
2203 case Hexagon::L4_return_tnew_pnt:
2204 case Hexagon::L4_return_fnew_pnt:
2205 case Hexagon::L4_return_tnew_pt:
2206 case Hexagon::L4_return_fnew_pt:
2207 return true;
2208 }
2209 return false;
2210}
2211
2212// Return true when ConsMI uses a register defined by ProdMI.
2214 const MachineInstr &ConsMI) const {
2215 if (!ProdMI.getDesc().getNumDefs())
2216 return false;
2217 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
2218
2223
2224 parseOperands(ProdMI, DefsA, UsesA);
2225 parseOperands(ConsMI, DefsB, UsesB);
2226
2227 for (auto &RegA : DefsA)
2228 for (auto &RegB : UsesB) {
2229 // True data dependency.
2230 if (RegA == RegB)
2231 return true;
2232
2233 if (RegA.isPhysical() && llvm::is_contained(HRI.subregs(RegA), RegB))
2234 return true;
2235
2236 if (RegB.isPhysical() && llvm::is_contained(HRI.subregs(RegB), RegA))
2237 return true;
2238 }
2239
2240 return false;
2241}
2242
2243// Returns true if the instruction is alread a .cur.
2245 switch (MI.getOpcode()) {
2246 case Hexagon::V6_vL32b_cur_pi:
2247 case Hexagon::V6_vL32b_cur_ai:
2248 return true;
2249 }
2250 return false;
2251}
2252
2253// Returns true, if any one of the operands is a dot new
2254// insn, whether it is predicated dot new or register dot new.
2257 return true;
2258
2259 return false;
2260}
2261
2262/// Symmetrical. See if these two instructions are fit for duplex pair.
2264 const MachineInstr &MIb) const {
2267 return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
2268}
2269
2270bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
2271 return (Opcode == Hexagon::ENDLOOP0 ||
2272 Opcode == Hexagon::ENDLOOP1);
2273}
2274
2275bool HexagonInstrInfo::isExpr(unsigned OpType) const {
2276 switch(OpType) {
2283 return true;
2284 default:
2285 return false;
2286 }
2287}
2288
2290 const MCInstrDesc &MID = MI.getDesc();
2291 const uint64_t F = MID.TSFlags;
2293 return true;
2294
2295 // TODO: This is largely obsolete now. Will need to be removed
2296 // in consecutive patches.
2297 switch (MI.getOpcode()) {
2298 // PS_fi and PS_fia remain special cases.
2299 case Hexagon::PS_fi:
2300 case Hexagon::PS_fia:
2301 return true;
2302 default:
2303 return false;
2304 }
2305 return false;
2306}
2307
2308// This returns true in two cases:
2309// - The OP code itself indicates that this is an extended instruction.
2310// - One of MOs has been marked with HMOTF_ConstExtended flag.
2312 // First check if this is permanently extended op code.
2313 const uint64_t F = MI.getDesc().TSFlags;
2315 return true;
2316 // Use MO operand flags to determine if one of MI's operands
2317 // has HMOTF_ConstExtended flag set.
2318 for (const MachineOperand &MO : MI.operands())
2319 if (MO.getTargetFlags() & HexagonII::HMOTF_ConstExtended)
2320 return true;
2321 return false;
2322}
2323
2325 unsigned Opcode = MI.getOpcode();
2326 const uint64_t F = get(Opcode).TSFlags;
2327 return (F >> HexagonII::FPPos) & HexagonII::FPMask;
2328}
2329
2330// No V60 HVX VMEM with A_INDIRECT.
2332 const MachineInstr &J) const {
2333 if (!isHVXVec(I))
2334 return false;
2335 if (!I.mayLoad() && !I.mayStore())
2336 return false;
2337 return J.isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
2338}
2339
2341 switch (MI.getOpcode()) {
2342 case Hexagon::J2_callr:
2343 case Hexagon::J2_callrf:
2344 case Hexagon::J2_callrt:
2345 case Hexagon::PS_call_nr:
2346 return true;
2347 }
2348 return false;
2349}
2350
2352 switch (MI.getOpcode()) {
2353 case Hexagon::L4_return:
2354 case Hexagon::L4_return_t:
2355 case Hexagon::L4_return_f:
2356 case Hexagon::L4_return_fnew_pnt:
2357 case Hexagon::L4_return_fnew_pt:
2358 case Hexagon::L4_return_tnew_pnt:
2359 case Hexagon::L4_return_tnew_pt:
2360 return true;
2361 }
2362 return false;
2363}
2364
2366 switch (MI.getOpcode()) {
2367 case Hexagon::J2_jumpr:
2368 case Hexagon::J2_jumprt:
2369 case Hexagon::J2_jumprf:
2370 case Hexagon::J2_jumprtnewpt:
2371 case Hexagon::J2_jumprfnewpt:
2372 case Hexagon::J2_jumprtnew:
2373 case Hexagon::J2_jumprfnew:
2374 return true;
2375 }
2376 return false;
2377}
2378
2379// Return true if a given MI can accommodate given offset.
2380// Use abs estimate as oppose to the exact number.
2381// TODO: This will need to be changed to use MC level
2382// definition of instruction extendable field size.
2384 unsigned offset) const {
2385 // This selection of jump instructions matches to that what
2386 // analyzeBranch can parse, plus NVJ.
2387 if (isNewValueJump(MI)) // r9:2
2388 return isInt<11>(offset);
2389
2390 switch (MI.getOpcode()) {
2391 // Still missing Jump to address condition on register value.
2392 default:
2393 return false;
2394 case Hexagon::J2_jump: // bits<24> dst; // r22:2
2395 case Hexagon::J2_call:
2396 case Hexagon::PS_call_nr:
2397 return isInt<24>(offset);
2398 case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
2399 case Hexagon::J2_jumpf:
2400 case Hexagon::J2_jumptnew:
2401 case Hexagon::J2_jumptnewpt:
2402 case Hexagon::J2_jumpfnew:
2403 case Hexagon::J2_jumpfnewpt:
2404 case Hexagon::J2_callt:
2405 case Hexagon::J2_callf:
2406 return isInt<17>(offset);
2407 case Hexagon::J2_loop0i:
2408 case Hexagon::J2_loop0iext:
2409 case Hexagon::J2_loop0r:
2410 case Hexagon::J2_loop0rext:
2411 case Hexagon::J2_loop1i:
2412 case Hexagon::J2_loop1iext:
2413 case Hexagon::J2_loop1r:
2414 case Hexagon::J2_loop1rext:
2415 return isInt<9>(offset);
2416 // TODO: Add all the compound branches here. Can we do this in Relation model?
2417 case Hexagon::J4_cmpeqi_tp0_jump_nt:
2418 case Hexagon::J4_cmpeqi_tp1_jump_nt:
2419 case Hexagon::J4_cmpeqn1_tp0_jump_nt:
2420 case Hexagon::J4_cmpeqn1_tp1_jump_nt:
2421 return isInt<11>(offset);
2422 }
2423}
2424
2426 // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
2427 // resource, but all operands can be received late like an ALU instruction.
2429}
2430
2432 unsigned Opcode = MI.getOpcode();
2433 return Opcode == Hexagon::J2_loop0i ||
2434 Opcode == Hexagon::J2_loop0r ||
2435 Opcode == Hexagon::J2_loop0iext ||
2436 Opcode == Hexagon::J2_loop0rext ||
2437 Opcode == Hexagon::J2_loop1i ||
2438 Opcode == Hexagon::J2_loop1r ||
2439 Opcode == Hexagon::J2_loop1iext ||
2440 Opcode == Hexagon::J2_loop1rext;
2441}
2442
2444 switch (MI.getOpcode()) {
2445 default: return false;
2446 case Hexagon::L4_iadd_memopw_io:
2447 case Hexagon::L4_isub_memopw_io:
2448 case Hexagon::L4_add_memopw_io:
2449 case Hexagon::L4_sub_memopw_io:
2450 case Hexagon::L4_and_memopw_io:
2451 case Hexagon::L4_or_memopw_io:
2452 case Hexagon::L4_iadd_memoph_io:
2453 case Hexagon::L4_isub_memoph_io:
2454 case Hexagon::L4_add_memoph_io:
2455 case Hexagon::L4_sub_memoph_io:
2456 case Hexagon::L4_and_memoph_io:
2457 case Hexagon::L4_or_memoph_io:
2458 case Hexagon::L4_iadd_memopb_io:
2459 case Hexagon::L4_isub_memopb_io:
2460 case Hexagon::L4_add_memopb_io:
2461 case Hexagon::L4_sub_memopb_io:
2462 case Hexagon::L4_and_memopb_io:
2463 case Hexagon::L4_or_memopb_io:
2464 case Hexagon::L4_ior_memopb_io:
2465 case Hexagon::L4_ior_memoph_io:
2466 case Hexagon::L4_ior_memopw_io:
2467 case Hexagon::L4_iand_memopb_io:
2468 case Hexagon::L4_iand_memoph_io:
2469 case Hexagon::L4_iand_memopw_io:
2470 return true;
2471 }
2472 return false;
2473}
2474
2476 const uint64_t F = MI.getDesc().TSFlags;
2478}
2479
2480bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
2481 const uint64_t F = get(Opcode).TSFlags;
2483}
2484
2486 return isNewValueJump(MI) || isNewValueStore(MI);
2487}
2488
2490 return isNewValue(MI) && MI.isBranch();
2491}
2492
2493bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
2494 return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
2495}
2496
2498 const uint64_t F = MI.getDesc().TSFlags;
2500}
2501
2502bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
2503 const uint64_t F = get(Opcode).TSFlags;
2505}
2506
2507// Returns true if a particular operand is extendable for an instruction.
2509 unsigned OperandNum) const {
2510 const uint64_t F = MI.getDesc().TSFlags;
2512 == OperandNum;
2513}
2514
2516 const uint64_t F = MI.getDesc().TSFlags;
2519}
2520
2521bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
2522 const uint64_t F = get(Opcode).TSFlags;
2523 assert(isPredicated(Opcode));
2525}
2526
2528 const uint64_t F = MI.getDesc().TSFlags;
2529 return !((F >> HexagonII::PredicatedFalsePos) &
2531}
2532
2533bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
2534 const uint64_t F = get(Opcode).TSFlags;
2535 // Make sure that the instruction is predicated.
2537 return !((F >> HexagonII::PredicatedFalsePos) &
2539}
2540
2541bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
2542 const uint64_t F = get(Opcode).TSFlags;
2544}
2545
2546bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
2547 const uint64_t F = get(Opcode).TSFlags;
2549}
2550
2551bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
2552 const uint64_t F = get(Opcode).TSFlags;
2553 assert(get(Opcode).isBranch() &&
2554 (isPredicatedNew(Opcode) || isNewValue(Opcode)));
2556}
2557
2559 return MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
2560 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT ||
2561 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_PIC ||
2562 MI.getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC;
2563}
2564
2566 switch (MI.getOpcode()) {
2567 // Byte
2568 case Hexagon::L2_loadrb_io:
2569 case Hexagon::L4_loadrb_ur:
2570 case Hexagon::L4_loadrb_ap:
2571 case Hexagon::L2_loadrb_pr:
2572 case Hexagon::L2_loadrb_pbr:
2573 case Hexagon::L2_loadrb_pi:
2574 case Hexagon::L2_loadrb_pci:
2575 case Hexagon::L2_loadrb_pcr:
2576 case Hexagon::L2_loadbsw2_io:
2577 case Hexagon::L4_loadbsw2_ur:
2578 case Hexagon::L4_loadbsw2_ap:
2579 case Hexagon::L2_loadbsw2_pr:
2580 case Hexagon::L2_loadbsw2_pbr:
2581 case Hexagon::L2_loadbsw2_pi:
2582 case Hexagon::L2_loadbsw2_pci:
2583 case Hexagon::L2_loadbsw2_pcr:
2584 case Hexagon::L2_loadbsw4_io:
2585 case Hexagon::L4_loadbsw4_ur:
2586 case Hexagon::L4_loadbsw4_ap:
2587 case Hexagon::L2_loadbsw4_pr:
2588 case Hexagon::L2_loadbsw4_pbr:
2589 case Hexagon::L2_loadbsw4_pi:
2590 case Hexagon::L2_loadbsw4_pci:
2591 case Hexagon::L2_loadbsw4_pcr:
2592 case Hexagon::L4_loadrb_rr:
2593 case Hexagon::L2_ploadrbt_io:
2594 case Hexagon::L2_ploadrbt_pi:
2595 case Hexagon::L2_ploadrbf_io:
2596 case Hexagon::L2_ploadrbf_pi:
2597 case Hexagon::L2_ploadrbtnew_io:
2598 case Hexagon::L2_ploadrbfnew_io:
2599 case Hexagon::L4_ploadrbt_rr:
2600 case Hexagon::L4_ploadrbf_rr:
2601 case Hexagon::L4_ploadrbtnew_rr:
2602 case Hexagon::L4_ploadrbfnew_rr:
2603 case Hexagon::L2_ploadrbtnew_pi:
2604 case Hexagon::L2_ploadrbfnew_pi:
2605 case Hexagon::L4_ploadrbt_abs:
2606 case Hexagon::L4_ploadrbf_abs:
2607 case Hexagon::L4_ploadrbtnew_abs:
2608 case Hexagon::L4_ploadrbfnew_abs:
2609 case Hexagon::L2_loadrbgp:
2610 // Half
2611 case Hexagon::L2_loadrh_io:
2612 case Hexagon::L4_loadrh_ur:
2613 case Hexagon::L4_loadrh_ap:
2614 case Hexagon::L2_loadrh_pr:
2615 case Hexagon::L2_loadrh_pbr:
2616 case Hexagon::L2_loadrh_pi:
2617 case Hexagon::L2_loadrh_pci:
2618 case Hexagon::L2_loadrh_pcr:
2619 case Hexagon::L4_loadrh_rr:
2620 case Hexagon::L2_ploadrht_io:
2621 case Hexagon::L2_ploadrht_pi:
2622 case Hexagon::L2_ploadrhf_io:
2623 case Hexagon::L2_ploadrhf_pi:
2624 case Hexagon::L2_ploadrhtnew_io:
2625 case Hexagon::L2_ploadrhfnew_io:
2626 case Hexagon::L4_ploadrht_rr:
2627 case Hexagon::L4_ploadrhf_rr:
2628 case Hexagon::L4_ploadrhtnew_rr:
2629 case Hexagon::L4_ploadrhfnew_rr:
2630 case Hexagon::L2_ploadrhtnew_pi:
2631 case Hexagon::L2_ploadrhfnew_pi:
2632 case Hexagon::L4_ploadrht_abs:
2633 case Hexagon::L4_ploadrhf_abs:
2634 case Hexagon::L4_ploadrhtnew_abs:
2635 case Hexagon::L4_ploadrhfnew_abs:
2636 case Hexagon::L2_loadrhgp:
2637 return true;
2638 default:
2639 return false;
2640 }
2641}
2642
2644 const uint64_t F = MI.getDesc().TSFlags;
2646}
2647
2649 switch (MI.getOpcode()) {
2650 case Hexagon::STriw_pred:
2651 case Hexagon::LDriw_pred:
2652 return true;
2653 default:
2654 return false;
2655 }
2656}
2657
2659 if (!MI.isBranch())
2660 return false;
2661
2662 for (auto &Op : MI.operands())
2663 if (Op.isGlobal() || Op.isSymbol())
2664 return true;
2665 return false;
2666}
2667
2668// Returns true when SU has a timing class TC1.
2670 unsigned SchedClass = MI.getDesc().getSchedClass();
2671 return is_TC1(SchedClass);
2672}
2673
2675 unsigned SchedClass = MI.getDesc().getSchedClass();
2676 return is_TC2(SchedClass);
2677}
2678
2680 unsigned SchedClass = MI.getDesc().getSchedClass();
2681 return is_TC2early(SchedClass);
2682}
2683
2685 unsigned SchedClass = MI.getDesc().getSchedClass();
2686 return is_TC4x(SchedClass);
2687}
2688
2689// Schedule this ASAP.
2691 const MachineInstr &MI2) const {
2692 if (mayBeCurLoad(MI1)) {
2693 // if (result of SU is used in Next) return true;
2694 Register DstReg = MI1.getOperand(0).getReg();
2695 int N = MI2.getNumOperands();
2696 for (int I = 0; I < N; I++)
2697 if (MI2.getOperand(I).isReg() && DstReg == MI2.getOperand(I).getReg())
2698 return true;
2699 }
2700 if (mayBeNewStore(MI2))
2701 if (MI2.getOpcode() == Hexagon::V6_vS32b_pi)
2702 if (MI1.getOperand(0).isReg() && MI2.getOperand(3).isReg() &&
2703 MI1.getOperand(0).getReg() == MI2.getOperand(3).getReg())
2704 return true;
2705 return false;
2706}
2707
2709 const uint64_t V = getType(MI);
2711}
2712
2713// Check if the Offset is a valid auto-inc imm by Load/Store Type.
2715 int Size = VT.getSizeInBits() / 8;
2716 if (Offset % Size != 0)
2717 return false;
2718 int Count = Offset / Size;
2719
2720 switch (VT.getSimpleVT().SimpleTy) {
2721 // For scalars the auto-inc is s4
2722 case MVT::i8:
2723 case MVT::i16:
2724 case MVT::i32:
2725 case MVT::i64:
2726 case MVT::f32:
2727 case MVT::f64:
2728 case MVT::v2i16:
2729 case MVT::v2i32:
2730 case MVT::v4i8:
2731 case MVT::v4i16:
2732 case MVT::v8i8:
2733 return isInt<4>(Count);
2734 // For HVX vectors the auto-inc is s3
2735 case MVT::v64i8:
2736 case MVT::v32i16:
2737 case MVT::v16i32:
2738 case MVT::v8i64:
2739 case MVT::v128i8:
2740 case MVT::v64i16:
2741 case MVT::v32i32:
2742 case MVT::v16i64:
2743 return isInt<3>(Count);
2744 default:
2745 break;
2746 }
2747
2748 llvm_unreachable("Not an valid type!");
2749}
2750
2751bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
2752 const TargetRegisterInfo *TRI, bool Extend) const {
2753 // This function is to check whether the "Offset" is in the correct range of
2754 // the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
2755 // inserted to calculate the final address. Due to this reason, the function
2756 // assumes that the "Offset" has correct alignment.
2757 // We used to assert if the offset was not properly aligned, however,
2758 // there are cases where a misaligned pointer recast can cause this
2759 // problem, and we need to allow for it. The front end warns of such
2760 // misaligns with respect to load size.
2761 switch (Opcode) {
2762 case Hexagon::PS_vstorerq_ai:
2763 case Hexagon::PS_vstorerv_ai:
2764 case Hexagon::PS_vstorerw_ai:
2765 case Hexagon::PS_vstorerw_nt_ai:
2766 case Hexagon::PS_vloadrq_ai:
2767 case Hexagon::PS_vloadrv_ai:
2768 case Hexagon::PS_vloadrw_ai:
2769 case Hexagon::PS_vloadrw_nt_ai:
2770 case Hexagon::V6_vL32b_ai:
2771 case Hexagon::V6_vS32b_ai:
2772 case Hexagon::V6_vS32b_pred_ai:
2773 case Hexagon::V6_vS32b_npred_ai:
2774 case Hexagon::V6_vS32b_qpred_ai:
2775 case Hexagon::V6_vS32b_nqpred_ai:
2776 case Hexagon::V6_vS32b_new_ai:
2777 case Hexagon::V6_vS32b_new_pred_ai:
2778 case Hexagon::V6_vS32b_new_npred_ai:
2779 case Hexagon::V6_vS32b_nt_pred_ai:
2780 case Hexagon::V6_vS32b_nt_npred_ai:
2781 case Hexagon::V6_vS32b_nt_new_ai:
2782 case Hexagon::V6_vS32b_nt_new_pred_ai:
2783 case Hexagon::V6_vS32b_nt_new_npred_ai:
2784 case Hexagon::V6_vS32b_nt_qpred_ai:
2785 case Hexagon::V6_vS32b_nt_nqpred_ai:
2786 case Hexagon::V6_vL32b_nt_ai:
2787 case Hexagon::V6_vS32b_nt_ai:
2788 case Hexagon::V6_vL32Ub_ai:
2789 case Hexagon::V6_vS32Ub_ai:
2790 case Hexagon::V6_vL32b_cur_ai:
2791 case Hexagon::V6_vL32b_tmp_ai:
2792 case Hexagon::V6_vL32b_pred_ai:
2793 case Hexagon::V6_vL32b_npred_ai:
2794 case Hexagon::V6_vL32b_cur_pred_ai:
2795 case Hexagon::V6_vL32b_cur_npred_ai:
2796 case Hexagon::V6_vL32b_tmp_pred_ai:
2797 case Hexagon::V6_vL32b_tmp_npred_ai:
2798 case Hexagon::V6_vL32b_nt_cur_ai:
2799 case Hexagon::V6_vL32b_nt_tmp_ai:
2800 case Hexagon::V6_vL32b_nt_pred_ai:
2801 case Hexagon::V6_vL32b_nt_npred_ai:
2802 case Hexagon::V6_vL32b_nt_cur_pred_ai:
2803 case Hexagon::V6_vL32b_nt_cur_npred_ai:
2804 case Hexagon::V6_vL32b_nt_tmp_pred_ai:
2805 case Hexagon::V6_vL32b_nt_tmp_npred_ai:
2806 case Hexagon::V6_vgathermh_pseudo:
2807 case Hexagon::V6_vgathermw_pseudo:
2808 case Hexagon::V6_vgathermhw_pseudo:
2809 case Hexagon::V6_vgathermhq_pseudo:
2810 case Hexagon::V6_vgathermwq_pseudo:
2811 case Hexagon::V6_vgathermhwq_pseudo: {
2812 unsigned VectorSize = TRI->getSpillSize(Hexagon::HvxVRRegClass);
2813 assert(isPowerOf2_32(VectorSize));
2814 if (Offset & (VectorSize-1))
2815 return false;
2816 return isInt<4>(Offset >> Log2_32(VectorSize));
2817 }
2818
2819 case Hexagon::J2_loop0i:
2820 case Hexagon::J2_loop1i:
2821 return isUInt<10>(Offset);
2822
2823 case Hexagon::S4_storeirb_io:
2824 case Hexagon::S4_storeirbt_io:
2825 case Hexagon::S4_storeirbf_io:
2826 return isUInt<6>(Offset);
2827
2828 case Hexagon::S4_storeirh_io:
2829 case Hexagon::S4_storeirht_io:
2830 case Hexagon::S4_storeirhf_io:
2831 return isShiftedUInt<6,1>(Offset);
2832
2833 case Hexagon::S4_storeiri_io:
2834 case Hexagon::S4_storeirit_io:
2835 case Hexagon::S4_storeirif_io:
2836 return isShiftedUInt<6,2>(Offset);
2837 // Handle these two compare instructions that are not extendable.
2838 case Hexagon::A4_cmpbeqi:
2839 return isUInt<8>(Offset);
2840 case Hexagon::A4_cmpbgti:
2841 return isInt<8>(Offset);
2842 }
2843
2844 if (Extend)
2845 return true;
2846
2847 switch (Opcode) {
2848 case Hexagon::L2_loadri_io:
2849 case Hexagon::S2_storeri_io:
2850 return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
2852
2853 case Hexagon::L2_loadrd_io:
2854 case Hexagon::S2_storerd_io:
2855 return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
2857
2858 case Hexagon::L2_loadrh_io:
2859 case Hexagon::L2_loadruh_io:
2860 case Hexagon::S2_storerh_io:
2861 case Hexagon::S2_storerf_io:
2862 return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
2864
2865 case Hexagon::L2_loadrb_io:
2866 case Hexagon::L2_loadrub_io:
2867 case Hexagon::S2_storerb_io:
2868 return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
2870
2871 case Hexagon::A2_addi:
2872 return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
2874
2875 case Hexagon::L4_iadd_memopw_io:
2876 case Hexagon::L4_isub_memopw_io:
2877 case Hexagon::L4_add_memopw_io:
2878 case Hexagon::L4_sub_memopw_io:
2879 case Hexagon::L4_iand_memopw_io:
2880 case Hexagon::L4_ior_memopw_io:
2881 case Hexagon::L4_and_memopw_io:
2882 case Hexagon::L4_or_memopw_io:
2883 return (0 <= Offset && Offset <= 255);
2884
2885 case Hexagon::L4_iadd_memoph_io:
2886 case Hexagon::L4_isub_memoph_io:
2887 case Hexagon::L4_add_memoph_io:
2888 case Hexagon::L4_sub_memoph_io:
2889 case Hexagon::L4_iand_memoph_io:
2890 case Hexagon::L4_ior_memoph_io:
2891 case Hexagon::L4_and_memoph_io:
2892 case Hexagon::L4_or_memoph_io:
2893 return (0 <= Offset && Offset <= 127);
2894
2895 case Hexagon::L4_iadd_memopb_io:
2896 case Hexagon::L4_isub_memopb_io:
2897 case Hexagon::L4_add_memopb_io:
2898 case Hexagon::L4_sub_memopb_io:
2899 case Hexagon::L4_iand_memopb_io:
2900 case Hexagon::L4_ior_memopb_io:
2901 case Hexagon::L4_and_memopb_io:
2902 case Hexagon::L4_or_memopb_io:
2903 return (0 <= Offset && Offset <= 63);
2904
2905 // LDriw_xxx and STriw_xxx are pseudo operations, so it has to take offset of
2906 // any size. Later pass knows how to handle it.
2907 case Hexagon::STriw_pred:
2908 case Hexagon::LDriw_pred:
2909 case Hexagon::STriw_ctr:
2910 case Hexagon::LDriw_ctr:
2911 return true;
2912
2913 case Hexagon::PS_fi:
2914 case Hexagon::PS_fia:
2915 case Hexagon::INLINEASM:
2916 return true;
2917
2918 case Hexagon::L2_ploadrbt_io:
2919 case Hexagon::L2_ploadrbf_io:
2920 case Hexagon::L2_ploadrubt_io:
2921 case Hexagon::L2_ploadrubf_io:
2922 case Hexagon::S2_pstorerbt_io:
2923 case Hexagon::S2_pstorerbf_io:
2924 return isUInt<6>(Offset);
2925
2926 case Hexagon::L2_ploadrht_io:
2927 case Hexagon::L2_ploadrhf_io:
2928 case Hexagon::L2_ploadruht_io:
2929 case Hexagon::L2_ploadruhf_io:
2930 case Hexagon::S2_pstorerht_io:
2931 case Hexagon::S2_pstorerhf_io:
2932 return isShiftedUInt<6,1>(Offset);
2933
2934 case Hexagon::L2_ploadrit_io:
2935 case Hexagon::L2_ploadrif_io:
2936 case Hexagon::S2_pstorerit_io:
2937 case Hexagon::S2_pstorerif_io:
2938 return isShiftedUInt<6,2>(Offset);
2939
2940 case Hexagon::L2_ploadrdt_io:
2941 case Hexagon::L2_ploadrdf_io:
2942 case Hexagon::S2_pstorerdt_io:
2943 case Hexagon::S2_pstorerdf_io:
2944 return isShiftedUInt<6,3>(Offset);
2945
2946 case Hexagon::L2_loadbsw2_io:
2947 case Hexagon::L2_loadbzw2_io:
2948 return isShiftedInt<11,1>(Offset);
2949
2950 case Hexagon::L2_loadbsw4_io:
2951 case Hexagon::L2_loadbzw4_io:
2952 return isShiftedInt<11,2>(Offset);
2953 } // switch
2954
2955 dbgs() << "Failed Opcode is : " << Opcode << " (" << getName(Opcode)
2956 << ")\n";
2957 llvm_unreachable("No offset range is defined for this opcode. "
2958 "Please define it in the above switch statement!");
2959}
2960
2962 return isHVXVec(MI) && isAccumulator(MI);
2963}
2964
2966 const uint64_t F = get(MI.getOpcode()).TSFlags;
2968 return
2969 V == HexagonII::TypeCVI_VA ||
2971}
2972
2974 const MachineInstr &ConsMI) const {
2975 if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
2976 return true;
2977
2978 if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
2979 return true;
2980
2981 if (mayBeNewStore(ConsMI))
2982 return true;
2983
2984 return false;
2985}
2986
2988 switch (MI.getOpcode()) {
2989 // Byte
2990 case Hexagon::L2_loadrub_io:
2991 case Hexagon::L4_loadrub_ur:
2992 case Hexagon::L4_loadrub_ap:
2993 case Hexagon::L2_loadrub_pr:
2994 case Hexagon::L2_loadrub_pbr:
2995 case Hexagon::L2_loadrub_pi:
2996 case Hexagon::L2_loadrub_pci:
2997 case Hexagon::L2_loadrub_pcr:
2998 case Hexagon::L2_loadbzw2_io:
2999 case Hexagon::L4_loadbzw2_ur:
3000 case Hexagon::L4_loadbzw2_ap:
3001 case Hexagon::L2_loadbzw2_pr:
3002 case Hexagon::L2_loadbzw2_pbr:
3003 case Hexagon::L2_loadbzw2_pi:
3004 case Hexagon::L2_loadbzw2_pci:
3005 case Hexagon::L2_loadbzw2_pcr:
3006 case Hexagon::L2_loadbzw4_io:
3007 case Hexagon::L4_loadbzw4_ur:
3008 case Hexagon::L4_loadbzw4_ap:
3009 case Hexagon::L2_loadbzw4_pr:
3010 case Hexagon::L2_loadbzw4_pbr:
3011 case Hexagon::L2_loadbzw4_pi:
3012 case Hexagon::L2_loadbzw4_pci:
3013 case Hexagon::L2_loadbzw4_pcr:
3014 case Hexagon::L4_loadrub_rr:
3015 case Hexagon::L2_ploadrubt_io:
3016 case Hexagon::L2_ploadrubt_pi:
3017 case Hexagon::L2_ploadrubf_io:
3018 case Hexagon::L2_ploadrubf_pi:
3019 case Hexagon::L2_ploadrubtnew_io:
3020 case Hexagon::L2_ploadrubfnew_io:
3021 case Hexagon::L4_ploadrubt_rr:
3022 case Hexagon::L4_ploadrubf_rr:
3023 case Hexagon::L4_ploadrubtnew_rr:
3024 case Hexagon::L4_ploadrubfnew_rr:
3025 case Hexagon::L2_ploadrubtnew_pi:
3026 case Hexagon::L2_ploadrubfnew_pi:
3027 case Hexagon::L4_ploadrubt_abs:
3028 case Hexagon::L4_ploadrubf_abs:
3029 case Hexagon::L4_ploadrubtnew_abs:
3030 case Hexagon::L4_ploadrubfnew_abs:
3031 case Hexagon::L2_loadrubgp:
3032 // Half
3033 case Hexagon::L2_loadruh_io:
3034 case Hexagon::L4_loadruh_ur:
3035 case Hexagon::L4_loadruh_ap:
3036 case Hexagon::L2_loadruh_pr:
3037 case Hexagon::L2_loadruh_pbr:
3038 case Hexagon::L2_loadruh_pi:
3039 case Hexagon::L2_loadruh_pci:
3040 case Hexagon::L2_loadruh_pcr:
3041 case Hexagon::L4_loadruh_rr:
3042 case Hexagon::L2_ploadruht_io:
3043 case Hexagon::L2_ploadruht_pi:
3044 case Hexagon::L2_ploadruhf_io:
3045 case Hexagon::L2_ploadruhf_pi:
3046 case Hexagon::L2_ploadruhtnew_io:
3047 case Hexagon::L2_ploadruhfnew_io:
3048 case Hexagon::L4_ploadruht_rr:
3049 case Hexagon::L4_ploadruhf_rr:
3050 case Hexagon::L4_ploadruhtnew_rr:
3051 case Hexagon::L4_ploadruhfnew_rr:
3052 case Hexagon::L2_ploadruhtnew_pi:
3053 case Hexagon::L2_ploadruhfnew_pi:
3054 case Hexagon::L4_ploadruht_abs:
3055 case Hexagon::L4_ploadruhf_abs:
3056 case Hexagon::L4_ploadruhtnew_abs:
3057 case Hexagon::L4_ploadruhfnew_abs:
3058 case Hexagon::L2_loadruhgp:
3059 return true;
3060 default:
3061 return false;
3062 }
3063}
3064
3065// Add latency to instruction.
3067 const MachineInstr &MI2) const {
3068 if (isHVXVec(MI1) && isHVXVec(MI2))
3069 if (!isVecUsableNextPacket(MI1, MI2))
3070 return true;
3071 return false;
3072}
3073
3074/// Get the base register and byte offset of a load/store instr.
3077 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
3078 const TargetRegisterInfo *TRI) const {
3079 OffsetIsScalable = false;
3080 const MachineOperand *BaseOp = getBaseAndOffset(LdSt, Offset, Width);
3081 if (!BaseOp || !BaseOp->isReg())
3082 return false;
3083 BaseOps.push_back(BaseOp);
3084 return true;
3085}
3086
3087/// Can these instructions execute at the same time in a bundle.
3089 const MachineInstr &Second) const {
3090 if (Second.mayStore() && First.getOpcode() == Hexagon::S2_allocframe) {
3091 const MachineOperand &Op = Second.getOperand(0);
3092 if (Op.isReg() && Op.isUse() && Op.getReg() == Hexagon::R29)
3093 return true;
3094 }
3096 return false;
3097 if (mayBeNewStore(Second)) {
3098 // Make sure the definition of the first instruction is the value being
3099 // stored.
3100 const MachineOperand &Stored =
3101 Second.getOperand(Second.getNumOperands() - 1);
3102 if (!Stored.isReg())
3103 return false;
3104 for (unsigned i = 0, e = First.getNumOperands(); i < e; ++i) {
3105 const MachineOperand &Op = First.getOperand(i);
3106 if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
3107 return true;
3108 }
3109 }
3110 return false;
3111}
3112
3114 unsigned Opc = CallMI.getOpcode();
3115 return Opc == Hexagon::PS_call_nr || Opc == Hexagon::PS_callr_nr;
3116}
3117
3119 for (auto &I : *B)
3120 if (I.isEHLabel())
3121 return true;
3122 return false;
3123}
3124
3125// Returns true if an instruction can be converted into a non-extended
3126// equivalent instruction.
3128 short NonExtOpcode;
3129 // Check if the instruction has a register form that uses register in place
3130 // of the extended operand, if so return that as the non-extended form.
3131 if (Hexagon::getRegForm(MI.getOpcode()) >= 0)
3132 return true;
3133
3134 if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
3135 // Check addressing mode and retrieve non-ext equivalent instruction.
3136
3137 switch (getAddrMode(MI)) {
3139 // Load/store with absolute addressing mode can be converted into
3140 // base+offset mode.
3141 NonExtOpcode = Hexagon::changeAddrMode_abs_io(MI.getOpcode());
3142 break;
3144 // Load/store with base+offset addressing mode can be converted into
3145 // base+register offset addressing mode. However left shift operand should
3146 // be set to 0.
3147 NonExtOpcode = Hexagon::changeAddrMode_io_rr(MI.getOpcode());
3148 break;
3150 NonExtOpcode = Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
3151 break;
3152 default:
3153 return false;
3154 }
3155 if (NonExtOpcode < 0)
3156 return false;
3157 return true;
3158 }
3159 return false;
3160}
3161
3163 return Hexagon::getRealHWInstr(MI.getOpcode(),
3164 Hexagon::InstrType_Pseudo) >= 0;
3165}
3166
3168 const {
3169 MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
3170 while (I != E) {
3171 if (I->isBarrier())
3172 return true;
3173 ++I;
3174 }
3175 return false;
3176}
3177
3178// Returns true, if a LD insn can be promoted to a cur load.
3180 const uint64_t F = MI.getDesc().TSFlags;
3182 Subtarget.hasV60Ops();
3183}
3184
3185// Returns true, if a ST insn can be promoted to a new-value store.
3187 if (MI.mayStore() && !Subtarget.useNewValueStores())
3188 return false;
3189
3190 const uint64_t F = MI.getDesc().TSFlags;
3192}
3193
3195 const MachineInstr &ConsMI) const {
3196 // There is no stall when ProdMI is not a V60 vector.
3197 if (!isHVXVec(ProdMI))
3198 return false;
3199
3200 // There is no stall when ProdMI and ConsMI are not dependent.
3201 if (!isDependent(ProdMI, ConsMI))
3202 return false;
3203
3204 // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
3205 // are scheduled in consecutive packets.
3206 if (isVecUsableNextPacket(ProdMI, ConsMI))
3207 return false;
3208
3209 return true;
3210}
3211
3214 // There is no stall when I is not a V60 vector.
3215 if (!isHVXVec(MI))
3216 return false;
3217
3219 MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
3220
3221 if (!MII->isBundle())
3222 return producesStall(*MII, MI);
3223
3224 for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
3225 const MachineInstr &J = *MII;
3226 if (producesStall(J, MI))
3227 return true;
3228 }
3229 return false;
3230}
3231
3233 Register PredReg) const {
3234 for (const MachineOperand &MO : MI.operands()) {
3235 // Predicate register must be explicitly defined.
3236 if (MO.isRegMask() && MO.clobbersPhysReg(PredReg))
3237 return false;
3238 if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
3239 return false;
3240 }
3241
3242 // Instruction that produce late predicate cannot be used as sources of
3243 // dot-new.
3244 switch (MI.getOpcode()) {
3245 case Hexagon::A4_addp_c:
3246 case Hexagon::A4_subp_c:
3247 case Hexagon::A4_tlbmatch:
3248 case Hexagon::A5_ACS:
3249 case Hexagon::F2_sfinvsqrta:
3250 case Hexagon::F2_sfrecipa:
3251 case Hexagon::J2_endloop0:
3252 case Hexagon::J2_endloop01:
3253 case Hexagon::J2_ploop1si:
3254 case Hexagon::J2_ploop1sr:
3255 case Hexagon::J2_ploop2si:
3256 case Hexagon::J2_ploop2sr:
3257 case Hexagon::J2_ploop3si:
3258 case Hexagon::J2_ploop3sr:
3259 case Hexagon::S2_cabacdecbin:
3260 case Hexagon::S2_storew_locked:
3261 case Hexagon::S4_stored_locked:
3262 return false;
3263 }
3264 return true;
3265}
3266
3267bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
3268 return Opcode == Hexagon::J2_jumpt ||
3269 Opcode == Hexagon::J2_jumptpt ||
3270 Opcode == Hexagon::J2_jumpf ||
3271 Opcode == Hexagon::J2_jumpfpt ||
3272 Opcode == Hexagon::J2_jumptnew ||
3273 Opcode == Hexagon::J2_jumpfnew ||
3274 Opcode == Hexagon::J2_jumptnewpt ||
3275 Opcode == Hexagon::J2_jumpfnewpt;
3276}
3277
3279 if (Cond.empty() || !isPredicated(Cond[0].getImm()))
3280 return false;
3281 return !isPredicatedTrue(Cond[0].getImm());
3282}
3283
3285 const uint64_t F = MI.getDesc().TSFlags;
3287}
3288
3289// Returns the base register in a memory access (load/store). The offset is
3290// returned in Offset and the access size is returned in AccessSize.
3291// If the base operand has a subregister or the offset field does not contain
3292// an immediate value, return nullptr.
3295 LocationSize &AccessSize) const {
3296 // Return if it is not a base+offset type instruction or a MemOp.
3300 return nullptr;
3301
3302 AccessSize = getMemAccessSize(MI);
3303
3304 unsigned BasePos = 0, OffsetPos = 0;
3305 if (!getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
3306 return nullptr;
3307
3308 // Post increment updates its EA after the mem access,
3309 // so we need to treat its offset as zero.
3310 if (isPostIncrement(MI)) {
3311 Offset = 0;
3312 } else {
3313 const MachineOperand &OffsetOp = MI.getOperand(OffsetPos);
3314 if (!OffsetOp.isImm())
3315 return nullptr;
3316 Offset = OffsetOp.getImm();
3317 }
3318
3319 const MachineOperand &BaseOp = MI.getOperand(BasePos);
3320 if (BaseOp.getSubReg() != 0)
3321 return nullptr;
3322 return &const_cast<MachineOperand&>(BaseOp);
3323}
3324
3325/// Return the position of the base and offset operands for this instruction.
3327 unsigned &BasePos, unsigned &OffsetPos) const {
3329 return false;
3330
3331 // Deal with memops first.
3332 if (isMemOp(MI)) {
3333 BasePos = 0;
3334 OffsetPos = 1;
3335 } else if (MI.mayStore()) {
3336 BasePos = 0;
3337 OffsetPos = 1;
3338 } else if (MI.mayLoad()) {
3339 BasePos = 1;
3340 OffsetPos = 2;
3341 } else
3342 return false;
3343
3344 if (isPredicated(MI)) {
3345 BasePos++;
3346 OffsetPos++;
3347 }
3348 if (isPostIncrement(MI)) {
3349 BasePos++;
3350 OffsetPos++;
3351 }
3352
3353 if (!MI.getOperand(BasePos).isReg() || !MI.getOperand(OffsetPos).isImm())
3354 return false;
3355
3356 return true;
3357}
3358
3359// Inserts branching instructions in reverse order of their occurrence.
3360// e.g. jump_t t1 (i1)
3361// jump t2 (i2)
3362// Jumpers = {i2, i1}
3364 MachineBasicBlock& MBB) const {
3366 // If the block has no terminators, it just falls into the block after it.
3368 if (I == MBB.instr_begin())
3369 return Jumpers;
3370
3371 // A basic block may looks like this:
3372 //
3373 // [ insn
3374 // EH_LABEL
3375 // insn
3376 // insn
3377 // insn
3378 // EH_LABEL
3379 // insn ]
3380 //
3381 // It has two succs but does not have a terminator
3382 // Don't know how to handle it.
3383 do {
3384 --I;
3385 if (I->isEHLabel())
3386 return Jumpers;
3387 } while (I != MBB.instr_begin());
3388
3389 I = MBB.instr_end();
3390 --I;
3391
3392 while (I->isDebugInstr()) {
3393 if (I == MBB.instr_begin())
3394 return Jumpers;
3395 --I;
3396 }
3397 if (!isUnpredicatedTerminator(*I))
3398 return Jumpers;
3399
3400 // Get the last instruction in the block.
3401 MachineInstr *LastInst = &*I;
3402 Jumpers.push_back(LastInst);
3403 MachineInstr *SecondLastInst = nullptr;
3404 // Find one more terminator if present.
3405 do {
3406 if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(*I)) {
3407 if (!SecondLastInst) {
3408 SecondLastInst = &*I;
3409 Jumpers.push_back(SecondLastInst);
3410 } else // This is a third branch.
3411 return Jumpers;
3412 }
3413 if (I == MBB.instr_begin())
3414 break;
3415 --I;
3416 } while (true);
3417 return Jumpers;
3418}
3419
3420// Returns Operand Index for the constant extended instruction.
3422 const uint64_t F = MI.getDesc().TSFlags;
3424}
3425
3426// See if instruction could potentially be a duplex candidate.
3427// If so, return its group. Zero otherwise.
3429 const MachineInstr &MI) const {
3430 Register DstReg, SrcReg, Src1Reg, Src2Reg;
3431
3432 switch (MI.getOpcode()) {
3433 default:
3434 return HexagonII::HCG_None;
3435 //
3436 // Compound pairs.
3437 // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
3438 // "Rd16=#U6 ; jump #r9:2"
3439 // "Rd16=Rs16 ; jump #r9:2"
3440 //
3441 case Hexagon::C2_cmpeq:
3442 case Hexagon::C2_cmpgt:
3443 case Hexagon::C2_cmpgtu:
3444 DstReg = MI.getOperand(0).getReg();
3445 Src1Reg = MI.getOperand(1).getReg();
3446 Src2Reg = MI.getOperand(2).getReg();
3447 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3448 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3449 isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
3450 return HexagonII::HCG_A;
3451 break;
3452 case Hexagon::C2_cmpeqi:
3453 case Hexagon::C2_cmpgti:
3454 case Hexagon::C2_cmpgtui:
3455 // P0 = cmp.eq(Rs,#u2)
3456 DstReg = MI.getOperand(0).getReg();
3457 SrcReg = MI.getOperand(1).getReg();
3458 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3459 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3460 isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
3461 ((isUInt<5>(MI.getOperand(2).getImm())) ||
3462 (MI.getOperand(2).getImm() == -1)))
3463 return HexagonII::HCG_A;
3464 break;
3465 case Hexagon::A2_tfr:
3466 // Rd = Rs
3467 DstReg = MI.getOperand(0).getReg();
3468 SrcReg = MI.getOperand(1).getReg();
3469 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
3470 return HexagonII::HCG_A;
3471 break;
3472 case Hexagon::A2_tfrsi:
3473 // Rd = #u6
3474 // Do not test for #u6 size since the const is getting extended
3475 // regardless and compound could be formed.
3476 DstReg = MI.getOperand(0).getReg();
3477 if (isIntRegForSubInst(DstReg))
3478 return HexagonII::HCG_A;
3479 break;
3480 case Hexagon::S2_tstbit_i:
3481 DstReg = MI.getOperand(0).getReg();
3482 Src1Reg = MI.getOperand(1).getReg();
3483 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
3484 (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
3485 MI.getOperand(2).isImm() &&
3486 isIntRegForSubInst(Src1Reg) && (MI.getOperand(2).getImm() == 0))
3487 return HexagonII::HCG_A;
3488 break;
3489 // The fact that .new form is used pretty much guarantees
3490 // that predicate register will match. Nevertheless,
3491 // there could be some false positives without additional
3492 // checking.
3493 case Hexagon::J2_jumptnew:
3494 case Hexagon::J2_jumpfnew:
3495 case Hexagon::J2_jumptnewpt:
3496 case Hexagon::J2_jumpfnewpt:
3497 Src1Reg = MI.getOperand(0).getReg();
3498 if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
3499 (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
3500 return HexagonII::HCG_B;
3501 break;
3502 // Transfer and jump:
3503 // Rd=#U6 ; jump #r9:2
3504 // Rd=Rs ; jump #r9:2
3505 // Do not test for jump range here.
3506 case Hexagon::J2_jump:
3507 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
3508 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
3509 return HexagonII::HCG_C;
3510 }
3511
3512 return HexagonII::HCG_None;
3513}
3514
3515// Returns -1 when there is no opcode found.
3517 const MachineInstr &GB) const {
3520 if ((GA.getOpcode() != Hexagon::C2_cmpeqi) ||
3521 (GB.getOpcode() != Hexagon::J2_jumptnew))
3522 return -1u;
3523 Register DestReg = GA.getOperand(0).getReg();
3524 if (!GB.readsRegister(DestReg, /*TRI=*/nullptr))
3525 return -1u;
3526 if (DestReg != Hexagon::P0 && DestReg != Hexagon::P1)
3527 return -1u;
3528 // The value compared against must be either u5 or -1.
3529 const MachineOperand &CmpOp = GA.getOperand(2);
3530 if (!CmpOp.isImm())
3531 return -1u;
3532 int V = CmpOp.getImm();
3533 if (V == -1)
3534 return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqn1_tp0_jump_nt
3535 : Hexagon::J4_cmpeqn1_tp1_jump_nt;
3536 if (!isUInt<5>(V))
3537 return -1u;
3538 return DestReg == Hexagon::P0 ? Hexagon::J4_cmpeqi_tp0_jump_nt
3539 : Hexagon::J4_cmpeqi_tp1_jump_nt;
3540}
3541
3542// Returns -1 if there is no opcode found.
3544 bool ForBigCore) const {
3545 // Static table to switch the opcodes across Tiny Core and Big Core.
3546 // dup_ opcodes are Big core opcodes.
3547 // NOTE: There are special instructions that need to handled later.
3548 // L4_return* instructions, they will only occupy SLOT0 (on big core too).
3549 // PS_jmpret - This pseudo translates to J2_jumpr which occupies only SLOT2.
3550 // The compiler need to base the root instruction to L6_return_map_to_raw
3551 // which can go any slot.
3552 static const std::map<unsigned, unsigned> DupMap = {
3553 {Hexagon::A2_add, Hexagon::dup_A2_add},
3554 {Hexagon::A2_addi, Hexagon::dup_A2_addi},
3555 {Hexagon::A2_andir, Hexagon::dup_A2_andir},
3556 {Hexagon::A2_combineii, Hexagon::dup_A2_combineii},
3557 {Hexagon::A2_sxtb, Hexagon::dup_A2_sxtb},
3558 {Hexagon::A2_sxth, Hexagon::dup_A2_sxth},
3559 {Hexagon::A2_tfr, Hexagon::dup_A2_tfr},
3560 {Hexagon::A2_tfrsi, Hexagon::dup_A2_tfrsi},
3561 {Hexagon::A2_zxtb, Hexagon::dup_A2_zxtb},
3562 {Hexagon::A2_zxth, Hexagon::dup_A2_zxth},
3563 {Hexagon::A4_combineii, Hexagon::dup_A4_combineii},
3564 {Hexagon::A4_combineir, Hexagon::dup_A4_combineir},
3565 {Hexagon::A4_combineri, Hexagon::dup_A4_combineri},
3566 {Hexagon::C2_cmoveif, Hexagon::dup_C2_cmoveif},
3567 {Hexagon::C2_cmoveit, Hexagon::dup_C2_cmoveit},
3568 {Hexagon::C2_cmovenewif, Hexagon::dup_C2_cmovenewif},
3569 {Hexagon::C2_cmovenewit, Hexagon::dup_C2_cmovenewit},
3570 {Hexagon::C2_cmpeqi, Hexagon::dup_C2_cmpeqi},
3571 {Hexagon::L2_deallocframe, Hexagon::dup_L2_deallocframe},
3572 {Hexagon::L2_loadrb_io, Hexagon::dup_L2_loadrb_io},
3573 {Hexagon::L2_loadrd_io, Hexagon::dup_L2_loadrd_io},
3574 {Hexagon::L2_loadrh_io, Hexagon::dup_L2_loadrh_io},
3575 {Hexagon::L2_loadri_io, Hexagon::dup_L2_loadri_io},
3576 {Hexagon::L2_loadrub_io, Hexagon::dup_L2_loadrub_io},
3577 {Hexagon::L2_loadruh_io, Hexagon::dup_L2_loadruh_io},
3578 {Hexagon::S2_allocframe, Hexagon::dup_S2_allocframe},
3579 {Hexagon::S2_storerb_io, Hexagon::dup_S2_storerb_io},
3580 {Hexagon::S2_storerd_io, Hexagon::dup_S2_storerd_io},
3581 {Hexagon::S2_storerh_io, Hexagon::dup_S2_storerh_io},
3582 {Hexagon::S2_storeri_io, Hexagon::dup_S2_storeri_io},
3583 {Hexagon::S4_storeirb_io, Hexagon::dup_S4_storeirb_io},
3584 {Hexagon::S4_storeiri_io, Hexagon::dup_S4_storeiri_io},
3585 };
3586 unsigned OpNum = MI.getOpcode();
3587 // Conversion to Big core.
3588 if (ForBigCore) {
3589 auto Iter = DupMap.find(OpNum);
3590 if (Iter != DupMap.end())
3591 return Iter->second;
3592 } else { // Conversion to Tiny core.
3593 for (const auto &Iter : DupMap)
3594 if (Iter.second == OpNum)
3595 return Iter.first;
3596 }
3597 return -1;
3598}
3599
3600int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
3601 enum Hexagon::PredSense inPredSense;
3602 inPredSense = invertPredicate ? Hexagon::PredSense_false :
3603 Hexagon::PredSense_true;
3604 int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
3605 if (CondOpcode >= 0) // Valid Conditional opcode/instruction
3606 return CondOpcode;
3607
3608 llvm_unreachable("Unexpected predicable instruction");
3609}
3610
3611// Return the cur value instruction for a given store.
3613 switch (MI.getOpcode()) {
3614 default: llvm_unreachable("Unknown .cur type");
3615 case Hexagon::V6_vL32b_pi:
3616 return Hexagon::V6_vL32b_cur_pi;
3617 case Hexagon::V6_vL32b_ai:
3618 return Hexagon::V6_vL32b_cur_ai;
3619 case Hexagon::V6_vL32b_nt_pi:
3620 return Hexagon::V6_vL32b_nt_cur_pi;
3621 case Hexagon::V6_vL32b_nt_ai:
3622 return Hexagon::V6_vL32b_nt_cur_ai;
3623 case Hexagon::V6_vL32b_ppu:
3624 return Hexagon::V6_vL32b_cur_ppu;
3625 case Hexagon::V6_vL32b_nt_ppu:
3626 return Hexagon::V6_vL32b_nt_cur_ppu;
3627 }
3628 return 0;
3629}
3630
3631// Return the regular version of the .cur instruction.
3633 switch (MI.getOpcode()) {
3634 default: llvm_unreachable("Unknown .cur type");
3635 case Hexagon::V6_vL32b_cur_pi:
3636 return Hexagon::V6_vL32b_pi;
3637 case Hexagon::V6_vL32b_cur_ai:
3638 return Hexagon::V6_vL32b_ai;
3639 case Hexagon::V6_vL32b_nt_cur_pi:
3640 return Hexagon::V6_vL32b_nt_pi;
3641 case Hexagon::V6_vL32b_nt_cur_ai:
3642 return Hexagon::V6_vL32b_nt_ai;
3643 case Hexagon::V6_vL32b_cur_ppu:
3644 return Hexagon::V6_vL32b_ppu;
3645 case Hexagon::V6_vL32b_nt_cur_ppu:
3646 return Hexagon::V6_vL32b_nt_ppu;
3647 }
3648 return 0;
3649}
3650
3651// The diagram below shows the steps involved in the conversion of a predicated
3652// store instruction to its .new predicated new-value form.
3653//
3654// Note: It doesn't include conditional new-value stores as they can't be
3655// converted to .new predicate.
3656//
3657// p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
3658// ^ ^
3659// / \ (not OK. it will cause new-value store to be
3660// / X conditional on p0.new while R2 producer is
3661// / \ on p0)
3662// / \.
3663// p.new store p.old NV store
3664// [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
3665// ^ ^
3666// \ /
3667// \ /
3668// \ /
3669// p.old store
3670// [if (p0)memw(R0+#0)=R2]
3671//
3672// The following set of instructions further explains the scenario where
3673// conditional new-value store becomes invalid when promoted to .new predicate
3674// form.
3675//
3676// { 1) if (p0) r0 = add(r1, r2)
3677// 2) p0 = cmp.eq(r3, #0) }
3678//
3679// 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
3680// the first two instructions because in instr 1, r0 is conditional on old value
3681// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
3682// is not valid for new-value stores.
3683// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
3684// from the "Conditional Store" list. Because a predicated new value store
3685// would NOT be promoted to a double dot new store. See diagram below:
3686// This function returns yes for those stores that are predicated but not
3687// yet promoted to predicate dot new instructions.
3688//
3689// +---------------------+
3690// /-----| if (p0) memw(..)=r0 |---------\~
3691// || +---------------------+ ||
3692// promote || /\ /\ || promote
3693// || /||\ /||\ ||
3694// \||/ demote || \||/
3695// \/ || || \/
3696// +-------------------------+ || +-------------------------+
3697// | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
3698// +-------------------------+ || +-------------------------+
3699// || || ||
3700// || demote \||/
3701// promote || \/ NOT possible
3702// || || /\~
3703// \||/ || /||\~
3704// \/ || ||
3705// +-----------------------------+
3706// | if (p0.new) memw(..)=r0.new |
3707// +-----------------------------+
3708// Double Dot New Store
3709//
3710// Returns the most basic instruction for the .new predicated instructions and
3711// new-value stores.
3712// For example, all of the following instructions will be converted back to the
3713// same instruction:
3714// 1) if (p0.new) memw(R0+#0) = R1.new --->
3715// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
3716// 3) if (p0.new) memw(R0+#0) = R1 --->
3717//
3718// To understand the translation of instruction 1 to its original form, consider
3719// a packet with 3 instructions.
3720// { p0 = cmp.eq(R0,R1)
3721// if (p0.new) R2 = add(R3, R4)
3722// R5 = add (R3, R1)
3723// }
3724// if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
3725//
3726// This instruction can be part of the previous packet only if both p0 and R2
3727// are promoted to .new values. This promotion happens in steps, first
3728// predicate register is promoted to .new and in the next iteration R2 is
3729// promoted. Therefore, in case of dependence check failure (due to R5) during
3730// next iteration, it should be converted back to its most basic form.
3731
3732// Return the new value instruction for a given store.
3734 int NVOpcode = Hexagon::getNewValueOpcode(MI.getOpcode());
3735 if (NVOpcode >= 0) // Valid new-value store instruction.
3736 return NVOpcode;
3737
3738 switch (MI.getOpcode()) {
3739 default:
3740 report_fatal_error(Twine("Unknown .new type: ") +
3741 std::to_string(MI.getOpcode()));
3742 case Hexagon::S4_storerb_ur:
3743 return Hexagon::S4_storerbnew_ur;
3744
3745 case Hexagon::S2_storerb_pci:
3746 return Hexagon::S2_storerb_pci;
3747
3748 case Hexagon::S2_storeri_pci:
3749 return Hexagon::S2_storeri_pci;
3750
3751 case Hexagon::S2_storerh_pci:
3752 return Hexagon::S2_storerh_pci;
3753
3754 case Hexagon::S2_storerd_pci:
3755 return Hexagon::S2_storerd_pci;
3756
3757 case Hexagon::S2_storerf_pci:
3758 return Hexagon::S2_storerf_pci;
3759
3760 case Hexagon::V6_vS32b_ai:
3761 return Hexagon::V6_vS32b_new_ai;
3762
3763 case Hexagon::V6_vS32b_pi:
3764 return Hexagon::V6_vS32b_new_pi;
3765 }
3766 return 0;
3767}
3768
3769// Returns the opcode to use when converting MI, which is a conditional jump,
3770// into a conditional instruction which uses the .new value of the predicate.
3771// We also use branch probabilities to add a hint to the jump.
3772// If MBPI is null, all edges will be treated as equally likely for the
3773// purposes of establishing a predication hint.
3775 const MachineBranchProbabilityInfo *MBPI) const {
3776 // We assume that block can have at most two successors.
3777 const MachineBasicBlock *Src = MI.getParent();
3778 const MachineOperand &BrTarget = MI.getOperand(1);
3779 bool Taken = false;
3780 const BranchProbability OneHalf(1, 2);
3781
3782 auto getEdgeProbability = [MBPI] (const MachineBasicBlock *Src,
3783 const MachineBasicBlock *Dst) {
3784 if (MBPI)
3785 return MBPI->getEdgeProbability(Src, Dst);
3786 return BranchProbability(1, Src->succ_size());
3787 };
3788
3789 if (BrTarget.isMBB()) {
3790 const MachineBasicBlock *Dst = BrTarget.getMBB();
3791 Taken = getEdgeProbability(Src, Dst) >= OneHalf;
3792 } else {
3793 // The branch target is not a basic block (most likely a function).
3794 // Since BPI only gives probabilities for targets that are basic blocks,
3795 // try to identify another target of this branch (potentially a fall-
3796 // -through) and check the probability of that target.
3797 //
3798 // The only handled branch combinations are:
3799 // - one conditional branch,
3800 // - one conditional branch followed by one unconditional branch.
3801 // Otherwise, assume not-taken.
3802 assert(MI.isConditionalBranch());
3803 const MachineBasicBlock &B = *MI.getParent();
3804 bool SawCond = false, Bad = false;
3805 for (const MachineInstr &I : B) {
3806 if (!I.isBranch())
3807 continue;
3808 if (I.isConditionalBranch()) {
3809 SawCond = true;
3810 if (&I != &MI) {
3811 Bad = true;
3812 break;
3813 }
3814 }
3815 if (I.isUnconditionalBranch() && !SawCond) {
3816 Bad = true;
3817 break;
3818 }
3819 }
3820 if (!Bad) {
3822 MachineBasicBlock::const_instr_iterator NextIt = std::next(It);
3823 if (NextIt == B.instr_end()) {
3824 // If this branch is the last, look for the fall-through block.
3825 for (const MachineBasicBlock *SB : B.successors()) {
3826 if (!B.isLayoutSuccessor(SB))
3827 continue;
3828 Taken = getEdgeProbability(Src, SB) < OneHalf;
3829 break;
3830 }
3831 } else {
3832 assert(NextIt->isUnconditionalBranch());
3833 // Find the first MBB operand and assume it's the target.
3834 const MachineBasicBlock *BT = nullptr;
3835 for (const MachineOperand &Op : NextIt->operands()) {
3836 if (!Op.isMBB())
3837 continue;
3838 BT = Op.getMBB();
3839 break;
3840 }
3841 Taken = BT && getEdgeProbability(Src, BT) < OneHalf;
3842 }
3843 } // if (!Bad)
3844 }
3845
3846 // The Taken flag should be set to something reasonable by this point.
3847
3848 switch (MI.getOpcode()) {
3849 case Hexagon::J2_jumpt:
3850 return Taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
3851 case Hexagon::J2_jumpf:
3852 return Taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
3853
3854 default:
3855 llvm_unreachable("Unexpected jump instruction.");
3856 }
3857}
3858
3859// Return .new predicate version for an instruction.
3861 const MachineBranchProbabilityInfo *MBPI) const {
3862 switch (MI.getOpcode()) {
3863 // Condtional Jumps
3864 case Hexagon::J2_jumpt:
3865 case Hexagon::J2_jumpf:
3866 return getDotNewPredJumpOp(MI, MBPI);
3867 }
3868
3869 int NewOpcode = Hexagon::getPredNewOpcode(MI.getOpcode());
3870 if (NewOpcode >= 0)
3871 return NewOpcode;
3872 return 0;
3873}
3874
3876 int NewOp = MI.getOpcode();
3877 if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
3878 NewOp = Hexagon::getPredOldOpcode(NewOp);
3879 // All Hexagon architectures have prediction bits on dot-new branches,
3880 // but only Hexagon V60+ has prediction bits on dot-old ones. Make sure
3881 // to pick the right opcode when converting back to dot-old.
3882 if (!Subtarget.hasFeature(Hexagon::ArchV60)) {
3883 switch (NewOp) {
3884 case Hexagon::J2_jumptpt:
3885 NewOp = Hexagon::J2_jumpt;
3886 break;
3887 case Hexagon::J2_jumpfpt:
3888 NewOp = Hexagon::J2_jumpf;
3889 break;
3890 case Hexagon::J2_jumprtpt:
3891 NewOp = Hexagon::J2_jumprt;
3892 break;
3893 case Hexagon::J2_jumprfpt:
3894 NewOp = Hexagon::J2_jumprf;
3895 break;
3896 }
3897 }
3898 assert(NewOp >= 0 &&
3899 "Couldn't change predicate new instruction to its old form.");
3900 }
3901
3902 if (isNewValueStore(NewOp)) { // Convert into non-new-value format
3903 NewOp = Hexagon::getNonNVStore(NewOp);
3904 assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
3905 }
3906
3907 if (Subtarget.hasV60Ops())
3908 return NewOp;
3909
3910 // Subtargets prior to V60 didn't support 'taken' forms of predicated jumps.
3911 switch (NewOp) {
3912 case Hexagon::J2_jumpfpt:
3913 return Hexagon::J2_jumpf;
3914 case Hexagon::J2_jumptpt:
3915 return Hexagon::J2_jumpt;
3916 case Hexagon::J2_jumprfpt:
3917 return Hexagon::J2_jumprf;
3918 case Hexagon::J2_jumprtpt:
3919 return Hexagon::J2_jumprt;
3920 }
3921 return NewOp;
3922}
3923
3924// See if instruction could potentially be a duplex candidate.
3925// If so, return its group. Zero otherwise.
3927 const MachineInstr &MI) const {
3928 Register DstReg, SrcReg, Src1Reg, Src2Reg;
3929 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
3930
3931 switch (MI.getOpcode()) {
3932 default:
3933 return HexagonII::HSIG_None;
3934 //
3935 // Group L1:
3936 //
3937 // Rd = memw(Rs+#u4:2)
3938 // Rd = memub(Rs+#u4:0)
3939 case Hexagon::L2_loadri_io:
3940 case Hexagon::dup_L2_loadri_io:
3941 DstReg = MI.getOperand(0).getReg();
3942 SrcReg = MI.getOperand(1).getReg();
3943 // Special case this one from Group L2.
3944 // Rd = memw(r29+#u5:2)
3945 if (isIntRegForSubInst(DstReg)) {
3946 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
3947 HRI.getStackRegister() == SrcReg &&
3948 MI.getOperand(2).isImm() &&
3949 isShiftedUInt<5,2>(MI.getOperand(2).getImm()))
3950 return HexagonII::HSIG_L2;
3951 // Rd = memw(Rs+#u4:2)
3952 if (isIntRegForSubInst(SrcReg) &&
3953 (MI.getOperand(2).isImm() &&
3954 isShiftedUInt<4,2>(MI.getOperand(2).getImm())))
3955 return HexagonII::HSIG_L1;
3956 }
3957 break;
3958 case Hexagon::L2_loadrub_io:
3959 case Hexagon::dup_L2_loadrub_io:
3960 // Rd = memub(Rs+#u4:0)
3961 DstReg = MI.getOperand(0).getReg();
3962 SrcReg = MI.getOperand(1).getReg();
3963 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3964 MI.getOperand(2).isImm() && isUInt<4>(MI.getOperand(2).getImm()))
3965 return HexagonII::HSIG_L1;
3966 break;
3967 //
3968 // Group L2:
3969 //
3970 // Rd = memh/memuh(Rs+#u3:1)
3971 // Rd = memb(Rs+#u3:0)
3972 // Rd = memw(r29+#u5:2) - Handled above.
3973 // Rdd = memd(r29+#u5:3)
3974 // deallocframe
3975 // [if ([!]p0[.new])] dealloc_return
3976 // [if ([!]p0[.new])] jumpr r31
3977 case Hexagon::L2_loadrh_io:
3978 case Hexagon::L2_loadruh_io:
3979 case Hexagon::dup_L2_loadrh_io:
3980 case Hexagon::dup_L2_loadruh_io:
3981 // Rd = memh/memuh(Rs+#u3:1)
3982 DstReg = MI.getOperand(0).getReg();
3983 SrcReg = MI.getOperand(1).getReg();
3984 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3985 MI.getOperand(2).isImm() &&
3986 isShiftedUInt<3,1>(MI.getOperand(2).getImm()))
3987 return HexagonII::HSIG_L2;
3988 break;
3989 case Hexagon::L2_loadrb_io:
3990 case Hexagon::dup_L2_loadrb_io:
3991 // Rd = memb(Rs+#u3:0)
3992 DstReg = MI.getOperand(0).getReg();
3993 SrcReg = MI.getOperand(1).getReg();
3994 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
3995 MI.getOperand(2).isImm() &&
3996 isUInt<3>(MI.getOperand(2).getImm()))
3997 return HexagonII::HSIG_L2;
3998 break;
3999 case Hexagon::L2_loadrd_io:
4000 case Hexagon::dup_L2_loadrd_io:
4001 // Rdd = memd(r29+#u5:3)
4002 DstReg = MI.getOperand(0).getReg();
4003 SrcReg = MI.getOperand(1).getReg();
4004 if (isDblRegForSubInst(DstReg, HRI) &&
4005 Hexagon::IntRegsRegClass.contains(SrcReg) &&
4006 HRI.getStackRegister() == SrcReg &&
4007 MI.getOperand(2).isImm() &&
4008 isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
4009 return HexagonII::HSIG_L2;
4010 break;
4011 // dealloc_return is not documented in Hexagon Manual, but marked
4012 // with A_SUBINSN attribute in iset_v4classic.py.
4013 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
4014 case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
4015 case Hexagon::L4_return:
4016 case Hexagon::L2_deallocframe:
4017 case Hexagon::dup_L2_deallocframe:
4018 return HexagonII::HSIG_L2;
4019 case Hexagon::EH_RETURN_JMPR:
4020 case Hexagon::PS_jmpret:
4021 case Hexagon::SL2_jumpr31:
4022 // jumpr r31
4023 // Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0
4024 DstReg = MI.getOperand(0).getReg();
4025 if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
4026 return HexagonII::HSIG_L2;
4027 break;
4028 case Hexagon::PS_jmprett:
4029 case Hexagon::PS_jmpretf:
4030 case Hexagon::PS_jmprettnewpt:
4031 case Hexagon::PS_jmpretfnewpt:
4032 case Hexagon::PS_jmprettnew:
4033 case Hexagon::PS_jmpretfnew:
4034 case Hexagon::SL2_jumpr31_t:
4035 case Hexagon::SL2_jumpr31_f:
4036 case Hexagon::SL2_jumpr31_tnew:
4037 case Hexagon::SL2_jumpr31_fnew:
4038 DstReg = MI.getOperand(1).getReg();
4039 SrcReg = MI.getOperand(0).getReg();
4040 // [if ([!]p0[.new])] jumpr r31
4041 if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
4042 (Hexagon::P0 == SrcReg)) &&
4043 (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
4044 return HexagonII::HSIG_L2;
4045 break;
4046 case Hexagon::L4_return_t:
4047 case Hexagon::L4_return_f:
4048 case Hexagon::L4_return_tnew_pnt:
4049 case Hexagon::L4_return_fnew_pnt:
4050 case Hexagon::L4_return_tnew_pt:
4051 case Hexagon::L4_return_fnew_pt:
4052 // [if ([!]p0[.new])] dealloc_return
4053 SrcReg = MI.getOperand(0).getReg();
4054 if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
4055 return HexagonII::HSIG_L2;
4056 break;
4057 //
4058 // Group S1:
4059 //
4060 // memw(Rs+#u4:2) = Rt
4061 // memb(Rs+#u4:0) = Rt
4062 case Hexagon::S2_storeri_io:
4063 case Hexagon::dup_S2_storeri_io:
4064 // Special case this one from Group S2.
4065 // memw(r29+#u5:2) = Rt
4066 Src1Reg = MI.getOperand(0).getReg();
4067 Src2Reg = MI.getOperand(2).getReg();
4068 if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
4069 isIntRegForSubInst(Src2Reg) &&
4070 HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
4071 isShiftedUInt<5,2>(MI.getOperand(1).getImm()))
4072 return HexagonII::HSIG_S2;
4073 // memw(Rs+#u4:2) = Rt
4074 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
4075 MI.getOperand(1).isImm() &&
4076 isShiftedUInt<4,2>(MI.getOperand(1).getImm()))
4077 return HexagonII::HSIG_S1;
4078 break;
4079 case Hexagon::S2_storerb_io:
4080 case Hexagon::dup_S2_storerb_io:
4081 // memb(Rs+#u4:0) = Rt
4082 Src1Reg = MI.getOperand(0).getReg();
4083 Src2Reg = MI.getOperand(2).getReg();
4084 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
4085 MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()))
4086 return HexagonII::HSIG_S1;
4087 break;
4088 //
4089 // Group S2:
4090 //
4091 // memh(Rs+#u3:1) = Rt
4092 // memw(r29+#u5:2) = Rt
4093 // memd(r29+#s6:3) = Rtt
4094 // memw(Rs+#u4:2) = #U1
4095 // memb(Rs+#u4) = #U1
4096 // allocframe(#u5:3)
4097 case Hexagon::S2_storerh_io:
4098 case Hexagon::dup_S2_storerh_io:
4099 // memh(Rs+#u3:1) = Rt
4100 Src1Reg = MI.getOperand(0).getReg();
4101 Src2Reg = MI.getOperand(2).getReg();
4102 if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
4103 MI.getOperand(1).isImm() &&
4104 isShiftedUInt<3,1>(MI.getOperand(1).getImm()))
4105 return HexagonII::HSIG_S1;
4106 break;
4107 case Hexagon::S2_storerd_io:
4108 case Hexagon::dup_S2_storerd_io:
4109 // memd(r29+#s6:3) = Rtt
4110 Src1Reg = MI.getOperand(0).getReg();
4111 Src2Reg = MI.getOperand(2).getReg();
4112 if (isDblRegForSubInst(Src2Reg, HRI) &&
4113 Hexagon::IntRegsRegClass.contains(Src1Reg) &&
4114 HRI.getStackRegister() == Src1Reg && MI.getOperand(1).isImm() &&
4115 isShiftedInt<6,3>(MI.getOperand(1).getImm()))
4116 return HexagonII::HSIG_S2;
4117 break;
4118 case Hexagon::S4_storeiri_io:
4119 case Hexagon::dup_S4_storeiri_io:
4120 // memw(Rs+#u4:2) = #U1
4121 Src1Reg = MI.getOperand(0).getReg();
4122 if (isIntRegForSubInst(Src1Reg) && MI.getOperand(1).isImm() &&
4123 isShiftedUInt<4,2>(MI.getOperand(1).getImm()) &&
4124 MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
4125 return HexagonII::HSIG_S2;
4126 break;
4127 case Hexagon::S4_storeirb_io:
4128 case Hexagon::dup_S4_storeirb_io:
4129 // memb(Rs+#u4) = #U1
4130 Src1Reg = MI.getOperand(0).getReg();
4131 if (isIntRegForSubInst(Src1Reg) &&
4132 MI.getOperand(1).isImm() && isUInt<4>(MI.getOperand(1).getImm()) &&
4133 MI.getOperand(2).isImm() && isUInt<1>(MI.getOperand(2).getImm()))
4134 return HexagonII::HSIG_S2;
4135 break;
4136 case Hexagon::S2_allocframe:
4137 case Hexagon::dup_S2_allocframe:
4138 if (MI.getOperand(2).isImm() &&
4139 isShiftedUInt<5,3>(MI.getOperand(2).getImm()))
4140 return HexagonII::HSIG_S1;
4141 break;
4142 //
4143 // Group A:
4144 //
4145 // Rx = add(Rx,#s7)
4146 // Rd = Rs
4147 // Rd = #u6
4148 // Rd = #-1
4149 // if ([!]P0[.new]) Rd = #0
4150 // Rd = add(r29,#u6:2)
4151 // Rx = add(Rx,Rs)
4152 // P0 = cmp.eq(Rs,#u2)
4153 // Rdd = combine(#0,Rs)
4154 // Rdd = combine(Rs,#0)
4155 // Rdd = combine(#u2,#U2)
4156 // Rd = add(Rs,#1)
4157 // Rd = add(Rs,#-1)
4158 // Rd = sxth/sxtb/zxtb/zxth(Rs)
4159 // Rd = and(Rs,#1)
4160 case Hexagon::A2_addi:
4161 case Hexagon::dup_A2_addi:
4162 DstReg = MI.getOperand(0).getReg();
4163 SrcReg = MI.getOperand(1).getReg();
4164 if (isIntRegForSubInst(DstReg)) {
4165 // Rd = add(r29,#u6:2)
4166 if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
4167 HRI.getStackRegister() == SrcReg && MI.getOperand(2).isImm() &&
4168 isShiftedUInt<6,2>(MI.getOperand(2).getImm()))
4169 return HexagonII::HSIG_A;
4170 // Rx = add(Rx,#s7)
4171 if ((DstReg == SrcReg) && MI.getOperand(2).isImm() &&
4172 isInt<7>(MI.getOperand(2).getImm()))
4173 return HexagonII::HSIG_A;
4174 // Rd = add(Rs,#1)
4175 // Rd = add(Rs,#-1)
4176 if (isIntRegForSubInst(SrcReg) && MI.getOperand(2).isImm() &&
4177 ((MI.getOperand(2).getImm() == 1) ||
4178 (MI.getOperand(2).getImm() == -1)))
4179 return HexagonII::HSIG_A;
4180 }
4181 break;
4182 case Hexagon::A2_add:
4183 case Hexagon::dup_A2_add:
4184 // Rx = add(Rx,Rs)
4185 DstReg = MI.getOperand(0).getReg();
4186 Src1Reg = MI.getOperand(1).getReg();
4187 Src2Reg = MI.getOperand(2).getReg();
4188 if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
4189 isIntRegForSubInst(Src2Reg))
4190 return HexagonII::HSIG_A;
4191 break;
4192 case Hexagon::A2_andir:
4193 case Hexagon::dup_A2_andir:
4194 // Same as zxtb.
4195 // Rd16=and(Rs16,#255)
4196 // Rd16=and(Rs16,#1)
4197 DstReg = MI.getOperand(0).getReg();
4198 SrcReg = MI.getOperand(1).getReg();
4199 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
4200 MI.getOperand(2).isImm() &&
4201 ((MI.getOperand(2).getImm() == 1) ||
4202 (MI.getOperand(2).getImm() == 255)))
4203 return HexagonII::HSIG_A;
4204 break;
4205 case Hexagon::A2_tfr:
4206 case Hexagon::dup_A2_tfr:
4207 // Rd = Rs
4208 DstReg = MI.getOperand(0).getReg();
4209 SrcReg = MI.getOperand(1).getReg();
4210 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
4211 return HexagonII::HSIG_A;
4212 break;
4213 case Hexagon::A2_tfrsi:
4214 case Hexagon::dup_A2_tfrsi:
4215 // Rd = #u6
4216 // Do not test for #u6 size since the const is getting extended
4217 // regardless and compound could be formed.
4218 // Rd = #-1
4219 DstReg = MI.getOperand(0).getReg();
4220 if (isIntRegForSubInst(DstReg))
4221 return HexagonII::HSIG_A;
4222 break;
4223 case Hexagon::C2_cmoveit:
4224 case Hexagon::C2_cmovenewit:
4225 case Hexagon::C2_cmoveif:
4226 case Hexagon::C2_cmovenewif:
4227 case Hexagon::dup_C2_cmoveit:
4228 case Hexagon::dup_C2_cmovenewit:
4229 case Hexagon::dup_C2_cmoveif:
4230 case Hexagon::dup_C2_cmovenewif:
4231 // if ([!]P0[.new]) Rd = #0
4232 // Actual form:
4233 // %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
4234 DstReg = MI.getOperand(0).getReg();
4235 SrcReg = MI.getOperand(1).getReg();
4236 if (isIntRegForSubInst(DstReg) &&
4237 Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
4238 MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0)
4239 return HexagonII::HSIG_A;
4240 break;
4241 case Hexagon::C2_cmpeqi:
4242 case Hexagon::dup_C2_cmpeqi:
4243 // P0 = cmp.eq(Rs,#u2)
4244 DstReg = MI.getOperand(0).getReg();
4245 SrcReg = MI.getOperand(1).getReg();
4246 if (Hexagon::PredRegsRegClass.contains(DstReg) &&
4247 Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
4248 MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm()))
4249 return HexagonII::HSIG_A;
4250 break;
4251 case Hexagon::A2_combineii:
4252 case Hexagon::A4_combineii:
4253 case Hexagon::dup_A2_combineii:
4254 case Hexagon::dup_A4_combineii:
4255 // Rdd = combine(#u2,#U2)
4256 DstReg = MI.getOperand(0).getReg();
4257 if (isDblRegForSubInst(DstReg, HRI) &&
4258 ((MI.getOperand(1).isImm() && isUInt<2>(MI.getOperand(1).getImm())) ||
4259 (MI.getOperand(1).isGlobal() &&
4260 isUInt<2>(MI.getOperand(1).getOffset()))) &&
4261 ((MI.getOperand(2).isImm() && isUInt<2>(MI.getOperand(2).getImm())) ||
4262 (MI.getOperand(2).isGlobal() &&
4263 isUInt<2>(MI.getOperand(2).getOffset()))))
4264 return HexagonII::HSIG_A;
4265 break;
4266 case Hexagon::A4_combineri:
4267 case Hexagon::dup_A4_combineri:
4268 // Rdd = combine(Rs,#0)
4269 // Rdd = combine(Rs,#0)
4270 DstReg = MI.getOperand(0).getReg();
4271 SrcReg = MI.getOperand(1).getReg();
4272 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4273 ((MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0) ||
4274 (MI.getOperand(2).isGlobal() && MI.getOperand(2).getOffset() == 0)))
4275 return HexagonII::HSIG_A;
4276 break;
4277 case Hexagon::A4_combineir:
4278 case Hexagon::dup_A4_combineir:
4279 // Rdd = combine(#0,Rs)
4280 DstReg = MI.getOperand(0).getReg();
4281 SrcReg = MI.getOperand(2).getReg();
4282 if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
4283 ((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) ||
4284 (MI.getOperand(1).isGlobal() && MI.getOperand(1).getOffset() == 0)))
4285 return HexagonII::HSIG_A;
4286 break;
4287 case Hexagon::A2_sxtb:
4288 case Hexagon::A2_sxth:
4289 case Hexagon::A2_zxtb:
4290 case Hexagon::A2_zxth:
4291 case Hexagon::dup_A2_sxtb:
4292 case Hexagon::dup_A2_sxth:
4293 case Hexagon::dup_A2_zxtb:
4294 case Hexagon::dup_A2_zxth:
4295 // Rd = sxth/sxtb/zxtb/zxth(Rs)
4296 DstReg = MI.getOperand(0).getReg();
4297 SrcReg = MI.getOperand(1).getReg();
4298 if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
4299 return HexagonII::HSIG_A;
4300 break;
4301 }
4302
4303 return HexagonII::HSIG_None;
4304}
4305
4307 return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Real);
4308}
4309
4311 const InstrItineraryData *ItinData, const MachineInstr &MI) const {
4312 // Default to one cycle for no itinerary. However, an "empty" itinerary may
4313 // still have a MinLatency property, which getStageLatency checks.
4314 if (!ItinData)
4315 return getInstrLatency(ItinData, MI);
4316
4317 if (MI.isTransient())
4318 return 0;
4319 return ItinData->getStageLatency(MI.getDesc().getSchedClass());
4320}
4321
4322/// getOperandLatency - Compute and return the use operand latency of a given
4323/// pair of def and use.
4324/// In most cases, the static scheduling itinerary was enough to determine the
4325/// operand latency. But it may not be possible for instructions with variable
4326/// number of defs / uses.
4327///
4328/// This is a raw interface to the itinerary that may be directly overriden by
4329/// a target. Use computeOperandLatency to get the best estimate of latency.
4331 const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4332 unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const {
4333 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4334
4335 // Get DefIdx and UseIdx for super registers.
4336 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4337
4338 if (DefMO.isReg() && DefMO.getReg().isPhysical()) {
4339 if (DefMO.isImplicit()) {
4340 for (MCPhysReg SR : HRI.superregs(DefMO.getReg())) {
4341 int Idx = DefMI.findRegisterDefOperandIdx(SR, &HRI, false, false);
4342 if (Idx != -1) {
4343 DefIdx = Idx;
4344 break;
4345 }
4346 }
4347 }
4348
4349 const MachineOperand &UseMO = UseMI.getOperand(UseIdx);
4350 if (UseMO.isImplicit()) {
4351 for (MCPhysReg SR : HRI.superregs(UseMO.getReg())) {
4352 int Idx = UseMI.findRegisterUseOperandIdx(SR, &HRI, false);
4353 if (Idx != -1) {
4354 UseIdx = Idx;
4355 break;
4356 }
4357 }
4358 }
4359 }
4360
4361 std::optional<unsigned> Latency = TargetInstrInfo::getOperandLatency(
4362 ItinData, DefMI, DefIdx, UseMI, UseIdx);
4363 if (Latency == 0)
4364 // We should never have 0 cycle latency between two instructions unless
4365 // they can be packetized together. However, this decision can't be made
4366 // here.
4367 Latency = 1;
4368 return Latency;
4369}
4370
4371// inverts the predication logic.
4372// p -> NotP
4373// NotP -> P
4376 if (Cond.empty())
4377 return false;
4378 unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
4379 Cond[0].setImm(Opc);
4380 return true;
4381}
4382
4384 int InvPredOpcode;
4385 InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
4386 : Hexagon::getTruePredOpcode(Opc);
4387 if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
4388 return InvPredOpcode;
4389
4390 llvm_unreachable("Unexpected predicated instruction");
4391}
4392
4393// Returns the max value that doesn't need to be extended.
4395 const uint64_t F = MI.getDesc().TSFlags;
4396 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4398 unsigned bits = (F >> HexagonII::ExtentBitsPos)
4400
4401 if (isSigned) // if value is signed
4402 return ~(-1U << (bits - 1));
4403 else
4404 return ~(-1U << bits);
4405}
4406
4407
4409 switch (MI.getOpcode()) {
4410 case Hexagon::L2_loadrbgp:
4411 case Hexagon::L2_loadrdgp:
4412 case Hexagon::L2_loadrhgp:
4413 case Hexagon::L2_loadrigp:
4414 case Hexagon::L2_loadrubgp:
4415 case Hexagon::L2_loadruhgp:
4416 case Hexagon::S2_storerbgp:
4417 case Hexagon::S2_storerbnewgp:
4418 case Hexagon::S2_storerhgp:
4419 case Hexagon::S2_storerhnewgp:
4420 case Hexagon::S2_storerigp:
4421 case Hexagon::S2_storerinewgp:
4422 case Hexagon::S2_storerdgp:
4423 case Hexagon::S2_storerfgp:
4424 return true;
4425 }
4426 const uint64_t F = MI.getDesc().TSFlags;
4427 unsigned addrMode =
4429 // Disallow any base+offset instruction. The assembler does not yet reorder
4430 // based up any zero offset instruction.
4431 return (addrMode == HexagonII::BaseRegOffset ||
4432 addrMode == HexagonII::BaseImmOffset ||
4433 addrMode == HexagonII::BaseLongOffset);
4434}
4435
4437 // Workaround for the Global Scheduler. Sometimes, it creates
4438 // A4_ext as a Pseudo instruction and calls this function to see if
4439 // it can be added to an existing bundle. Since the instruction doesn't
4440 // belong to any BB yet, we can't use getUnits API.
4441 if (MI.getOpcode() == Hexagon::A4_ext)
4442 return false;
4443
4444 unsigned FuncUnits = getUnits(MI);
4445 return HexagonFUnits::isSlot0Only(FuncUnits);
4446}
4447
4449 const uint64_t F = MI.getDesc().TSFlags;
4452}
4453
4455 bool ToBigInstrs) const {
4456 int Opcode = -1;
4457 if (ToBigInstrs) { // To BigCore Instr.
4458 // Check if the instruction can form a Duplex.
4459 if (getDuplexCandidateGroup(*MII))
4460 // Get the opcode marked "dup_*" tag.
4461 Opcode = getDuplexOpcode(*MII, ToBigInstrs);
4462 } else // To TinyCore Instr.
4463 Opcode = getDuplexOpcode(*MII, ToBigInstrs);
4464
4465 // Change the opcode of the instruction.
4466 if (Opcode >= 0)
4467 MII->setDesc(get(Opcode));
4468}
4469
4470// This function is used to translate instructions to facilitate generating
4471// Duplexes on TinyCore.
4473 bool ToBigInstrs) const {
4474 for (auto &MB : MF)
4475 for (MachineBasicBlock::instr_iterator Instr = MB.instr_begin(),
4476 End = MB.instr_end();
4477 Instr != End; ++Instr)
4478 changeDuplexOpcode(Instr, ToBigInstrs);
4479}
4480
4481// This is a specialized form of above function.
4483 MachineBasicBlock::instr_iterator MII, bool ToBigInstrs) const {
4485 while ((MII != MBB->instr_end()) && MII->isInsideBundle()) {
4486 changeDuplexOpcode(MII, ToBigInstrs);
4487 ++MII;
4488 }
4489}
4490
4492 using namespace HexagonII;
4493
4494 const uint64_t F = MI.getDesc().TSFlags;
4495 unsigned S = (F >> MemAccessSizePos) & MemAccesSizeMask;
4496 unsigned Size = getMemAccessSizeInBytes(MemAccessSize(S));
4497 if (Size != 0)
4498 return Size;
4499 // Y2_dcfetchbo is special
4500 if (MI.getOpcode() == Hexagon::Y2_dcfetchbo)
4502
4503 // Handle vector access sizes.
4504 const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
4505 switch (S) {
4507 return HRI.getSpillSize(Hexagon::HvxVRRegClass);
4508 default:
4509 llvm_unreachable("Unexpected instruction");
4510 }
4511}
4512
4513// Returns the min value that doesn't need to be extended.
4515 const uint64_t F = MI.getDesc().TSFlags;
4516 unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
4518 unsigned bits = (F >> HexagonII::ExtentBitsPos)
4520
4521 if (isSigned) // if value is signed
4522 return -1U << (bits - 1);
4523 else
4524 return 0;
4525}
4526
4527// Returns opcode of the non-extended equivalent instruction.
4529 // Check if the instruction has a register form that uses register in place
4530 // of the extended operand, if so return that as the non-extended form.
4531 short NonExtOpcode = Hexagon::getRegForm(MI.getOpcode());
4532 if (NonExtOpcode >= 0)
4533 return NonExtOpcode;
4534
4535 if (MI.getDesc().mayLoad() || MI.getDesc().mayStore()) {
4536 // Check addressing mode and retrieve non-ext equivalent instruction.
4537 switch (getAddrMode(MI)) {
4539 return Hexagon::changeAddrMode_abs_io(MI.getOpcode());
4541 return Hexagon::changeAddrMode_io_rr(MI.getOpcode());
4543 return Hexagon::changeAddrMode_ur_rr(MI.getOpcode());
4544
4545 default:
4546 return -1;
4547 }
4548 }
4549 return -1;
4550}
4551
4553 Register &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
4554 if (Cond.empty())
4555 return false;
4556 assert(Cond.size() == 2);
4557 if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
4558 LLVM_DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
4559 return false;
4560 }
4561 PredReg = Cond[1].getReg();
4562 PredRegPos = 1;
4563 // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
4564 PredRegFlags = 0;
4565 if (Cond[1].isImplicit())
4566 PredRegFlags = RegState::Implicit;
4567 if (Cond[1].isUndef())
4568 PredRegFlags |= RegState::Undef;
4569 return true;
4570}
4571
4573 return Hexagon::getRealHWInstr(MI.getOpcode(), Hexagon::InstrType_Pseudo);
4574}
4575
4577 return Hexagon::getRegForm(MI.getOpcode());
4578}
4579
4580// Return the number of bytes required to encode the instruction.
4581// Hexagon instructions are fixed length, 4 bytes, unless they
4582// use a constant extender, which requires another 4 bytes.
4583// For debug instructions and prolog labels, return 0.
4585 if (MI.isDebugInstr() || MI.isPosition())
4586 return 0;
4587
4588 unsigned Size = MI.getDesc().getSize();
4589 if (!Size)
4590 // Assume the default insn size in case it cannot be determined
4591 // for whatever reason.
4593
4596
4597 // Try and compute number of instructions in asm.
4598 if (BranchRelaxAsmLarge && MI.getOpcode() == Hexagon::INLINEASM) {
4599 const MachineBasicBlock &MBB = *MI.getParent();
4600 const MachineFunction *MF = MBB.getParent();
4601 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
4602
4603 // Count the number of register definitions to find the asm string.
4604 unsigned NumDefs = 0;
4605 for (; MI.getOperand(NumDefs).isReg() && MI.getOperand(NumDefs).isDef();
4606 ++NumDefs)
4607 assert(NumDefs != MI.getNumOperands()-2 && "No asm string?");
4608
4609 assert(MI.getOperand(NumDefs).isSymbol() && "No asm string?");
4610 // Disassemble the AsmStr and approximate number of instructions.
4611 const char *AsmStr = MI.getOperand(NumDefs).getSymbolName();
4612 Size = getInlineAsmLength(AsmStr, *MAI);
4613 }
4614
4615 return Size;
4616}
4617
4619 const uint64_t F = MI.getDesc().TSFlags;
4621}
4622
4624 const InstrItineraryData &II = *Subtarget.getInstrItineraryData();
4625 const InstrStage &IS = *II.beginStage(MI.getDesc().getSchedClass());
4626
4627 return IS.getUnits();
4628}
4629
4630// Calculate size of the basic block without debug instructions.
4632 return nonDbgMICount(BB->instr_begin(), BB->instr_end());
4633}
4634
4636 MachineBasicBlock::const_iterator BundleHead) const {
4637 assert(BundleHead->isBundle() && "Not a bundle header");
4638 auto MII = BundleHead.getInstrIterator();
4639 // Skip the bundle header.
4640 return nonDbgMICount(++MII, getBundleEnd(BundleHead.getInstrIterator()));
4641}
4642
4643/// immediateExtend - Changes the instruction in place to one using an immediate
4644/// extender.
4647 "Instruction must be extendable");
4648 // Find which operand is extendable.
4649 short ExtOpNum = getCExtOpNum(MI);
4650 MachineOperand &MO = MI.getOperand(ExtOpNum);
4651 // This needs to be something we understand.
4652 assert((MO.isMBB() || MO.isImm()) &&
4653 "Branch with unknown extendable field type");
4654 // Mark given operand as extended.
4656}
4657
4659 MachineInstr &MI, MachineBasicBlock *NewTarget) const {
4660 LLVM_DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to "
4661 << printMBBReference(*NewTarget);
4662 MI.dump(););
4663 assert(MI.isBranch());
4664 unsigned NewOpcode = getInvertedPredicatedOpcode(MI.getOpcode());
4665 int TargetPos = MI.getNumOperands() - 1;
4666 // In general branch target is the last operand,
4667 // but some implicit defs added at the end might change it.
4668 while ((TargetPos > -1) && !MI.getOperand(TargetPos).isMBB())
4669 --TargetPos;
4670 assert((TargetPos >= 0) && MI.getOperand(TargetPos).isMBB());
4671 MI.getOperand(TargetPos).setMBB(NewTarget);
4673 NewOpcode = reversePrediction(NewOpcode);
4674 }
4675 MI.setDesc(get(NewOpcode));
4676 return true;
4677}
4678
4680 /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
4682 MachineBasicBlock &B = *A;
4684 DebugLoc DL = I->getDebugLoc();
4685 MachineInstr *NewMI;
4686
4687 for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
4688 insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
4689 NewMI = BuildMI(B, I, DL, get(insn));
4690 LLVM_DEBUG(dbgs() << "\n"
4691 << getName(NewMI->getOpcode())
4692 << " Class: " << NewMI->getDesc().getSchedClass());
4693 NewMI->eraseFromParent();
4694 }
4695 /* --- The code above is used to generate complete set of Hexagon Insn --- */
4696}
4697
4698// inverts the predication logic.
4699// p -> NotP
4700// NotP -> P
4702 LLVM_DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI.dump());
4703 MI.setDesc(get(getInvertedPredicatedOpcode(MI.getOpcode())));
4704 return true;
4705}
4706
4707// Reverse the branch prediction.
4708unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
4709 int PredRevOpcode = -1;
4710 if (isPredictedTaken(Opcode))
4711 PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
4712 else
4713 PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
4714 assert(PredRevOpcode > 0);
4715 return PredRevOpcode;
4716}
4717
4718// TODO: Add more rigorous validation.
4720 const {
4721 return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
4722}
4723
4726 assert(MIB->isBundle());
4727 MachineOperand &Operand = MIB->getOperand(0);
4728 if (Operand.isImm())
4729 Operand.setImm(Operand.getImm() | memShufDisabledMask);
4730 else
4731 MIB->addOperand(MachineOperand::CreateImm(memShufDisabledMask));
4732}
4733
4735 assert(MIB.isBundle());
4736 const MachineOperand &Operand = MIB.getOperand(0);
4737 return (Operand.isImm() && (Operand.getImm() & memShufDisabledMask) != 0);
4738}
4739
4740// Addressing mode relations.
4742 return Opc >= 0 ? Hexagon::changeAddrMode_abs_io(Opc) : Opc;
4743}
4744
4746 return Opc >= 0 ? Hexagon::changeAddrMode_io_abs(Opc) : Opc;
4747}
4748
4750 return Opc >= 0 ? Hexagon::changeAddrMode_io_pi(Opc) : Opc;
4751}
4752
4754 return Opc >= 0 ? Hexagon::changeAddrMode_io_rr(Opc) : Opc;
4755}
4756
4758 return Opc >= 0 ? Hexagon::changeAddrMode_pi_io(Opc) : Opc;
4759}
4760
4762 return Opc >= 0 ? Hexagon::changeAddrMode_rr_io(Opc) : Opc;
4763}
4764
4766 return Opc >= 0 ? Hexagon::changeAddrMode_rr_ur(Opc) : Opc;
4767}
4768
4770 return Opc >= 0 ? Hexagon::changeAddrMode_ur_rr(Opc) : Opc;
4771}
4772
4774 static const MCInst Nop = MCInstBuilder(Hexagon::A2_nop);
4775
4776 return MCInstBuilder(Hexagon::BUNDLE)
4777 .addImm(0)
4778 .addInst(&Nop);
4779}
unsigned const MachineRegisterInfo * MRI
MachineInstrBuilder & UseMI
MachineInstrBuilder MachineInstrBuilder & DefMI
static bool mayAlias(MachineInstr &MIa, SmallVectorImpl< MachineInstr * > &MemInsns, AliasAnalysis *AA)
static bool isConstant(const MachineInstr &MI)
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
static const Function * getParent(const Value *V)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
uint64_t Size
bool End
Definition: ELF_riscv.cpp:480
static bool isSigned(unsigned int Opcode)
const HexagonInstrInfo * TII
static cl::opt< bool > DisableNVSchedule("disable-hexagon-nv-schedule", cl::Hidden, cl::desc("Disable schedule adjustment for new value stores."))
const int Hexagon_MEMH_OFFSET_MAX
const int Hexagon_MEMB_OFFSET_MAX
const int Hexagon_MEMH_OFFSET_MIN
const int Hexagon_MEMD_OFFSET_MAX
static cl::opt< bool > EnableTimingClassLatency("enable-timing-class-latency", cl::Hidden, cl::init(false), cl::desc("Enable timing class latency"))
const int Hexagon_MEMD_OFFSET_MIN
const int Hexagon_ADDI_OFFSET_MAX
static cl::opt< bool > EnableACCForwarding("enable-acc-forwarding", cl::Hidden, cl::init(true), cl::desc("Enable vec acc forwarding"))
static void getLiveInRegsAt(LivePhysRegs &Regs, const MachineInstr &MI)
const int Hexagon_MEMW_OFFSET_MAX
Constants for Hexagon instructions.
const int Hexagon_MEMW_OFFSET_MIN
cl::opt< bool > ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden, cl::init(false), cl::desc("Do not consider inline-asm a scheduling/" "packetization boundary."))
const int Hexagon_ADDI_OFFSET_MIN
static cl::opt< bool > BranchRelaxAsmLarge("branch-relax-asm-large", cl::init(true), cl::Hidden, cl::desc("branch relax asm"))
static void parseOperands(const MachineInstr &MI, SmallVectorImpl< Register > &Defs, SmallVectorImpl< Register > &Uses)
Gather register def/uses from MI.
static cl::opt< bool > EnableALUForwarding("enable-alu-forwarding", cl::Hidden, cl::init(true), cl::desc("Enable vec alu forwarding"))
const int Hexagon_MEMB_OFFSET_MIN
static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB, MachineBasicBlock::const_instr_iterator MIE)
Calculate number of instructions excluding the debug instructions.
static cl::opt< bool > EnableBranchPrediction("hexagon-enable-branch-prediction", cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"))
static bool isDblRegForSubInst(Register Reg, const HexagonRegisterInfo &HRI)
static void getLiveOutRegsAt(LivePhysRegs &Regs, const MachineInstr &MI)
static cl::opt< bool > UseDFAHazardRec("dfa-hazard-rec", cl::init(true), cl::Hidden, cl::desc("Use the DFA based hazard recognizer."))
static bool isIntRegForSubInst(Register Reg)
static bool isDuplexPairMatch(unsigned Ga, unsigned Gb)
#define HEXAGON_INSTR_SIZE
IRTranslator LLVM IR MI
This file implements the LivePhysRegs utility for tracking liveness of physical registers.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
static DebugLoc getDebugLoc(MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI)
Return the first found DebugLoc that has a DILocation, given a range of instructions.
static bool isUndef(const MachineInstr &MI)
unsigned const TargetRegisterInfo * TRI
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
static bool isReg(const MCInst &MI, unsigned OpNo)
uint64_t IntrinsicInst * II
PassBuilder PB(Machine, PassOpts->PTO, std::nullopt, &PIC)
static StringRef getName(Value *V)
static bool isBranch(unsigned Opcode)
const SmallVectorImpl< MachineOperand > MachineBasicBlock * TBB
const SmallVectorImpl< MachineOperand > & Cond
Remove Loads Into Fake Uses
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool isImm(const MachineOperand &MO, MachineRegisterInfo *MRI)
raw_pwrite_stream & OS
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition: Value.cpp:469
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file contains some functions that are useful when dealing with strings.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
This class represents an Operation in the Expression.
A debug info location.
Definition: DebugLoc.h:33
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
short getEquivalentHWInstr(const MachineInstr &MI) const
int getDuplexOpcode(const MachineInstr &MI, bool ForBigCore=true) const
unsigned removeBranch(MachineBasicBlock &MBB, int *BytesRemoved=nullptr) const override
Remove the branching code at the end of the specific MBB.
bool isPredicated(const MachineInstr &MI) const override
Returns true if the instruction is already predicated.
bool isHVXMemWithAIndirect(const MachineInstr &I, const MachineInstr &J) const
short changeAddrMode_abs_io(short Opc) const
bool isRestrictNoSlot1Store(const MachineInstr &MI) const
short getRegForm(const MachineInstr &MI) const
bool isVecALU(const MachineInstr &MI) const
bool isCompoundBranchInstr(const MachineInstr &MI) const
bool isDuplexPair(const MachineInstr &MIa, const MachineInstr &MIb) const
Symmetrical. See if these two instructions are fit for duplex pair.
bool isJumpR(const MachineInstr &MI) const
ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, const ScheduleDAG *DAG) const override
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
std::pair< unsigned, unsigned > decomposeMachineOperandsTargetFlags(unsigned TF) const override
Decompose the machine operand's target flags into two values - the direct target flag value and any o...
bool producesStall(const MachineInstr &ProdMI, const MachineInstr &ConsMI) const
bool invertAndChangeJumpTarget(MachineInstr &MI, MachineBasicBlock *NewTarget) const
bool isPredictedTaken(unsigned Opcode) const
bool isSaveCalleeSavedRegsCall(const MachineInstr &MI) const
Register isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const override
TargetInstrInfo overrides.
unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const
int getDotNewPredOp(const MachineInstr &MI, const MachineBranchProbabilityInfo *MBPI) const
bool ClobbersPredicate(MachineInstr &MI, std::vector< MachineOperand > &Pred, bool SkipDead) const override
If the specified instruction defines any predicate or condition code register(s) used for predication...
unsigned getInvertedPredicatedOpcode(const int Opc) const
bool isPureSlot0(const MachineInstr &MI) const
bool doesNotReturn(const MachineInstr &CallMI) const
HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr &MI) const
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl< MachineOperand > &Cond, bool AllowModify) const override
Analyze the branching code at the end of MBB, returning true if it cannot be understood (e....
bool getPredReg(ArrayRef< MachineOperand > Cond, Register &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const
bool isPredicatedNew(const MachineInstr &MI) const
bool isSignExtendingLoad(const MachineInstr &MI) const
bool isVecAcc(const MachineInstr &MI) const
bool reversePredSense(MachineInstr &MI) const
unsigned getAddrMode(const MachineInstr &MI) const
MCInst getNop() const override
bool isJumpWithinBranchRange(const MachineInstr &MI, unsigned offset) const
bool mayBeNewStore(const MachineInstr &MI) const
bool isOperandExtended(const MachineInstr &MI, unsigned OperandNum) const
bool canExecuteInBundle(const MachineInstr &First, const MachineInstr &Second) const
Can these instructions execute at the same time in a bundle.
std::optional< unsigned > getOperandLatency(const InstrItineraryData *ItinData, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const override
getOperandLatency - Compute and return the use operand latency of a given pair of def and use.
bool isAddrModeWithOffset(const MachineInstr &MI) const
bool getMemOperandsWithOffsetWidth(const MachineInstr &LdSt, SmallVectorImpl< const MachineOperand * > &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const override
Get the base register and byte offset of a load/store instr.
bool isValidOffset(unsigned Opcode, int Offset, const TargetRegisterInfo *TRI, bool Extend=true) const
bool isBaseImmOffset(const MachineInstr &MI) const
bool isAbsoluteSet(const MachineInstr &MI) const
short changeAddrMode_io_pi(short Opc) const
short changeAddrMode_pi_io(short Opc) const
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &Mask, int64_t &Value) const override
For a comparison instruction, return the source registers in SrcReg and SrcReg2 if having two registe...
bool reverseBranchCondition(SmallVectorImpl< MachineOperand > &Cond) const override
Reverses the branch condition of the specified condition list, returning false on success and true if...
std::unique_ptr< PipelinerLoopInfo > analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override
Analyze loop L, which must be a single-basic-block loop, and if the conditions can be understood enou...
bool isLoopN(const MachineInstr &MI) const
bool isSpillPredRegOp(const MachineInstr &MI) const
bool hasStoreToStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const override
Check if the instruction or the bundle of instructions has store to stack slots.
ArrayRef< std::pair< unsigned, const char * > > getSerializableDirectMachineOperandTargetFlags() const override
Return an array that contains the direct target flag values and their names.
bool isIndirectCall(const MachineInstr &MI) const
short changeAddrMode_ur_rr(short Opc) const
bool isValidAutoIncImm(const EVT VT, const int Offset) const
bool hasNonExtEquivalent(const MachineInstr &MI) const
bool isConstExtended(const MachineInstr &MI) const
bool getIncrementValue(const MachineInstr &MI, int &Value) const override
If the instruction is an increment of a constant value, return the amount.
int getCondOpcode(int Opc, bool sense) const
MachineInstr * findLoopInstr(MachineBasicBlock *BB, unsigned EndLoopOp, MachineBasicBlock *TargetBB, SmallPtrSet< MachineBasicBlock *, 8 > &Visited) const
Find the hardware loop instruction used to set-up the specified loop.
unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData, const MachineInstr &MI) const
bool isAccumulator(const MachineInstr &MI) const
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef< MachineOperand > Cond, const DebugLoc &DL, int *BytesAdded=nullptr) const override
Insert branch code into the end of the specified MachineBasicBlock.
unsigned getInstrLatency(const InstrItineraryData *ItinData, const MachineInstr &MI, unsigned *PredCost=nullptr) const override
Compute the instruction latency of a given instruction.
bool PredOpcodeHasJMP_c(unsigned Opcode) const
bool isNewValue(const MachineInstr &MI) const
Register createVR(MachineFunction *MF, MVT VT) const
HexagonInstrInfo specifics.
bool isDotCurInst(const MachineInstr &MI) const
bool validateBranchCond(const ArrayRef< MachineOperand > &Cond) const
bool isExtended(const MachineInstr &MI) const
bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, unsigned ExtraPredCycles, BranchProbability Probability) const override
Return true if it's profitable to predicate instructions with accumulated instruction latency of "Num...
bool isAsCheapAsAMove(const MachineInstr &MI) const override
int getMaxValue(const MachineInstr &MI) const
bool isPredicateLate(unsigned Opcode) const
short changeAddrMode_rr_ur(short Opc) const
bool hasPseudoInstrPair(const MachineInstr &MI) const
bool isNewValueInst(const MachineInstr &MI) const
unsigned getInlineAsmLength(const char *Str, const MCAsmInfo &MAI, const TargetSubtargetInfo *STI=nullptr) const override
Measure the specified inline asm to determine an approximation of its length.
bool areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, const MachineInstr &MIb) const override
int getNonDotCurOp(const MachineInstr &MI) const
bool isIndirectL4Return(const MachineInstr &MI) const
unsigned reversePrediction(unsigned Opcode) const
ArrayRef< std::pair< unsigned, const char * > > getSerializableBitmaskMachineOperandTargetFlags() const override
Return an array that contains the bitmask target flag values and their names.
InstrStage::FuncUnits getUnits(const MachineInstr &MI) const
unsigned getMemAccessSize(const MachineInstr &MI) const
bool predOpcodeHasNot(ArrayRef< MachineOperand > Cond) const
void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
Store the specified register of the given register class to the specified stack frame index.
bool isComplex(const MachineInstr &MI) const
bool isPostIncrement(const MachineInstr &MI) const override
Return true for post-incremented instructions.
void setBundleNoShuf(MachineBasicBlock::instr_iterator MIB) const
MachineBasicBlock::instr_iterator expandVGatherPseudo(MachineInstr &MI) const
int getDotNewOp(const MachineInstr &MI) const
void changeDuplexOpcode(MachineBasicBlock::instr_iterator MII, bool ToBigInstrs) const
bool isMemOp(const MachineInstr &MI) const
int getDotOldOp(const MachineInstr &MI) const
short getPseudoInstrPair(const MachineInstr &MI) const
bool hasUncondBranch(const MachineBasicBlock *B) const
short getNonExtOpcode(const MachineInstr &MI) const
bool isTailCall(const MachineInstr &MI) const override
void insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const override
Insert a noop into the instruction stream at the specified point.
bool isDeallocRet(const MachineInstr &MI) const
unsigned getCExtOpNum(const MachineInstr &MI) const
bool isSolo(const MachineInstr &MI) const
DFAPacketizer * CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override
Create machine specific model for scheduling.
bool isLateSourceInstr(const MachineInstr &MI) const
bool isDotNewInst(const MachineInstr &MI) const
void translateInstrsForDup(MachineFunction &MF, bool ToBigInstrs=true) const
bool isTC1(const MachineInstr &MI) const
bool isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const override
Test if the given instruction should be considered a scheduling boundary.
bool predCanBeUsedAsDotNew(const MachineInstr &MI, Register PredReg) const
unsigned getSize(const MachineInstr &MI) const
bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, BranchProbability Probability) const override
Return true if it's profitable for if-converter to duplicate instructions of specified accumulated in...
short changeAddrMode_io_abs(short Opc) const
int getDotCurOp(const MachineInstr &MI) const
bool expandPostRAPseudo(MachineInstr &MI) const override
This function is called for all pseudo instructions that remain after register allocation.
bool isExpr(unsigned OpType) const
void genAllInsnTimingClasses(MachineFunction &MF) const
bool isTC2Early(const MachineInstr &MI) const
bool hasEHLabel(const MachineBasicBlock *B) const
bool shouldSink(const MachineInstr &MI) const override
bool isZeroExtendingLoad(const MachineInstr &MI) const
short changeAddrMode_rr_io(short Opc) const
bool isHVXVec(const MachineInstr &MI) const
bool isDependent(const MachineInstr &ProdMI, const MachineInstr &ConsMI) const
short changeAddrMode_io_rr(short Opc) const
bool SubsumesPredicate(ArrayRef< MachineOperand > Pred1, ArrayRef< MachineOperand > Pred2) const override
Returns true if the first specified predicate subsumes the second, e.g.
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc, bool RenamableDest=false, bool RenamableSrc=false) const override
Emit instructions to copy a pair of physical registers.
bool mayBeCurLoad(const MachineInstr &MI) const
bool getBundleNoShuf(const MachineInstr &MIB) const
bool isNewValueJump(const MachineInstr &MI) const
bool isTC4x(const MachineInstr &MI) const
bool PredicateInstruction(MachineInstr &MI, ArrayRef< MachineOperand > Cond) const override
Convert the instruction into a predicated instruction.
bool isFloat(const MachineInstr &MI) const
void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
Load the specified register of the given register class from the specified stack frame index.
bool isToBeScheduledASAP(const MachineInstr &MI1, const MachineInstr &MI2) const
MachineOperand * getBaseAndOffset(const MachineInstr &MI, int64_t &Offset, LocationSize &AccessSize) const
bool getInvertedPredSense(SmallVectorImpl< MachineOperand > &Cond) const
unsigned nonDbgBBSize(const MachineBasicBlock *BB) const
getInstrTimingClassLatency - Compute the instruction latency of a given instruction using Timing Clas...
uint64_t getType(const MachineInstr &MI) const
bool isEndLoopN(unsigned Opcode) const
bool getBaseAndOffsetPosition(const MachineInstr &MI, unsigned &BasePos, unsigned &OffsetPos) const override
For instructions with a base and offset, return the position of the base register and offset operands...
bool isPredicable(const MachineInstr &MI) const override
Return true if the specified instruction can be predicated.
bool isExtendable(const MachineInstr &MI) const
void immediateExtend(MachineInstr &MI) const
immediateExtend - Changes the instruction in place to one using an immediate extender.
HexagonII::CompoundGroup getCompoundCandidateGroup(const MachineInstr &MI) const
bool hasLoadFromStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const override
Check if the instruction or the bundle of instructions has load from stack slots.
SmallVector< MachineInstr *, 2 > getBranchingInstrs(MachineBasicBlock &MBB) const
HexagonInstrInfo(HexagonSubtarget &ST)
bool isPredicatedTrue(const MachineInstr &MI) const
bool isNewValueStore(const MachineInstr &MI) const
int getMinValue(const MachineInstr &MI) const
bool isVecUsableNextPacket(const MachineInstr &ProdMI, const MachineInstr &ConsMI) const
unsigned getCompoundOpcode(const MachineInstr &GA, const MachineInstr &GB) const
bool addLatencyToSchedule(const MachineInstr &MI1, const MachineInstr &MI2) const
Register isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const override
If the specified machine instruction is a direct store to a stack slot, return the virtual or physica...
int getDotNewPredJumpOp(const MachineInstr &MI, const MachineBranchProbabilityInfo *MBPI) const
bool isTC2(const MachineInstr &MI) const
Register getFrameRegister(const MachineFunction &MF) const override
const InstrItineraryData * getInstrItineraryData() const override
getInstrItins - Return the instruction itineraries based on subtarget selection.
const HexagonRegisterInfo * getRegisterInfo() const override
bool useNewValueStores() const
Itinerary data supplied by a subtarget to be used by a target.
unsigned getStageLatency(unsigned ItinClassIndx) const
Return the total stage latency of the given class.
void RemoveMachineInstrFromMaps(MachineInstr &MI)
A set of physical registers with utility functions to track liveness when walking backward/forward th...
Definition: LivePhysRegs.h:52
bool contains(MCPhysReg Reg) const
Returns true if register Reg is contained in the set.
Definition: LivePhysRegs.h:109
void stepForward(const MachineInstr &MI, SmallVectorImpl< std::pair< MCPhysReg, const MachineOperand * > > &Clobbers)
Simulates liveness when stepping forward over an instruction(bundle).
bool available(const MachineRegisterInfo &MRI, MCPhysReg Reg) const
Returns true if register Reg and no aliasing register is in the set.
void stepBackward(const MachineInstr &MI)
Simulates liveness when stepping backwards over an instruction(bundle).
void addLiveIns(const MachineBasicBlock &MBB)
Adds all live-in registers of basic block MBB.
void addLiveOuts(const MachineBasicBlock &MBB)
Adds all live-out registers of basic block MBB.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:39
This class is intended to be used as a base class for asm properties and features specific to the tar...
Definition: MCAsmInfo.h:56
virtual unsigned getMaxInstLength(const MCSubtargetInfo *STI=nullptr) const
Returns the maximum possible encoded instruction size in bytes.
Definition: MCAsmInfo.h:532
StringRef getCommentString() const
Definition: MCAsmInfo.h:543
const char * getSeparatorString() const
Definition: MCAsmInfo.h:538
MCInstBuilder & addInst(const MCInst *Val)
Add a new MCInst operand.
Definition: MCInstBuilder.h:67
MCInstBuilder & addImm(int64_t Val)
Add a new integer immediate operand.
Definition: MCInstBuilder.h:43
Instances of this class represent a single low-level machine instruction.
Definition: MCInst.h:185
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
unsigned getSchedClass() const
Return the scheduling class for this instruction.
Definition: MCInstrDesc.h:600
unsigned getNumDefs() const
Return the number of MachineOperands that are register definitions.
Definition: MCInstrDesc.h:248
Wrapper class representing physical registers. Should be passed by value.
Definition: MCRegister.h:33
Machine Value Type.
SimpleValueType SimpleTy
instr_iterator instr_begin()
MachineInstrBundleIterator< const MachineInstr > const_iterator
iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
DebugLoc findDebugLoc(instr_iterator MBBI)
Find the next valid DebugLoc starting at MBBI, skipping any debug instructions.
Instructions::iterator instr_iterator
bool isLayoutSuccessor(const MachineBasicBlock *MBB) const
Return true if the specified MBB will be emitted immediately after this block, such that if this bloc...
instr_iterator instr_end()
Instructions::const_iterator const_instr_iterator
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
iterator_range< succ_iterator > successors()
iterator_range< pred_iterator > predecessors()
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
BranchProbability getEdgeProbability(const MachineBasicBlock *Src, const MachineBasicBlock *Dst) const
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
const char * createExternalSymbolName(StringRef Name)
Allocate a string and populate it with the given external symbol name.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addFrameIndex(int Idx) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & cloneMemRefs(const MachineInstr &OtherMI) const
const MachineInstrBuilder & addUse(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register use operand.
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
reverse_iterator getReverse() const
Get a reverse iterator to the same node.
Representation of each machine instruction.
Definition: MachineInstr.h:71
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:577
bool readsRegister(Register Reg, const TargetRegisterInfo *TRI) const
Return true if the MachineInstr reads the specified register.
bool isBundle() const
unsigned getNumOperands() const
Retuns the total number of operands.
Definition: MachineInstr.h:580
unsigned getNumExplicitOperands() const
Returns the number of non-implicit operands.
bool mayLoad(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly read memory.
const MCInstrDesc & getDesc() const
Returns the target instruction descriptor of this MachineInstr.
Definition: MachineInstr.h:574
bool hasUnmodeledSideEffects() const
Return true if this instruction has side effects that are not modeled by mayLoad / mayStore,...
bool hasOrderedMemoryRef() const
Return true if this instruction may have an ordered or volatile memory reference, or if the informati...
bool mayStore(QueryType Type=AnyInBundle) const
Return true if this instruction could possibly modify memory.
void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:587
bool isIndirectBranch(QueryType Type=AnyInBundle) const
Return true if this is an indirect branch, such as a branch through a register.
Definition: MachineInstr.h:997
A description of a memory reference used in the backend.
@ MOVolatile
The memory access is volatile.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
unsigned getSubReg() const
void setImm(int64_t immVal)
int64_t getImm() const
bool isImplicit() const
bool isReg() const
isReg - Tests if this is a MO_Register operand.
MachineBasicBlock * getMBB() const
bool isCPI() const
isCPI - Tests if this is a MO_ConstantPoolIndex operand.
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
bool isSymbol() const
isSymbol - Tests if this is a MO_ExternalSymbol operand.
bool isJTI() const
isJTI - Tests if this is a MO_JumpTableIndex operand.
unsigned getTargetFlags() const
static MachineOperand CreateImm(int64_t Val)
bool isGlobal() const
isGlobal - Tests if this is a MO_GlobalAddress operand.
bool isBlockAddress() const
isBlockAddress - Tests if this is a MO_BlockAddress operand.
Register getReg() const
getReg - Returns the register number.
void addTargetFlag(unsigned F)
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
@ MO_ConstantPoolIndex
Address of indexed Constant in Constant Pool.
@ MO_GlobalAddress
Address of a global value.
@ MO_BlockAddress
Address of a basic block.
@ MO_MachineBasicBlock
MachineBasicBlock reference.
@ MO_ExternalSymbol
Name of external global symbol.
@ MO_JumpTableIndex
Address of indexed Jump Table for switch.
bool isFPImm() const
isFPImm - Tests if this is a MO_FPImmediate operand.
bool isMBB() const
isMBB - Tests if this is a MO_MachineBasicBlock operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
void dump() const
Definition: Pass.cpp:136
Special value supplied for machine level alias analysis.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
constexpr bool isPhysical() const
Return true if the specified register number is in the physical register namespace.
Definition: Register.h:95
HazardRecognizer - This determines whether or not an instruction can be issued this cycle,...
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
Register getReg() const
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
constexpr size_t size() const
size - Get the string size.
Definition: StringRef.h:150
constexpr const char * data() const
data - Get a pointer to the start of the string (which may not be null terminated).
Definition: StringRef.h:144
size_t count(char C) const
Return the number of occurrences of C in the string.
Definition: StringRef.h:451
Object returned by analyzeLoopForPipelining.
virtual ScheduleHazardRecognizer * CreateTargetPostRAHazardRecognizer(const InstrItineraryData *, const ScheduleDAG *DAG) const
Allocate and return a hazard recognizer to use for this target when scheduling the machine instructio...
virtual bool hasStoreToStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const
If the specified machine instruction has a store to a stack slot, return true along with the FrameInd...
virtual std::optional< unsigned > getOperandLatency(const InstrItineraryData *ItinData, SDNode *DefNode, unsigned DefIdx, SDNode *UseNode, unsigned UseIdx) const
virtual bool hasLoadFromStackSlot(const MachineInstr &MI, SmallVectorImpl< const MachineMemOperand * > &Accesses) const
If the specified machine instruction has a load from a stack slot, return true along with the FrameIn...
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:77
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
TargetSubtargetInfo - Generic base class for all target subtargets.
virtual const InstrItineraryData * getInstrItineraryData() const
getInstrItineraryData - Returns instruction itinerary data for the target or specific subtarget.
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition: Twine.h:81
LLVM Value Representation.
Definition: Value.h:74
self_iterator getIterator()
Definition: ilist_node.h:132
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
bool isSlot0Only(unsigned units)
unsigned const TypeCVI_LAST
unsigned const TypeCVI_FIRST
@ Implicit
Not emitted register (e.g. carry, or temporary result).
@ InternalRead
Register reads a value that is defined inside the same instruction or bundle.
@ Kill
The last use of a register.
@ Undef
Value of the register doesn't matter.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
@ Length
Definition: DWP.cpp:480
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
@ Done
Definition: Threading.h:60
bool is_TC1(unsigned SchedClass)
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:342
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:420
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
Definition: MathExtras.h:293
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
MachineBasicBlock::instr_iterator getBundleEnd(MachineBasicBlock::instr_iterator I)
Returns an iterator pointing beyond the bundle containing I.
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
bool is_TC2(unsigned SchedClass)
unsigned getUndefRegState(bool B)
unsigned getRegState(const MachineOperand &RegOp)
Get all register state flags from machine operand RegOp.
bool is_TC2early(unsigned SchedClass)
unsigned getKillRegState(bool B)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1903
Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
Printable printMBBReference(const MachineBasicBlock &MBB)
Prints a machine basic block reference.
bool is_TC4x(unsigned SchedClass)
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Extended Value Type.
Definition: ValueTypes.h:35
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition: ValueTypes.h:368
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:311
These values represent a non-pipelined step in the execution of an instruction.
FuncUnits getUnits() const
Returns the choice of FUs.
This class contains a discriminated union of information about pointers in memory operands,...
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.