LLVM 20.0.0git
PPCFrameLowering.cpp
Go to the documentation of this file.
1//===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the PPC implementation of TargetFrameLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "PPCFrameLowering.h"
15#include "PPCInstrBuilder.h"
16#include "PPCInstrInfo.h"
18#include "PPCSubtarget.h"
19#include "PPCTargetMachine.h"
20#include "llvm/ADT/Statistic.h"
28#include "llvm/IR/Function.h"
30
31using namespace llvm;
32
33#define DEBUG_TYPE "framelowering"
34STATISTIC(NumPESpillVSR, "Number of spills to vector in prologue");
35STATISTIC(NumPEReloadVSR, "Number of reloads from vector in epilogue");
36STATISTIC(NumPrologProbed, "Number of prologues probed");
37
38static cl::opt<bool>
39EnablePEVectorSpills("ppc-enable-pe-vector-spills",
40 cl::desc("Enable spills in prologue to vector registers."),
41 cl::init(false), cl::Hidden);
42
43static unsigned computeReturnSaveOffset(const PPCSubtarget &STI) {
44 if (STI.isAIXABI())
45 return STI.isPPC64() ? 16 : 8;
46 // SVR4 ABI:
47 return STI.isPPC64() ? 16 : 4;
48}
49
50static unsigned computeTOCSaveOffset(const PPCSubtarget &STI) {
51 if (STI.isAIXABI())
52 return STI.isPPC64() ? 40 : 20;
53 return STI.isELFv2ABI() ? 24 : 40;
54}
55
56static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI) {
57 // First slot in the general register save area.
58 return STI.isPPC64() ? -8U : -4U;
59}
60
61static unsigned computeLinkageSize(const PPCSubtarget &STI) {
62 if (STI.isAIXABI() || STI.isPPC64())
63 return (STI.isELFv2ABI() ? 4 : 6) * (STI.isPPC64() ? 8 : 4);
64
65 // 32-bit SVR4 ABI:
66 return 8;
67}
68
69static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI) {
70 // Third slot in the general purpose register save area.
72 return -12U;
73
74 // Second slot in the general purpose register save area.
75 return STI.isPPC64() ? -16U : -8U;
76}
77
78static unsigned computeCRSaveOffset(const PPCSubtarget &STI) {
79 return (STI.isAIXABI() && !STI.isPPC64()) ? 4 : 8;
80}
81
84 STI.getPlatformStackAlignment(), 0),
85 Subtarget(STI), ReturnSaveOffset(computeReturnSaveOffset(Subtarget)),
86 TOCSaveOffset(computeTOCSaveOffset(Subtarget)),
87 FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget)),
88 LinkageSize(computeLinkageSize(Subtarget)),
89 BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget)),
90 CRSaveOffset(computeCRSaveOffset(Subtarget)) {}
91
92// With the SVR4 ABI, callee-saved registers have fixed offsets on the stack.
94 unsigned &NumEntries) const {
95
96// Floating-point register save area offsets.
97#define CALLEE_SAVED_FPRS \
98 {PPC::F31, -8}, \
99 {PPC::F30, -16}, \
100 {PPC::F29, -24}, \
101 {PPC::F28, -32}, \
102 {PPC::F27, -40}, \
103 {PPC::F26, -48}, \
104 {PPC::F25, -56}, \
105 {PPC::F24, -64}, \
106 {PPC::F23, -72}, \
107 {PPC::F22, -80}, \
108 {PPC::F21, -88}, \
109 {PPC::F20, -96}, \
110 {PPC::F19, -104}, \
111 {PPC::F18, -112}, \
112 {PPC::F17, -120}, \
113 {PPC::F16, -128}, \
114 {PPC::F15, -136}, \
115 {PPC::F14, -144}
116
117// 32-bit general purpose register save area offsets shared by ELF and
118// AIX. AIX has an extra CSR with r13.
119#define CALLEE_SAVED_GPRS32 \
120 {PPC::R31, -4}, \
121 {PPC::R30, -8}, \
122 {PPC::R29, -12}, \
123 {PPC::R28, -16}, \
124 {PPC::R27, -20}, \
125 {PPC::R26, -24}, \
126 {PPC::R25, -28}, \
127 {PPC::R24, -32}, \
128 {PPC::R23, -36}, \
129 {PPC::R22, -40}, \
130 {PPC::R21, -44}, \
131 {PPC::R20, -48}, \
132 {PPC::R19, -52}, \
133 {PPC::R18, -56}, \
134 {PPC::R17, -60}, \
135 {PPC::R16, -64}, \
136 {PPC::R15, -68}, \
137 {PPC::R14, -72}
138
139// 64-bit general purpose register save area offsets.
140#define CALLEE_SAVED_GPRS64 \
141 {PPC::X31, -8}, \
142 {PPC::X30, -16}, \
143 {PPC::X29, -24}, \
144 {PPC::X28, -32}, \
145 {PPC::X27, -40}, \
146 {PPC::X26, -48}, \
147 {PPC::X25, -56}, \
148 {PPC::X24, -64}, \
149 {PPC::X23, -72}, \
150 {PPC::X22, -80}, \
151 {PPC::X21, -88}, \
152 {PPC::X20, -96}, \
153 {PPC::X19, -104}, \
154 {PPC::X18, -112}, \
155 {PPC::X17, -120}, \
156 {PPC::X16, -128}, \
157 {PPC::X15, -136}, \
158 {PPC::X14, -144}
159
160// Vector register save area offsets.
161#define CALLEE_SAVED_VRS \
162 {PPC::V31, -16}, \
163 {PPC::V30, -32}, \
164 {PPC::V29, -48}, \
165 {PPC::V28, -64}, \
166 {PPC::V27, -80}, \
167 {PPC::V26, -96}, \
168 {PPC::V25, -112}, \
169 {PPC::V24, -128}, \
170 {PPC::V23, -144}, \
171 {PPC::V22, -160}, \
172 {PPC::V21, -176}, \
173 {PPC::V20, -192}
174
175 // Note that the offsets here overlap, but this is fixed up in
176 // processFunctionBeforeFrameFinalized.
177
178 static const SpillSlot ELFOffsets32[] = {
181
182 // CR save area offset. We map each of the nonvolatile CR fields
183 // to the slot for CR2, which is the first of the nonvolatile CR
184 // fields to be assigned, so that we only allocate one save slot.
185 // See PPCRegisterInfo::hasReservedSpillSlot() for more information.
186 {PPC::CR2, -4},
187
188 // VRSAVE save area offset.
189 {PPC::VRSAVE, -4},
190
192
193 // SPE register save area (overlaps Vector save area).
194 {PPC::S31, -8},
195 {PPC::S30, -16},
196 {PPC::S29, -24},
197 {PPC::S28, -32},
198 {PPC::S27, -40},
199 {PPC::S26, -48},
200 {PPC::S25, -56},
201 {PPC::S24, -64},
202 {PPC::S23, -72},
203 {PPC::S22, -80},
204 {PPC::S21, -88},
205 {PPC::S20, -96},
206 {PPC::S19, -104},
207 {PPC::S18, -112},
208 {PPC::S17, -120},
209 {PPC::S16, -128},
210 {PPC::S15, -136},
211 {PPC::S14, -144}};
212
213 static const SpillSlot ELFOffsets64[] = {
216
217 // VRSAVE save area offset.
218 {PPC::VRSAVE, -4},
220 };
221
222 static const SpillSlot AIXOffsets32[] = {CALLEE_SAVED_FPRS,
224 // Add AIX's extra CSR.
225 {PPC::R13, -76},
227
228 static const SpillSlot AIXOffsets64[] = {
230
231 if (Subtarget.is64BitELFABI()) {
232 NumEntries = std::size(ELFOffsets64);
233 return ELFOffsets64;
234 }
235
236 if (Subtarget.is32BitELFABI()) {
237 NumEntries = std::size(ELFOffsets32);
238 return ELFOffsets32;
239 }
240
241 assert(Subtarget.isAIXABI() && "Unexpected ABI.");
242
243 if (Subtarget.isPPC64()) {
244 NumEntries = std::size(AIXOffsets64);
245 return AIXOffsets64;
246 }
247
248 NumEntries = std::size(AIXOffsets32);
249 return AIXOffsets32;
250}
251
252static bool spillsCR(const MachineFunction &MF) {
253 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
254 return FuncInfo->isCRSpilled();
255}
256
257static bool hasSpills(const MachineFunction &MF) {
258 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
259 return FuncInfo->hasSpills();
260}
261
262static bool hasNonRISpills(const MachineFunction &MF) {
263 const PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
264 return FuncInfo->hasNonRISpills();
265}
266
267/// MustSaveLR - Return true if this function requires that we save the LR
268/// register onto the stack in the prolog and restore it in the epilog of the
269/// function.
270static bool MustSaveLR(const MachineFunction &MF, unsigned LR) {
271 const PPCFunctionInfo *MFI = MF.getInfo<PPCFunctionInfo>();
272
273 // We need a save/restore of LR if there is any def of LR (which is
274 // defined by calls, including the PIC setup sequence), or if there is
275 // some use of the LR stack slot (e.g. for builtin_return_address).
276 // (LR comes in 32 and 64 bit versions.)
278 return RI !=MF.getRegInfo().def_end() || MFI->isLRStoreRequired();
279}
280
281/// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum
282/// call frame size. Update the MachineFunction object with the stack size.
285 bool UseEstimate) const {
286 unsigned NewMaxCallFrameSize = 0;
287 uint64_t FrameSize = determineFrameLayout(MF, UseEstimate,
288 &NewMaxCallFrameSize);
289 MF.getFrameInfo().setStackSize(FrameSize);
290 MF.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize);
291 return FrameSize;
292}
293
294/// determineFrameLayout - Determine the size of the frame and maximum call
295/// frame size.
298 bool UseEstimate,
299 unsigned *NewMaxCallFrameSize) const {
300 const MachineFrameInfo &MFI = MF.getFrameInfo();
301 const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
302
303 // Get the number of bytes to allocate from the FrameInfo
304 uint64_t FrameSize =
305 UseEstimate ? MFI.estimateStackSize(MF) : MFI.getStackSize();
306
307 // Get stack alignments. The frame must be aligned to the greatest of these:
308 Align TargetAlign = getStackAlign(); // alignment required per the ABI
309 Align MaxAlign = MFI.getMaxAlign(); // algmt required by data in frame
310 Align Alignment = std::max(TargetAlign, MaxAlign);
311
312 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
313
314 unsigned LR = RegInfo->getRARegister();
315 bool DisableRedZone = MF.getFunction().hasFnAttribute(Attribute::NoRedZone);
316 bool CanUseRedZone = !MFI.hasVarSizedObjects() && // No dynamic alloca.
317 !MFI.adjustsStack() && // No calls.
318 !MustSaveLR(MF, LR) && // No need to save LR.
319 !FI->mustSaveTOC() && // No need to save TOC.
320 !RegInfo->hasBasePointer(MF) && // No special alignment.
321 !MFI.isFrameAddressTaken();
322
323 // Note: for PPC32 SVR4ABI, we can still generate stackless
324 // code if all local vars are reg-allocated.
325 bool FitsInRedZone = FrameSize <= Subtarget.getRedZoneSize();
326
327 // Check whether we can skip adjusting the stack pointer (by using red zone)
328 if (!DisableRedZone && CanUseRedZone && FitsInRedZone) {
329 // No need for frame
330 return 0;
331 }
332
333 // Get the maximum call frame size of all the calls.
334 unsigned maxCallFrameSize = MFI.getMaxCallFrameSize();
335
336 // Maximum call frame needs to be at least big enough for linkage area.
337 unsigned minCallFrameSize = getLinkageSize();
338 maxCallFrameSize = std::max(maxCallFrameSize, minCallFrameSize);
339
340 // If we have dynamic alloca then maxCallFrameSize needs to be aligned so
341 // that allocations will be aligned.
342 if (MFI.hasVarSizedObjects())
343 maxCallFrameSize = alignTo(maxCallFrameSize, Alignment);
344
345 // Update the new max call frame size if the caller passes in a valid pointer.
346 if (NewMaxCallFrameSize)
347 *NewMaxCallFrameSize = maxCallFrameSize;
348
349 // Include call frame size in total.
350 FrameSize += maxCallFrameSize;
351
352 // Make sure the frame is aligned.
353 FrameSize = alignTo(FrameSize, Alignment);
354
355 return FrameSize;
356}
357
358// hasFPImpl - Return true if the specified function actually has a dedicated
359// frame pointer register.
361 const MachineFrameInfo &MFI = MF.getFrameInfo();
362 // FIXME: This is pretty much broken by design: hasFP() might be called really
363 // early, before the stack layout was calculated and thus hasFP() might return
364 // true or false here depending on the time of call.
365 return (MFI.getStackSize()) && needsFP(MF);
366}
367
368// needsFP - Return true if the specified function should have a dedicated frame
369// pointer register. This is true if the function has variable sized allocas or
370// if frame pointer elimination is disabled.
372 const MachineFrameInfo &MFI = MF.getFrameInfo();
373
374 // Naked functions have no stack frame pushed, so we don't have a frame
375 // pointer.
376 if (MF.getFunction().hasFnAttribute(Attribute::Naked))
377 return false;
378
379 return MF.getTarget().Options.DisableFramePointerElim(MF) ||
380 MFI.hasVarSizedObjects() || MFI.hasStackMap() || MFI.hasPatchPoint() ||
381 MF.exposesReturnsTwice() ||
383 MF.getInfo<PPCFunctionInfo>()->hasFastCall());
384}
385
387 // When there is dynamic alloca in this function, we can not use the frame
388 // pointer X31/R31 for the frameaddress lowering. In this case, only X1/R1
389 // always points to the backchain.
390 bool is31 = needsFP(MF) && !MF.getFrameInfo().hasVarSizedObjects();
391 unsigned FPReg = is31 ? PPC::R31 : PPC::R1;
392 unsigned FP8Reg = is31 ? PPC::X31 : PPC::X1;
393
394 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
395 bool HasBP = RegInfo->hasBasePointer(MF);
396 unsigned BPReg = HasBP ? (unsigned) RegInfo->getBaseRegister(MF) : FPReg;
397 unsigned BP8Reg = HasBP ? (unsigned) PPC::X30 : FP8Reg;
398
399 for (MachineBasicBlock &MBB : MF)
401 --MBBI;
402 for (MachineOperand &MO : MBBI->operands()) {
403 if (!MO.isReg())
404 continue;
405
406 switch (MO.getReg()) {
407 case PPC::FP:
408 MO.setReg(FPReg);
409 break;
410 case PPC::FP8:
411 MO.setReg(FP8Reg);
412 break;
413 case PPC::BP:
414 MO.setReg(BPReg);
415 break;
416 case PPC::BP8:
417 MO.setReg(BP8Reg);
418 break;
419
420 }
421 }
422 }
423}
424
425/* This function will do the following:
426 - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12
427 respectively (defaults recommended by the ABI) and return true
428 - If MBB is not an entry block, initialize the register scavenger and look
429 for available registers.
430 - If the defaults (R0/R12) are available, return true
431 - If TwoUniqueRegsRequired is set to true, it looks for two unique
432 registers. Otherwise, look for a single available register.
433 - If the required registers are found, set SR1 and SR2 and return true.
434 - If the required registers are not found, set SR2 or both SR1 and SR2 to
435 PPC::NoRegister and return false.
436
437 Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired
438 is not set, this function will attempt to find two different registers, but
439 still return true if only one register is available (and set SR1 == SR2).
440*/
441bool
442PPCFrameLowering::findScratchRegister(MachineBasicBlock *MBB,
443 bool UseAtEnd,
444 bool TwoUniqueRegsRequired,
445 Register *SR1,
446 Register *SR2) const {
447 RegScavenger RS;
448 Register R0 = Subtarget.isPPC64() ? PPC::X0 : PPC::R0;
449 Register R12 = Subtarget.isPPC64() ? PPC::X12 : PPC::R12;
450
451 // Set the defaults for the two scratch registers.
452 if (SR1)
453 *SR1 = R0;
454
455 if (SR2) {
456 assert (SR1 && "Asking for the second scratch register but not the first?");
457 *SR2 = R12;
458 }
459
460 // If MBB is an entry or exit block, use R0 and R12 as the scratch registers.
461 if ((UseAtEnd && MBB->isReturnBlock()) ||
462 (!UseAtEnd && (&MBB->getParent()->front() == MBB)))
463 return true;
464
465 if (UseAtEnd) {
466 // The scratch register will be used before the first terminator (or at the
467 // end of the block if there are no terminators).
469 if (MBBI == MBB->begin()) {
470 RS.enterBasicBlock(*MBB);
471 } else {
473 RS.backward(MBBI);
474 }
475 } else {
476 // The scratch register will be used at the start of the block.
477 RS.enterBasicBlock(*MBB);
478 }
479
480 // If the two registers are available, we're all good.
481 // Note that we only return here if both R0 and R12 are available because
482 // although the function may not require two unique registers, it may benefit
483 // from having two so we should try to provide them.
484 if (!RS.isRegUsed(R0) && !RS.isRegUsed(R12))
485 return true;
486
487 // Get the list of callee-saved registers for the target.
488 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
489 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(MBB->getParent());
490
491 // Get all the available registers in the block.
492 BitVector BV = RS.getRegsAvailable(Subtarget.isPPC64() ? &PPC::G8RCRegClass :
493 &PPC::GPRCRegClass);
494
495 // We shouldn't use callee-saved registers as scratch registers as they may be
496 // available when looking for a candidate block for shrink wrapping but not
497 // available when the actual prologue/epilogue is being emitted because they
498 // were added as live-in to the prologue block by PrologueEpilogueInserter.
499 for (int i = 0; CSRegs[i]; ++i)
500 BV.reset(CSRegs[i]);
501
502 // Set the first scratch register to the first available one.
503 if (SR1) {
504 int FirstScratchReg = BV.find_first();
505 *SR1 = FirstScratchReg == -1 ? (unsigned)PPC::NoRegister : FirstScratchReg;
506 }
507
508 // If there is another one available, set the second scratch register to that.
509 // Otherwise, set it to either PPC::NoRegister if this function requires two
510 // or to whatever SR1 is set to if this function doesn't require two.
511 if (SR2) {
512 int SecondScratchReg = BV.find_next(*SR1);
513 if (SecondScratchReg != -1)
514 *SR2 = SecondScratchReg;
515 else
516 *SR2 = TwoUniqueRegsRequired ? Register() : *SR1;
517 }
518
519 // Now that we've done our best to provide both registers, double check
520 // whether we were unable to provide enough.
521 if (BV.count() < (TwoUniqueRegsRequired ? 2U : 1U))
522 return false;
523
524 return true;
525}
526
527// We need a scratch register for spilling LR and for spilling CR. By default,
528// we use two scratch registers to hide latency. However, if only one scratch
529// register is available, we can adjust for that by not overlapping the spill
530// code. However, if we need to realign the stack (i.e. have a base pointer)
531// and the stack frame is large, we need two scratch registers.
532// Also, stack probe requires two scratch registers, one for old sp, one for
533// large frame and large probe size.
534bool
535PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock *MBB) const {
536 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
537 MachineFunction &MF = *(MBB->getParent());
538 bool HasBP = RegInfo->hasBasePointer(MF);
539 unsigned FrameSize = determineFrameLayout(MF);
540 int NegFrameSize = -FrameSize;
541 bool IsLargeFrame = !isInt<16>(NegFrameSize);
542 MachineFrameInfo &MFI = MF.getFrameInfo();
543 Align MaxAlign = MFI.getMaxAlign();
544 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
545 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
546
547 return ((IsLargeFrame || !HasRedZone) && HasBP && MaxAlign > 1) ||
548 TLI.hasInlineStackProbe(MF);
549}
550
552 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
553
554 return findScratchRegister(TmpMBB, false,
555 twoUniqueScratchRegsRequired(TmpMBB));
556}
557
559 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
560
561 return findScratchRegister(TmpMBB, true);
562}
563
564bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction &MF) const {
565 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
567
568 // Abort if there is no register info or function info.
569 if (!RegInfo || !FI)
570 return false;
571
572 // Only move the stack update on ELFv2 ABI and PPC64.
573 if (!Subtarget.isELFv2ABI() || !Subtarget.isPPC64())
574 return false;
575
576 // Check the frame size first and return false if it does not fit the
577 // requirements.
578 // We need a non-zero frame size as well as a frame that will fit in the red
579 // zone. This is because by moving the stack pointer update we are now storing
580 // to the red zone until the stack pointer is updated. If we get an interrupt
581 // inside the prologue but before the stack update we now have a number of
582 // stores to the red zone and those stores must all fit.
583 MachineFrameInfo &MFI = MF.getFrameInfo();
584 unsigned FrameSize = MFI.getStackSize();
585 if (!FrameSize || FrameSize > Subtarget.getRedZoneSize())
586 return false;
587
588 // Frame pointers and base pointers complicate matters so don't do anything
589 // if we have them. For example having a frame pointer will sometimes require
590 // a copy of r1 into r31 and that makes keeping track of updates to r1 more
591 // difficult. Similar situation exists with setjmp.
592 if (hasFP(MF) || RegInfo->hasBasePointer(MF) || MF.exposesReturnsTwice())
593 return false;
594
595 // Calls to fast_cc functions use different rules for passing parameters on
596 // the stack from the ABI and using PIC base in the function imposes
597 // similar restrictions to using the base pointer. It is not generally safe
598 // to move the stack pointer update in these situations.
599 if (FI->hasFastCall() || FI->usesPICBase())
600 return false;
601
602 // Finally we can move the stack update if we do not require register
603 // scavenging. Register scavenging can introduce more spills and so
604 // may make the frame size larger than we have computed.
605 return !RegInfo->requiresFrameIndexScavenging(MF);
606}
607
609 MachineBasicBlock &MBB) const {
611 MachineFrameInfo &MFI = MF.getFrameInfo();
612 const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
613 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
614 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
615
617 DebugLoc dl;
618 // AIX assembler does not support cfi directives.
619 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
620
621 const bool HasFastMFLR = Subtarget.hasFastMFLR();
622
623 // Get processor type.
624 bool isPPC64 = Subtarget.isPPC64();
625 // Get the ABI.
626 bool isSVR4ABI = Subtarget.isSVR4ABI();
627 bool isELFv2ABI = Subtarget.isELFv2ABI();
628 assert((isSVR4ABI || Subtarget.isAIXABI()) && "Unsupported PPC ABI.");
629
630 // Work out frame sizes.
632 int64_t NegFrameSize = -FrameSize;
633 if (!isPPC64 && (!isInt<32>(FrameSize) || !isInt<32>(NegFrameSize)))
634 llvm_unreachable("Unhandled stack size!");
635
636 if (MFI.isFrameAddressTaken())
638
639 // Check if the link register (LR) must be saved.
641 bool MustSaveLR = FI->mustSaveLR();
642 bool MustSaveTOC = FI->mustSaveTOC();
643 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
644 bool MustSaveCR = !MustSaveCRs.empty();
645 // Do we have a frame pointer and/or base pointer for this function?
646 bool HasFP = hasFP(MF);
647 bool HasBP = RegInfo->hasBasePointer(MF);
648 bool HasRedZone = isPPC64 || !isSVR4ABI;
649 const bool HasROPProtect = Subtarget.hasROPProtect();
650 bool HasPrivileged = Subtarget.hasPrivileged();
651
652 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
653 Register BPReg = RegInfo->getBaseRegister(MF);
654 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31;
655 Register LRReg = isPPC64 ? PPC::LR8 : PPC::LR;
656 Register TOCReg = isPPC64 ? PPC::X2 : PPC::R2;
657 Register ScratchReg;
658 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
659 // ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.)
660 const MCInstrDesc& MFLRInst = TII.get(isPPC64 ? PPC::MFLR8
661 : PPC::MFLR );
662 const MCInstrDesc& StoreInst = TII.get(isPPC64 ? PPC::STD
663 : PPC::STW );
664 const MCInstrDesc& StoreUpdtInst = TII.get(isPPC64 ? PPC::STDU
665 : PPC::STWU );
666 const MCInstrDesc& StoreUpdtIdxInst = TII.get(isPPC64 ? PPC::STDUX
667 : PPC::STWUX);
668 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
669 : PPC::OR );
670 const MCInstrDesc& SubtractCarryingInst = TII.get(isPPC64 ? PPC::SUBFC8
671 : PPC::SUBFC);
672 const MCInstrDesc& SubtractImmCarryingInst = TII.get(isPPC64 ? PPC::SUBFIC8
673 : PPC::SUBFIC);
674 const MCInstrDesc &MoveFromCondRegInst = TII.get(isPPC64 ? PPC::MFCR8
675 : PPC::MFCR);
676 const MCInstrDesc &StoreWordInst = TII.get(isPPC64 ? PPC::STW8 : PPC::STW);
677 const MCInstrDesc &HashST =
678 TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHSTP8 : PPC::HASHST8)
679 : (HasPrivileged ? PPC::HASHSTP : PPC::HASHST));
680
681 // Regarding this assert: Even though LR is saved in the caller's frame (i.e.,
682 // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no
683 // Red Zone, an asynchronous event (a form of "callee") could claim a frame &
684 // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR.
685 assert((isPPC64 || !isSVR4ABI || !(!FrameSize && (MustSaveLR || HasFP))) &&
686 "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4.");
687
688 // Using the same bool variable as below to suppress compiler warnings.
689 bool SingleScratchReg = findScratchRegister(
690 &MBB, false, twoUniqueScratchRegsRequired(&MBB), &ScratchReg, &TempReg);
691 assert(SingleScratchReg &&
692 "Required number of registers not available in this block");
693
694 SingleScratchReg = ScratchReg == TempReg;
695
696 int64_t LROffset = getReturnSaveOffset();
697
698 int64_t FPOffset = 0;
699 if (HasFP) {
700 MachineFrameInfo &MFI = MF.getFrameInfo();
701 int FPIndex = FI->getFramePointerSaveIndex();
702 assert(FPIndex && "No Frame Pointer Save Slot!");
703 FPOffset = MFI.getObjectOffset(FPIndex);
704 }
705
706 int64_t BPOffset = 0;
707 if (HasBP) {
708 MachineFrameInfo &MFI = MF.getFrameInfo();
709 int BPIndex = FI->getBasePointerSaveIndex();
710 assert(BPIndex && "No Base Pointer Save Slot!");
711 BPOffset = MFI.getObjectOffset(BPIndex);
712 }
713
714 int64_t PBPOffset = 0;
715 if (FI->usesPICBase()) {
716 MachineFrameInfo &MFI = MF.getFrameInfo();
717 int PBPIndex = FI->getPICBasePointerSaveIndex();
718 assert(PBPIndex && "No PIC Base Pointer Save Slot!");
719 PBPOffset = MFI.getObjectOffset(PBPIndex);
720 }
721
722 // Get stack alignments.
723 Align MaxAlign = MFI.getMaxAlign();
724 if (HasBP && MaxAlign > 1)
725 assert(Log2(MaxAlign) < 16 && "Invalid alignment!");
726
727 // Frames of 32KB & larger require special handling because they cannot be
728 // indexed into with a simple STDU/STWU/STD/STW immediate offset operand.
729 bool isLargeFrame = !isInt<16>(NegFrameSize);
730
731 // Check if we can move the stack update instruction (stdu) down the prologue
732 // past the callee saves. Hopefully this will avoid the situation where the
733 // saves are waiting for the update on the store with update to complete.
734 MachineBasicBlock::iterator StackUpdateLoc = MBBI;
735 bool MovingStackUpdateDown = false;
736
737 // Check if we can move the stack update.
738 if (stackUpdateCanBeMoved(MF)) {
739 const std::vector<CalleeSavedInfo> &Info = MFI.getCalleeSavedInfo();
740 for (CalleeSavedInfo CSI : Info) {
741 // If the callee saved register is spilled to a register instead of the
742 // stack then the spill no longer uses the stack pointer.
743 // This can lead to two consequences:
744 // 1) We no longer need to update the stack because the function does not
745 // spill any callee saved registers to stack.
746 // 2) We have a situation where we still have to update the stack pointer
747 // even though some registers are spilled to other registers. In
748 // this case the current code moves the stack update to an incorrect
749 // position.
750 // In either case we should abort moving the stack update operation.
751 if (CSI.isSpilledToReg()) {
752 StackUpdateLoc = MBBI;
753 MovingStackUpdateDown = false;
754 break;
755 }
756
757 int FrIdx = CSI.getFrameIdx();
758 // If the frame index is not negative the callee saved info belongs to a
759 // stack object that is not a fixed stack object. We ignore non-fixed
760 // stack objects because we won't move the stack update pointer past them.
761 if (FrIdx >= 0)
762 continue;
763
764 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0) {
765 StackUpdateLoc++;
766 MovingStackUpdateDown = true;
767 } else {
768 // We need all of the Frame Indices to meet these conditions.
769 // If they do not, abort the whole operation.
770 StackUpdateLoc = MBBI;
771 MovingStackUpdateDown = false;
772 break;
773 }
774 }
775
776 // If the operation was not aborted then update the object offset.
777 if (MovingStackUpdateDown) {
778 for (CalleeSavedInfo CSI : Info) {
779 int FrIdx = CSI.getFrameIdx();
780 if (FrIdx < 0)
781 MFI.setObjectOffset(FrIdx, MFI.getObjectOffset(FrIdx) + NegFrameSize);
782 }
783 }
784 }
785
786 // Where in the prologue we move the CR fields depends on how many scratch
787 // registers we have, and if we need to save the link register or not. This
788 // lambda is to avoid duplicating the logic in 2 places.
789 auto BuildMoveFromCR = [&]() {
790 if (isELFv2ABI && MustSaveCRs.size() == 1) {
791 // In the ELFv2 ABI, we are not required to save all CR fields.
792 // If only one CR field is clobbered, it is more efficient to use
793 // mfocrf to selectively save just that field, because mfocrf has short
794 // latency compares to mfcr.
795 assert(isPPC64 && "V2 ABI is 64-bit only.");
797 BuildMI(MBB, MBBI, dl, TII.get(PPC::MFOCRF8), TempReg);
798 MIB.addReg(MustSaveCRs[0], RegState::Kill);
799 } else {
801 BuildMI(MBB, MBBI, dl, MoveFromCondRegInst, TempReg);
802 for (unsigned CRfield : MustSaveCRs)
803 MIB.addReg(CRfield, RegState::ImplicitKill);
804 }
805 };
806
807 // If we need to spill the CR and the LR but we don't have two separate
808 // registers available, we must spill them one at a time
809 if (MustSaveCR && SingleScratchReg && MustSaveLR) {
810 BuildMoveFromCR();
811 BuildMI(MBB, MBBI, dl, StoreWordInst)
812 .addReg(TempReg, getKillRegState(true))
813 .addImm(CRSaveOffset)
814 .addReg(SPReg);
815 }
816
817 if (MustSaveLR)
818 BuildMI(MBB, MBBI, dl, MFLRInst, ScratchReg);
819
820 if (MustSaveCR && !(SingleScratchReg && MustSaveLR))
821 BuildMoveFromCR();
822
823 if (HasRedZone) {
824 if (HasFP)
826 .addReg(FPReg)
827 .addImm(FPOffset)
828 .addReg(SPReg);
829 if (FI->usesPICBase())
831 .addReg(PPC::R30)
832 .addImm(PBPOffset)
833 .addReg(SPReg);
834 if (HasBP)
836 .addReg(BPReg)
837 .addImm(BPOffset)
838 .addReg(SPReg);
839 }
840
841 // Generate the instruction to store the LR. In the case where ROP protection
842 // is required the register holding the LR should not be killed as it will be
843 // used by the hash store instruction.
844 auto SaveLR = [&](int64_t Offset) {
845 assert(MustSaveLR && "LR is not required to be saved!");
846 BuildMI(MBB, StackUpdateLoc, dl, StoreInst)
847 .addReg(ScratchReg, getKillRegState(!HasROPProtect))
848 .addImm(Offset)
849 .addReg(SPReg);
850
851 // Add the ROP protection Hash Store instruction.
852 // NOTE: This is technically a violation of the ABI. The hash can be saved
853 // up to 512 bytes into the Protected Zone. This can be outside of the
854 // initial 288 byte volatile program storage region in the Protected Zone.
855 // However, this restriction will be removed in an upcoming revision of the
856 // ABI.
857 if (HasROPProtect) {
858 const int SaveIndex = FI->getROPProtectionHashSaveIndex();
859 const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex);
860 assert((ImmOffset <= -8 && ImmOffset >= -512) &&
861 "ROP hash save offset out of range.");
862 assert(((ImmOffset & 0x7) == 0) &&
863 "ROP hash save offset must be 8 byte aligned.");
864 BuildMI(MBB, StackUpdateLoc, dl, HashST)
865 .addReg(ScratchReg, getKillRegState(true))
866 .addImm(ImmOffset)
867 .addReg(SPReg);
868 }
869 };
870
871 if (MustSaveLR && HasFastMFLR)
872 SaveLR(LROffset);
873
874 if (MustSaveCR &&
875 !(SingleScratchReg && MustSaveLR)) {
876 assert(HasRedZone && "A red zone is always available on PPC64");
877 BuildMI(MBB, MBBI, dl, StoreWordInst)
878 .addReg(TempReg, getKillRegState(true))
879 .addImm(CRSaveOffset)
880 .addReg(SPReg);
881 }
882
883 // Skip the rest if this is a leaf function & all spills fit in the Red Zone.
884 if (!FrameSize) {
885 if (MustSaveLR && !HasFastMFLR)
886 SaveLR(LROffset);
887 return;
888 }
889
890 // Adjust stack pointer: r1 += NegFrameSize.
891 // If there is a preferred stack alignment, align R1 now
892
893 if (HasBP && HasRedZone) {
894 // Save a copy of r1 as the base pointer.
895 BuildMI(MBB, MBBI, dl, OrInst, BPReg)
896 .addReg(SPReg)
897 .addReg(SPReg);
898 }
899
900 // Have we generated a STUX instruction to claim stack frame? If so,
901 // the negated frame size will be placed in ScratchReg.
902 bool HasSTUX =
903 (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) ||
904 (HasBP && MaxAlign > 1) || isLargeFrame;
905
906 // If we use STUX to update the stack pointer, we need the two scratch
907 // registers TempReg and ScratchReg, we have to save LR here which is stored
908 // in ScratchReg.
909 // If the offset can not be encoded into the store instruction, we also have
910 // to save LR here.
911 // If we are using ROP Protection we need to save the LR here as we cannot
912 // move the hashst instruction past the point where we get the stack frame.
913 if (MustSaveLR && !HasFastMFLR &&
914 (HasSTUX || !isInt<16>(FrameSize + LROffset) || HasROPProtect))
915 SaveLR(LROffset);
916
917 // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain
918 // pointer is always stored at SP, we will get a free probe due to an essential
919 // STU(X) instruction.
920 if (TLI.hasInlineStackProbe(MF) && FrameSize > TLI.getStackProbeSize(MF)) {
921 // To be consistent with other targets, a pseudo instruction is emitted and
922 // will be later expanded in `inlineStackProbe`.
923 BuildMI(MBB, MBBI, dl,
924 TII.get(isPPC64 ? PPC::PROBED_STACKALLOC_64
925 : PPC::PROBED_STACKALLOC_32))
926 .addDef(TempReg)
927 .addDef(ScratchReg) // ScratchReg stores the old sp.
928 .addImm(NegFrameSize);
929 // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we
930 // update the ScratchReg to meet the assumption that ScratchReg contains
931 // the NegFrameSize. This solution is rather tricky.
932 if (!HasRedZone) {
933 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
934 .addReg(ScratchReg)
935 .addReg(SPReg);
936 }
937 } else {
938 // This condition must be kept in sync with canUseAsPrologue.
939 if (HasBP && MaxAlign > 1) {
940 if (isPPC64)
941 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLDICL), ScratchReg)
942 .addReg(SPReg)
943 .addImm(0)
944 .addImm(64 - Log2(MaxAlign));
945 else // PPC32...
946 BuildMI(MBB, MBBI, dl, TII.get(PPC::RLWINM), ScratchReg)
947 .addReg(SPReg)
948 .addImm(0)
949 .addImm(32 - Log2(MaxAlign))
950 .addImm(31);
951 if (!isLargeFrame) {
952 BuildMI(MBB, MBBI, dl, SubtractImmCarryingInst, ScratchReg)
953 .addReg(ScratchReg, RegState::Kill)
954 .addImm(NegFrameSize);
955 } else {
956 assert(!SingleScratchReg && "Only a single scratch reg available");
957 TII.materializeImmPostRA(MBB, MBBI, dl, TempReg, NegFrameSize);
958 BuildMI(MBB, MBBI, dl, SubtractCarryingInst, ScratchReg)
959 .addReg(ScratchReg, RegState::Kill)
960 .addReg(TempReg, RegState::Kill);
961 }
962
963 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
965 .addReg(SPReg)
966 .addReg(ScratchReg);
967 } else if (!isLargeFrame) {
968 BuildMI(MBB, StackUpdateLoc, dl, StoreUpdtInst, SPReg)
969 .addReg(SPReg)
970 .addImm(NegFrameSize)
971 .addReg(SPReg);
972 } else {
973 TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, NegFrameSize);
974 BuildMI(MBB, MBBI, dl, StoreUpdtIdxInst, SPReg)
976 .addReg(SPReg)
977 .addReg(ScratchReg);
978 }
979 }
980
981 // Save the TOC register after the stack pointer update if a prologue TOC
982 // save is required for the function.
983 if (MustSaveTOC) {
984 assert(isELFv2ABI && "TOC saves in the prologue only supported on ELFv2");
985 BuildMI(MBB, StackUpdateLoc, dl, TII.get(PPC::STD))
986 .addReg(TOCReg, getKillRegState(true))
987 .addImm(TOCSaveOffset)
988 .addReg(SPReg);
989 }
990
991 if (!HasRedZone) {
992 assert(!isPPC64 && "A red zone is always available on PPC64");
993 if (HasSTUX) {
994 // The negated frame size is in ScratchReg, and the SPReg has been
995 // decremented by the frame size: SPReg = old SPReg + ScratchReg.
996 // Since FPOffset, PBPOffset, etc. are relative to the beginning of
997 // the stack frame (i.e. the old SP), ideally, we would put the old
998 // SP into a register and use it as the base for the stores. The
999 // problem is that the only available register may be ScratchReg,
1000 // which could be R0, and R0 cannot be used as a base address.
1001
1002 // First, set ScratchReg to the old SP. This may need to be modified
1003 // later.
1004 BuildMI(MBB, MBBI, dl, TII.get(PPC::SUBF), ScratchReg)
1005 .addReg(ScratchReg, RegState::Kill)
1006 .addReg(SPReg);
1007
1008 if (ScratchReg == PPC::R0) {
1009 // R0 cannot be used as a base register, but it can be used as an
1010 // index in a store-indexed.
1011 int LastOffset = 0;
1012 if (HasFP) {
1013 // R0 += (FPOffset-LastOffset).
1014 // Need addic, since addi treats R0 as 0.
1015 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1016 .addReg(ScratchReg)
1017 .addImm(FPOffset-LastOffset);
1018 LastOffset = FPOffset;
1019 // Store FP into *R0.
1020 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1021 .addReg(FPReg, RegState::Kill) // Save FP.
1022 .addReg(PPC::ZERO)
1023 .addReg(ScratchReg); // This will be the index (R0 is ok here).
1024 }
1025 if (FI->usesPICBase()) {
1026 // R0 += (PBPOffset-LastOffset).
1027 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1028 .addReg(ScratchReg)
1029 .addImm(PBPOffset-LastOffset);
1030 LastOffset = PBPOffset;
1031 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1032 .addReg(PPC::R30, RegState::Kill) // Save PIC base pointer.
1033 .addReg(PPC::ZERO)
1034 .addReg(ScratchReg); // This will be the index (R0 is ok here).
1035 }
1036 if (HasBP) {
1037 // R0 += (BPOffset-LastOffset).
1038 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), ScratchReg)
1039 .addReg(ScratchReg)
1040 .addImm(BPOffset-LastOffset);
1041 LastOffset = BPOffset;
1042 BuildMI(MBB, MBBI, dl, TII.get(PPC::STWX))
1043 .addReg(BPReg, RegState::Kill) // Save BP.
1044 .addReg(PPC::ZERO)
1045 .addReg(ScratchReg); // This will be the index (R0 is ok here).
1046 // BP = R0-LastOffset
1047 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDIC), BPReg)
1048 .addReg(ScratchReg, RegState::Kill)
1049 .addImm(-LastOffset);
1050 }
1051 } else {
1052 // ScratchReg is not R0, so use it as the base register. It is
1053 // already set to the old SP, so we can use the offsets directly.
1054
1055 // Now that the stack frame has been allocated, save all the necessary
1056 // registers using ScratchReg as the base address.
1057 if (HasFP)
1058 BuildMI(MBB, MBBI, dl, StoreInst)
1059 .addReg(FPReg)
1060 .addImm(FPOffset)
1061 .addReg(ScratchReg);
1062 if (FI->usesPICBase())
1063 BuildMI(MBB, MBBI, dl, StoreInst)
1064 .addReg(PPC::R30)
1065 .addImm(PBPOffset)
1066 .addReg(ScratchReg);
1067 if (HasBP) {
1068 BuildMI(MBB, MBBI, dl, StoreInst)
1069 .addReg(BPReg)
1070 .addImm(BPOffset)
1071 .addReg(ScratchReg);
1072 BuildMI(MBB, MBBI, dl, OrInst, BPReg)
1073 .addReg(ScratchReg, RegState::Kill)
1074 .addReg(ScratchReg);
1075 }
1076 }
1077 } else {
1078 // The frame size is a known 16-bit constant (fitting in the immediate
1079 // field of STWU). To be here we have to be compiling for PPC32.
1080 // Since the SPReg has been decreased by FrameSize, add it back to each
1081 // offset.
1082 if (HasFP)
1083 BuildMI(MBB, MBBI, dl, StoreInst)
1084 .addReg(FPReg)
1085 .addImm(FrameSize + FPOffset)
1086 .addReg(SPReg);
1087 if (FI->usesPICBase())
1088 BuildMI(MBB, MBBI, dl, StoreInst)
1089 .addReg(PPC::R30)
1090 .addImm(FrameSize + PBPOffset)
1091 .addReg(SPReg);
1092 if (HasBP) {
1093 BuildMI(MBB, MBBI, dl, StoreInst)
1094 .addReg(BPReg)
1095 .addImm(FrameSize + BPOffset)
1096 .addReg(SPReg);
1097 BuildMI(MBB, MBBI, dl, TII.get(PPC::ADDI), BPReg)
1098 .addReg(SPReg)
1099 .addImm(FrameSize);
1100 }
1101 }
1102 }
1103
1104 // Save the LR now.
1105 if (!HasSTUX && MustSaveLR && !HasFastMFLR &&
1106 isInt<16>(FrameSize + LROffset) && !HasROPProtect)
1107 SaveLR(LROffset + FrameSize);
1108
1109 // Add Call Frame Information for the instructions we generated above.
1110 if (needsCFI) {
1111 unsigned CFIIndex;
1112
1113 if (HasBP) {
1114 // Define CFA in terms of BP. Do this in preference to using FP/SP,
1115 // because if the stack needed aligning then CFA won't be at a fixed
1116 // offset from FP/SP.
1117 unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
1118 CFIIndex = MF.addFrameInst(
1120 } else {
1121 // Adjust the definition of CFA to account for the change in SP.
1122 assert(NegFrameSize);
1123 CFIIndex = MF.addFrameInst(
1124 MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize));
1125 }
1126 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1127 .addCFIIndex(CFIIndex);
1128
1129 if (HasFP) {
1130 // Describe where FP was saved, at a fixed offset from CFA.
1131 unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
1132 CFIIndex = MF.addFrameInst(
1133 MCCFIInstruction::createOffset(nullptr, Reg, FPOffset));
1134 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1135 .addCFIIndex(CFIIndex);
1136 }
1137
1138 if (FI->usesPICBase()) {
1139 // Describe where FP was saved, at a fixed offset from CFA.
1140 unsigned Reg = MRI->getDwarfRegNum(PPC::R30, true);
1141 CFIIndex = MF.addFrameInst(
1142 MCCFIInstruction::createOffset(nullptr, Reg, PBPOffset));
1143 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1144 .addCFIIndex(CFIIndex);
1145 }
1146
1147 if (HasBP) {
1148 // Describe where BP was saved, at a fixed offset from CFA.
1149 unsigned Reg = MRI->getDwarfRegNum(BPReg, true);
1150 CFIIndex = MF.addFrameInst(
1151 MCCFIInstruction::createOffset(nullptr, Reg, BPOffset));
1152 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1153 .addCFIIndex(CFIIndex);
1154 }
1155
1156 if (MustSaveLR) {
1157 // Describe where LR was saved, at a fixed offset from CFA.
1158 unsigned Reg = MRI->getDwarfRegNum(LRReg, true);
1159 CFIIndex = MF.addFrameInst(
1160 MCCFIInstruction::createOffset(nullptr, Reg, LROffset));
1161 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1162 .addCFIIndex(CFIIndex);
1163 }
1164 }
1165
1166 // If there is a frame pointer, copy R1 into R31
1167 if (HasFP) {
1168 BuildMI(MBB, MBBI, dl, OrInst, FPReg)
1169 .addReg(SPReg)
1170 .addReg(SPReg);
1171
1172 if (!HasBP && needsCFI) {
1173 // Change the definition of CFA from SP+offset to FP+offset, because SP
1174 // will change at every alloca.
1175 unsigned Reg = MRI->getDwarfRegNum(FPReg, true);
1176 unsigned CFIIndex = MF.addFrameInst(
1178
1179 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1180 .addCFIIndex(CFIIndex);
1181 }
1182 }
1183
1184 if (needsCFI) {
1185 // Describe where callee saved registers were saved, at fixed offsets from
1186 // CFA.
1187 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
1188 for (const CalleeSavedInfo &I : CSI) {
1189 Register Reg = I.getReg();
1190 if (Reg == PPC::LR || Reg == PPC::LR8 || Reg == PPC::RM) continue;
1191
1192 // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just
1193 // subregisters of CR2. We just need to emit a move of CR2.
1194 if (PPC::CRBITRCRegClass.contains(Reg))
1195 continue;
1196
1197 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
1198 continue;
1199
1200 // For 64-bit SVR4 when we have spilled CRs, the spill location
1201 // is SP+8, not a frame-relative slot.
1202 if (isSVR4ABI && isPPC64 && (PPC::CR2 <= Reg && Reg <= PPC::CR4)) {
1203 // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for
1204 // the whole CR word. In the ELFv2 ABI, every CR that was
1205 // actually saved gets its own CFI record.
1206 Register CRReg = isELFv2ABI? Reg : PPC::CR2;
1207 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1208 nullptr, MRI->getDwarfRegNum(CRReg, true), CRSaveOffset));
1209 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1210 .addCFIIndex(CFIIndex);
1211 continue;
1212 }
1213
1214 if (I.isSpilledToReg()) {
1215 unsigned SpilledReg = I.getDstReg();
1216 unsigned CFIRegister = MF.addFrameInst(MCCFIInstruction::createRegister(
1217 nullptr, MRI->getDwarfRegNum(Reg, true),
1218 MRI->getDwarfRegNum(SpilledReg, true)));
1219 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1220 .addCFIIndex(CFIRegister);
1221 } else {
1222 int64_t Offset = MFI.getObjectOffset(I.getFrameIdx());
1223 // We have changed the object offset above but we do not want to change
1224 // the actual offsets in the CFI instruction so we have to undo the
1225 // offset change here.
1226 if (MovingStackUpdateDown)
1227 Offset -= NegFrameSize;
1228
1229 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1230 nullptr, MRI->getDwarfRegNum(Reg, true), Offset));
1231 BuildMI(MBB, MBBI, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1232 .addCFIIndex(CFIIndex);
1233 }
1234 }
1235 }
1236}
1237
1239 MachineBasicBlock &PrologMBB) const {
1240 bool isPPC64 = Subtarget.isPPC64();
1241 const PPCTargetLowering &TLI = *Subtarget.getTargetLowering();
1242 const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1243 MachineFrameInfo &MFI = MF.getFrameInfo();
1245 // AIX assembler does not support cfi directives.
1246 const bool needsCFI = MF.needsFrameMoves() && !Subtarget.isAIXABI();
1247 auto StackAllocMIPos = llvm::find_if(PrologMBB, [](MachineInstr &MI) {
1248 int Opc = MI.getOpcode();
1249 return Opc == PPC::PROBED_STACKALLOC_64 || Opc == PPC::PROBED_STACKALLOC_32;
1250 });
1251 if (StackAllocMIPos == PrologMBB.end())
1252 return;
1253 const BasicBlock *ProbedBB = PrologMBB.getBasicBlock();
1254 MachineBasicBlock *CurrentMBB = &PrologMBB;
1255 DebugLoc DL = PrologMBB.findDebugLoc(StackAllocMIPos);
1256 MachineInstr &MI = *StackAllocMIPos;
1257 int64_t NegFrameSize = MI.getOperand(2).getImm();
1258 unsigned ProbeSize = TLI.getStackProbeSize(MF);
1259 int64_t NegProbeSize = -(int64_t)ProbeSize;
1260 assert(isInt<32>(NegProbeSize) && "Unhandled probe size");
1261 int64_t NumBlocks = NegFrameSize / NegProbeSize;
1262 int64_t NegResidualSize = NegFrameSize % NegProbeSize;
1263 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
1264 Register ScratchReg = MI.getOperand(0).getReg();
1265 Register FPReg = MI.getOperand(1).getReg();
1266 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1267 bool HasBP = RegInfo->hasBasePointer(MF);
1268 Register BPReg = RegInfo->getBaseRegister(MF);
1269 Align MaxAlign = MFI.getMaxAlign();
1270 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
1271 const MCInstrDesc &CopyInst = TII.get(isPPC64 ? PPC::OR8 : PPC::OR);
1272 // Subroutines to generate .cfi_* directives.
1275 unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
1276 unsigned CFIIndex = MF.addFrameInst(
1278 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1279 .addCFIIndex(CFIIndex);
1280 };
1281 auto buildDefCFA = [&](MachineBasicBlock &MBB,
1283 int Offset) {
1284 unsigned RegNum = MRI->getDwarfRegNum(Reg, true);
1285 unsigned CFIIndex = MBB.getParent()->addFrameInst(
1286 MCCFIInstruction::cfiDefCfa(nullptr, RegNum, Offset));
1287 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
1288 .addCFIIndex(CFIIndex);
1289 };
1290 // Subroutine to determine if we can use the Imm as part of d-form.
1291 auto CanUseDForm = [](int64_t Imm) { return isInt<16>(Imm) && Imm % 4 == 0; };
1292 // Subroutine to materialize the Imm into TempReg.
1293 auto MaterializeImm = [&](MachineBasicBlock &MBB,
1294 MachineBasicBlock::iterator MBBI, int64_t Imm,
1295 Register &TempReg) {
1296 assert(isInt<32>(Imm) && "Unhandled imm");
1297 if (isInt<16>(Imm))
1298 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LI8 : PPC::LI), TempReg)
1299 .addImm(Imm);
1300 else {
1301 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
1302 .addImm(Imm >> 16);
1303 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::ORI8 : PPC::ORI), TempReg)
1304 .addReg(TempReg)
1305 .addImm(Imm & 0xFFFF);
1306 }
1307 };
1308 // Subroutine to store frame pointer and decrease stack pointer by probe size.
1309 auto allocateAndProbe = [&](MachineBasicBlock &MBB,
1310 MachineBasicBlock::iterator MBBI, int64_t NegSize,
1311 Register NegSizeReg, bool UseDForm,
1312 Register StoreReg) {
1313 if (UseDForm)
1314 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDU : PPC::STWU), SPReg)
1315 .addReg(StoreReg)
1316 .addImm(NegSize)
1317 .addReg(SPReg);
1318 else
1319 BuildMI(MBB, MBBI, DL, TII.get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
1320 .addReg(StoreReg)
1321 .addReg(SPReg)
1322 .addReg(NegSizeReg);
1323 };
1324 // Used to probe stack when realignment is required.
1325 // Note that, according to ABI's requirement, *sp must always equals the
1326 // value of back-chain pointer, only st(w|d)u(x) can be used to update sp.
1327 // Following is pseudo code:
1328 // final_sp = (sp & align) + negframesize;
1329 // neg_gap = final_sp - sp;
1330 // while (neg_gap < negprobesize) {
1331 // stdu fp, negprobesize(sp);
1332 // neg_gap -= negprobesize;
1333 // }
1334 // stdux fp, sp, neg_gap
1335 //
1336 // When HasBP & HasRedzone, back-chain pointer is already saved in BPReg
1337 // before probe code, we don't need to save it, so we get one additional reg
1338 // that can be used to materialize the probeside if needed to use xform.
1339 // Otherwise, we can NOT materialize probeside, so we can only use Dform for
1340 // now.
1341 //
1342 // The allocations are:
1343 // if (HasBP && HasRedzone) {
1344 // r0: materialize the probesize if needed so that we can use xform.
1345 // r12: `neg_gap`
1346 // } else {
1347 // r0: back-chain pointer
1348 // r12: `neg_gap`.
1349 // }
1350 auto probeRealignedStack = [&](MachineBasicBlock &MBB,
1352 Register ScratchReg, Register TempReg) {
1353 assert(HasBP && "The function is supposed to have base pointer when its "
1354 "stack is realigned.");
1355 assert(isPowerOf2_64(ProbeSize) && "Probe size should be power of 2");
1356
1357 // FIXME: We can eliminate this limitation if we get more infomation about
1358 // which part of redzone are already used. Used redzone can be treated
1359 // probed. But there might be `holes' in redzone probed, this could
1360 // complicate the implementation.
1361 assert(ProbeSize >= Subtarget.getRedZoneSize() &&
1362 "Probe size should be larger or equal to the size of red-zone so "
1363 "that red-zone is not clobbered by probing.");
1364
1365 Register &FinalStackPtr = TempReg;
1366 // FIXME: We only support NegProbeSize materializable by DForm currently.
1367 // When HasBP && HasRedzone, we can use xform if we have an additional idle
1368 // register.
1369 NegProbeSize = std::max(NegProbeSize, -((int64_t)1 << 15));
1370 assert(isInt<16>(NegProbeSize) &&
1371 "NegProbeSize should be materializable by DForm");
1372 Register CRReg = PPC::CR0;
1373 // Layout of output assembly kinda like:
1374 // bb.0:
1375 // ...
1376 // sub $scratchreg, $finalsp, r1
1377 // cmpdi $scratchreg, <negprobesize>
1378 // bge bb.2
1379 // bb.1:
1380 // stdu <backchain>, <negprobesize>(r1)
1381 // sub $scratchreg, $scratchreg, negprobesize
1382 // cmpdi $scratchreg, <negprobesize>
1383 // blt bb.1
1384 // bb.2:
1385 // stdux <backchain>, r1, $scratchreg
1386 MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
1387 MachineBasicBlock *ProbeLoopBodyMBB = MF.CreateMachineBasicBlock(ProbedBB);
1388 MF.insert(MBBInsertPoint, ProbeLoopBodyMBB);
1389 MachineBasicBlock *ProbeExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
1390 MF.insert(MBBInsertPoint, ProbeExitMBB);
1391 // bb.2
1392 {
1393 Register BackChainPointer = HasRedZone ? BPReg : TempReg;
1394 allocateAndProbe(*ProbeExitMBB, ProbeExitMBB->end(), 0, ScratchReg, false,
1395 BackChainPointer);
1396 if (HasRedZone)
1397 // PROBED_STACKALLOC_64 assumes Operand(1) stores the old sp, copy BPReg
1398 // to TempReg to satisfy it.
1399 BuildMI(*ProbeExitMBB, ProbeExitMBB->end(), DL, CopyInst, TempReg)
1400 .addReg(BPReg)
1401 .addReg(BPReg);
1402 ProbeExitMBB->splice(ProbeExitMBB->end(), &MBB, MBBI, MBB.end());
1403 ProbeExitMBB->transferSuccessorsAndUpdatePHIs(&MBB);
1404 }
1405 // bb.0
1406 {
1407 BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), ScratchReg)
1408 .addReg(SPReg)
1409 .addReg(FinalStackPtr);
1410 if (!HasRedZone)
1411 BuildMI(&MBB, DL, CopyInst, TempReg).addReg(SPReg).addReg(SPReg);
1412 BuildMI(&MBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI), CRReg)
1413 .addReg(ScratchReg)
1414 .addImm(NegProbeSize);
1415 BuildMI(&MBB, DL, TII.get(PPC::BCC))
1417 .addReg(CRReg)
1418 .addMBB(ProbeExitMBB);
1419 MBB.addSuccessor(ProbeLoopBodyMBB);
1420 MBB.addSuccessor(ProbeExitMBB);
1421 }
1422 // bb.1
1423 {
1424 Register BackChainPointer = HasRedZone ? BPReg : TempReg;
1425 allocateAndProbe(*ProbeLoopBodyMBB, ProbeLoopBodyMBB->end(), NegProbeSize,
1426 0, true /*UseDForm*/, BackChainPointer);
1427 BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::ADDI8 : PPC::ADDI),
1428 ScratchReg)
1429 .addReg(ScratchReg)
1430 .addImm(-NegProbeSize);
1431 BuildMI(ProbeLoopBodyMBB, DL, TII.get(isPPC64 ? PPC::CMPDI : PPC::CMPWI),
1432 CRReg)
1433 .addReg(ScratchReg)
1434 .addImm(NegProbeSize);
1435 BuildMI(ProbeLoopBodyMBB, DL, TII.get(PPC::BCC))
1437 .addReg(CRReg)
1438 .addMBB(ProbeLoopBodyMBB);
1439 ProbeLoopBodyMBB->addSuccessor(ProbeExitMBB);
1440 ProbeLoopBodyMBB->addSuccessor(ProbeLoopBodyMBB);
1441 }
1442 // Update liveins.
1443 fullyRecomputeLiveIns({ProbeExitMBB, ProbeLoopBodyMBB});
1444 return ProbeExitMBB;
1445 };
1446 // For case HasBP && MaxAlign > 1, we have to realign the SP by performing
1447 // SP = SP - SP % MaxAlign, thus make the probe more like dynamic probe since
1448 // the offset subtracted from SP is determined by SP's runtime value.
1449 if (HasBP && MaxAlign > 1) {
1450 // Calculate final stack pointer.
1451 if (isPPC64)
1452 BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLDICL), ScratchReg)
1453 .addReg(SPReg)
1454 .addImm(0)
1455 .addImm(64 - Log2(MaxAlign));
1456 else
1457 BuildMI(*CurrentMBB, {MI}, DL, TII.get(PPC::RLWINM), ScratchReg)
1458 .addReg(SPReg)
1459 .addImm(0)
1460 .addImm(32 - Log2(MaxAlign))
1461 .addImm(31);
1462 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::SUBF8 : PPC::SUBF),
1463 FPReg)
1464 .addReg(ScratchReg)
1465 .addReg(SPReg);
1466 MaterializeImm(*CurrentMBB, {MI}, NegFrameSize, ScratchReg);
1467 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
1468 FPReg)
1469 .addReg(ScratchReg)
1470 .addReg(FPReg);
1471 CurrentMBB = probeRealignedStack(*CurrentMBB, {MI}, ScratchReg, FPReg);
1472 if (needsCFI)
1473 buildDefCFAReg(*CurrentMBB, {MI}, FPReg);
1474 } else {
1475 // Initialize current frame pointer.
1476 BuildMI(*CurrentMBB, {MI}, DL, CopyInst, FPReg).addReg(SPReg).addReg(SPReg);
1477 // Use FPReg to calculate CFA.
1478 if (needsCFI)
1479 buildDefCFA(*CurrentMBB, {MI}, FPReg, 0);
1480 // Probe residual part.
1481 if (NegResidualSize) {
1482 bool ResidualUseDForm = CanUseDForm(NegResidualSize);
1483 if (!ResidualUseDForm)
1484 MaterializeImm(*CurrentMBB, {MI}, NegResidualSize, ScratchReg);
1485 allocateAndProbe(*CurrentMBB, {MI}, NegResidualSize, ScratchReg,
1486 ResidualUseDForm, FPReg);
1487 }
1488 bool UseDForm = CanUseDForm(NegProbeSize);
1489 // If number of blocks is small, just probe them directly.
1490 if (NumBlocks < 3) {
1491 if (!UseDForm)
1492 MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
1493 for (int i = 0; i < NumBlocks; ++i)
1494 allocateAndProbe(*CurrentMBB, {MI}, NegProbeSize, ScratchReg, UseDForm,
1495 FPReg);
1496 if (needsCFI) {
1497 // Restore using SPReg to calculate CFA.
1498 buildDefCFAReg(*CurrentMBB, {MI}, SPReg);
1499 }
1500 } else {
1501 // Since CTR is a volatile register and current shrinkwrap implementation
1502 // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a
1503 // CTR loop to probe.
1504 // Calculate trip count and stores it in CTRReg.
1505 MaterializeImm(*CurrentMBB, {MI}, NumBlocks, ScratchReg);
1506 BuildMI(*CurrentMBB, {MI}, DL, TII.get(isPPC64 ? PPC::MTCTR8 : PPC::MTCTR))
1507 .addReg(ScratchReg, RegState::Kill);
1508 if (!UseDForm)
1509 MaterializeImm(*CurrentMBB, {MI}, NegProbeSize, ScratchReg);
1510 // Create MBBs of the loop.
1511 MachineFunction::iterator MBBInsertPoint =
1512 std::next(CurrentMBB->getIterator());
1513 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(ProbedBB);
1514 MF.insert(MBBInsertPoint, LoopMBB);
1515 MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(ProbedBB);
1516 MF.insert(MBBInsertPoint, ExitMBB);
1517 // Synthesize the loop body.
1518 allocateAndProbe(*LoopMBB, LoopMBB->end(), NegProbeSize, ScratchReg,
1519 UseDForm, FPReg);
1520 BuildMI(LoopMBB, DL, TII.get(isPPC64 ? PPC::BDNZ8 : PPC::BDNZ))
1521 .addMBB(LoopMBB);
1522 LoopMBB->addSuccessor(ExitMBB);
1523 LoopMBB->addSuccessor(LoopMBB);
1524 // Synthesize the exit MBB.
1525 ExitMBB->splice(ExitMBB->end(), CurrentMBB,
1526 std::next(MachineBasicBlock::iterator(MI)),
1527 CurrentMBB->end());
1528 ExitMBB->transferSuccessorsAndUpdatePHIs(CurrentMBB);
1529 CurrentMBB->addSuccessor(LoopMBB);
1530 if (needsCFI) {
1531 // Restore using SPReg to calculate CFA.
1532 buildDefCFAReg(*ExitMBB, ExitMBB->begin(), SPReg);
1533 }
1534 // Update liveins.
1535 fullyRecomputeLiveIns({ExitMBB, LoopMBB});
1536 }
1537 }
1538 ++NumPrologProbed;
1539 MI.eraseFromParent();
1540}
1541
1543 MachineBasicBlock &MBB) const {
1545 DebugLoc dl;
1546
1547 if (MBBI != MBB.end())
1548 dl = MBBI->getDebugLoc();
1549
1550 const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1551 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1552
1553 // Get alignment info so we know how to restore the SP.
1554 const MachineFrameInfo &MFI = MF.getFrameInfo();
1555
1556 // Get the number of bytes allocated from the FrameInfo.
1557 int64_t FrameSize = MFI.getStackSize();
1558
1559 // Get processor type.
1560 bool isPPC64 = Subtarget.isPPC64();
1561
1562 // Check if the link register (LR) has been saved.
1564 bool MustSaveLR = FI->mustSaveLR();
1565 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
1566 bool MustSaveCR = !MustSaveCRs.empty();
1567 // Do we have a frame pointer and/or base pointer for this function?
1568 bool HasFP = hasFP(MF);
1569 bool HasBP = RegInfo->hasBasePointer(MF);
1570 bool HasRedZone = Subtarget.isPPC64() || !Subtarget.isSVR4ABI();
1571 bool HasROPProtect = Subtarget.hasROPProtect();
1572 bool HasPrivileged = Subtarget.hasPrivileged();
1573
1574 Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
1575 Register BPReg = RegInfo->getBaseRegister(MF);
1576 Register FPReg = isPPC64 ? PPC::X31 : PPC::R31;
1577 Register ScratchReg;
1578 Register TempReg = isPPC64 ? PPC::X12 : PPC::R12; // another scratch reg
1579 const MCInstrDesc& MTLRInst = TII.get( isPPC64 ? PPC::MTLR8
1580 : PPC::MTLR );
1581 const MCInstrDesc& LoadInst = TII.get( isPPC64 ? PPC::LD
1582 : PPC::LWZ );
1583 const MCInstrDesc& LoadImmShiftedInst = TII.get( isPPC64 ? PPC::LIS8
1584 : PPC::LIS );
1585 const MCInstrDesc& OrInst = TII.get(isPPC64 ? PPC::OR8
1586 : PPC::OR );
1587 const MCInstrDesc& OrImmInst = TII.get( isPPC64 ? PPC::ORI8
1588 : PPC::ORI );
1589 const MCInstrDesc& AddImmInst = TII.get( isPPC64 ? PPC::ADDI8
1590 : PPC::ADDI );
1591 const MCInstrDesc& AddInst = TII.get( isPPC64 ? PPC::ADD8
1592 : PPC::ADD4 );
1593 const MCInstrDesc& LoadWordInst = TII.get( isPPC64 ? PPC::LWZ8
1594 : PPC::LWZ);
1595 const MCInstrDesc& MoveToCRInst = TII.get( isPPC64 ? PPC::MTOCRF8
1596 : PPC::MTOCRF);
1597 const MCInstrDesc &HashChk =
1598 TII.get(isPPC64 ? (HasPrivileged ? PPC::HASHCHKP8 : PPC::HASHCHK8)
1599 : (HasPrivileged ? PPC::HASHCHKP : PPC::HASHCHK));
1600 int64_t LROffset = getReturnSaveOffset();
1601
1602 int64_t FPOffset = 0;
1603
1604 // Using the same bool variable as below to suppress compiler warnings.
1605 bool SingleScratchReg = findScratchRegister(&MBB, true, false, &ScratchReg,
1606 &TempReg);
1607 assert(SingleScratchReg &&
1608 "Could not find an available scratch register");
1609
1610 SingleScratchReg = ScratchReg == TempReg;
1611
1612 if (HasFP) {
1613 int FPIndex = FI->getFramePointerSaveIndex();
1614 assert(FPIndex && "No Frame Pointer Save Slot!");
1615 FPOffset = MFI.getObjectOffset(FPIndex);
1616 }
1617
1618 int64_t BPOffset = 0;
1619 if (HasBP) {
1620 int BPIndex = FI->getBasePointerSaveIndex();
1621 assert(BPIndex && "No Base Pointer Save Slot!");
1622 BPOffset = MFI.getObjectOffset(BPIndex);
1623 }
1624
1625 int64_t PBPOffset = 0;
1626 if (FI->usesPICBase()) {
1627 int PBPIndex = FI->getPICBasePointerSaveIndex();
1628 assert(PBPIndex && "No PIC Base Pointer Save Slot!");
1629 PBPOffset = MFI.getObjectOffset(PBPIndex);
1630 }
1631
1632 bool IsReturnBlock = (MBBI != MBB.end() && MBBI->isReturn());
1633
1634 if (IsReturnBlock) {
1635 unsigned RetOpcode = MBBI->getOpcode();
1636 bool UsesTCRet = RetOpcode == PPC::TCRETURNri ||
1637 RetOpcode == PPC::TCRETURNdi ||
1638 RetOpcode == PPC::TCRETURNai ||
1639 RetOpcode == PPC::TCRETURNri8 ||
1640 RetOpcode == PPC::TCRETURNdi8 ||
1641 RetOpcode == PPC::TCRETURNai8;
1642
1643 if (UsesTCRet) {
1644 int MaxTCRetDelta = FI->getTailCallSPDelta();
1645 MachineOperand &StackAdjust = MBBI->getOperand(1);
1646 assert(StackAdjust.isImm() && "Expecting immediate value.");
1647 // Adjust stack pointer.
1648 int StackAdj = StackAdjust.getImm();
1649 int Delta = StackAdj - MaxTCRetDelta;
1650 assert((Delta >= 0) && "Delta must be positive");
1651 if (MaxTCRetDelta>0)
1652 FrameSize += (StackAdj +Delta);
1653 else
1654 FrameSize += StackAdj;
1655 }
1656 }
1657
1658 // Frames of 32KB & larger require special handling because they cannot be
1659 // indexed into with a simple LD/LWZ immediate offset operand.
1660 bool isLargeFrame = !isInt<16>(FrameSize);
1661
1662 // On targets without red zone, the SP needs to be restored last, so that
1663 // all live contents of the stack frame are upwards of the SP. This means
1664 // that we cannot restore SP just now, since there may be more registers
1665 // to restore from the stack frame (e.g. R31). If the frame size is not
1666 // a simple immediate value, we will need a spare register to hold the
1667 // restored SP. If the frame size is known and small, we can simply adjust
1668 // the offsets of the registers to be restored, and still use SP to restore
1669 // them. In such case, the final update of SP will be to add the frame
1670 // size to it.
1671 // To simplify the code, set RBReg to the base register used to restore
1672 // values from the stack, and set SPAdd to the value that needs to be added
1673 // to the SP at the end. The default values are as if red zone was present.
1674 unsigned RBReg = SPReg;
1675 uint64_t SPAdd = 0;
1676
1677 // Check if we can move the stack update instruction up the epilogue
1678 // past the callee saves. This will allow the move to LR instruction
1679 // to be executed before the restores of the callee saves which means
1680 // that the callee saves can hide the latency from the MTLR instrcution.
1681 MachineBasicBlock::iterator StackUpdateLoc = MBBI;
1682 if (stackUpdateCanBeMoved(MF)) {
1683 const std::vector<CalleeSavedInfo> & Info = MFI.getCalleeSavedInfo();
1684 for (CalleeSavedInfo CSI : Info) {
1685 // If the callee saved register is spilled to another register abort the
1686 // stack update movement.
1687 if (CSI.isSpilledToReg()) {
1688 StackUpdateLoc = MBBI;
1689 break;
1690 }
1691 int FrIdx = CSI.getFrameIdx();
1692 // If the frame index is not negative the callee saved info belongs to a
1693 // stack object that is not a fixed stack object. We ignore non-fixed
1694 // stack objects because we won't move the update of the stack pointer
1695 // past them.
1696 if (FrIdx >= 0)
1697 continue;
1698
1699 if (MFI.isFixedObjectIndex(FrIdx) && MFI.getObjectOffset(FrIdx) < 0)
1700 StackUpdateLoc--;
1701 else {
1702 // Abort the operation as we can't update all CSR restores.
1703 StackUpdateLoc = MBBI;
1704 break;
1705 }
1706 }
1707 }
1708
1709 if (FrameSize) {
1710 // In the prologue, the loaded (or persistent) stack pointer value is
1711 // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red
1712 // zone add this offset back now.
1713
1714 // If the function has a base pointer, the stack pointer has been copied
1715 // to it so we can restore it by copying in the other direction.
1716 if (HasRedZone && HasBP) {
1717 BuildMI(MBB, MBBI, dl, OrInst, RBReg).
1718 addReg(BPReg).
1719 addReg(BPReg);
1720 }
1721 // If this function contained a fastcc call and GuaranteedTailCallOpt is
1722 // enabled (=> hasFastCall()==true) the fastcc call might contain a tail
1723 // call which invalidates the stack pointer value in SP(0). So we use the
1724 // value of R31 in this case. Similar situation exists with setjmp.
1725 else if (FI->hasFastCall() || MF.exposesReturnsTwice()) {
1726 assert(HasFP && "Expecting a valid frame pointer.");
1727 if (!HasRedZone)
1728 RBReg = FPReg;
1729 if (!isLargeFrame) {
1730 BuildMI(MBB, MBBI, dl, AddImmInst, RBReg)
1731 .addReg(FPReg).addImm(FrameSize);
1732 } else {
1733 TII.materializeImmPostRA(MBB, MBBI, dl, ScratchReg, FrameSize);
1734 BuildMI(MBB, MBBI, dl, AddInst)
1735 .addReg(RBReg)
1736 .addReg(FPReg)
1737 .addReg(ScratchReg);
1738 }
1739 } else if (!isLargeFrame && !HasBP && !MFI.hasVarSizedObjects()) {
1740 if (HasRedZone) {
1741 BuildMI(MBB, StackUpdateLoc, dl, AddImmInst, SPReg)
1742 .addReg(SPReg)
1743 .addImm(FrameSize);
1744 } else {
1745 // Make sure that adding FrameSize will not overflow the max offset
1746 // size.
1747 assert(FPOffset <= 0 && BPOffset <= 0 && PBPOffset <= 0 &&
1748 "Local offsets should be negative");
1749 SPAdd = FrameSize;
1750 FPOffset += FrameSize;
1751 BPOffset += FrameSize;
1752 PBPOffset += FrameSize;
1753 }
1754 } else {
1755 // We don't want to use ScratchReg as a base register, because it
1756 // could happen to be R0. Use FP instead, but make sure to preserve it.
1757 if (!HasRedZone) {
1758 // If FP is not saved, copy it to ScratchReg.
1759 if (!HasFP)
1760 BuildMI(MBB, MBBI, dl, OrInst, ScratchReg)
1761 .addReg(FPReg)
1762 .addReg(FPReg);
1763 RBReg = FPReg;
1764 }
1765 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, RBReg)
1766 .addImm(0)
1767 .addReg(SPReg);
1768 }
1769 }
1770 assert(RBReg != ScratchReg && "Should have avoided ScratchReg");
1771 // If there is no red zone, ScratchReg may be needed for holding a useful
1772 // value (although not the base register). Make sure it is not overwritten
1773 // too early.
1774
1775 // If we need to restore both the LR and the CR and we only have one
1776 // available scratch register, we must do them one at a time.
1777 if (MustSaveCR && SingleScratchReg && MustSaveLR) {
1778 // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg
1779 // is live here.
1780 assert(HasRedZone && "Expecting red zone");
1781 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
1782 .addImm(CRSaveOffset)
1783 .addReg(SPReg);
1784 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
1785 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
1786 .addReg(TempReg, getKillRegState(i == e-1));
1787 }
1788
1789 // Delay restoring of the LR if ScratchReg is needed. This is ok, since
1790 // LR is stored in the caller's stack frame. ScratchReg will be needed
1791 // if RBReg is anything other than SP. We shouldn't use ScratchReg as
1792 // a base register anyway, because it may happen to be R0.
1793 bool LoadedLR = false;
1794 if (MustSaveLR && RBReg == SPReg && isInt<16>(LROffset+SPAdd)) {
1795 BuildMI(MBB, StackUpdateLoc, dl, LoadInst, ScratchReg)
1796 .addImm(LROffset+SPAdd)
1797 .addReg(RBReg);
1798 LoadedLR = true;
1799 }
1800
1801 if (MustSaveCR && !(SingleScratchReg && MustSaveLR)) {
1802 assert(RBReg == SPReg && "Should be using SP as a base register");
1803 BuildMI(MBB, MBBI, dl, LoadWordInst, TempReg)
1804 .addImm(CRSaveOffset)
1805 .addReg(RBReg);
1806 }
1807
1808 if (HasFP) {
1809 // If there is red zone, restore FP directly, since SP has already been
1810 // restored. Otherwise, restore the value of FP into ScratchReg.
1811 if (HasRedZone || RBReg == SPReg)
1812 BuildMI(MBB, MBBI, dl, LoadInst, FPReg)
1813 .addImm(FPOffset)
1814 .addReg(SPReg);
1815 else
1816 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
1817 .addImm(FPOffset)
1818 .addReg(RBReg);
1819 }
1820
1821 if (FI->usesPICBase())
1822 BuildMI(MBB, MBBI, dl, LoadInst, PPC::R30)
1823 .addImm(PBPOffset)
1824 .addReg(RBReg);
1825
1826 if (HasBP)
1827 BuildMI(MBB, MBBI, dl, LoadInst, BPReg)
1828 .addImm(BPOffset)
1829 .addReg(RBReg);
1830
1831 // There is nothing more to be loaded from the stack, so now we can
1832 // restore SP: SP = RBReg + SPAdd.
1833 if (RBReg != SPReg || SPAdd != 0) {
1834 assert(!HasRedZone && "This should not happen with red zone");
1835 // If SPAdd is 0, generate a copy.
1836 if (SPAdd == 0)
1837 BuildMI(MBB, MBBI, dl, OrInst, SPReg)
1838 .addReg(RBReg)
1839 .addReg(RBReg);
1840 else
1841 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
1842 .addReg(RBReg)
1843 .addImm(SPAdd);
1844
1845 assert(RBReg != ScratchReg && "Should be using FP or SP as base register");
1846 if (RBReg == FPReg)
1847 BuildMI(MBB, MBBI, dl, OrInst, FPReg)
1848 .addReg(ScratchReg)
1849 .addReg(ScratchReg);
1850
1851 // Now load the LR from the caller's stack frame.
1852 if (MustSaveLR && !LoadedLR)
1853 BuildMI(MBB, MBBI, dl, LoadInst, ScratchReg)
1854 .addImm(LROffset)
1855 .addReg(SPReg);
1856 }
1857
1858 if (MustSaveCR &&
1859 !(SingleScratchReg && MustSaveLR))
1860 for (unsigned i = 0, e = MustSaveCRs.size(); i != e; ++i)
1861 BuildMI(MBB, MBBI, dl, MoveToCRInst, MustSaveCRs[i])
1862 .addReg(TempReg, getKillRegState(i == e-1));
1863
1864 if (MustSaveLR) {
1865 // If ROP protection is required, an extra instruction is added to compute a
1866 // hash and then compare it to the hash stored in the prologue.
1867 if (HasROPProtect) {
1868 const int SaveIndex = FI->getROPProtectionHashSaveIndex();
1869 const int64_t ImmOffset = MFI.getObjectOffset(SaveIndex);
1870 assert((ImmOffset <= -8 && ImmOffset >= -512) &&
1871 "ROP hash check location offset out of range.");
1872 assert(((ImmOffset & 0x7) == 0) &&
1873 "ROP hash check location offset must be 8 byte aligned.");
1874 BuildMI(MBB, StackUpdateLoc, dl, HashChk)
1875 .addReg(ScratchReg)
1876 .addImm(ImmOffset)
1877 .addReg(SPReg);
1878 }
1879 BuildMI(MBB, StackUpdateLoc, dl, MTLRInst).addReg(ScratchReg);
1880 }
1881
1882 // Callee pop calling convention. Pop parameter/linkage area. Used for tail
1883 // call optimization
1884 if (IsReturnBlock) {
1885 unsigned RetOpcode = MBBI->getOpcode();
1887 (RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) &&
1890 unsigned CallerAllocatedAmt = FI->getMinReservedArea();
1891
1892 if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) {
1893 BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
1894 .addReg(SPReg).addImm(CallerAllocatedAmt);
1895 } else {
1896 BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
1897 .addImm(CallerAllocatedAmt >> 16);
1898 BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
1899 .addReg(ScratchReg, RegState::Kill)
1900 .addImm(CallerAllocatedAmt & 0xFFFF);
1901 BuildMI(MBB, MBBI, dl, AddInst)
1902 .addReg(SPReg)
1903 .addReg(FPReg)
1904 .addReg(ScratchReg);
1905 }
1906 } else {
1907 createTailCallBranchInstr(MBB);
1908 }
1909 }
1910}
1911
1912void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock &MBB) const {
1914
1915 // If we got this far a first terminator should exist.
1916 assert(MBBI != MBB.end() && "Failed to find the first terminator.");
1917
1918 DebugLoc dl = MBBI->getDebugLoc();
1919 const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
1920
1921 // Create branch instruction for pseudo tail call return instruction.
1922 // The TCRETURNdi variants are direct calls. Valid targets for those are
1923 // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel
1924 // since we can tail call external functions with PC-Rel (i.e. we don't need
1925 // to worry about different TOC pointers). Some of the external functions will
1926 // be MO_GlobalAddress while others like memcpy for example, are going to
1927 // be MO_ExternalSymbol.
1928 unsigned RetOpcode = MBBI->getOpcode();
1929 if (RetOpcode == PPC::TCRETURNdi) {
1931 MachineOperand &JumpTarget = MBBI->getOperand(0);
1932 if (JumpTarget.isGlobal())
1933 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
1934 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1935 else if (JumpTarget.isSymbol())
1936 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
1937 addExternalSymbol(JumpTarget.getSymbolName());
1938 else
1939 llvm_unreachable("Expecting Global or External Symbol");
1940 } else if (RetOpcode == PPC::TCRETURNri) {
1942 assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
1943 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR));
1944 } else if (RetOpcode == PPC::TCRETURNai) {
1946 MachineOperand &JumpTarget = MBBI->getOperand(0);
1947 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm());
1948 } else if (RetOpcode == PPC::TCRETURNdi8) {
1950 MachineOperand &JumpTarget = MBBI->getOperand(0);
1951 if (JumpTarget.isGlobal())
1952 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
1953 addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
1954 else if (JumpTarget.isSymbol())
1955 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
1956 addExternalSymbol(JumpTarget.getSymbolName());
1957 else
1958 llvm_unreachable("Expecting Global or External Symbol");
1959 } else if (RetOpcode == PPC::TCRETURNri8) {
1961 assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
1962 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8));
1963 } else if (RetOpcode == PPC::TCRETURNai8) {
1965 MachineOperand &JumpTarget = MBBI->getOperand(0);
1966 BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm());
1967 }
1968}
1969
1971 BitVector &SavedRegs,
1972 RegScavenger *RS) const {
1974 if (Subtarget.isAIXABI())
1975 updateCalleeSaves(MF, SavedRegs);
1976
1977 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1978
1979 // Do not explicitly save the callee saved VSRp registers.
1980 // The individual VSR subregisters will be saved instead.
1981 SavedRegs.reset(PPC::VSRp26);
1982 SavedRegs.reset(PPC::VSRp27);
1983 SavedRegs.reset(PPC::VSRp28);
1984 SavedRegs.reset(PPC::VSRp29);
1985 SavedRegs.reset(PPC::VSRp30);
1986 SavedRegs.reset(PPC::VSRp31);
1987
1988 // Save and clear the LR state.
1990 unsigned LR = RegInfo->getRARegister();
1991 FI->setMustSaveLR(MustSaveLR(MF, LR));
1992 SavedRegs.reset(LR);
1993
1994 // Save R31 if necessary
1995 int FPSI = FI->getFramePointerSaveIndex();
1996 const bool isPPC64 = Subtarget.isPPC64();
1997 MachineFrameInfo &MFI = MF.getFrameInfo();
1998
1999 // If the frame pointer save index hasn't been defined yet.
2000 if (!FPSI && needsFP(MF)) {
2001 // Find out what the fix offset of the frame pointer save area.
2002 int FPOffset = getFramePointerSaveOffset();
2003 // Allocate the frame index for frame pointer save area.
2004 FPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
2005 // Save the result.
2006 FI->setFramePointerSaveIndex(FPSI);
2007 }
2008
2009 int BPSI = FI->getBasePointerSaveIndex();
2010 if (!BPSI && RegInfo->hasBasePointer(MF)) {
2011 int BPOffset = getBasePointerSaveOffset();
2012 // Allocate the frame index for the base pointer save area.
2013 BPSI = MFI.CreateFixedObject(isPPC64? 8 : 4, BPOffset, true);
2014 // Save the result.
2015 FI->setBasePointerSaveIndex(BPSI);
2016 }
2017
2018 // Reserve stack space for the PIC Base register (R30).
2019 // Only used in SVR4 32-bit.
2020 if (FI->usesPICBase()) {
2021 int PBPSI = MFI.CreateFixedObject(4, -8, true);
2022 FI->setPICBasePointerSaveIndex(PBPSI);
2023 }
2024
2025 // Make sure we don't explicitly spill r31, because, for example, we have
2026 // some inline asm which explicitly clobbers it, when we otherwise have a
2027 // frame pointer and are using r31's spill slot for the prologue/epilogue
2028 // code. Same goes for the base pointer and the PIC base register.
2029 if (needsFP(MF))
2030 SavedRegs.reset(isPPC64 ? PPC::X31 : PPC::R31);
2031 if (RegInfo->hasBasePointer(MF)) {
2032 SavedRegs.reset(RegInfo->getBaseRegister(MF));
2033 // On AIX, when BaseRegister(R30) is used, need to spill r31 too to match
2034 // AIX trackback table requirement.
2035 if (!needsFP(MF) && !SavedRegs.test(isPPC64 ? PPC::X31 : PPC::R31) &&
2036 Subtarget.isAIXABI()) {
2037 assert(
2038 (RegInfo->getBaseRegister(MF) == (isPPC64 ? PPC::X30 : PPC::R30)) &&
2039 "Invalid base register on AIX!");
2040 SavedRegs.set(isPPC64 ? PPC::X31 : PPC::R31);
2041 }
2042 }
2043 if (FI->usesPICBase())
2044 SavedRegs.reset(PPC::R30);
2045
2046 // Reserve stack space to move the linkage area to in case of a tail call.
2047 int TCSPDelta = 0;
2049 (TCSPDelta = FI->getTailCallSPDelta()) < 0) {
2050 MFI.CreateFixedObject(-1 * TCSPDelta, TCSPDelta, true);
2051 }
2052
2053 // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4.
2054 // For 64-bit SVR4, and all flavors of AIX we create a FixedStack
2055 // object at the offset of the CR-save slot in the linkage area. The actual
2056 // save and restore of the condition register will be created as part of the
2057 // prologue and epilogue insertion, but the FixedStack object is needed to
2058 // keep the CalleSavedInfo valid.
2059 if ((SavedRegs.test(PPC::CR2) || SavedRegs.test(PPC::CR3) ||
2060 SavedRegs.test(PPC::CR4))) {
2061 const uint64_t SpillSize = 4; // Condition register is always 4 bytes.
2062 const int64_t SpillOffset =
2063 Subtarget.isPPC64() ? 8 : Subtarget.isAIXABI() ? 4 : -4;
2064 int FrameIdx =
2065 MFI.CreateFixedObject(SpillSize, SpillOffset,
2066 /* IsImmutable */ true, /* IsAliased */ false);
2067 FI->setCRSpillFrameIndex(FrameIdx);
2068 }
2069}
2070
2072 RegScavenger *RS) const {
2073 // Get callee saved register information.
2074 MachineFrameInfo &MFI = MF.getFrameInfo();
2075 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
2076
2077 // If the function is shrink-wrapped, and if the function has a tail call, the
2078 // tail call might not be in the new RestoreBlock, so real branch instruction
2079 // won't be generated by emitEpilogue(), because shrink-wrap has chosen new
2080 // RestoreBlock. So we handle this case here.
2081 if (MFI.getSavePoint() && MFI.hasTailCall()) {
2082 MachineBasicBlock *RestoreBlock = MFI.getRestorePoint();
2083 for (MachineBasicBlock &MBB : MF) {
2084 if (MBB.isReturnBlock() && (&MBB) != RestoreBlock)
2085 createTailCallBranchInstr(MBB);
2086 }
2087 }
2088
2089 // Early exit if no callee saved registers are modified!
2090 if (CSI.empty() && !needsFP(MF)) {
2091 addScavengingSpillSlot(MF, RS);
2092 return;
2093 }
2094
2095 unsigned MinGPR = PPC::R31;
2096 unsigned MinG8R = PPC::X31;
2097 unsigned MinFPR = PPC::F31;
2098 unsigned MinVR = Subtarget.hasSPE() ? PPC::S31 : PPC::V31;
2099
2100 bool HasGPSaveArea = false;
2101 bool HasG8SaveArea = false;
2102 bool HasFPSaveArea = false;
2103 bool HasVRSaveArea = false;
2104
2109
2110 for (const CalleeSavedInfo &I : CSI) {
2111 Register Reg = I.getReg();
2113 (Reg != PPC::X2 && Reg != PPC::R2)) &&
2114 "Not expecting to try to spill R2 in a function that must save TOC");
2115 if (PPC::GPRCRegClass.contains(Reg)) {
2116 HasGPSaveArea = true;
2117
2118 GPRegs.push_back(I);
2119
2120 if (Reg < MinGPR) {
2121 MinGPR = Reg;
2122 }
2123 } else if (PPC::G8RCRegClass.contains(Reg)) {
2124 HasG8SaveArea = true;
2125
2126 G8Regs.push_back(I);
2127
2128 if (Reg < MinG8R) {
2129 MinG8R = Reg;
2130 }
2131 } else if (PPC::F8RCRegClass.contains(Reg)) {
2132 HasFPSaveArea = true;
2133
2134 FPRegs.push_back(I);
2135
2136 if (Reg < MinFPR) {
2137 MinFPR = Reg;
2138 }
2139 } else if (PPC::CRBITRCRegClass.contains(Reg) ||
2140 PPC::CRRCRegClass.contains(Reg)) {
2141 ; // do nothing, as we already know whether CRs are spilled
2142 } else if (PPC::VRRCRegClass.contains(Reg) ||
2143 PPC::SPERCRegClass.contains(Reg)) {
2144 // Altivec and SPE are mutually exclusive, but have the same stack
2145 // alignment requirements, so overload the save area for both cases.
2146 HasVRSaveArea = true;
2147
2148 VRegs.push_back(I);
2149
2150 if (Reg < MinVR) {
2151 MinVR = Reg;
2152 }
2153 } else {
2154 llvm_unreachable("Unknown RegisterClass!");
2155 }
2156 }
2157
2159 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2160
2161 int64_t LowerBound = 0;
2162
2163 // Take into account stack space reserved for tail calls.
2164 int TCSPDelta = 0;
2166 (TCSPDelta = PFI->getTailCallSPDelta()) < 0) {
2167 LowerBound = TCSPDelta;
2168 }
2169
2170 // The Floating-point register save area is right below the back chain word
2171 // of the previous stack frame.
2172 if (HasFPSaveArea) {
2173 for (unsigned i = 0, e = FPRegs.size(); i != e; ++i) {
2174 int FI = FPRegs[i].getFrameIdx();
2175
2176 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2177 }
2178
2179 LowerBound -= (31 - TRI->getEncodingValue(MinFPR) + 1) * 8;
2180 }
2181
2182 // Check whether the frame pointer register is allocated. If so, make sure it
2183 // is spilled to the correct offset.
2184 if (needsFP(MF)) {
2185 int FI = PFI->getFramePointerSaveIndex();
2186 assert(FI && "No Frame Pointer Save Slot!");
2187 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2188 // FP is R31/X31, so no need to update MinGPR/MinG8R.
2189 HasGPSaveArea = true;
2190 }
2191
2192 if (PFI->usesPICBase()) {
2193 int FI = PFI->getPICBasePointerSaveIndex();
2194 assert(FI && "No PIC Base Pointer Save Slot!");
2195 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2196
2197 MinGPR = std::min<unsigned>(MinGPR, PPC::R30);
2198 HasGPSaveArea = true;
2199 }
2200
2201 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2202 if (RegInfo->hasBasePointer(MF)) {
2203 int FI = PFI->getBasePointerSaveIndex();
2204 assert(FI && "No Base Pointer Save Slot!");
2205 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2206
2207 Register BP = RegInfo->getBaseRegister(MF);
2208 if (PPC::G8RCRegClass.contains(BP)) {
2209 MinG8R = std::min<unsigned>(MinG8R, BP);
2210 HasG8SaveArea = true;
2211 } else if (PPC::GPRCRegClass.contains(BP)) {
2212 MinGPR = std::min<unsigned>(MinGPR, BP);
2213 HasGPSaveArea = true;
2214 }
2215 }
2216
2217 // General register save area starts right below the Floating-point
2218 // register save area.
2219 if (HasGPSaveArea || HasG8SaveArea) {
2220 // Move general register save area spill slots down, taking into account
2221 // the size of the Floating-point register save area.
2222 for (unsigned i = 0, e = GPRegs.size(); i != e; ++i) {
2223 if (!GPRegs[i].isSpilledToReg()) {
2224 int FI = GPRegs[i].getFrameIdx();
2225 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2226 }
2227 }
2228
2229 // Move general register save area spill slots down, taking into account
2230 // the size of the Floating-point register save area.
2231 for (unsigned i = 0, e = G8Regs.size(); i != e; ++i) {
2232 if (!G8Regs[i].isSpilledToReg()) {
2233 int FI = G8Regs[i].getFrameIdx();
2234 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2235 }
2236 }
2237
2238 unsigned MinReg =
2239 std::min<unsigned>(TRI->getEncodingValue(MinGPR),
2240 TRI->getEncodingValue(MinG8R));
2241
2242 const unsigned GPRegSize = Subtarget.isPPC64() ? 8 : 4;
2243 LowerBound -= (31 - MinReg + 1) * GPRegSize;
2244 }
2245
2246 // For 32-bit only, the CR save area is below the general register
2247 // save area. For 64-bit SVR4, the CR save area is addressed relative
2248 // to the stack pointer and hence does not need an adjustment here.
2249 // Only CR2 (the first nonvolatile spilled) has an associated frame
2250 // index so that we have a single uniform save area.
2251 if (spillsCR(MF) && Subtarget.is32BitELFABI()) {
2252 // Adjust the frame index of the CR spill slot.
2253 for (const auto &CSInfo : CSI) {
2254 if (CSInfo.getReg() == PPC::CR2) {
2255 int FI = CSInfo.getFrameIdx();
2256 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2257 break;
2258 }
2259 }
2260
2261 LowerBound -= 4; // The CR save area is always 4 bytes long.
2262 }
2263
2264 // Both Altivec and SPE have the same alignment and padding requirements
2265 // within the stack frame.
2266 if (HasVRSaveArea) {
2267 // Insert alignment padding, we need 16-byte alignment. Note: for positive
2268 // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since
2269 // we are using negative number here (the stack grows downward). We should
2270 // use formula : y = x & (~(n-1)). Where x is the size before aligning, n
2271 // is the alignment size ( n = 16 here) and y is the size after aligning.
2272 assert(LowerBound <= 0 && "Expect LowerBound have a non-positive value!");
2273 LowerBound &= ~(15);
2274
2275 for (unsigned i = 0, e = VRegs.size(); i != e; ++i) {
2276 int FI = VRegs[i].getFrameIdx();
2277
2278 MFI.setObjectOffset(FI, LowerBound + MFI.getObjectOffset(FI));
2279 }
2280 }
2281
2282 addScavengingSpillSlot(MF, RS);
2283}
2284
2285void
2287 RegScavenger *RS) const {
2288 // Reserve a slot closest to SP or frame pointer if we have a dynalloc or
2289 // a large stack, which will require scavenging a register to materialize a
2290 // large offset.
2291
2292 // We need to have a scavenger spill slot for spills if the frame size is
2293 // large. In case there is no free register for large-offset addressing,
2294 // this slot is used for the necessary emergency spill. Also, we need the
2295 // slot for dynamic stack allocations.
2296
2297 // The scavenger might be invoked if the frame offset does not fit into
2298 // the 16-bit immediate in case of not SPE and 8-bit in case of SPE.
2299 // We don't know the complete frame size here because we've not yet computed
2300 // callee-saved register spills or the needed alignment padding.
2301 unsigned StackSize = determineFrameLayout(MF, true);
2302 MachineFrameInfo &MFI = MF.getFrameInfo();
2303 bool NeedSpills = Subtarget.hasSPE() ? !isInt<8>(StackSize) : !isInt<16>(StackSize);
2304
2305 if (MFI.hasVarSizedObjects() || spillsCR(MF) || hasNonRISpills(MF) ||
2306 (hasSpills(MF) && NeedSpills)) {
2307 const TargetRegisterClass &GPRC = PPC::GPRCRegClass;
2308 const TargetRegisterClass &G8RC = PPC::G8RCRegClass;
2309 const TargetRegisterClass &RC = Subtarget.isPPC64() ? G8RC : GPRC;
2310 const TargetRegisterInfo &TRI = *Subtarget.getRegisterInfo();
2311 unsigned Size = TRI.getSpillSize(RC);
2312 Align Alignment = TRI.getSpillAlign(RC);
2314
2315 // Might we have over-aligned allocas?
2316 bool HasAlVars =
2317 MFI.hasVarSizedObjects() && MFI.getMaxAlign() > getStackAlign();
2318
2319 // These kinds of spills might need two registers.
2320 if (spillsCR(MF) || HasAlVars)
2322 }
2323}
2324
2325// This function checks if a callee saved gpr can be spilled to a volatile
2326// vector register. This occurs for leaf functions when the option
2327// ppc-enable-pe-vector-spills is enabled. If there are any remaining registers
2328// which were not spilled to vectors, return false so the target independent
2329// code can handle them by assigning a FrameIdx to a stack slot.
2332 std::vector<CalleeSavedInfo> &CSI) const {
2333
2334 if (CSI.empty())
2335 return true; // Early exit if no callee saved registers are modified!
2336
2337 const PPCRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2338 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2339 const MachineRegisterInfo &MRI = MF.getRegInfo();
2340
2341 if (Subtarget.hasSPE()) {
2342 // In case of SPE we only have SuperRegs and CRs
2343 // in our CalleSaveInfo vector.
2344
2345 for (auto &CalleeSaveReg : CSI) {
2346 MCPhysReg Reg = CalleeSaveReg.getReg();
2347 MCPhysReg Lower = RegInfo->getSubReg(Reg, 1);
2348 MCPhysReg Higher = RegInfo->getSubReg(Reg, 2);
2349
2350 if ( // Check only for SuperRegs.
2351 Lower &&
2352 // Replace Reg if only lower-32 bits modified
2353 !MRI.isPhysRegModified(Higher))
2354 CalleeSaveReg = CalleeSavedInfo(Lower);
2355 }
2356 }
2357
2358 // Early exit if cannot spill gprs to volatile vector registers.
2359 MachineFrameInfo &MFI = MF.getFrameInfo();
2360 if (!EnablePEVectorSpills || MFI.hasCalls() || !Subtarget.hasP9Vector())
2361 return false;
2362
2363 // Build a BitVector of VSRs that can be used for spilling GPRs.
2364 BitVector BVAllocatable = TRI->getAllocatableSet(MF);
2365 BitVector BVCalleeSaved(TRI->getNumRegs());
2366 for (unsigned i = 0; CSRegs[i]; ++i)
2367 BVCalleeSaved.set(CSRegs[i]);
2368
2369 for (unsigned Reg : BVAllocatable.set_bits()) {
2370 // Set to 0 if the register is not a volatile VSX register, or if it is
2371 // used in the function.
2372 if (BVCalleeSaved[Reg] || !PPC::VSRCRegClass.contains(Reg) ||
2373 MRI.isPhysRegUsed(Reg))
2374 BVAllocatable.reset(Reg);
2375 }
2376
2377 bool AllSpilledToReg = true;
2378 unsigned LastVSRUsedForSpill = 0;
2379 for (auto &CS : CSI) {
2380 if (BVAllocatable.none())
2381 return false;
2382
2383 Register Reg = CS.getReg();
2384
2385 if (!PPC::G8RCRegClass.contains(Reg)) {
2386 AllSpilledToReg = false;
2387 continue;
2388 }
2389
2390 // For P9, we can reuse LastVSRUsedForSpill to spill two GPRs
2391 // into one VSR using the mtvsrdd instruction.
2392 if (LastVSRUsedForSpill != 0) {
2393 CS.setDstReg(LastVSRUsedForSpill);
2394 BVAllocatable.reset(LastVSRUsedForSpill);
2395 LastVSRUsedForSpill = 0;
2396 continue;
2397 }
2398
2399 unsigned VolatileVFReg = BVAllocatable.find_first();
2400 if (VolatileVFReg < BVAllocatable.size()) {
2401 CS.setDstReg(VolatileVFReg);
2402 LastVSRUsedForSpill = VolatileVFReg;
2403 } else {
2404 AllSpilledToReg = false;
2405 }
2406 }
2407 return AllSpilledToReg;
2408}
2409
2413
2415 const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
2417 bool MustSaveTOC = FI->mustSaveTOC();
2418 DebugLoc DL;
2419 bool CRSpilled = false;
2420 MachineInstrBuilder CRMIB;
2421 BitVector Spilled(TRI->getNumRegs());
2422
2423 VSRContainingGPRs.clear();
2424
2425 // Map each VSR to GPRs to be spilled with into it. Single VSR can contain one
2426 // or two GPRs, so we need table to record information for later save/restore.
2427 for (const CalleeSavedInfo &Info : CSI) {
2428 if (Info.isSpilledToReg()) {
2429 auto &SpilledVSR = VSRContainingGPRs[Info.getDstReg()];
2430 assert(SpilledVSR.second == 0 &&
2431 "Can't spill more than two GPRs into VSR!");
2432 if (SpilledVSR.first == 0)
2433 SpilledVSR.first = Info.getReg();
2434 else
2435 SpilledVSR.second = Info.getReg();
2436 }
2437 }
2438
2439 for (const CalleeSavedInfo &I : CSI) {
2440 Register Reg = I.getReg();
2441
2442 // CR2 through CR4 are the nonvolatile CR fields.
2443 bool IsCRField = PPC::CR2 <= Reg && Reg <= PPC::CR4;
2444
2445 // Add the callee-saved register as live-in; it's killed at the spill.
2446 // Do not do this for callee-saved registers that are live-in to the
2447 // function because they will already be marked live-in and this will be
2448 // adding it for a second time. It is an error to add the same register
2449 // to the set more than once.
2450 const MachineRegisterInfo &MRI = MF->getRegInfo();
2451 bool IsLiveIn = MRI.isLiveIn(Reg);
2452 if (!IsLiveIn)
2453 MBB.addLiveIn(Reg);
2454
2455 if (CRSpilled && IsCRField) {
2456 CRMIB.addReg(Reg, RegState::ImplicitKill);
2457 continue;
2458 }
2459
2460 // The actual spill will happen in the prologue.
2461 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
2462 continue;
2463
2464 // Insert the spill to the stack frame.
2465 if (IsCRField) {
2466 PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
2467 if (!Subtarget.is32BitELFABI()) {
2468 // The actual spill will happen at the start of the prologue.
2469 FuncInfo->addMustSaveCR(Reg);
2470 } else {
2471 CRSpilled = true;
2472 FuncInfo->setSpillsCR();
2473
2474 // 32-bit: FP-relative. Note that we made sure CR2-CR4 all have
2475 // the same frame index in PPCRegisterInfo::hasReservedSpillSlot.
2476 CRMIB = BuildMI(*MF, DL, TII.get(PPC::MFCR), PPC::R12)
2478
2479 MBB.insert(MI, CRMIB);
2480 MBB.insert(MI, addFrameReference(BuildMI(*MF, DL, TII.get(PPC::STW))
2481 .addReg(PPC::R12,
2482 getKillRegState(true)),
2483 I.getFrameIdx()));
2484 }
2485 } else {
2486 if (I.isSpilledToReg()) {
2487 unsigned Dst = I.getDstReg();
2488
2489 if (Spilled[Dst])
2490 continue;
2491
2492 if (VSRContainingGPRs[Dst].second != 0) {
2493 assert(Subtarget.hasP9Vector() &&
2494 "mtvsrdd is unavailable on pre-P9 targets.");
2495
2496 NumPESpillVSR += 2;
2497 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRDD), Dst)
2498 .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true))
2499 .addReg(VSRContainingGPRs[Dst].second, getKillRegState(true));
2500 } else if (VSRContainingGPRs[Dst].second == 0) {
2501 assert(Subtarget.hasP8Vector() &&
2502 "Can't move GPR to VSR on pre-P8 targets.");
2503
2504 ++NumPESpillVSR;
2505 BuildMI(MBB, MI, DL, TII.get(PPC::MTVSRD),
2506 TRI->getSubReg(Dst, PPC::sub_64))
2507 .addReg(VSRContainingGPRs[Dst].first, getKillRegState(true));
2508 } else {
2509 llvm_unreachable("More than two GPRs spilled to a VSR!");
2510 }
2511 Spilled.set(Dst);
2512 } else {
2513 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2514 // Use !IsLiveIn for the kill flag.
2515 // We do not want to kill registers that are live in this function
2516 // before their use because they will become undefined registers.
2517 // Functions without NoUnwind need to preserve the order of elements in
2518 // saved vector registers.
2519 if (Subtarget.needsSwapsForVSXMemOps() &&
2520 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
2521 TII.storeRegToStackSlotNoUpd(MBB, MI, Reg, !IsLiveIn,
2522 I.getFrameIdx(), RC, TRI);
2523 else
2524 TII.storeRegToStackSlot(MBB, MI, Reg, !IsLiveIn, I.getFrameIdx(), RC,
2525 TRI, Register());
2526 }
2527 }
2528 }
2529 return true;
2530}
2531
2532static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled,
2533 bool CR4Spilled, MachineBasicBlock &MBB,
2535 ArrayRef<CalleeSavedInfo> CSI, unsigned CSIIndex) {
2536
2538 const PPCInstrInfo &TII = *MF->getSubtarget<PPCSubtarget>().getInstrInfo();
2539 DebugLoc DL;
2540 unsigned MoveReg = PPC::R12;
2541
2542 // 32-bit: FP-relative
2543 MBB.insert(MI,
2544 addFrameReference(BuildMI(*MF, DL, TII.get(PPC::LWZ), MoveReg),
2545 CSI[CSIIndex].getFrameIdx()));
2546
2547 unsigned RestoreOp = PPC::MTOCRF;
2548 if (CR2Spilled)
2549 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR2)
2550 .addReg(MoveReg, getKillRegState(!CR3Spilled && !CR4Spilled)));
2551
2552 if (CR3Spilled)
2553 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR3)
2554 .addReg(MoveReg, getKillRegState(!CR4Spilled)));
2555
2556 if (CR4Spilled)
2557 MBB.insert(MI, BuildMI(*MF, DL, TII.get(RestoreOp), PPC::CR4)
2558 .addReg(MoveReg, getKillRegState(true)));
2559}
2560
2564 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
2566 I->getOpcode() == PPC::ADJCALLSTACKUP) {
2567 // Add (actually subtract) back the amount the callee popped on return.
2568 if (int CalleeAmt = I->getOperand(1).getImm()) {
2569 bool is64Bit = Subtarget.isPPC64();
2570 CalleeAmt *= -1;
2571 unsigned StackReg = is64Bit ? PPC::X1 : PPC::R1;
2572 unsigned TmpReg = is64Bit ? PPC::X0 : PPC::R0;
2573 unsigned ADDIInstr = is64Bit ? PPC::ADDI8 : PPC::ADDI;
2574 unsigned ADDInstr = is64Bit ? PPC::ADD8 : PPC::ADD4;
2575 unsigned LISInstr = is64Bit ? PPC::LIS8 : PPC::LIS;
2576 unsigned ORIInstr = is64Bit ? PPC::ORI8 : PPC::ORI;
2577 const DebugLoc &dl = I->getDebugLoc();
2578
2579 if (isInt<16>(CalleeAmt)) {
2580 BuildMI(MBB, I, dl, TII.get(ADDIInstr), StackReg)
2581 .addReg(StackReg, RegState::Kill)
2582 .addImm(CalleeAmt);
2583 } else {
2585 BuildMI(MBB, MBBI, dl, TII.get(LISInstr), TmpReg)
2586 .addImm(CalleeAmt >> 16);
2587 BuildMI(MBB, MBBI, dl, TII.get(ORIInstr), TmpReg)
2588 .addReg(TmpReg, RegState::Kill)
2589 .addImm(CalleeAmt & 0xFFFF);
2590 BuildMI(MBB, MBBI, dl, TII.get(ADDInstr), StackReg)
2591 .addReg(StackReg, RegState::Kill)
2592 .addReg(TmpReg);
2593 }
2594 }
2595 }
2596 // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions.
2597 return MBB.erase(I);
2598}
2599
2600static bool isCalleeSavedCR(unsigned Reg) {
2601 return PPC::CR2 == Reg || Reg == PPC::CR3 || Reg == PPC::CR4;
2602}
2603
2608 const PPCInstrInfo &TII = *Subtarget.getInstrInfo();
2610 bool MustSaveTOC = FI->mustSaveTOC();
2611 bool CR2Spilled = false;
2612 bool CR3Spilled = false;
2613 bool CR4Spilled = false;
2614 unsigned CSIIndex = 0;
2615 BitVector Restored(TRI->getNumRegs());
2616
2617 // Initialize insertion-point logic; we will be restoring in reverse
2618 // order of spill.
2619 MachineBasicBlock::iterator I = MI, BeforeI = I;
2620 bool AtStart = I == MBB.begin();
2621
2622 if (!AtStart)
2623 --BeforeI;
2624
2625 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2626 Register Reg = CSI[i].getReg();
2627
2628 if ((Reg == PPC::X2 || Reg == PPC::R2) && MustSaveTOC)
2629 continue;
2630
2631 // Restore of callee saved condition register field is handled during
2632 // epilogue insertion.
2633 if (isCalleeSavedCR(Reg) && !Subtarget.is32BitELFABI())
2634 continue;
2635
2636 if (Reg == PPC::CR2) {
2637 CR2Spilled = true;
2638 // The spill slot is associated only with CR2, which is the
2639 // first nonvolatile spilled. Save it here.
2640 CSIIndex = i;
2641 continue;
2642 } else if (Reg == PPC::CR3) {
2643 CR3Spilled = true;
2644 continue;
2645 } else if (Reg == PPC::CR4) {
2646 CR4Spilled = true;
2647 continue;
2648 } else {
2649 // On 32-bit ELF when we first encounter a non-CR register after seeing at
2650 // least one CR register, restore all spilled CRs together.
2651 if (CR2Spilled || CR3Spilled || CR4Spilled) {
2652 bool is31 = needsFP(*MF);
2653 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI,
2654 CSIIndex);
2655 CR2Spilled = CR3Spilled = CR4Spilled = false;
2656 }
2657
2658 if (CSI[i].isSpilledToReg()) {
2659 DebugLoc DL;
2660 unsigned Dst = CSI[i].getDstReg();
2661
2662 if (Restored[Dst])
2663 continue;
2664
2665 if (VSRContainingGPRs[Dst].second != 0) {
2666 assert(Subtarget.hasP9Vector());
2667 NumPEReloadVSR += 2;
2668 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRLD),
2669 VSRContainingGPRs[Dst].second)
2670 .addReg(Dst);
2671 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
2672 VSRContainingGPRs[Dst].first)
2673 .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
2674 } else if (VSRContainingGPRs[Dst].second == 0) {
2675 assert(Subtarget.hasP8Vector());
2676 ++NumPEReloadVSR;
2677 BuildMI(MBB, I, DL, TII.get(PPC::MFVSRD),
2678 VSRContainingGPRs[Dst].first)
2679 .addReg(TRI->getSubReg(Dst, PPC::sub_64), getKillRegState(true));
2680 } else {
2681 llvm_unreachable("More than two GPRs spilled to a VSR!");
2682 }
2683
2684 Restored.set(Dst);
2685
2686 } else {
2687 // Default behavior for non-CR saves.
2688 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
2689
2690 // Functions without NoUnwind need to preserve the order of elements in
2691 // saved vector registers.
2692 if (Subtarget.needsSwapsForVSXMemOps() &&
2693 !MF->getFunction().hasFnAttribute(Attribute::NoUnwind))
2694 TII.loadRegFromStackSlotNoUpd(MBB, I, Reg, CSI[i].getFrameIdx(), RC,
2695 TRI);
2696 else
2697 TII.loadRegFromStackSlot(MBB, I, Reg, CSI[i].getFrameIdx(), RC, TRI,
2698 Register());
2699
2700 assert(I != MBB.begin() &&
2701 "loadRegFromStackSlot didn't insert any code!");
2702 }
2703 }
2704
2705 // Insert in reverse order.
2706 if (AtStart)
2707 I = MBB.begin();
2708 else {
2709 I = BeforeI;
2710 ++I;
2711 }
2712 }
2713
2714 // If we haven't yet spilled the CRs, do so now.
2715 if (CR2Spilled || CR3Spilled || CR4Spilled) {
2716 assert(Subtarget.is32BitELFABI() &&
2717 "Only set CR[2|3|4]Spilled on 32-bit SVR4.");
2718 bool is31 = needsFP(*MF);
2719 restoreCRs(is31, CR2Spilled, CR3Spilled, CR4Spilled, MBB, I, CSI, CSIIndex);
2720 }
2721
2722 return true;
2723}
2724
2726 return TOCSaveOffset;
2727}
2728
2730 return FramePointerSaveOffset;
2731}
2732
2734 return BasePointerSaveOffset;
2735}
2736
2739 return false;
2740 return !MF.getSubtarget<PPCSubtarget>().is32BitELFABI();
2741}
2742
2744 BitVector &SavedRegs) const {
2745 // The AIX ABI uses traceback tables for EH which require that if callee-saved
2746 // register N is used, all registers N-31 must be saved/restored.
2747 // NOTE: The check for AIX is not actually what is relevant. Traceback tables
2748 // on Linux have the same requirements. It is just that AIX is the only ABI
2749 // for which we actually use traceback tables. If another ABI needs to be
2750 // supported that also uses them, we can add a check such as
2751 // Subtarget.usesTraceBackTables().
2752 assert(Subtarget.isAIXABI() &&
2753 "Function updateCalleeSaves should only be called for AIX.");
2754
2755 // If there are no callee saves then there is nothing to do.
2756 if (SavedRegs.none())
2757 return;
2758
2759 const MCPhysReg *CSRegs =
2760 Subtarget.getRegisterInfo()->getCalleeSavedRegs(&MF);
2761 MCPhysReg LowestGPR = PPC::R31;
2762 MCPhysReg LowestG8R = PPC::X31;
2763 MCPhysReg LowestFPR = PPC::F31;
2764 MCPhysReg LowestVR = PPC::V31;
2765
2766 // Traverse the CSRs twice so as not to rely on ascending ordering of
2767 // registers in the array. The first pass finds the lowest numbered
2768 // register and the second pass marks all higher numbered registers
2769 // for spilling.
2770 for (int i = 0; CSRegs[i]; i++) {
2771 // Get the lowest numbered register for each class that actually needs
2772 // to be saved.
2773 MCPhysReg Cand = CSRegs[i];
2774 if (!SavedRegs.test(Cand))
2775 continue;
2776 // When R2/X2 is a CSR and not used for passing arguments, it is allocated
2777 // earlier than other volatile registers. R2/X2 is not contiguous with
2778 // R13/X13 to R31/X31.
2779 if (Cand == PPC::X2 || Cand == PPC::R2) {
2780 SavedRegs.set(Cand);
2781 continue;
2782 }
2783
2784 if (PPC::GPRCRegClass.contains(Cand) && Cand < LowestGPR)
2785 LowestGPR = Cand;
2786 else if (PPC::G8RCRegClass.contains(Cand) && Cand < LowestG8R)
2787 LowestG8R = Cand;
2788 else if ((PPC::F4RCRegClass.contains(Cand) ||
2789 PPC::F8RCRegClass.contains(Cand)) &&
2790 Cand < LowestFPR)
2791 LowestFPR = Cand;
2792 else if (PPC::VRRCRegClass.contains(Cand) && Cand < LowestVR)
2793 LowestVR = Cand;
2794 }
2795
2796 for (int i = 0; CSRegs[i]; i++) {
2797 MCPhysReg Cand = CSRegs[i];
2798 if ((PPC::GPRCRegClass.contains(Cand) && Cand > LowestGPR) ||
2799 (PPC::G8RCRegClass.contains(Cand) && Cand > LowestG8R) ||
2800 ((PPC::F4RCRegClass.contains(Cand) ||
2801 PPC::F8RCRegClass.contains(Cand)) &&
2802 Cand > LowestFPR) ||
2803 (PPC::VRRCRegClass.contains(Cand) && Cand > LowestVR))
2804 SavedRegs.set(Cand);
2805 }
2806}
2807
2809 // On PPC64, we use `stux r1, r1, <scratch_reg>` to extend the stack;
2810 // use `add r1, r1, <scratch_reg>` to release the stack frame.
2811 // Scratch register contains a signed 64-bit number, which is negative
2812 // when extending the stack and is positive when releasing the stack frame.
2813 // To make `stux` and `add` paired, the absolute value of the number contained
2814 // in the scratch register should be the same. Thus the maximum stack size
2815 // is (2^63)-1, i.e., LONG_MAX.
2816 if (Subtarget.isPPC64())
2817 return LONG_MAX;
2818
2820}
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
uint64_t Size
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
This file implements the LivePhysRegs utility for tracking liveness of physical registers.
#define I(x, y, z)
Definition: MD5.cpp:58
unsigned const TargetRegisterInfo * TRI
#define CALLEE_SAVED_VRS
static bool hasSpills(const MachineFunction &MF)
static unsigned computeCRSaveOffset(const PPCSubtarget &STI)
static void restoreCRs(bool is31, bool CR2Spilled, bool CR3Spilled, bool CR4Spilled, MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, ArrayRef< CalleeSavedInfo > CSI, unsigned CSIIndex)
static unsigned computeReturnSaveOffset(const PPCSubtarget &STI)
static bool MustSaveLR(const MachineFunction &MF, unsigned LR)
MustSaveLR - Return true if this function requires that we save the LR register onto the stack in the...
#define CALLEE_SAVED_FPRS
static cl::opt< bool > EnablePEVectorSpills("ppc-enable-pe-vector-spills", cl::desc("Enable spills in prologue to vector registers."), cl::init(false), cl::Hidden)
#define CALLEE_SAVED_GPRS32
#define CALLEE_SAVED_GPRS64
static unsigned computeLinkageSize(const PPCSubtarget &STI)
static unsigned computeFramePointerSaveOffset(const PPCSubtarget &STI)
static bool isCalleeSavedCR(unsigned Reg)
static unsigned computeTOCSaveOffset(const PPCSubtarget &STI)
static bool hasNonRISpills(const MachineFunction &MF)
static bool spillsCR(const MachineFunction &MF)
static unsigned computeBasePointerSaveOffset(const PPCSubtarget &STI)
static constexpr Register SPReg
static constexpr Register FPReg
This file declares the machine register scavenger class.
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition: Value.cpp:469
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
static void buildDefCFAReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, unsigned Reg, const SystemZInstrInfo *ZII)
static bool is64Bit(const char *name)
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
size_t size() const
size - Get the array size.
Definition: ArrayRef.h:168
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
bool test(unsigned Idx) const
Definition: BitVector.h:461
BitVector & reset()
Definition: BitVector.h:392
int find_first() const
find_first - Returns the index of the first set bit, -1 if none of the bits are set.
Definition: BitVector.h:300
size_type count() const
count - Returns the number of bits which are set.
Definition: BitVector.h:162
BitVector & set()
Definition: BitVector.h:351
int find_next(unsigned Prev) const
find_next - Returns the index of the next set bit following the "Prev" bit.
Definition: BitVector.h:308
bool none() const
none - Returns true if none of the bits are set.
Definition: BitVector.h:188
iterator_range< const_set_bits_iterator > set_bits() const
Definition: BitVector.h:140
size_type size() const
size - Returns the number of bits in this bitvector.
Definition: BitVector.h:159
The CalleeSavedInfo class tracks the information need to locate where a callee saved register is in t...
A debug info location.
Definition: DebugLoc.h:33
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition: Function.h:277
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.cpp:731
void storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg, bool isKill, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
Store the specified register of the given register class to the specified stack frame index.
void loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg, int FrameIndex, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg, MachineInstr::MIFlag Flags=MachineInstr::NoFlags) const override
Load the specified register of the given register class from the specified stack frame index.
An instruction for reading from memory.
Definition: Instructions.h:176
static MCCFIInstruction createDefCfaRegister(MCSymbol *L, unsigned Register, SMLoc Loc={})
.cfi_def_cfa_register modifies a rule for computing CFA.
Definition: MCDwarf.h:582
static MCCFIInstruction createRegister(MCSymbol *L, unsigned Register1, unsigned Register2, SMLoc Loc={})
.cfi_register Previous value of Register1 is saved in register Register2.
Definition: MCDwarf.h:632
static MCCFIInstruction cfiDefCfa(MCSymbol *L, unsigned Register, int64_t Offset, SMLoc Loc={})
.cfi_def_cfa defines a rule for computing CFA as: take address from Register and add Offset to it.
Definition: MCDwarf.h:575
static MCCFIInstruction createOffset(MCSymbol *L, unsigned Register, int64_t Offset, SMLoc Loc={})
.cfi_offset Previous value of Register is saved at offset Offset from CFA.
Definition: MCDwarf.h:617
static MCCFIInstruction cfiDefCfaOffset(MCSymbol *L, int64_t Offset, SMLoc Loc={})
.cfi_def_cfa_offset modifies a rule for computing CFA.
Definition: MCDwarf.h:590
const MCRegisterInfo * getRegisterInfo() const
Definition: MCContext.h:414
Describe properties that are true of each instruction in the target description file.
Definition: MCInstrDesc.h:198
MCRegisterInfo base class - We assume that the target defines a static array of MCRegisterDesc object...
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
bool isReturnBlock() const
Convenience function that returns true if the block ends in a return instruction.
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
DebugLoc findDebugLoc(instr_iterator MBBI)
Find the next valid DebugLoc starting at MBBI, skipping any debug instructions.
iterator getLastNonDebugInstr(bool SkipPseudoOp=true)
Returns an iterator to the last non-debug instruction in the basic block, or end().
void addLiveIn(MCRegister PhysReg, LaneBitmask LaneMask=LaneBitmask::getAll())
Adds the specified register as a live in.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
instr_iterator erase(instr_iterator I)
Remove an instruction from the instruction list and delete it.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
void setMaxCallFrameSize(uint64_t S)
int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
bool hasVarSizedObjects() const
This method may be called any time after instruction selection is complete to determine if the stack ...
uint64_t getStackSize() const
Return the number of bytes that must be allocated to hold all of the fixed size frame objects.
bool adjustsStack() const
Return true if this function adjusts the stack – e.g., when calling another function.
bool hasCalls() const
Return true if the current function has any function calls.
bool isFrameAddressTaken() const
This method may be called any time after instruction selection is complete to determine if there is a...
Align getMaxAlign() const
Return the alignment in bytes that this function must be aligned to, which is greater than the defaul...
void setObjectOffset(int ObjectIdx, int64_t SPOffset)
Set the stack frame offset of the specified object.
uint64_t getMaxCallFrameSize() const
Return the maximum size of a call frame that must be allocated for an outgoing function call.
bool hasPatchPoint() const
This method may be called any time after instruction selection is complete to determine if there is a...
MachineBasicBlock * getRestorePoint() const
int CreateSpillStackObject(uint64_t Size, Align Alignment)
Create a new statically sized stack object that represents a spill slot, returning a nonnegative iden...
uint64_t estimateStackSize(const MachineFunction &MF) const
Estimate and return the size of the stack frame.
bool hasTailCall() const
Returns true if the function contains a tail call.
bool hasStackMap() const
This method may be called any time after instruction selection is complete to determine if there is a...
const std::vector< CalleeSavedInfo > & getCalleeSavedInfo() const
Returns a reference to call saved info vector for the current function.
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
void setStackSize(uint64_t Size)
Set the size of the stack.
bool isFixedObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a fixed stack object.
MachineBasicBlock * getSavePoint() const
unsigned addFrameInst(const MCCFIInstruction &Inst)
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
bool exposesReturnsTwice() const
exposesReturnsTwice - Returns true if the function calls setjmp or any other similar functions with a...
bool needsFrameMoves() const
True if this function needs frame moves for debug or exceptions.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineBasicBlock & front() const
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineBasicBlock - Allocate a new MachineBasicBlock.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & addCFIIndex(unsigned CFIIndex) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
Definition: MachineInstr.h:69
MachineOperand class - Representation of each machine instruction operand.
const GlobalValue * getGlobal() const
int64_t getImm() const
bool isImm() const
isImm - Tests if this is a MO_Immediate operand.
bool isSymbol() const
isSymbol - Tests if this is a MO_ExternalSymbol operand.
bool isGlobal() const
isGlobal - Tests if this is a MO_GlobalAddress operand.
const char * getSymbolName() const
int64_t getOffset() const
Return the offset from the symbol in this operand.
reg_begin/reg_end - Provide iteration support to walk over all definitions and uses of a register wit...
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
def_iterator def_begin(Register RegNo) const
static def_iterator def_end()
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition: ArrayRef.h:310
uint64_t getReturnSaveOffset() const
getReturnSaveOffset - Return the previous frame offset to save the return address.
bool needsFP(const MachineFunction &MF) const
void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override
bool canUseAsEpilogue(const MachineBasicBlock &MBB) const override
Check whether or not the given MBB can be used as a epilogue for the target.
uint64_t getStackThreshold() const override
getStackThreshold - Return the maximum stack size
void processFunctionBeforeFrameFinalized(MachineFunction &MF, RegScavenger *RS=nullptr) const override
processFunctionBeforeFrameFinalized - This method is called immediately before the specified function...
bool hasFPImpl(const MachineFunction &MF) const override
uint64_t getFramePointerSaveOffset() const
getFramePointerSaveOffset - Return the previous frame offset to save the frame pointer.
bool spillCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, ArrayRef< CalleeSavedInfo > CSI, const TargetRegisterInfo *TRI) const override
spillCalleeSavedRegisters - Issues instruction(s) to spill all callee saved registers and returns tru...
unsigned getLinkageSize() const
getLinkageSize - Return the size of the PowerPC ABI linkage area.
MachineBasicBlock::iterator eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const override
This method is called during prolog/epilog code insertion to eliminate call frame setup and destroy p...
const SpillSlot * getCalleeSavedSpillSlots(unsigned &NumEntries) const override
getCalleeSavedSpillSlots - This method returns a pointer to an array of pairs, that contains an entry...
void determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, RegScavenger *RS=nullptr) const override
This method determines which of the registers reported by TargetRegisterInfo::getCalleeSavedRegs() sh...
bool canUseAsPrologue(const MachineBasicBlock &MBB) const override
Methods used by shrink wrapping to determine if MBB can be used for the function prologue/epilogue.
void emitPrologue(MachineFunction &MF, MachineBasicBlock &MBB) const override
emitProlog/emitEpilog - These methods insert prolog and epilog code into the function.
bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, MutableArrayRef< CalleeSavedInfo > CSI, const TargetRegisterInfo *TRI) const override
restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee saved registers and returns...
void replaceFPWithRealFP(MachineFunction &MF) const
bool enableShrinkWrapping(const MachineFunction &MF) const override
Returns true if the target will correctly handle shrink wrapping.
uint64_t determineFrameLayout(const MachineFunction &MF, bool UseEstimate=false, unsigned *NewMaxCallFrameSize=nullptr) const
Determine the frame layout but do not update the machine function.
void addScavengingSpillSlot(MachineFunction &MF, RegScavenger *RS) const
PPCFrameLowering(const PPCSubtarget &STI)
bool assignCalleeSavedSpillSlots(MachineFunction &MF, const TargetRegisterInfo *TRI, std::vector< CalleeSavedInfo > &CSI) const override
This function will assign callee saved gprs to volatile vector registers for prologue spills when app...
uint64_t determineFrameLayoutAndUpdate(MachineFunction &MF, bool UseEstimate=false) const
Determine the frame layout and update the machine function.
void updateCalleeSaves(const MachineFunction &MF, BitVector &SavedRegs) const
void inlineStackProbe(MachineFunction &MF, MachineBasicBlock &PrologMBB) const override
Replace a StackProbe stub (if any) with the actual probe code inline.
uint64_t getTOCSaveOffset() const
getTOCSaveOffset - Return the previous frame offset to save the TOC register – 64-bit SVR4 ABI only.
uint64_t getBasePointerSaveOffset() const
getBasePointerSaveOffset - Return the previous frame offset to save the base pointer.
PPCFunctionInfo - This class is derived from MachineFunction private PowerPC target-specific informat...
const SmallVectorImpl< Register > & getMustSaveCRs() const
void addMustSaveCR(Register Reg)
void setPICBasePointerSaveIndex(int Idx)
unsigned getMinReservedArea() const
void setMustSaveLR(bool U)
MustSaveLR - This is set when the prolog/epilog inserter does its initial scan of the function.
void setFramePointerSaveIndex(int Idx)
bool hasBasePointer(const MachineFunction &MF) const
Register getBaseRegister(const MachineFunction &MF) const
bool requiresFrameIndexScavenging(const MachineFunction &MF) const override
const MCPhysReg * getCalleeSavedRegs(const MachineFunction *MF) const override
Code Generation virtual methods...
bool is32BitELFABI() const
Definition: PPCSubtarget.h:224
bool isAIXABI() const
Definition: PPCSubtarget.h:219
bool needsSwapsForVSXMemOps() const
Definition: PPCSubtarget.h:207
bool isPPC64() const
isPPC64 - Return true if we are generating code for 64-bit pointer mode.
const PPCTargetLowering * getTargetLowering() const override
Definition: PPCSubtarget.h:151
const PPCInstrInfo * getInstrInfo() const override
Definition: PPCSubtarget.h:150
unsigned getRedZoneSize() const
Definition: PPCSubtarget.h:197
bool isSVR4ABI() const
Definition: PPCSubtarget.h:220
bool is64BitELFABI() const
Definition: PPCSubtarget.h:223
bool isELFv2ABI() const
const PPCTargetMachine & getTargetMachine() const
Definition: PPCSubtarget.h:160
const PPCRegisterInfo * getRegisterInfo() const override
Definition: PPCSubtarget.h:157
bool hasInlineStackProbe(const MachineFunction &MF) const override
unsigned getStackProbeSize(const MachineFunction &MF) const
void enterBasicBlockEnd(MachineBasicBlock &MBB)
Start tracking liveness from the end of basic block MBB.
bool isRegUsed(Register Reg, bool includeReserved=true) const
Return if a specific register is currently used.
void backward()
Update internal register state and move MBB iterator backwards.
void enterBasicBlock(MachineBasicBlock &MBB)
Start tracking liveness from the begin of basic block MBB.
void addScavengingFrameIndex(int FI)
Add a scavenging frame index.
BitVector getRegsAvailable(const TargetRegisterClass *RC)
Return all available registers in the register class in Mask.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
An instruction for storing to memory.
Definition: Instructions.h:292
Information about stack frame layout on the target.
bool hasFP(const MachineFunction &MF) const
hasFP - Return true if the specified function should have a dedicated frame pointer register.
virtual void determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, RegScavenger *RS=nullptr) const
This method determines which of the registers reported by TargetRegisterInfo::getCalleeSavedRegs() sh...
virtual uint64_t getStackThreshold() const
getStackThreshold - Return the maximum stack size
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
TargetInstrInfo - Interface to description of machine instruction set.
bool isPositionIndependent() const
TargetOptions Options
bool DisableFramePointerElim(const MachineFunction &MF) const
DisableFramePointerElim - This returns true if frame pointer elimination optimization should be disab...
unsigned GuaranteedTailCallOpt
GuaranteedTailCallOpt - This flag is enabled when -tailcallopt is specified on the commandline.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
self_iterator getIterator()
Definition: ilist_node.h:132
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ Kill
The last use of a register.
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
static const MachineInstrBuilder & addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset=0, bool mem=true)
addFrameReference - This function is used to add a reference to the base of an abstract object on the...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:298
unsigned getKillRegState(bool B)
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition: Alignment.h:155
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1766
unsigned Log2(Align A)
Returns the log2 of the alignment.
Definition: Alignment.h:208
void fullyRecomputeLiveIns(ArrayRef< MachineBasicBlock * > MBBs)
Convenience function for recomputing live-in's for a set of MBBs until the computation converges.
Definition: LivePhysRegs.h:215
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39