LLVM 20.0.0git
AArch64PostLegalizerLowering.cpp
Go to the documentation of this file.
1//=== AArch64PostLegalizerLowering.cpp --------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Post-legalization lowering for instructions.
11///
12/// This is used to offload pattern matching from the selector.
13///
14/// For example, this combiner will notice that a G_SHUFFLE_VECTOR is actually
15/// a G_ZIP, G_UZP, etc.
16///
17/// General optimization combines should be handled by either the
18/// AArch64PostLegalizerCombiner or the AArch64PreLegalizerCombiner.
19///
20//===----------------------------------------------------------------------===//
21
22#include "AArch64ExpandImm.h"
25#include "AArch64Subtarget.h"
45#include "llvm/IR/InstrTypes.h"
48#include <optional>
49
50#define GET_GICOMBINER_DEPS
51#include "AArch64GenPostLegalizeGILowering.inc"
52#undef GET_GICOMBINER_DEPS
53
54#define DEBUG_TYPE "aarch64-postlegalizer-lowering"
55
56using namespace llvm;
57using namespace MIPatternMatch;
58using namespace AArch64GISelUtils;
59
60namespace {
61
62#define GET_GICOMBINER_TYPES
63#include "AArch64GenPostLegalizeGILowering.inc"
64#undef GET_GICOMBINER_TYPES
65
66/// Represents a pseudo instruction which replaces a G_SHUFFLE_VECTOR.
67///
68/// Used for matching target-supported shuffles before codegen.
69struct ShuffleVectorPseudo {
70 unsigned Opc; ///< Opcode for the instruction. (E.g. G_ZIP1)
71 Register Dst; ///< Destination register.
72 SmallVector<SrcOp, 2> SrcOps; ///< Source registers.
73 ShuffleVectorPseudo(unsigned Opc, Register Dst,
74 std::initializer_list<SrcOp> SrcOps)
75 : Opc(Opc), Dst(Dst), SrcOps(SrcOps){};
76 ShuffleVectorPseudo() = default;
77};
78
79/// Check if a G_EXT instruction can handle a shuffle mask \p M when the vector
80/// sources of the shuffle are different.
81std::optional<std::pair<bool, uint64_t>> getExtMask(ArrayRef<int> M,
82 unsigned NumElts) {
83 // Look for the first non-undef element.
84 auto FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
85 if (FirstRealElt == M.end())
86 return std::nullopt;
87
88 // Use APInt to handle overflow when calculating expected element.
89 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
90 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1, false, true);
91
92 // The following shuffle indices must be the successive elements after the
93 // first real element.
94 if (any_of(
95 make_range(std::next(FirstRealElt), M.end()),
96 [&ExpectedElt](int Elt) { return Elt != ExpectedElt++ && Elt >= 0; }))
97 return std::nullopt;
98
99 // The index of an EXT is the first element if it is not UNDEF.
100 // Watch out for the beginning UNDEFs. The EXT index should be the expected
101 // value of the first element. E.g.
102 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
103 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
104 // ExpectedElt is the last mask index plus 1.
105 uint64_t Imm = ExpectedElt.getZExtValue();
106 bool ReverseExt = false;
107
108 // There are two difference cases requiring to reverse input vectors.
109 // For example, for vector <4 x i32> we have the following cases,
110 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
111 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
112 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
113 // to reverse two input vectors.
114 if (Imm < NumElts)
115 ReverseExt = true;
116 else
117 Imm -= NumElts;
118 return std::make_pair(ReverseExt, Imm);
119}
120
121/// Helper function for matchINS.
122///
123/// \returns a value when \p M is an ins mask for \p NumInputElements.
124///
125/// First element of the returned pair is true when the produced
126/// G_INSERT_VECTOR_ELT destination should be the LHS of the G_SHUFFLE_VECTOR.
127///
128/// Second element is the destination lane for the G_INSERT_VECTOR_ELT.
129std::optional<std::pair<bool, int>> isINSMask(ArrayRef<int> M,
130 int NumInputElements) {
131 if (M.size() != static_cast<size_t>(NumInputElements))
132 return std::nullopt;
133 int NumLHSMatch = 0, NumRHSMatch = 0;
134 int LastLHSMismatch = -1, LastRHSMismatch = -1;
135 for (int Idx = 0; Idx < NumInputElements; ++Idx) {
136 if (M[Idx] == -1) {
137 ++NumLHSMatch;
138 ++NumRHSMatch;
139 continue;
140 }
141 M[Idx] == Idx ? ++NumLHSMatch : LastLHSMismatch = Idx;
142 M[Idx] == Idx + NumInputElements ? ++NumRHSMatch : LastRHSMismatch = Idx;
143 }
144 const int NumNeededToMatch = NumInputElements - 1;
145 if (NumLHSMatch == NumNeededToMatch)
146 return std::make_pair(true, LastLHSMismatch);
147 if (NumRHSMatch == NumNeededToMatch)
148 return std::make_pair(false, LastRHSMismatch);
149 return std::nullopt;
150}
151
152/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with a
153/// G_REV instruction. Returns the appropriate G_REV opcode in \p Opc.
154bool matchREV(MachineInstr &MI, MachineRegisterInfo &MRI,
155 ShuffleVectorPseudo &MatchInfo) {
156 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
157 ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
158 Register Dst = MI.getOperand(0).getReg();
159 Register Src = MI.getOperand(1).getReg();
160 LLT Ty = MRI.getType(Dst);
161 unsigned EltSize = Ty.getScalarSizeInBits();
162
163 // Element size for a rev cannot be 64.
164 if (EltSize == 64)
165 return false;
166
167 unsigned NumElts = Ty.getNumElements();
168
169 // Try to produce a G_REV instruction
170 for (unsigned LaneSize : {64U, 32U, 16U}) {
171 if (isREVMask(ShuffleMask, EltSize, NumElts, LaneSize)) {
172 unsigned Opcode;
173 if (LaneSize == 64U)
174 Opcode = AArch64::G_REV64;
175 else if (LaneSize == 32U)
176 Opcode = AArch64::G_REV32;
177 else
178 Opcode = AArch64::G_REV16;
179
180 MatchInfo = ShuffleVectorPseudo(Opcode, Dst, {Src});
181 return true;
182 }
183 }
184
185 return false;
186}
187
188/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
189/// a G_TRN1 or G_TRN2 instruction.
190bool matchTRN(MachineInstr &MI, MachineRegisterInfo &MRI,
191 ShuffleVectorPseudo &MatchInfo) {
192 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
193 unsigned WhichResult;
194 ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
195 Register Dst = MI.getOperand(0).getReg();
196 unsigned NumElts = MRI.getType(Dst).getNumElements();
197 if (!isTRNMask(ShuffleMask, NumElts, WhichResult))
198 return false;
199 unsigned Opc = (WhichResult == 0) ? AArch64::G_TRN1 : AArch64::G_TRN2;
200 Register V1 = MI.getOperand(1).getReg();
201 Register V2 = MI.getOperand(2).getReg();
202 MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
203 return true;
204}
205
206/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
207/// a G_UZP1 or G_UZP2 instruction.
208///
209/// \param [in] MI - The shuffle vector instruction.
210/// \param [out] MatchInfo - Either G_UZP1 or G_UZP2 on success.
211bool matchUZP(MachineInstr &MI, MachineRegisterInfo &MRI,
212 ShuffleVectorPseudo &MatchInfo) {
213 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
214 unsigned WhichResult;
215 ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
216 Register Dst = MI.getOperand(0).getReg();
217 unsigned NumElts = MRI.getType(Dst).getNumElements();
218 if (!isUZPMask(ShuffleMask, NumElts, WhichResult))
219 return false;
220 unsigned Opc = (WhichResult == 0) ? AArch64::G_UZP1 : AArch64::G_UZP2;
221 Register V1 = MI.getOperand(1).getReg();
222 Register V2 = MI.getOperand(2).getReg();
223 MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
224 return true;
225}
226
227bool matchZip(MachineInstr &MI, MachineRegisterInfo &MRI,
228 ShuffleVectorPseudo &MatchInfo) {
229 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
230 unsigned WhichResult;
231 ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
232 Register Dst = MI.getOperand(0).getReg();
233 unsigned NumElts = MRI.getType(Dst).getNumElements();
234 if (!isZIPMask(ShuffleMask, NumElts, WhichResult))
235 return false;
236 unsigned Opc = (WhichResult == 0) ? AArch64::G_ZIP1 : AArch64::G_ZIP2;
237 Register V1 = MI.getOperand(1).getReg();
238 Register V2 = MI.getOperand(2).getReg();
239 MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
240 return true;
241}
242
243/// Helper function for matchDup.
244bool matchDupFromInsertVectorElt(int Lane, MachineInstr &MI,
246 ShuffleVectorPseudo &MatchInfo) {
247 if (Lane != 0)
248 return false;
249
250 // Try to match a vector splat operation into a dup instruction.
251 // We're looking for this pattern:
252 //
253 // %scalar:gpr(s64) = COPY $x0
254 // %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF
255 // %cst0:gpr(s32) = G_CONSTANT i32 0
256 // %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32)
257 // %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32)
258 // %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef,
259 // %zerovec(<2 x s32>)
260 //
261 // ...into:
262 // %splat = G_DUP %scalar
263
264 // Begin matching the insert.
265 auto *InsMI = getOpcodeDef(TargetOpcode::G_INSERT_VECTOR_ELT,
266 MI.getOperand(1).getReg(), MRI);
267 if (!InsMI)
268 return false;
269 // Match the undef vector operand.
270 if (!getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(),
271 MRI))
272 return false;
273
274 // Match the index constant 0.
275 if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ZeroInt()))
276 return false;
277
278 MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(),
279 {InsMI->getOperand(2).getReg()});
280 return true;
281}
282
283/// Helper function for matchDup.
284bool matchDupFromBuildVector(int Lane, MachineInstr &MI,
286 ShuffleVectorPseudo &MatchInfo) {
287 assert(Lane >= 0 && "Expected positive lane?");
288 int NumElements = MRI.getType(MI.getOperand(1).getReg()).getNumElements();
289 // Test if the LHS is a BUILD_VECTOR. If it is, then we can just reference the
290 // lane's definition directly.
291 auto *BuildVecMI =
292 getOpcodeDef(TargetOpcode::G_BUILD_VECTOR,
293 MI.getOperand(Lane < NumElements ? 1 : 2).getReg(), MRI);
294 // If Lane >= NumElements then it is point to RHS, just check from RHS
295 if (NumElements <= Lane)
296 Lane -= NumElements;
297
298 if (!BuildVecMI)
299 return false;
300 Register Reg = BuildVecMI->getOperand(Lane + 1).getReg();
301 MatchInfo =
302 ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), {Reg});
303 return true;
304}
305
306bool matchDup(MachineInstr &MI, MachineRegisterInfo &MRI,
307 ShuffleVectorPseudo &MatchInfo) {
308 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
309 auto MaybeLane = getSplatIndex(MI);
310 if (!MaybeLane)
311 return false;
312 int Lane = *MaybeLane;
313 // If this is undef splat, generate it via "just" vdup, if possible.
314 if (Lane < 0)
315 Lane = 0;
316 if (matchDupFromInsertVectorElt(Lane, MI, MRI, MatchInfo))
317 return true;
318 if (matchDupFromBuildVector(Lane, MI, MRI, MatchInfo))
319 return true;
320 return false;
321}
322
323// Check if an EXT instruction can handle the shuffle mask when the vector
324// sources of the shuffle are the same.
325bool isSingletonExtMask(ArrayRef<int> M, LLT Ty) {
326 unsigned NumElts = Ty.getNumElements();
327
328 // Assume that the first shuffle index is not UNDEF. Fail if it is.
329 if (M[0] < 0)
330 return false;
331
332 // If this is a VEXT shuffle, the immediate value is the index of the first
333 // element. The other shuffle indices must be the successive elements after
334 // the first one.
335 unsigned ExpectedElt = M[0];
336 for (unsigned I = 1; I < NumElts; ++I) {
337 // Increment the expected index. If it wraps around, just follow it
338 // back to index zero and keep going.
339 ++ExpectedElt;
340 if (ExpectedElt == NumElts)
341 ExpectedElt = 0;
342
343 if (M[I] < 0)
344 continue; // Ignore UNDEF indices.
345 if (ExpectedElt != static_cast<unsigned>(M[I]))
346 return false;
347 }
348
349 return true;
350}
351
352bool matchEXT(MachineInstr &MI, MachineRegisterInfo &MRI,
353 ShuffleVectorPseudo &MatchInfo) {
354 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
355 Register Dst = MI.getOperand(0).getReg();
356 LLT DstTy = MRI.getType(Dst);
357 Register V1 = MI.getOperand(1).getReg();
358 Register V2 = MI.getOperand(2).getReg();
359 auto Mask = MI.getOperand(3).getShuffleMask();
361 auto ExtInfo = getExtMask(Mask, DstTy.getNumElements());
362 uint64_t ExtFactor = MRI.getType(V1).getScalarSizeInBits() / 8;
363
364 if (!ExtInfo) {
365 if (!getOpcodeDef<GImplicitDef>(V2, MRI) ||
366 !isSingletonExtMask(Mask, DstTy))
367 return false;
368
369 Imm = Mask[0] * ExtFactor;
370 MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V1, Imm});
371 return true;
372 }
373 bool ReverseExt;
374 std::tie(ReverseExt, Imm) = *ExtInfo;
375 if (ReverseExt)
376 std::swap(V1, V2);
377 Imm *= ExtFactor;
378 MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V2, Imm});
379 return true;
380}
381
382/// Replace a G_SHUFFLE_VECTOR instruction with a pseudo.
383/// \p Opc is the opcode to use. \p MI is the G_SHUFFLE_VECTOR.
384void applyShuffleVectorPseudo(MachineInstr &MI,
385 ShuffleVectorPseudo &MatchInfo) {
386 MachineIRBuilder MIRBuilder(MI);
387 MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, MatchInfo.SrcOps);
388 MI.eraseFromParent();
389}
390
391/// Replace a G_SHUFFLE_VECTOR instruction with G_EXT.
392/// Special-cased because the constant operand must be emitted as a G_CONSTANT
393/// for the imported tablegen patterns to work.
394void applyEXT(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) {
395 MachineIRBuilder MIRBuilder(MI);
396 if (MatchInfo.SrcOps[2].getImm() == 0)
397 MIRBuilder.buildCopy(MatchInfo.Dst, MatchInfo.SrcOps[0]);
398 else {
399 // Tablegen patterns expect an i32 G_CONSTANT as the final op.
400 auto Cst =
401 MIRBuilder.buildConstant(LLT::scalar(32), MatchInfo.SrcOps[2].getImm());
402 MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst},
403 {MatchInfo.SrcOps[0], MatchInfo.SrcOps[1], Cst});
404 }
405 MI.eraseFromParent();
406}
407
408bool matchNonConstInsert(MachineInstr &MI, MachineRegisterInfo &MRI) {
409 assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT);
410
411 auto ValAndVReg =
412 getIConstantVRegValWithLookThrough(MI.getOperand(3).getReg(), MRI);
413 return !ValAndVReg;
414}
415
416void applyNonConstInsert(MachineInstr &MI, MachineRegisterInfo &MRI,
417 MachineIRBuilder &Builder) {
418 auto &Insert = cast<GInsertVectorElement>(MI);
419 Builder.setInstrAndDebugLoc(Insert);
420
421 Register Offset = Insert.getIndexReg();
422 LLT VecTy = MRI.getType(Insert.getReg(0));
423 LLT EltTy = MRI.getType(Insert.getElementReg());
424 LLT IdxTy = MRI.getType(Insert.getIndexReg());
425
426 if (VecTy.isScalableVector())
427 return;
428
429 // Create a stack slot and store the vector into it
430 MachineFunction &MF = Builder.getMF();
431 Align Alignment(
432 std::min<uint64_t>(VecTy.getSizeInBytes().getKnownMinValue(), 16));
433 int FrameIdx = MF.getFrameInfo().CreateStackObject(VecTy.getSizeInBytes(),
434 Alignment, false);
435 LLT FramePtrTy = LLT::pointer(0, 64);
437 auto StackTemp = Builder.buildFrameIndex(FramePtrTy, FrameIdx);
438
439 Builder.buildStore(Insert.getOperand(1), StackTemp, PtrInfo, Align(8));
440
441 // Get the pointer to the element, and be sure not to hit undefined behavior
442 // if the index is out of bounds.
444 "Expected a power-2 vector size");
445 auto Mask = Builder.buildConstant(IdxTy, VecTy.getNumElements() - 1);
446 Register And = Builder.buildAnd(IdxTy, Offset, Mask).getReg(0);
447 auto EltSize = Builder.buildConstant(IdxTy, EltTy.getSizeInBytes());
448 Register Mul = Builder.buildMul(IdxTy, And, EltSize).getReg(0);
449 Register EltPtr =
450 Builder.buildPtrAdd(MRI.getType(StackTemp.getReg(0)), StackTemp, Mul)
451 .getReg(0);
452
453 // Write the inserted element
454 Builder.buildStore(Insert.getElementReg(), EltPtr, PtrInfo, Align(1));
455 // Reload the whole vector.
456 Builder.buildLoad(Insert.getReg(0), StackTemp, PtrInfo, Align(8));
457 Insert.eraseFromParent();
458}
459
460/// Match a G_SHUFFLE_VECTOR with a mask which corresponds to a
461/// G_INSERT_VECTOR_ELT and G_EXTRACT_VECTOR_ELT pair.
462///
463/// e.g.
464/// %shuf = G_SHUFFLE_VECTOR %left, %right, shufflemask(0, 0)
465///
466/// Can be represented as
467///
468/// %extract = G_EXTRACT_VECTOR_ELT %left, 0
469/// %ins = G_INSERT_VECTOR_ELT %left, %extract, 1
470///
471bool matchINS(MachineInstr &MI, MachineRegisterInfo &MRI,
472 std::tuple<Register, int, Register, int> &MatchInfo) {
473 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
474 ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
475 Register Dst = MI.getOperand(0).getReg();
476 int NumElts = MRI.getType(Dst).getNumElements();
477 auto DstIsLeftAndDstLane = isINSMask(ShuffleMask, NumElts);
478 if (!DstIsLeftAndDstLane)
479 return false;
480 bool DstIsLeft;
481 int DstLane;
482 std::tie(DstIsLeft, DstLane) = *DstIsLeftAndDstLane;
483 Register Left = MI.getOperand(1).getReg();
484 Register Right = MI.getOperand(2).getReg();
485 Register DstVec = DstIsLeft ? Left : Right;
486 Register SrcVec = Left;
487
488 int SrcLane = ShuffleMask[DstLane];
489 if (SrcLane >= NumElts) {
490 SrcVec = Right;
491 SrcLane -= NumElts;
492 }
493
494 MatchInfo = std::make_tuple(DstVec, DstLane, SrcVec, SrcLane);
495 return true;
496}
497
498void applyINS(MachineInstr &MI, MachineRegisterInfo &MRI,
499 MachineIRBuilder &Builder,
500 std::tuple<Register, int, Register, int> &MatchInfo) {
501 Builder.setInstrAndDebugLoc(MI);
502 Register Dst = MI.getOperand(0).getReg();
503 auto ScalarTy = MRI.getType(Dst).getElementType();
504 Register DstVec, SrcVec;
505 int DstLane, SrcLane;
506 std::tie(DstVec, DstLane, SrcVec, SrcLane) = MatchInfo;
507 auto SrcCst = Builder.buildConstant(LLT::scalar(64), SrcLane);
508 auto Extract = Builder.buildExtractVectorElement(ScalarTy, SrcVec, SrcCst);
509 auto DstCst = Builder.buildConstant(LLT::scalar(64), DstLane);
510 Builder.buildInsertVectorElement(Dst, DstVec, Extract, DstCst);
511 MI.eraseFromParent();
512}
513
514/// isVShiftRImm - Check if this is a valid vector for the immediate
515/// operand of a vector shift right operation. The value must be in the range:
516/// 1 <= Value <= ElementBits for a right shift.
518 int64_t &Cnt) {
519 assert(Ty.isVector() && "vector shift count is not a vector type");
520 MachineInstr *MI = MRI.getVRegDef(Reg);
521 auto Cst = getAArch64VectorSplatScalar(*MI, MRI);
522 if (!Cst)
523 return false;
524 Cnt = *Cst;
525 int64_t ElementBits = Ty.getScalarSizeInBits();
526 return Cnt >= 1 && Cnt <= ElementBits;
527}
528
529/// Match a vector G_ASHR or G_LSHR with a valid immediate shift.
530bool matchVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
531 int64_t &Imm) {
532 assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
533 MI.getOpcode() == TargetOpcode::G_LSHR);
534 LLT Ty = MRI.getType(MI.getOperand(1).getReg());
535 if (!Ty.isVector())
536 return false;
537 return isVShiftRImm(MI.getOperand(2).getReg(), MRI, Ty, Imm);
538}
539
540void applyVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
541 int64_t &Imm) {
542 unsigned Opc = MI.getOpcode();
543 assert(Opc == TargetOpcode::G_ASHR || Opc == TargetOpcode::G_LSHR);
544 unsigned NewOpc =
545 Opc == TargetOpcode::G_ASHR ? AArch64::G_VASHR : AArch64::G_VLSHR;
546 MachineIRBuilder MIB(MI);
547 auto ImmDef = MIB.buildConstant(LLT::scalar(32), Imm);
548 MIB.buildInstr(NewOpc, {MI.getOperand(0)}, {MI.getOperand(1), ImmDef});
549 MI.eraseFromParent();
550}
551
552/// Determine if it is possible to modify the \p RHS and predicate \p P of a
553/// G_ICMP instruction such that the right-hand side is an arithmetic immediate.
554///
555/// \returns A pair containing the updated immediate and predicate which may
556/// be used to optimize the instruction.
557///
558/// \note This assumes that the comparison has been legalized.
559std::optional<std::pair<uint64_t, CmpInst::Predicate>>
560tryAdjustICmpImmAndPred(Register RHS, CmpInst::Predicate P,
561 const MachineRegisterInfo &MRI) {
562 const auto &Ty = MRI.getType(RHS);
563 if (Ty.isVector())
564 return std::nullopt;
565 unsigned Size = Ty.getSizeInBits();
566 assert((Size == 32 || Size == 64) && "Expected 32 or 64 bit compare only?");
567
568 // If the RHS is not a constant, or the RHS is already a valid arithmetic
569 // immediate, then there is nothing to change.
570 auto ValAndVReg = getIConstantVRegValWithLookThrough(RHS, MRI);
571 if (!ValAndVReg)
572 return std::nullopt;
573 uint64_t OriginalC = ValAndVReg->Value.getZExtValue();
574 uint64_t C = OriginalC;
575 if (isLegalArithImmed(C))
576 return std::nullopt;
577
578 // We have a non-arithmetic immediate. Check if adjusting the immediate and
579 // adjusting the predicate will result in a legal arithmetic immediate.
580 switch (P) {
581 default:
582 return std::nullopt;
585 // Check for
586 //
587 // x slt c => x sle c - 1
588 // x sge c => x sgt c - 1
589 //
590 // When c is not the smallest possible negative number.
591 if ((Size == 64 && static_cast<int64_t>(C) == INT64_MIN) ||
592 (Size == 32 && static_cast<int32_t>(C) == INT32_MIN))
593 return std::nullopt;
595 C -= 1;
596 break;
599 // Check for
600 //
601 // x ult c => x ule c - 1
602 // x uge c => x ugt c - 1
603 //
604 // When c is not zero.
605 if (C == 0)
606 return std::nullopt;
608 C -= 1;
609 break;
612 // Check for
613 //
614 // x sle c => x slt c + 1
615 // x sgt c => s sge c + 1
616 //
617 // When c is not the largest possible signed integer.
618 if ((Size == 32 && static_cast<int32_t>(C) == INT32_MAX) ||
619 (Size == 64 && static_cast<int64_t>(C) == INT64_MAX))
620 return std::nullopt;
622 C += 1;
623 break;
626 // Check for
627 //
628 // x ule c => x ult c + 1
629 // x ugt c => s uge c + 1
630 //
631 // When c is not the largest possible unsigned integer.
632 if ((Size == 32 && static_cast<uint32_t>(C) == UINT32_MAX) ||
633 (Size == 64 && C == UINT64_MAX))
634 return std::nullopt;
636 C += 1;
637 break;
638 }
639
640 // Check if the new constant is valid, and return the updated constant and
641 // predicate if it is.
642 if (Size == 32)
643 C = static_cast<uint32_t>(C);
644 if (isLegalArithImmed(C))
645 return {{C, P}};
646
647 auto IsMaterializableInSingleInstruction = [=](uint64_t Imm) {
650 return Insn.size() == 1;
651 };
652
653 if (!IsMaterializableInSingleInstruction(OriginalC) &&
654 IsMaterializableInSingleInstruction(C))
655 return {{C, P}};
656
657 return std::nullopt;
658}
659
660/// Determine whether or not it is possible to update the RHS and predicate of
661/// a G_ICMP instruction such that the RHS will be selected as an arithmetic
662/// immediate.
663///
664/// \p MI - The G_ICMP instruction
665/// \p MatchInfo - The new RHS immediate and predicate on success
666///
667/// See tryAdjustICmpImmAndPred for valid transformations.
668bool matchAdjustICmpImmAndPred(
670 std::pair<uint64_t, CmpInst::Predicate> &MatchInfo) {
671 assert(MI.getOpcode() == TargetOpcode::G_ICMP);
672 Register RHS = MI.getOperand(3).getReg();
673 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
674 if (auto MaybeNewImmAndPred = tryAdjustICmpImmAndPred(RHS, Pred, MRI)) {
675 MatchInfo = *MaybeNewImmAndPred;
676 return true;
677 }
678 return false;
679}
680
681void applyAdjustICmpImmAndPred(
682 MachineInstr &MI, std::pair<uint64_t, CmpInst::Predicate> &MatchInfo,
683 MachineIRBuilder &MIB, GISelChangeObserver &Observer) {
685 MachineOperand &RHS = MI.getOperand(3);
687 auto Cst = MIB.buildConstant(MRI.cloneVirtualRegister(RHS.getReg()),
688 MatchInfo.first);
689 Observer.changingInstr(MI);
690 RHS.setReg(Cst->getOperand(0).getReg());
691 MI.getOperand(1).setPredicate(MatchInfo.second);
692 Observer.changedInstr(MI);
693}
694
695bool matchDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
696 std::pair<unsigned, int> &MatchInfo) {
697 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
698 Register Src1Reg = MI.getOperand(1).getReg();
699 const LLT SrcTy = MRI.getType(Src1Reg);
700 const LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
701
702 auto LaneIdx = getSplatIndex(MI);
703 if (!LaneIdx)
704 return false;
705
706 // The lane idx should be within the first source vector.
707 if (*LaneIdx >= SrcTy.getNumElements())
708 return false;
709
710 if (DstTy != SrcTy)
711 return false;
712
713 LLT ScalarTy = SrcTy.getElementType();
714 unsigned ScalarSize = ScalarTy.getSizeInBits();
715
716 unsigned Opc = 0;
717 switch (SrcTy.getNumElements()) {
718 case 2:
719 if (ScalarSize == 64)
720 Opc = AArch64::G_DUPLANE64;
721 else if (ScalarSize == 32)
722 Opc = AArch64::G_DUPLANE32;
723 break;
724 case 4:
725 if (ScalarSize == 32)
726 Opc = AArch64::G_DUPLANE32;
727 else if (ScalarSize == 16)
728 Opc = AArch64::G_DUPLANE16;
729 break;
730 case 8:
731 if (ScalarSize == 8)
732 Opc = AArch64::G_DUPLANE8;
733 else if (ScalarSize == 16)
734 Opc = AArch64::G_DUPLANE16;
735 break;
736 case 16:
737 if (ScalarSize == 8)
738 Opc = AArch64::G_DUPLANE8;
739 break;
740 default:
741 break;
742 }
743 if (!Opc)
744 return false;
745
746 MatchInfo.first = Opc;
747 MatchInfo.second = *LaneIdx;
748 return true;
749}
750
751void applyDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
752 MachineIRBuilder &B, std::pair<unsigned, int> &MatchInfo) {
753 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
754 Register Src1Reg = MI.getOperand(1).getReg();
755 const LLT SrcTy = MRI.getType(Src1Reg);
756
757 B.setInstrAndDebugLoc(MI);
758 auto Lane = B.buildConstant(LLT::scalar(64), MatchInfo.second);
759
760 Register DupSrc = MI.getOperand(1).getReg();
761 // For types like <2 x s32>, we can use G_DUPLANE32, with a <4 x s32> source.
762 // To do this, we can use a G_CONCAT_VECTORS to do the widening.
763 if (SrcTy.getSizeInBits() == 64) {
764 auto Undef = B.buildUndef(SrcTy);
765 DupSrc = B.buildConcatVectors(SrcTy.multiplyElements(2),
766 {Src1Reg, Undef.getReg(0)})
767 .getReg(0);
768 }
769 B.buildInstr(MatchInfo.first, {MI.getOperand(0).getReg()}, {DupSrc, Lane});
770 MI.eraseFromParent();
771}
772
773bool matchScalarizeVectorUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI) {
774 auto &Unmerge = cast<GUnmerge>(MI);
775 Register Src1Reg = Unmerge.getReg(Unmerge.getNumOperands() - 1);
776 const LLT SrcTy = MRI.getType(Src1Reg);
777 if (SrcTy.getSizeInBits() != 128 && SrcTy.getSizeInBits() != 64)
778 return false;
779 return SrcTy.isVector() && !SrcTy.isScalable() &&
780 Unmerge.getNumOperands() == (unsigned)SrcTy.getNumElements() + 1;
781}
782
783void applyScalarizeVectorUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI,
785 auto &Unmerge = cast<GUnmerge>(MI);
786 Register Src1Reg = Unmerge.getReg(Unmerge.getNumOperands() - 1);
787 const LLT SrcTy = MRI.getType(Src1Reg);
788 assert((SrcTy.isVector() && !SrcTy.isScalable()) &&
789 "Expected a fixed length vector");
790
791 for (int I = 0; I < SrcTy.getNumElements(); ++I)
792 B.buildExtractVectorElementConstant(Unmerge.getReg(I), Src1Reg, I);
793 MI.eraseFromParent();
794}
795
796bool matchBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI) {
797 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
799 if (!Splat)
800 return false;
801 if (Splat->isReg())
802 return true;
803 // Later, during selection, we'll try to match imported patterns using
804 // immAllOnesV and immAllZerosV. These require G_BUILD_VECTOR. Don't lower
805 // G_BUILD_VECTORs which could match those patterns.
806 int64_t Cst = Splat->getCst();
807 return (Cst != 0 && Cst != -1);
808}
809
810void applyBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI,
812 B.setInstrAndDebugLoc(MI);
813 B.buildInstr(AArch64::G_DUP, {MI.getOperand(0).getReg()},
814 {MI.getOperand(1).getReg()});
815 MI.eraseFromParent();
816}
817
818/// \returns how many instructions would be saved by folding a G_ICMP's shift
819/// and/or extension operations.
821 // No instructions to save if there's more than one use or no uses.
822 if (!MRI.hasOneNonDBGUse(CmpOp))
823 return 0;
824
825 // FIXME: This is duplicated with the selector. (See: selectShiftedRegister)
826 auto IsSupportedExtend = [&](const MachineInstr &MI) {
827 if (MI.getOpcode() == TargetOpcode::G_SEXT_INREG)
828 return true;
829 if (MI.getOpcode() != TargetOpcode::G_AND)
830 return false;
831 auto ValAndVReg =
832 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
833 if (!ValAndVReg)
834 return false;
835 uint64_t Mask = ValAndVReg->Value.getZExtValue();
836 return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
837 };
838
840 if (IsSupportedExtend(*Def))
841 return 1;
842
843 unsigned Opc = Def->getOpcode();
844 if (Opc != TargetOpcode::G_SHL && Opc != TargetOpcode::G_ASHR &&
845 Opc != TargetOpcode::G_LSHR)
846 return 0;
847
848 auto MaybeShiftAmt =
849 getIConstantVRegValWithLookThrough(Def->getOperand(2).getReg(), MRI);
850 if (!MaybeShiftAmt)
851 return 0;
852 uint64_t ShiftAmt = MaybeShiftAmt->Value.getZExtValue();
853 MachineInstr *ShiftLHS =
854 getDefIgnoringCopies(Def->getOperand(1).getReg(), MRI);
855
856 // Check if we can fold an extend and a shift.
857 // FIXME: This is duplicated with the selector. (See:
858 // selectArithExtendedRegister)
859 if (IsSupportedExtend(*ShiftLHS))
860 return (ShiftAmt <= 4) ? 2 : 1;
861
862 LLT Ty = MRI.getType(Def->getOperand(0).getReg());
863 if (Ty.isVector())
864 return 0;
865 unsigned ShiftSize = Ty.getSizeInBits();
866 if ((ShiftSize == 32 && ShiftAmt <= 31) ||
867 (ShiftSize == 64 && ShiftAmt <= 63))
868 return 1;
869 return 0;
870}
871
872/// \returns true if it would be profitable to swap the LHS and RHS of a G_ICMP
873/// instruction \p MI.
874bool trySwapICmpOperands(MachineInstr &MI, MachineRegisterInfo &MRI) {
875 assert(MI.getOpcode() == TargetOpcode::G_ICMP);
876 // Swap the operands if it would introduce a profitable folding opportunity.
877 // (e.g. a shift + extend).
878 //
879 // For example:
880 // lsl w13, w11, #1
881 // cmp w13, w12
882 // can be turned into:
883 // cmp w12, w11, lsl #1
884
885 // Don't swap if there's a constant on the RHS, because we know we can fold
886 // that.
887 Register RHS = MI.getOperand(3).getReg();
888 auto RHSCst = getIConstantVRegValWithLookThrough(RHS, MRI);
889 if (RHSCst && isLegalArithImmed(RHSCst->Value.getSExtValue()))
890 return false;
891
892 Register LHS = MI.getOperand(2).getReg();
893 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
894 auto GetRegForProfit = [&](Register Reg) {
896 return isCMN(Def, Pred, MRI) ? Def->getOperand(2).getReg() : Reg;
897 };
898
899 // Don't have a constant on the RHS. If we swap the LHS and RHS of the
900 // compare, would we be able to fold more instructions?
901 Register TheLHS = GetRegForProfit(LHS);
902 Register TheRHS = GetRegForProfit(RHS);
903
904 // If the LHS is more likely to give us a folding opportunity, then swap the
905 // LHS and RHS.
906 return (getCmpOperandFoldingProfit(TheLHS, MRI) >
908}
909
910void applySwapICmpOperands(MachineInstr &MI, GISelChangeObserver &Observer) {
911 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
912 Register LHS = MI.getOperand(2).getReg();
913 Register RHS = MI.getOperand(3).getReg();
914 Observer.changedInstr(MI);
915 MI.getOperand(1).setPredicate(CmpInst::getSwappedPredicate(Pred));
916 MI.getOperand(2).setReg(RHS);
917 MI.getOperand(3).setReg(LHS);
918 Observer.changedInstr(MI);
919}
920
921/// \returns a function which builds a vector floating point compare instruction
922/// for a condition code \p CC.
923/// \param [in] IsZero - True if the comparison is against 0.
924/// \param [in] NoNans - True if the target has NoNansFPMath.
925std::function<Register(MachineIRBuilder &)>
926getVectorFCMP(AArch64CC::CondCode CC, Register LHS, Register RHS, bool IsZero,
927 bool NoNans, MachineRegisterInfo &MRI) {
928 LLT DstTy = MRI.getType(LHS);
929 assert(DstTy.isVector() && "Expected vector types only?");
930 assert(DstTy == MRI.getType(RHS) && "Src and Dst types must match!");
931 switch (CC) {
932 default:
933 llvm_unreachable("Unexpected condition code!");
934 case AArch64CC::NE:
935 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
936 auto FCmp = IsZero
937 ? MIB.buildInstr(AArch64::G_FCMEQZ, {DstTy}, {LHS})
938 : MIB.buildInstr(AArch64::G_FCMEQ, {DstTy}, {LHS, RHS});
939 return MIB.buildNot(DstTy, FCmp).getReg(0);
940 };
941 case AArch64CC::EQ:
942 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
943 return IsZero
944 ? MIB.buildInstr(AArch64::G_FCMEQZ, {DstTy}, {LHS}).getReg(0)
945 : MIB.buildInstr(AArch64::G_FCMEQ, {DstTy}, {LHS, RHS})
946 .getReg(0);
947 };
948 case AArch64CC::GE:
949 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
950 return IsZero
951 ? MIB.buildInstr(AArch64::G_FCMGEZ, {DstTy}, {LHS}).getReg(0)
952 : MIB.buildInstr(AArch64::G_FCMGE, {DstTy}, {LHS, RHS})
953 .getReg(0);
954 };
955 case AArch64CC::GT:
956 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
957 return IsZero
958 ? MIB.buildInstr(AArch64::G_FCMGTZ, {DstTy}, {LHS}).getReg(0)
959 : MIB.buildInstr(AArch64::G_FCMGT, {DstTy}, {LHS, RHS})
960 .getReg(0);
961 };
962 case AArch64CC::LS:
963 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
964 return IsZero
965 ? MIB.buildInstr(AArch64::G_FCMLEZ, {DstTy}, {LHS}).getReg(0)
966 : MIB.buildInstr(AArch64::G_FCMGE, {DstTy}, {RHS, LHS})
967 .getReg(0);
968 };
969 case AArch64CC::MI:
970 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
971 return IsZero
972 ? MIB.buildInstr(AArch64::G_FCMLTZ, {DstTy}, {LHS}).getReg(0)
973 : MIB.buildInstr(AArch64::G_FCMGT, {DstTy}, {RHS, LHS})
974 .getReg(0);
975 };
976 }
977}
978
979/// Try to lower a vector G_FCMP \p MI into an AArch64-specific pseudo.
980bool matchLowerVectorFCMP(MachineInstr &MI, MachineRegisterInfo &MRI,
981 MachineIRBuilder &MIB) {
982 assert(MI.getOpcode() == TargetOpcode::G_FCMP);
983 const auto &ST = MI.getMF()->getSubtarget<AArch64Subtarget>();
984
985 Register Dst = MI.getOperand(0).getReg();
986 LLT DstTy = MRI.getType(Dst);
987 if (!DstTy.isVector() || !ST.hasNEON())
988 return false;
989 Register LHS = MI.getOperand(2).getReg();
990 unsigned EltSize = MRI.getType(LHS).getScalarSizeInBits();
991 if (EltSize == 16 && !ST.hasFullFP16())
992 return false;
993 if (EltSize != 16 && EltSize != 32 && EltSize != 64)
994 return false;
995
996 return true;
997}
998
999/// Try to lower a vector G_FCMP \p MI into an AArch64-specific pseudo.
1000void applyLowerVectorFCMP(MachineInstr &MI, MachineRegisterInfo &MRI,
1001 MachineIRBuilder &MIB) {
1002 assert(MI.getOpcode() == TargetOpcode::G_FCMP);
1003 const auto &ST = MI.getMF()->getSubtarget<AArch64Subtarget>();
1004
1005 const auto &CmpMI = cast<GFCmp>(MI);
1006
1007 Register Dst = CmpMI.getReg(0);
1008 CmpInst::Predicate Pred = CmpMI.getCond();
1009 Register LHS = CmpMI.getLHSReg();
1010 Register RHS = CmpMI.getRHSReg();
1011
1012 LLT DstTy = MRI.getType(Dst);
1013
1014 auto Splat = getAArch64VectorSplat(*MRI.getVRegDef(RHS), MRI);
1015
1016 // Compares against 0 have special target-specific pseudos.
1017 bool IsZero = Splat && Splat->isCst() && Splat->getCst() == 0;
1018
1019 bool Invert = false;
1021 if ((Pred == CmpInst::Predicate::FCMP_ORD ||
1022 Pred == CmpInst::Predicate::FCMP_UNO) &&
1023 IsZero) {
1024 // The special case "fcmp ord %a, 0" is the canonical check that LHS isn't
1025 // NaN, so equivalent to a == a and doesn't need the two comparisons an
1026 // "ord" normally would.
1027 // Similarly, "fcmp uno %a, 0" is the canonical check that LHS is NaN and is
1028 // thus equivalent to a != a.
1029 RHS = LHS;
1030 IsZero = false;
1031 CC = Pred == CmpInst::Predicate::FCMP_ORD ? AArch64CC::EQ : AArch64CC::NE;
1032 } else
1033 changeVectorFCMPPredToAArch64CC(Pred, CC, CC2, Invert);
1034
1035 // Instead of having an apply function, just build here to simplify things.
1037
1038 const bool NoNans =
1039 ST.getTargetLowering()->getTargetMachine().Options.NoNaNsFPMath;
1040
1041 auto Cmp = getVectorFCMP(CC, LHS, RHS, IsZero, NoNans, MRI);
1042 Register CmpRes;
1043 if (CC2 == AArch64CC::AL)
1044 CmpRes = Cmp(MIB);
1045 else {
1046 auto Cmp2 = getVectorFCMP(CC2, LHS, RHS, IsZero, NoNans, MRI);
1047 auto Cmp2Dst = Cmp2(MIB);
1048 auto Cmp1Dst = Cmp(MIB);
1049 CmpRes = MIB.buildOr(DstTy, Cmp1Dst, Cmp2Dst).getReg(0);
1050 }
1051 if (Invert)
1052 CmpRes = MIB.buildNot(DstTy, CmpRes).getReg(0);
1053 MRI.replaceRegWith(Dst, CmpRes);
1054 MI.eraseFromParent();
1055}
1056
1057// Matches G_BUILD_VECTOR where at least one source operand is not a constant
1058bool matchLowerBuildToInsertVecElt(MachineInstr &MI, MachineRegisterInfo &MRI) {
1059 auto *GBuildVec = cast<GBuildVector>(&MI);
1060
1061 // Check if the values are all constants
1062 for (unsigned I = 0; I < GBuildVec->getNumSources(); ++I) {
1063 auto ConstVal =
1064 getAnyConstantVRegValWithLookThrough(GBuildVec->getSourceReg(I), MRI);
1065
1066 if (!ConstVal.has_value())
1067 return true;
1068 }
1069
1070 return false;
1071}
1072
1073void applyLowerBuildToInsertVecElt(MachineInstr &MI, MachineRegisterInfo &MRI,
1075 auto *GBuildVec = cast<GBuildVector>(&MI);
1076 LLT DstTy = MRI.getType(GBuildVec->getReg(0));
1077 Register DstReg = B.buildUndef(DstTy).getReg(0);
1078
1079 for (unsigned I = 0; I < GBuildVec->getNumSources(); ++I) {
1080 Register SrcReg = GBuildVec->getSourceReg(I);
1081 if (mi_match(SrcReg, MRI, m_GImplicitDef()))
1082 continue;
1083 auto IdxReg = B.buildConstant(LLT::scalar(64), I);
1084 DstReg =
1085 B.buildInsertVectorElement(DstTy, DstReg, SrcReg, IdxReg).getReg(0);
1086 }
1087 B.buildCopy(GBuildVec->getReg(0), DstReg);
1088 GBuildVec->eraseFromParent();
1089}
1090
1091bool matchFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI,
1092 Register &SrcReg) {
1093 assert(MI.getOpcode() == TargetOpcode::G_STORE);
1094 Register DstReg = MI.getOperand(0).getReg();
1095 if (MRI.getType(DstReg).isVector())
1096 return false;
1097 // Match a store of a truncate.
1098 if (!mi_match(DstReg, MRI, m_GTrunc(m_Reg(SrcReg))))
1099 return false;
1100 // Only form truncstores for value types of max 64b.
1101 return MRI.getType(SrcReg).getSizeInBits() <= 64;
1102}
1103
1104void applyFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI,
1106 Register &SrcReg) {
1107 assert(MI.getOpcode() == TargetOpcode::G_STORE);
1108 Observer.changingInstr(MI);
1109 MI.getOperand(0).setReg(SrcReg);
1110 Observer.changedInstr(MI);
1111}
1112
1113// Lower vector G_SEXT_INREG back to shifts for selection. We allowed them to
1114// form in the first place for combine opportunities, so any remaining ones
1115// at this stage need be lowered back.
1116bool matchVectorSextInReg(MachineInstr &MI, MachineRegisterInfo &MRI) {
1117 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
1118 Register DstReg = MI.getOperand(0).getReg();
1119 LLT DstTy = MRI.getType(DstReg);
1120 return DstTy.isVector();
1121}
1122
1123void applyVectorSextInReg(MachineInstr &MI, MachineRegisterInfo &MRI,
1125 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
1126 B.setInstrAndDebugLoc(MI);
1127 LegalizerHelper Helper(*MI.getMF(), Observer, B);
1128 Helper.lower(MI, 0, /* Unused hint type */ LLT());
1129}
1130
1131/// Combine <N x t>, unused = unmerge(G_EXT <2*N x t> v, undef, N)
1132/// => unused, <N x t> = unmerge v
1133bool matchUnmergeExtToUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI,
1134 Register &MatchInfo) {
1135 auto &Unmerge = cast<GUnmerge>(MI);
1136 if (Unmerge.getNumDefs() != 2)
1137 return false;
1138 if (!MRI.use_nodbg_empty(Unmerge.getReg(1)))
1139 return false;
1140
1141 LLT DstTy = MRI.getType(Unmerge.getReg(0));
1142 if (!DstTy.isVector())
1143 return false;
1144
1145 MachineInstr *Ext = getOpcodeDef(AArch64::G_EXT, Unmerge.getSourceReg(), MRI);
1146 if (!Ext)
1147 return false;
1148
1149 Register ExtSrc1 = Ext->getOperand(1).getReg();
1150 Register ExtSrc2 = Ext->getOperand(2).getReg();
1151 auto LowestVal =
1152 getIConstantVRegValWithLookThrough(Ext->getOperand(3).getReg(), MRI);
1153 if (!LowestVal || LowestVal->Value.getZExtValue() != DstTy.getSizeInBytes())
1154 return false;
1155
1156 if (!getOpcodeDef<GImplicitDef>(ExtSrc2, MRI))
1157 return false;
1158
1159 MatchInfo = ExtSrc1;
1160 return true;
1161}
1162
1163void applyUnmergeExtToUnmerge(MachineInstr &MI, MachineRegisterInfo &MRI,
1165 GISelChangeObserver &Observer, Register &SrcReg) {
1166 Observer.changingInstr(MI);
1167 // Swap dst registers.
1168 Register Dst1 = MI.getOperand(0).getReg();
1169 MI.getOperand(0).setReg(MI.getOperand(1).getReg());
1170 MI.getOperand(1).setReg(Dst1);
1171 MI.getOperand(2).setReg(SrcReg);
1172 Observer.changedInstr(MI);
1173}
1174
1175// Match mul({z/s}ext , {z/s}ext) => {u/s}mull OR
1176// Match v2s64 mul instructions, which will then be scalarised later on
1177// Doing these two matches in one function to ensure that the order of matching
1178// will always be the same.
1179// Try lowering MUL to MULL before trying to scalarize if needed.
1180bool matchExtMulToMULL(MachineInstr &MI, MachineRegisterInfo &MRI) {
1181 // Get the instructions that defined the source operand
1182 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1183 MachineInstr *I1 = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI);
1184 MachineInstr *I2 = getDefIgnoringCopies(MI.getOperand(2).getReg(), MRI);
1185
1186 if (DstTy.isVector()) {
1187 // If the source operands were EXTENDED before, then {U/S}MULL can be used
1188 unsigned I1Opc = I1->getOpcode();
1189 unsigned I2Opc = I2->getOpcode();
1190 if (((I1Opc == TargetOpcode::G_ZEXT && I2Opc == TargetOpcode::G_ZEXT) ||
1191 (I1Opc == TargetOpcode::G_SEXT && I2Opc == TargetOpcode::G_SEXT)) &&
1192 (MRI.getType(I1->getOperand(0).getReg()).getScalarSizeInBits() ==
1193 MRI.getType(I1->getOperand(1).getReg()).getScalarSizeInBits() * 2) &&
1194 (MRI.getType(I2->getOperand(0).getReg()).getScalarSizeInBits() ==
1195 MRI.getType(I2->getOperand(1).getReg()).getScalarSizeInBits() * 2)) {
1196 return true;
1197 }
1198 // If result type is v2s64, scalarise the instruction
1199 else if (DstTy == LLT::fixed_vector(2, 64)) {
1200 return true;
1201 }
1202 }
1203 return false;
1204}
1205
1206void applyExtMulToMULL(MachineInstr &MI, MachineRegisterInfo &MRI,
1208 assert(MI.getOpcode() == TargetOpcode::G_MUL &&
1209 "Expected a G_MUL instruction");
1210
1211 // Get the instructions that defined the source operand
1212 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
1213 MachineInstr *I1 = getDefIgnoringCopies(MI.getOperand(1).getReg(), MRI);
1214 MachineInstr *I2 = getDefIgnoringCopies(MI.getOperand(2).getReg(), MRI);
1215
1216 // If the source operands were EXTENDED before, then {U/S}MULL can be used
1217 unsigned I1Opc = I1->getOpcode();
1218 unsigned I2Opc = I2->getOpcode();
1219 if (((I1Opc == TargetOpcode::G_ZEXT && I2Opc == TargetOpcode::G_ZEXT) ||
1220 (I1Opc == TargetOpcode::G_SEXT && I2Opc == TargetOpcode::G_SEXT)) &&
1221 (MRI.getType(I1->getOperand(0).getReg()).getScalarSizeInBits() ==
1222 MRI.getType(I1->getOperand(1).getReg()).getScalarSizeInBits() * 2) &&
1223 (MRI.getType(I2->getOperand(0).getReg()).getScalarSizeInBits() ==
1224 MRI.getType(I2->getOperand(1).getReg()).getScalarSizeInBits() * 2)) {
1225
1226 B.setInstrAndDebugLoc(MI);
1227 B.buildInstr(I1->getOpcode() == TargetOpcode::G_ZEXT ? AArch64::G_UMULL
1228 : AArch64::G_SMULL,
1229 {MI.getOperand(0).getReg()},
1230 {I1->getOperand(1).getReg(), I2->getOperand(1).getReg()});
1231 MI.eraseFromParent();
1232 }
1233 // If result type is v2s64, scalarise the instruction
1234 else if (DstTy == LLT::fixed_vector(2, 64)) {
1235 LegalizerHelper Helper(*MI.getMF(), Observer, B);
1236 B.setInstrAndDebugLoc(MI);
1237 Helper.fewerElementsVector(
1238 MI, 0,
1239 DstTy.changeElementCount(
1241 }
1242}
1243
1244class AArch64PostLegalizerLoweringImpl : public Combiner {
1245protected:
1246 const CombinerHelper Helper;
1247 const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig;
1248 const AArch64Subtarget &STI;
1249
1250public:
1251 AArch64PostLegalizerLoweringImpl(
1252 MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC,
1253 GISelCSEInfo *CSEInfo,
1254 const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig,
1255 const AArch64Subtarget &STI);
1256
1257 static const char *getName() { return "AArch6400PreLegalizerCombiner"; }
1258
1259 bool tryCombineAll(MachineInstr &I) const override;
1260
1261private:
1262#define GET_GICOMBINER_CLASS_MEMBERS
1263#include "AArch64GenPostLegalizeGILowering.inc"
1264#undef GET_GICOMBINER_CLASS_MEMBERS
1265};
1266
1267#define GET_GICOMBINER_IMPL
1268#include "AArch64GenPostLegalizeGILowering.inc"
1269#undef GET_GICOMBINER_IMPL
1270
1271AArch64PostLegalizerLoweringImpl::AArch64PostLegalizerLoweringImpl(
1272 MachineFunction &MF, CombinerInfo &CInfo, const TargetPassConfig *TPC,
1273 GISelCSEInfo *CSEInfo,
1274 const AArch64PostLegalizerLoweringImplRuleConfig &RuleConfig,
1275 const AArch64Subtarget &STI)
1276 : Combiner(MF, CInfo, TPC, /*KB*/ nullptr, CSEInfo),
1277 Helper(Observer, B, /*IsPreLegalize*/ true), RuleConfig(RuleConfig),
1278 STI(STI),
1280#include "AArch64GenPostLegalizeGILowering.inc"
1282{
1283}
1284
1285class AArch64PostLegalizerLowering : public MachineFunctionPass {
1286public:
1287 static char ID;
1288
1289 AArch64PostLegalizerLowering();
1290
1291 StringRef getPassName() const override {
1292 return "AArch64PostLegalizerLowering";
1293 }
1294
1295 bool runOnMachineFunction(MachineFunction &MF) override;
1296 void getAnalysisUsage(AnalysisUsage &AU) const override;
1297
1298private:
1299 AArch64PostLegalizerLoweringImplRuleConfig RuleConfig;
1300};
1301} // end anonymous namespace
1302
1303void AArch64PostLegalizerLowering::getAnalysisUsage(AnalysisUsage &AU) const {
1305 AU.setPreservesCFG();
1308}
1309
1310AArch64PostLegalizerLowering::AArch64PostLegalizerLowering()
1313
1314 if (!RuleConfig.parseCommandLineOption())
1315 report_fatal_error("Invalid rule identifier");
1316}
1317
1318bool AArch64PostLegalizerLowering::runOnMachineFunction(MachineFunction &MF) {
1319 if (MF.getProperties().hasProperty(
1320 MachineFunctionProperties::Property::FailedISel))
1321 return false;
1323 MachineFunctionProperties::Property::Legalized) &&
1324 "Expected a legalized function?");
1325 auto *TPC = &getAnalysis<TargetPassConfig>();
1326 const Function &F = MF.getFunction();
1327
1329 CombinerInfo CInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
1330 /*LegalizerInfo*/ nullptr, /*OptEnabled=*/true,
1331 F.hasOptSize(), F.hasMinSize());
1332 // Disable fixed-point iteration to reduce compile-time
1333 CInfo.MaxIterations = 1;
1334 CInfo.ObserverLvl = CombinerInfo::ObserverLevel::SinglePass;
1335 // PostLegalizerCombiner performs DCE, so a full DCE pass is unnecessary.
1336 CInfo.EnableFullDCE = false;
1337 AArch64PostLegalizerLoweringImpl Impl(MF, CInfo, TPC, /*CSEInfo*/ nullptr,
1338 RuleConfig, ST);
1339 return Impl.combineMachineInstrs();
1340}
1341
1342char AArch64PostLegalizerLowering::ID = 0;
1343INITIALIZE_PASS_BEGIN(AArch64PostLegalizerLowering, DEBUG_TYPE,
1344 "Lower AArch64 MachineInstrs after legalization", false,
1345 false)
1347INITIALIZE_PASS_END(AArch64PostLegalizerLowering, DEBUG_TYPE,
1348 "Lower AArch64 MachineInstrs after legalization", false,
1349 false)
1350
1351namespace llvm {
1353 return new AArch64PostLegalizerLowering();
1354}
1355} // end namespace llvm
unsigned const MachineRegisterInfo * MRI
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt)
isVShiftRImm - Check if this is a valid build_vector for the immediate operand of a vector shift righ...
static bool isLegalArithImmed(uint64_t C)
static bool isCMN(SDValue Op, ISD::CondCode CC, SelectionDAG &DAG)
static bool isINSMask(ArrayRef< int > M, int NumInputElements, bool &DstIsLeft, int &Anomaly)
static unsigned getCmpOperandFoldingProfit(SDValue Op)
Returns how profitable it is to fold a comparison's operand's shift and/or extension operations.
This file declares the targeting of the Machinelegalizer class for AArch64.
SmallVector< AArch64_IMM::ImmInsnModel, 4 > Insn
#define GET_GICOMBINER_CONSTRUCTOR_INITS
Lower AArch64 MachineInstrs after legalization
#define DEBUG_TYPE
basic Basic Alias true
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
This contains common combine transformations that may be used in a combine pass,or by the target else...
Option class for Targets to specify which operations are combined how and when.
This contains the base class for all Combiners generated by TableGen.
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
uint64_t Size
This contains common code to allow clients to notify changes to machine instr.
Declares convenience wrapper classes for interpreting MachineInstr instances as specific generic oper...
IRTranslator LLVM IR MI
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
Contains matchers for matching SSA Machine Instructions.
This file declares the MachineIRBuilder class.
static unsigned getReg(const MCDisassembler *D, unsigned RC, unsigned RegNo)
#define P(N)
#define INITIALIZE_PASS_DEPENDENCY(depName)
Definition: PassSupport.h:55
#define INITIALIZE_PASS_END(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:57
#define INITIALIZE_PASS_BEGIN(passName, arg, name, cfg, analysis)
Definition: PassSupport.h:52
static StringRef getName(Value *V)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Target-Independent Code Generator Pass Configuration Options pass.
Value * RHS
Value * LHS
BinaryOperator * Mul
Class for arbitrary precision integers.
Definition: APInt.h:78
uint64_t getZExtValue() const
Get zero extended value.
Definition: APInt.h:1520
unsigned logBase2() const
Definition: APInt.h:1739
Represent the analysis usage information of a pass.
AnalysisUsage & addRequired()
void setPreservesCFG()
This function should be called by the pass, iff they do not:
Definition: Pass.cpp:256
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:673
@ ICMP_SLT
signed less than
Definition: InstrTypes.h:702
@ ICMP_SLE
signed less or equal
Definition: InstrTypes.h:703
@ ICMP_UGE
unsigned greater or equal
Definition: InstrTypes.h:697
@ ICMP_UGT
unsigned greater than
Definition: InstrTypes.h:696
@ ICMP_SGT
signed greater than
Definition: InstrTypes.h:700
@ ICMP_ULT
unsigned less than
Definition: InstrTypes.h:698
@ ICMP_SGE
signed greater or equal
Definition: InstrTypes.h:701
@ ICMP_ULE
unsigned less or equal
Definition: InstrTypes.h:699
Predicate getSwappedPredicate() const
For example, EQ->EQ, SLE->SGE, ULT->UGT, OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
Definition: InstrTypes.h:825
Combiner implementation.
Definition: Combiner.h:34
virtual bool tryCombineAll(MachineInstr &I) const =0
FunctionPass class - This class is used to implement most global optimizations.
Definition: Pass.h:310
The CSE Analysis object.
Definition: CSEInfo.h:70
Abstract class that contains various methods for clients to notify about changes.
virtual void changingInstr(MachineInstr &MI)=0
This instruction is about to be mutated in some way.
virtual void changedInstr(MachineInstr &MI)=0
This instruction was mutated in some way.
constexpr bool isScalableVector() const
Returns true if the LLT is a scalable vector.
Definition: LowLevelType.h:181
constexpr unsigned getScalarSizeInBits() const
Definition: LowLevelType.h:264
constexpr LLT multiplyElements(int Factor) const
Produce a vector type that is Factor times bigger, preserving the element type.
Definition: LowLevelType.h:251
static constexpr LLT scalar(unsigned SizeInBits)
Get a low-level scalar or aggregate "bag of bits".
Definition: LowLevelType.h:42
constexpr uint16_t getNumElements() const
Returns the number of elements in a vector LLT.
Definition: LowLevelType.h:159
constexpr bool isVector() const
Definition: LowLevelType.h:148
static constexpr LLT pointer(unsigned AddressSpace, unsigned SizeInBits)
Get a low-level pointer in the given address space.
Definition: LowLevelType.h:57
constexpr bool isScalable() const
Returns true if the LLT is a scalable vector.
Definition: LowLevelType.h:170
constexpr TypeSize getSizeInBits() const
Returns the total size of the type. Must only be called on sized types.
Definition: LowLevelType.h:190
constexpr LLT getElementType() const
Returns the vector's element type. Only valid for vector types.
Definition: LowLevelType.h:277
constexpr ElementCount getElementCount() const
Definition: LowLevelType.h:183
static constexpr LLT fixed_vector(unsigned NumElements, unsigned ScalarSizeInBits)
Get a low-level fixed-width vector of some number of elements and element width.
Definition: LowLevelType.h:100
constexpr LLT changeElementCount(ElementCount EC) const
Return a vector or scalar with the same element type and the new element count.
Definition: LowLevelType.h:227
constexpr TypeSize getSizeInBytes() const
Returns the total size of the type in bytes, i.e.
Definition: LowLevelType.h:200
int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
MachineFunctionPass - This class adapts the FunctionPass interface to allow convenient creation of pa...
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
virtual bool runOnMachineFunction(MachineFunction &MF)=0
runOnMachineFunction - This method must be overloaded to perform the desired machine code transformat...
bool hasProperty(Property P) const
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
Function & getFunction()
Return the LLVM function that this machine code represents.
const MachineFunctionProperties & getProperties() const
Get the function properties.
Helper class to build MachineInstr.
MachineInstrBuilder buildNot(const DstOp &Dst, const SrcOp &Src0)
Build and insert a bitwise not, NegOne = G_CONSTANT -1 Res = G_OR Op0, NegOne.
MachineInstrBuilder buildMul(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_MUL Op0, Op1.
MachineInstrBuilder buildAnd(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1)
Build and insert Res = G_AND Op0, Op1.
MachineInstrBuilder buildExtractVectorElement(const DstOp &Res, const SrcOp &Val, const SrcOp &Idx)
Build and insert Res = G_EXTRACT_VECTOR_ELT Val, Idx.
MachineInstrBuilder buildLoad(const DstOp &Res, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert Res = G_LOAD Addr, MMO.
MachineInstrBuilder buildPtrAdd(const DstOp &Res, const SrcOp &Op0, const SrcOp &Op1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_PTR_ADD Op0, Op1.
MachineInstrBuilder buildStore(const SrcOp &Val, const SrcOp &Addr, MachineMemOperand &MMO)
Build and insert G_STORE Val, Addr, MMO.
MachineInstrBuilder buildInstr(unsigned Opcode)
Build and insert <empty> = Opcode <empty>.
MachineInstrBuilder buildFrameIndex(const DstOp &Res, int Idx)
Build and insert Res = G_FRAME_INDEX Idx.
MachineFunction & getMF()
Getter for the function we currently build.
void setInstrAndDebugLoc(MachineInstr &MI)
Set the insertion point to before MI, and set the debug loc to MI's loc.
MachineInstrBuilder buildInsertVectorElement(const DstOp &Res, const SrcOp &Val, const SrcOp &Elt, const SrcOp &Idx)
Build and insert Res = G_INSERT_VECTOR_ELT Val, Elt, Idx.
MachineRegisterInfo * getMRI()
Getter for MRI.
MachineInstrBuilder buildOr(const DstOp &Dst, const SrcOp &Src0, const SrcOp &Src1, std::optional< unsigned > Flags=std::nullopt)
Build and insert Res = G_OR Op0, Op1.
virtual MachineInstrBuilder buildConstant(const DstOp &Res, const ConstantInt &Val)
Build and insert Res = G_CONSTANT Val.
Register getReg(unsigned Idx) const
Get the register for the operand index.
Representation of each machine instruction.
Definition: MachineInstr.h:69
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
Definition: MachineInstr.h:575
const MachineOperand & getOperand(unsigned i) const
Definition: MachineInstr.h:585
MachineOperand class - Representation of each machine instruction operand.
Register getReg() const
getReg - Returns the register number.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
static PassRegistry * getPassRegistry()
getPassRegistry - Access the global registry object, which is automatically initialized at applicatio...
virtual StringRef getPassName() const
getPassName - Return a nice clean name for a pass.
Definition: Pass.cpp:81
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:51
Target-Independent Code Generator Pass Configuration Options.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
Definition: TypeSize.h:168
constexpr LeafTy divideCoefficientBy(ScalarTy RHS) const
We do not provide the '/' operator here because division for polynomial types does not work in the sa...
Definition: TypeSize.h:254
#define UINT64_MAX
Definition: DataTypes.h:77
#define INT64_MIN
Definition: DataTypes.h:74
#define INT64_MAX
Definition: DataTypes.h:71
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
std::optional< RegOrConstant > getAArch64VectorSplat(const MachineInstr &MI, const MachineRegisterInfo &MRI)
void changeVectorFCMPPredToAArch64CC(const CmpInst::Predicate P, AArch64CC::CondCode &CondCode, AArch64CC::CondCode &CondCode2, bool &Invert)
Find the AArch64 condition codes necessary to represent P for a vector floating point comparison.
std::optional< int64_t > getAArch64VectorSplatScalar(const MachineInstr &MI, const MachineRegisterInfo &MRI)
void expandMOVImm(uint64_t Imm, unsigned BitSize, SmallVectorImpl< ImmInsnModel > &Insn)
Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more real move-immediate instructions to...
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
Definition: BitmaskEnum.h:125
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
operand_type_match m_Reg()
SpecificConstantMatch m_ZeroInt()
{ Convenience matchers for specific integer values.
ImplicitDefMatch m_GImplicitDef()
bool mi_match(Reg R, const MachineRegisterInfo &MRI, Pattern &&P)
UnaryOp_match< SrcTy, TargetOpcode::G_TRUNC > m_GTrunc(const SrcTy &Src)
@ Undef
Value of the register doesn't matter.
Reg
All possible values of the reg field in the ModR/M byte.
NodeAddr< DefNode * > Def
Definition: RDFGraph.h:384
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Offset
Definition: DWP.cpp:480
MachineInstr * getOpcodeDef(unsigned Opcode, Register Reg, const MachineRegisterInfo &MRI)
See if Reg is defined by an single def instruction that is Opcode.
Definition: Utils.cpp:630
void initializeAArch64PostLegalizerLoweringPass(PassRegistry &)
iterator_range< T > make_range(T x, T y)
Convenience function for iterating over sub-ranges.
bool isTRNMask(ArrayRef< int > M, unsigned NumElts, unsigned &WhichResult)
Return true for trn1 or trn2 masks of the form: <0, 8, 2, 10, 4, 12, 6, 14> or <1,...
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition: MathExtras.h:296
MachineInstr * getDefIgnoringCopies(Register Reg, const MachineRegisterInfo &MRI)
Find the def instruction for Reg, folding away any trivial copies.
Definition: Utils.cpp:471
FunctionPass * createAArch64PostLegalizerLowering()
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:167
bool isUZPMask(ArrayRef< int > M, unsigned NumElts, unsigned &WhichResultOut)
Return true for uzp1 or uzp2 masks of the form: <0, 2, 4, 6, 8, 10, 12, 14> or <1,...
bool isREVMask(ArrayRef< int > M, unsigned EltSize, unsigned NumElts, unsigned BlockSize)
isREVMask - Check if a vector shuffle corresponds to a REV instruction with the specified blocksize.
std::optional< ValueAndVReg > getAnyConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true, bool LookThroughAnyExt=false)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_CONSTANT or G_FCONST...
Definition: Utils.cpp:424
void getSelectionDAGFallbackAnalysisUsage(AnalysisUsage &AU)
Modify analysis usage so it preserves passes required for the SelectionDAG fallback.
Definition: Utils.cpp:1153
bool isZIPMask(ArrayRef< int > M, unsigned NumElts, unsigned &WhichResultOut)
Return true for zip1 or zip2 masks of the form: <0, 8, 1, 9, 2, 10, 3, 11> or <4, 12,...
std::optional< ValueAndVReg > getIConstantVRegValWithLookThrough(Register VReg, const MachineRegisterInfo &MRI, bool LookThroughInstrs=true)
If VReg is defined by a statically evaluable chain of instructions rooted on a G_CONSTANT returns its...
Definition: Utils.cpp:418
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1766
int getSplatIndex(ArrayRef< int > Mask)
If all non-negative Mask elements are the same value, return that value.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition: BitVector.h:860
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
Matching combinators.
This class contains a discriminated union of information about pointers in memory operands,...
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.