LLVM 22.0.0git
AArch64FrameLowering.cpp
Go to the documentation of this file.
1//===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the AArch64 implementation of TargetFrameLowering class.
10//
11// On AArch64, stack frames are structured as follows:
12//
13// The stack grows downward.
14//
15// All of the individual frame areas on the frame below are optional, i.e. it's
16// possible to create a function so that the particular area isn't present
17// in the frame.
18//
19// At function entry, the "frame" looks as follows:
20//
21// | | Higher address
22// |-----------------------------------|
23// | |
24// | arguments passed on the stack |
25// | |
26// |-----------------------------------| <- sp
27// | | Lower address
28//
29//
30// After the prologue has run, the frame has the following general structure.
31// Note that this doesn't depict the case where a red-zone is used. Also,
32// technically the last frame area (VLAs) doesn't get created until in the
33// main function body, after the prologue is run. However, it's depicted here
34// for completeness.
35//
36// | | Higher address
37// |-----------------------------------|
38// | |
39// | arguments passed on the stack |
40// | |
41// |-----------------------------------|
42// | |
43// | (Win64 only) varargs from reg |
44// | |
45// |-----------------------------------|
46// | |
47// | (Win64 only) callee-saved SVE reg |
48// | |
49// |-----------------------------------|
50// | |
51// | callee-saved gpr registers | <--.
52// | | | On Darwin platforms these
53// |- - - - - - - - - - - - - - - - - -| | callee saves are swapped,
54// | prev_lr | | (frame record first)
55// | prev_fp | <--'
56// | async context if needed |
57// | (a.k.a. "frame record") |
58// |-----------------------------------| <- fp(=x29)
59// Default SVE stack layout Split SVE objects
60// (aarch64-split-sve-objects=false) (aarch64-split-sve-objects=true)
61// |-----------------------------------| |-----------------------------------|
62// | <hazard padding> | | callee-saved PPR registers |
63// |-----------------------------------| |-----------------------------------|
64// | | | PPR stack objects |
65// | callee-saved fp/simd/SVE regs | |-----------------------------------|
66// | | | <hazard padding> |
67// |-----------------------------------| |-----------------------------------|
68// | | | callee-saved ZPR/FPR registers |
69// | SVE stack objects | |-----------------------------------|
70// | | | ZPR stack objects |
71// |-----------------------------------| |-----------------------------------|
72// ^ NB: FPR CSRs are promoted to ZPRs
73// |-----------------------------------|
74// |.empty.space.to.make.part.below....|
75// |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
76// |.the.standard.16-byte.alignment....| compile time; if present)
77// |-----------------------------------|
78// | local variables of fixed size |
79// | including spill slots |
80// | <FPR> |
81// | <hazard padding> |
82// | <GPR> |
83// |-----------------------------------| <- bp(not defined by ABI,
84// |.variable-sized.local.variables....| LLVM chooses X19)
85// |.(VLAs)............................| (size of this area is unknown at
86// |...................................| compile time)
87// |-----------------------------------| <- sp
88// | | Lower address
89//
90//
91// To access the data in a frame, at-compile time, a constant offset must be
92// computable from one of the pointers (fp, bp, sp) to access it. The size
93// of the areas with a dotted background cannot be computed at compile-time
94// if they are present, making it required to have all three of fp, bp and
95// sp to be set up to be able to access all contents in the frame areas,
96// assuming all of the frame areas are non-empty.
97//
98// For most functions, some of the frame areas are empty. For those functions,
99// it may not be necessary to set up fp or bp:
100// * A base pointer is definitely needed when there are both VLAs and local
101// variables with more-than-default alignment requirements.
102// * A frame pointer is definitely needed when there are local variables with
103// more-than-default alignment requirements.
104//
105// For Darwin platforms the frame-record (fp, lr) is stored at the top of the
106// callee-saved area, since the unwind encoding does not allow for encoding
107// this dynamically and existing tools depend on this layout. For other
108// platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
109// area to allow SVE stack objects (allocated directly below the callee-saves,
110// if available) to be accessed directly from the framepointer.
111// The SVE spill/fill instructions have VL-scaled addressing modes such
112// as:
113// ldr z8, [fp, #-7 mul vl]
114// For SVE the size of the vector length (VL) is not known at compile-time, so
115// '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
116// layout, we don't need to add an unscaled offset to the framepointer before
117// accessing the SVE object in the frame.
118//
119// In some cases when a base pointer is not strictly needed, it is generated
120// anyway when offsets from the frame pointer to access local variables become
121// so large that the offset can't be encoded in the immediate fields of loads
122// or stores.
123//
124// Outgoing function arguments must be at the bottom of the stack frame when
125// calling another function. If we do not have variable-sized stack objects, we
126// can allocate a "reserved call frame" area at the bottom of the local
127// variable area, large enough for all outgoing calls. If we do have VLAs, then
128// the stack pointer must be decremented and incremented around each call to
129// make space for the arguments below the VLAs.
130//
131// FIXME: also explain the redzone concept.
132//
133// About stack hazards: Under some SME contexts, a coprocessor with its own
134// separate cache can used for FP operations. This can create hazards if the CPU
135// and the SME unit try to access the same area of memory, including if the
136// access is to an area of the stack. To try to alleviate this we attempt to
137// introduce extra padding into the stack frame between FP and GPR accesses,
138// controlled by the aarch64-stack-hazard-size option. Without changing the
139// layout of the stack frame in the diagram above, a stack object of size
140// aarch64-stack-hazard-size is added between GPR and FPR CSRs. Another is added
141// to the stack objects section, and stack objects are sorted so that FPR >
142// Hazard padding slot > GPRs (where possible). Unfortunately some things are
143// not handled well (VLA area, arguments on the stack, objects with both GPR and
144// FPR accesses), but if those are controlled by the user then the entire stack
145// frame becomes GPR at the start/end with FPR in the middle, surrounded by
146// Hazard padding.
147//
148// An example of the prologue:
149//
150// .globl __foo
151// .align 2
152// __foo:
153// Ltmp0:
154// .cfi_startproc
155// .cfi_personality 155, ___gxx_personality_v0
156// Leh_func_begin:
157// .cfi_lsda 16, Lexception33
158//
159// stp xa,bx, [sp, -#offset]!
160// ...
161// stp x28, x27, [sp, #offset-32]
162// stp fp, lr, [sp, #offset-16]
163// add fp, sp, #offset - 16
164// sub sp, sp, #1360
165//
166// The Stack:
167// +-------------------------------------------+
168// 10000 | ........ | ........ | ........ | ........ |
169// 10004 | ........ | ........ | ........ | ........ |
170// +-------------------------------------------+
171// 10008 | ........ | ........ | ........ | ........ |
172// 1000c | ........ | ........ | ........ | ........ |
173// +===========================================+
174// 10010 | X28 Register |
175// 10014 | X28 Register |
176// +-------------------------------------------+
177// 10018 | X27 Register |
178// 1001c | X27 Register |
179// +===========================================+
180// 10020 | Frame Pointer |
181// 10024 | Frame Pointer |
182// +-------------------------------------------+
183// 10028 | Link Register |
184// 1002c | Link Register |
185// +===========================================+
186// 10030 | ........ | ........ | ........ | ........ |
187// 10034 | ........ | ........ | ........ | ........ |
188// +-------------------------------------------+
189// 10038 | ........ | ........ | ........ | ........ |
190// 1003c | ........ | ........ | ........ | ........ |
191// +-------------------------------------------+
192//
193// [sp] = 10030 :: >>initial value<<
194// sp = 10020 :: stp fp, lr, [sp, #-16]!
195// fp = sp == 10020 :: mov fp, sp
196// [sp] == 10020 :: stp x28, x27, [sp, #-16]!
197// sp == 10010 :: >>final value<<
198//
199// The frame pointer (w29) points to address 10020. If we use an offset of
200// '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
201// for w27, and -32 for w28:
202//
203// Ltmp1:
204// .cfi_def_cfa w29, 16
205// Ltmp2:
206// .cfi_offset w30, -8
207// Ltmp3:
208// .cfi_offset w29, -16
209// Ltmp4:
210// .cfi_offset w27, -24
211// Ltmp5:
212// .cfi_offset w28, -32
213//
214//===----------------------------------------------------------------------===//
215
216#include "AArch64FrameLowering.h"
217#include "AArch64InstrInfo.h"
220#include "AArch64RegisterInfo.h"
221#include "AArch64SMEAttributes.h"
222#include "AArch64Subtarget.h"
225#include "llvm/ADT/ScopeExit.h"
226#include "llvm/ADT/SmallVector.h"
244#include "llvm/IR/Attributes.h"
245#include "llvm/IR/CallingConv.h"
246#include "llvm/IR/DataLayout.h"
247#include "llvm/IR/DebugLoc.h"
248#include "llvm/IR/Function.h"
249#include "llvm/MC/MCAsmInfo.h"
250#include "llvm/MC/MCDwarf.h"
252#include "llvm/Support/Debug.h"
259#include <cassert>
260#include <cstdint>
261#include <iterator>
262#include <optional>
263#include <vector>
264
265using namespace llvm;
266
267#define DEBUG_TYPE "frame-info"
268
269static cl::opt<bool> EnableRedZone("aarch64-redzone",
270 cl::desc("enable use of redzone on AArch64"),
271 cl::init(false), cl::Hidden);
272
274 "stack-tagging-merge-settag",
275 cl::desc("merge settag instruction in function epilog"), cl::init(true),
276 cl::Hidden);
277
278static cl::opt<bool> OrderFrameObjects("aarch64-order-frame-objects",
279 cl::desc("sort stack allocations"),
280 cl::init(true), cl::Hidden);
281
282static cl::opt<bool>
283 SplitSVEObjects("aarch64-split-sve-objects",
284 cl::desc("Split allocation of ZPR & PPR objects"),
285 cl::init(true), cl::Hidden);
286
288 "homogeneous-prolog-epilog", cl::Hidden,
289 cl::desc("Emit homogeneous prologue and epilogue for the size "
290 "optimization (default = off)"));
291
292// Stack hazard size for analysis remarks. StackHazardSize takes precedence.
294 StackHazardRemarkSize("aarch64-stack-hazard-remark-size", cl::init(0),
295 cl::Hidden);
296// Whether to insert padding into non-streaming functions (for testing).
297static cl::opt<bool>
298 StackHazardInNonStreaming("aarch64-stack-hazard-in-non-streaming",
299 cl::init(false), cl::Hidden);
300
302 "aarch64-disable-multivector-spill-fill",
303 cl::desc("Disable use of LD/ST pairs for SME2 or SVE2p1"), cl::init(false),
304 cl::Hidden);
305
306int64_t
307AArch64FrameLowering::getArgumentStackToRestore(MachineFunction &MF,
308 MachineBasicBlock &MBB) const {
309 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
311 bool IsTailCallReturn = (MBB.end() != MBBI)
313 : false;
314
315 int64_t ArgumentPopSize = 0;
316 if (IsTailCallReturn) {
317 MachineOperand &StackAdjust = MBBI->getOperand(1);
318
319 // For a tail-call in a callee-pops-arguments environment, some or all of
320 // the stack may actually be in use for the call's arguments, this is
321 // calculated during LowerCall and consumed here...
322 ArgumentPopSize = StackAdjust.getImm();
323 } else {
324 // ... otherwise the amount to pop is *all* of the argument space,
325 // conveniently stored in the MachineFunctionInfo by
326 // LowerFormalArguments. This will, of course, be zero for the C calling
327 // convention.
328 ArgumentPopSize = AFI->getArgumentStackToRestore();
329 }
330
331 return ArgumentPopSize;
332}
333
335 MachineFunction &MF);
336
337enum class AssignObjectOffsets { No, Yes };
338/// Process all the SVE stack objects and the SVE stack size and offsets for
339/// each object. If AssignOffsets is "Yes", the offsets get assigned (and SVE
340/// stack sizes set). Returns the size of the SVE stack.
342 AssignObjectOffsets AssignOffsets);
343
344static unsigned getStackHazardSize(const MachineFunction &MF) {
345 return MF.getSubtarget<AArch64Subtarget>().getStreamingHazardSize();
346}
347
353
356 // With split SVE objects, the hazard padding is added to the PPR region,
357 // which places it between the [GPR, PPR] area and the [ZPR, FPR] area. This
358 // avoids hazards between both GPRs and FPRs and ZPRs and PPRs.
361 : 0,
362 AFI->getStackSizePPR());
363}
364
365// Conservatively, returns true if the function is likely to have SVE vectors
366// on the stack. This function is safe to be called before callee-saves or
367// object offsets have been determined.
369 const MachineFunction &MF) {
370 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
371 if (AFI->isSVECC())
372 return true;
373
374 if (AFI->hasCalculatedStackSizeSVE())
375 return bool(AFL.getSVEStackSize(MF));
376
377 const MachineFrameInfo &MFI = MF.getFrameInfo();
378 for (int FI = MFI.getObjectIndexBegin(); FI < MFI.getObjectIndexEnd(); FI++) {
379 if (MFI.hasScalableStackID(FI))
380 return true;
381 }
382
383 return false;
384}
385
386static bool isTargetWindows(const MachineFunction &MF) {
387 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
388}
389
395
396/// Returns true if a homogeneous prolog or epilog code can be emitted
397/// for the size optimization. If possible, a frame helper call is injected.
398/// When Exit block is given, this check is for epilog.
399bool AArch64FrameLowering::homogeneousPrologEpilog(
400 MachineFunction &MF, MachineBasicBlock *Exit) const {
401 if (!MF.getFunction().hasMinSize())
402 return false;
404 return false;
405 if (EnableRedZone)
406 return false;
407
408 // TODO: Window is supported yet.
409 if (isTargetWindows(MF))
410 return false;
411
412 // TODO: SVE is not supported yet.
413 if (isLikelyToHaveSVEStack(*this, MF))
414 return false;
415
416 // Bail on stack adjustment needed on return for simplicity.
417 const MachineFrameInfo &MFI = MF.getFrameInfo();
418 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
419 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))
420 return false;
421 if (Exit && getArgumentStackToRestore(MF, *Exit))
422 return false;
423
424 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
426 return false;
427
428 // If there are an odd number of GPRs before LR and FP in the CSRs list,
429 // they will not be paired into one RegPairInfo, which is incompatible with
430 // the assumption made by the homogeneous prolog epilog pass.
431 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
432 unsigned NumGPRs = 0;
433 for (unsigned I = 0; CSRegs[I]; ++I) {
434 Register Reg = CSRegs[I];
435 if (Reg == AArch64::LR) {
436 assert(CSRegs[I + 1] == AArch64::FP);
437 if (NumGPRs % 2 != 0)
438 return false;
439 break;
440 }
441 if (AArch64::GPR64RegClass.contains(Reg))
442 ++NumGPRs;
443 }
444
445 return true;
446}
447
448/// Returns true if CSRs should be paired.
449bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const {
450 return produceCompactUnwindFrame(*this, MF) || homogeneousPrologEpilog(MF);
451}
452
453/// This is the biggest offset to the stack pointer we can encode in aarch64
454/// instructions (without using a separate calculation and a temp register).
455/// Note that the exception here are vector stores/loads which cannot encode any
456/// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
457static const unsigned DefaultSafeSPDisplacement = 255;
458
459/// Look at each instruction that references stack frames and return the stack
460/// size limit beyond which some of these instructions will require a scratch
461/// register during their expansion later.
463 // FIXME: For now, just conservatively guesstimate based on unscaled indexing
464 // range. We'll end up allocating an unnecessary spill slot a lot, but
465 // realistically that's not a big deal at this stage of the game.
466 for (MachineBasicBlock &MBB : MF) {
467 for (MachineInstr &MI : MBB) {
468 if (MI.isDebugInstr() || MI.isPseudo() ||
469 MI.getOpcode() == AArch64::ADDXri ||
470 MI.getOpcode() == AArch64::ADDSXri)
471 continue;
472
473 for (const MachineOperand &MO : MI.operands()) {
474 if (!MO.isFI())
475 continue;
476
478 if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) ==
480 return 0;
481 }
482 }
483 }
485}
486
491
492unsigned
493AArch64FrameLowering::getFixedObjectSize(const MachineFunction &MF,
494 const AArch64FunctionInfo *AFI,
495 bool IsWin64, bool IsFunclet) const {
496 assert(AFI->getTailCallReservedStack() % 16 == 0 &&
497 "Tail call reserved stack must be aligned to 16 bytes");
498 if (!IsWin64 || IsFunclet) {
499 return AFI->getTailCallReservedStack();
500 } else {
501 if (AFI->getTailCallReservedStack() != 0 &&
502 !MF.getFunction().getAttributes().hasAttrSomewhere(
503 Attribute::SwiftAsync))
504 report_fatal_error("cannot generate ABI-changing tail call for Win64");
505 unsigned FixedObjectSize = AFI->getTailCallReservedStack();
506
507 // Var args are stored here in the primary function.
508 FixedObjectSize += AFI->getVarArgsGPRSize();
509
510 if (MF.hasEHFunclets()) {
511 // Catch objects are stored here in the primary function.
512 const MachineFrameInfo &MFI = MF.getFrameInfo();
513 const WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
514 SmallSetVector<int, 8> CatchObjFrameIndices;
515 for (const WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
516 for (const WinEHHandlerType &H : TBME.HandlerArray) {
517 int FrameIndex = H.CatchObj.FrameIndex;
518 if ((FrameIndex != INT_MAX) &&
519 CatchObjFrameIndices.insert(FrameIndex)) {
520 FixedObjectSize = alignTo(FixedObjectSize,
521 MFI.getObjectAlign(FrameIndex).value()) +
522 MFI.getObjectSize(FrameIndex);
523 }
524 }
525 }
526 // To support EH funclets we allocate an UnwindHelp object
527 FixedObjectSize += 8;
528 }
529 return alignTo(FixedObjectSize, 16);
530 }
531}
532
534 if (!EnableRedZone)
535 return false;
536
537 // Don't use the red zone if the function explicitly asks us not to.
538 // This is typically used for kernel code.
539 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
540 const unsigned RedZoneSize =
542 if (!RedZoneSize)
543 return false;
544
545 const MachineFrameInfo &MFI = MF.getFrameInfo();
547 uint64_t NumBytes = AFI->getLocalStackSize();
548
549 // If neither NEON or SVE are available, a COPY from one Q-reg to
550 // another requires a spill -> reload sequence. We can do that
551 // using a pre-decrementing store/post-decrementing load, but
552 // if we do so, we can't use the Red Zone.
553 bool LowerQRegCopyThroughMem = Subtarget.hasFPARMv8() &&
554 !Subtarget.isNeonAvailable() &&
555 !Subtarget.hasSVE();
556
557 return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize ||
558 AFI->hasSVEStackSize() || LowerQRegCopyThroughMem);
559}
560
561/// hasFPImpl - Return true if the specified function should have a dedicated
562/// frame pointer register.
564 const MachineFrameInfo &MFI = MF.getFrameInfo();
565 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
567
568 // Win64 EH requires a frame pointer if funclets are present, as the locals
569 // are accessed off the frame pointer in both the parent function and the
570 // funclets.
571 if (MF.hasEHFunclets())
572 return true;
573 // Retain behavior of always omitting the FP for leaf functions when possible.
575 return true;
576 if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() ||
577 MFI.hasStackMap() || MFI.hasPatchPoint() ||
578 RegInfo->hasStackRealignment(MF))
579 return true;
580
581 // If we:
582 //
583 // 1. Have streaming mode changes
584 // OR:
585 // 2. Have a streaming body with SVE stack objects
586 //
587 // Then the value of VG restored when unwinding to this function may not match
588 // the value of VG used to set up the stack.
589 //
590 // This is a problem as the CFA can be described with an expression of the
591 // form: CFA = SP + NumBytes + VG * NumScalableBytes.
592 //
593 // If the value of VG used in that expression does not match the value used to
594 // set up the stack, an incorrect address for the CFA will be computed, and
595 // unwinding will fail.
596 //
597 // We work around this issue by ensuring the frame-pointer can describe the
598 // CFA in either of these cases.
599 if (AFI.needsDwarfUnwindInfo(MF) &&
602 return true;
603 // With large callframes around we may need to use FP to access the scavenging
604 // emergency spillslot.
605 //
606 // Unfortunately some calls to hasFP() like machine verifier ->
607 // getReservedReg() -> hasFP in the middle of global isel are too early
608 // to know the max call frame size. Hopefully conservatively returning "true"
609 // in those cases is fine.
610 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
611 if (!MFI.isMaxCallFrameSizeComputed() ||
613 return true;
614
615 return false;
616}
617
618/// Should the Frame Pointer be reserved for the current function?
620 const TargetMachine &TM = MF.getTarget();
621 const Triple &TT = TM.getTargetTriple();
622
623 // These OSes require the frame chain is valid, even if the current frame does
624 // not use a frame pointer.
625 if (TT.isOSDarwin() || TT.isOSWindows())
626 return true;
627
628 // If the function has a frame pointer, it is reserved.
629 if (hasFP(MF))
630 return true;
631
632 // Frontend has requested to preserve the frame pointer.
634 return true;
635
636 return false;
637}
638
639/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
640/// not required, we reserve argument space for call sites in the function
641/// immediately on entry to the current function. This eliminates the need for
642/// add/sub sp brackets around call sites. Returns true if the call frame is
643/// included as part of the stack frame.
645 const MachineFunction &MF) const {
646 // The stack probing code for the dynamically allocated outgoing arguments
647 // area assumes that the stack is probed at the top - either by the prologue
648 // code, which issues a probe if `hasVarSizedObjects` return true, or by the
649 // most recent variable-sized object allocation. Changing the condition here
650 // may need to be followed up by changes to the probe issuing logic.
651 return !MF.getFrameInfo().hasVarSizedObjects();
652}
653
657
658 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
659 const AArch64InstrInfo *TII = Subtarget.getInstrInfo();
660 const AArch64TargetLowering *TLI = Subtarget.getTargetLowering();
661 [[maybe_unused]] MachineFrameInfo &MFI = MF.getFrameInfo();
662 DebugLoc DL = I->getDebugLoc();
663 unsigned Opc = I->getOpcode();
664 bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
665 uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
666
667 if (!hasReservedCallFrame(MF)) {
668 int64_t Amount = I->getOperand(0).getImm();
669 Amount = alignTo(Amount, getStackAlign());
670 if (!IsDestroy)
671 Amount = -Amount;
672
673 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
674 // doesn't have to pop anything), then the first operand will be zero too so
675 // this adjustment is a no-op.
676 if (CalleePopAmount == 0) {
677 // FIXME: in-function stack adjustment for calls is limited to 24-bits
678 // because there's no guaranteed temporary register available.
679 //
680 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
681 // 1) For offset <= 12-bit, we use LSL #0
682 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
683 // LSL #0, and the other uses LSL #12.
684 //
685 // Most call frames will be allocated at the start of a function so
686 // this is OK, but it is a limitation that needs dealing with.
687 assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large");
688
689 if (TLI->hasInlineStackProbe(MF) &&
691 // When stack probing is enabled, the decrement of SP may need to be
692 // probed. We only need to do this if the call site needs 1024 bytes of
693 // space or more, because a region smaller than that is allowed to be
694 // unprobed at an ABI boundary. We rely on the fact that SP has been
695 // probed exactly at this point, either by the prologue or most recent
696 // dynamic allocation.
698 "non-reserved call frame without var sized objects?");
699 Register ScratchReg =
700 MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
701 inlineStackProbeFixed(I, ScratchReg, -Amount, StackOffset::get(0, 0));
702 } else {
703 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
704 StackOffset::getFixed(Amount), TII);
705 }
706 }
707 } else if (CalleePopAmount != 0) {
708 // If the calling convention demands that the callee pops arguments from the
709 // stack, we want to add it back if we have a reserved call frame.
710 assert(CalleePopAmount < 0xffffff && "call frame too large");
711 emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP,
712 StackOffset::getFixed(-(int64_t)CalleePopAmount), TII);
713 }
714 return MBB.erase(I);
715}
716
718 MachineBasicBlock &MBB) const {
719
720 MachineFunction &MF = *MBB.getParent();
721 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
722 const auto &TRI = *Subtarget.getRegisterInfo();
723 const auto &MFI = *MF.getInfo<AArch64FunctionInfo>();
724
725 CFIInstBuilder CFIBuilder(MBB, MBB.begin(), MachineInstr::NoFlags);
726
727 // Reset the CFA to `SP + 0`.
728 CFIBuilder.buildDefCFA(AArch64::SP, 0);
729
730 // Flip the RA sign state.
731 if (MFI.shouldSignReturnAddress(MF))
732 MFI.branchProtectionPAuthLR() ? CFIBuilder.buildNegateRAStateWithPC()
733 : CFIBuilder.buildNegateRAState();
734
735 // Shadow call stack uses X18, reset it.
736 if (MFI.needsShadowCallStackPrologueEpilogue(MF))
737 CFIBuilder.buildSameValue(AArch64::X18);
738
739 // Emit .cfi_same_value for callee-saved registers.
740 const std::vector<CalleeSavedInfo> &CSI =
742 for (const auto &Info : CSI) {
743 MCRegister Reg = Info.getReg();
744 if (!TRI.regNeedsCFI(Reg, Reg))
745 continue;
746 CFIBuilder.buildSameValue(Reg);
747 }
748}
749
751 switch (Reg.id()) {
752 default:
753 // The called routine is expected to preserve r19-r28
754 // r29 and r30 are used as frame pointer and link register resp.
755 return 0;
756
757 // GPRs
758#define CASE(n) \
759 case AArch64::W##n: \
760 case AArch64::X##n: \
761 return AArch64::X##n
762 CASE(0);
763 CASE(1);
764 CASE(2);
765 CASE(3);
766 CASE(4);
767 CASE(5);
768 CASE(6);
769 CASE(7);
770 CASE(8);
771 CASE(9);
772 CASE(10);
773 CASE(11);
774 CASE(12);
775 CASE(13);
776 CASE(14);
777 CASE(15);
778 CASE(16);
779 CASE(17);
780 CASE(18);
781#undef CASE
782
783 // FPRs
784#define CASE(n) \
785 case AArch64::B##n: \
786 case AArch64::H##n: \
787 case AArch64::S##n: \
788 case AArch64::D##n: \
789 case AArch64::Q##n: \
790 return HasSVE ? AArch64::Z##n : AArch64::Q##n
791 CASE(0);
792 CASE(1);
793 CASE(2);
794 CASE(3);
795 CASE(4);
796 CASE(5);
797 CASE(6);
798 CASE(7);
799 CASE(8);
800 CASE(9);
801 CASE(10);
802 CASE(11);
803 CASE(12);
804 CASE(13);
805 CASE(14);
806 CASE(15);
807 CASE(16);
808 CASE(17);
809 CASE(18);
810 CASE(19);
811 CASE(20);
812 CASE(21);
813 CASE(22);
814 CASE(23);
815 CASE(24);
816 CASE(25);
817 CASE(26);
818 CASE(27);
819 CASE(28);
820 CASE(29);
821 CASE(30);
822 CASE(31);
823#undef CASE
824 }
825}
826
827void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero,
828 MachineBasicBlock &MBB) const {
829 // Insertion point.
831
832 // Fake a debug loc.
833 DebugLoc DL;
834 if (MBBI != MBB.end())
835 DL = MBBI->getDebugLoc();
836
837 const MachineFunction &MF = *MBB.getParent();
838 const AArch64Subtarget &STI = MF.getSubtarget<AArch64Subtarget>();
839 const AArch64RegisterInfo &TRI = *STI.getRegisterInfo();
840
841 BitVector GPRsToZero(TRI.getNumRegs());
842 BitVector FPRsToZero(TRI.getNumRegs());
843 bool HasSVE = STI.isSVEorStreamingSVEAvailable();
844 for (MCRegister Reg : RegsToZero.set_bits()) {
845 if (TRI.isGeneralPurposeRegister(MF, Reg)) {
846 // For GPRs, we only care to clear out the 64-bit register.
847 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
848 GPRsToZero.set(XReg);
849 } else if (AArch64InstrInfo::isFpOrNEON(Reg)) {
850 // For FPRs,
851 if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE))
852 FPRsToZero.set(XReg);
853 }
854 }
855
856 const AArch64InstrInfo &TII = *STI.getInstrInfo();
857
858 // Zero out GPRs.
859 for (MCRegister Reg : GPRsToZero.set_bits())
860 TII.buildClearRegister(Reg, MBB, MBBI, DL);
861
862 // Zero out FP/vector registers.
863 for (MCRegister Reg : FPRsToZero.set_bits())
864 TII.buildClearRegister(Reg, MBB, MBBI, DL);
865
866 if (HasSVE) {
867 for (MCRegister PReg :
868 {AArch64::P0, AArch64::P1, AArch64::P2, AArch64::P3, AArch64::P4,
869 AArch64::P5, AArch64::P6, AArch64::P7, AArch64::P8, AArch64::P9,
870 AArch64::P10, AArch64::P11, AArch64::P12, AArch64::P13, AArch64::P14,
871 AArch64::P15}) {
872 if (RegsToZero[PReg])
873 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PFALSE), PReg);
874 }
875 }
876}
877
878bool AArch64FrameLowering::windowsRequiresStackProbe(
879 const MachineFunction &MF, uint64_t StackSizeInBytes) const {
880 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
881 const AArch64FunctionInfo &MFI = *MF.getInfo<AArch64FunctionInfo>();
882 // TODO: When implementing stack protectors, take that into account
883 // for the probe threshold.
884 return Subtarget.isTargetWindows() && MFI.hasStackProbing() &&
885 StackSizeInBytes >= uint64_t(MFI.getStackProbeSize());
886}
887
889 const MachineBasicBlock &MBB) {
890 const MachineFunction *MF = MBB.getParent();
891 LiveRegs.addLiveIns(MBB);
892 // Mark callee saved registers as used so we will not choose them.
893 const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs();
894 for (unsigned i = 0; CSRegs[i]; ++i)
895 LiveRegs.addReg(CSRegs[i]);
896}
897
899AArch64FrameLowering::findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB,
900 bool HasCall) const {
901 MachineFunction *MF = MBB->getParent();
902
903 // If MBB is an entry block, use X9 as the scratch register
904 // preserve_none functions may be using X9 to pass arguments,
905 // so prefer to pick an available register below.
906 if (&MF->front() == MBB &&
908 return AArch64::X9;
909
910 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
911 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
912 LivePhysRegs LiveRegs(TRI);
913 getLiveRegsForEntryMBB(LiveRegs, *MBB);
914 if (HasCall) {
915 LiveRegs.addReg(AArch64::X16);
916 LiveRegs.addReg(AArch64::X17);
917 LiveRegs.addReg(AArch64::X18);
918 }
919
920 // Prefer X9 since it was historically used for the prologue scratch reg.
921 const MachineRegisterInfo &MRI = MF->getRegInfo();
922 if (LiveRegs.available(MRI, AArch64::X9))
923 return AArch64::X9;
924
925 for (unsigned Reg : AArch64::GPR64RegClass) {
926 if (LiveRegs.available(MRI, Reg))
927 return Reg;
928 }
929 return AArch64::NoRegister;
930}
931
933 const MachineBasicBlock &MBB) const {
934 const MachineFunction *MF = MBB.getParent();
935 MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
936 const AArch64Subtarget &Subtarget = MF->getSubtarget<AArch64Subtarget>();
937 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
938 const AArch64TargetLowering *TLI = Subtarget.getTargetLowering();
940
941 if (AFI->hasSwiftAsyncContext()) {
942 const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo();
943 const MachineRegisterInfo &MRI = MF->getRegInfo();
946 // The StoreSwiftAsyncContext clobbers X16 and X17. Make sure they are
947 // available.
948 if (!LiveRegs.available(MRI, AArch64::X16) ||
949 !LiveRegs.available(MRI, AArch64::X17))
950 return false;
951 }
952
953 // Certain stack probing sequences might clobber flags, then we can't use
954 // the block as a prologue if the flags register is a live-in.
956 MBB.isLiveIn(AArch64::NZCV))
957 return false;
958
959 if (RegInfo->hasStackRealignment(*MF) || TLI->hasInlineStackProbe(*MF))
960 if (findScratchNonCalleeSaveRegister(TmpMBB) == AArch64::NoRegister)
961 return false;
962
963 // May need a scratch register (for return value) if require making a special
964 // call
965 if (requiresSaveVG(*MF) ||
966 windowsRequiresStackProbe(*MF, std::numeric_limits<uint64_t>::max()))
967 if (findScratchNonCalleeSaveRegister(TmpMBB, true) == AArch64::NoRegister)
968 return false;
969
970 return true;
971}
972
974 const Function &F = MF.getFunction();
975 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
976 F.needsUnwindTableEntry();
977}
978
979bool AArch64FrameLowering::shouldSignReturnAddressEverywhere(
980 const MachineFunction &MF) const {
981 // FIXME: With WinCFI, extra care should be taken to place SEH_PACSignLR
982 // and SEH_EpilogEnd instructions in the correct order.
984 return false;
987}
988
989// Given a load or a store instruction, generate an appropriate unwinding SEH
990// code on Windows.
992AArch64FrameLowering::insertSEH(MachineBasicBlock::iterator MBBI,
993 const TargetInstrInfo &TII,
994 MachineInstr::MIFlag Flag) const {
995 unsigned Opc = MBBI->getOpcode();
996 MachineBasicBlock *MBB = MBBI->getParent();
997 MachineFunction &MF = *MBB->getParent();
998 DebugLoc DL = MBBI->getDebugLoc();
999 unsigned ImmIdx = MBBI->getNumOperands() - 1;
1000 int Imm = MBBI->getOperand(ImmIdx).getImm();
1002 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1003 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1004
1005 switch (Opc) {
1006 default:
1007 report_fatal_error("No SEH Opcode for this instruction");
1008 case AArch64::STR_ZXI:
1009 case AArch64::LDR_ZXI: {
1010 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1011 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveZReg))
1012 .addImm(Reg0)
1013 .addImm(Imm)
1014 .setMIFlag(Flag);
1015 break;
1016 }
1017 case AArch64::STR_PXI:
1018 case AArch64::LDR_PXI: {
1019 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1020 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SavePReg))
1021 .addImm(Reg0)
1022 .addImm(Imm)
1023 .setMIFlag(Flag);
1024 break;
1025 }
1026 case AArch64::LDPDpost:
1027 Imm = -Imm;
1028 [[fallthrough]];
1029 case AArch64::STPDpre: {
1030 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1031 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
1032 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X))
1033 .addImm(Reg0)
1034 .addImm(Reg1)
1035 .addImm(Imm * 8)
1036 .setMIFlag(Flag);
1037 break;
1038 }
1039 case AArch64::LDPXpost:
1040 Imm = -Imm;
1041 [[fallthrough]];
1042 case AArch64::STPXpre: {
1043 Register Reg0 = MBBI->getOperand(1).getReg();
1044 Register Reg1 = MBBI->getOperand(2).getReg();
1045 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1046 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X))
1047 .addImm(Imm * 8)
1048 .setMIFlag(Flag);
1049 else
1050 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X))
1051 .addImm(RegInfo->getSEHRegNum(Reg0))
1052 .addImm(RegInfo->getSEHRegNum(Reg1))
1053 .addImm(Imm * 8)
1054 .setMIFlag(Flag);
1055 break;
1056 }
1057 case AArch64::LDRDpost:
1058 Imm = -Imm;
1059 [[fallthrough]];
1060 case AArch64::STRDpre: {
1061 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1062 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X))
1063 .addImm(Reg)
1064 .addImm(Imm)
1065 .setMIFlag(Flag);
1066 break;
1067 }
1068 case AArch64::LDRXpost:
1069 Imm = -Imm;
1070 [[fallthrough]];
1071 case AArch64::STRXpre: {
1072 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1073 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X))
1074 .addImm(Reg)
1075 .addImm(Imm)
1076 .setMIFlag(Flag);
1077 break;
1078 }
1079 case AArch64::STPDi:
1080 case AArch64::LDPDi: {
1081 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1082 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1083 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP))
1084 .addImm(Reg0)
1085 .addImm(Reg1)
1086 .addImm(Imm * 8)
1087 .setMIFlag(Flag);
1088 break;
1089 }
1090 case AArch64::STPXi:
1091 case AArch64::LDPXi: {
1092 Register Reg0 = MBBI->getOperand(0).getReg();
1093 Register Reg1 = MBBI->getOperand(1).getReg();
1094
1095 int SEHReg0 = RegInfo->getSEHRegNum(Reg0);
1096 int SEHReg1 = RegInfo->getSEHRegNum(Reg1);
1097
1098 if (Reg0 == AArch64::FP && Reg1 == AArch64::LR)
1099 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR))
1100 .addImm(Imm * 8)
1101 .setMIFlag(Flag);
1102 else if (SEHReg0 >= 19 && SEHReg1 >= 19)
1103 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP))
1104 .addImm(SEHReg0)
1105 .addImm(SEHReg1)
1106 .addImm(Imm * 8)
1107 .setMIFlag(Flag);
1108 else
1109 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegIP))
1110 .addImm(SEHReg0)
1111 .addImm(SEHReg1)
1112 .addImm(Imm * 8)
1113 .setMIFlag(Flag);
1114 break;
1115 }
1116 case AArch64::STRXui:
1117 case AArch64::LDRXui: {
1118 int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1119 if (Reg >= 19)
1120 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg))
1121 .addImm(Reg)
1122 .addImm(Imm * 8)
1123 .setMIFlag(Flag);
1124 else
1125 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegI))
1126 .addImm(Reg)
1127 .addImm(Imm * 8)
1128 .setMIFlag(Flag);
1129 break;
1130 }
1131 case AArch64::STRDui:
1132 case AArch64::LDRDui: {
1133 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1134 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg))
1135 .addImm(Reg)
1136 .addImm(Imm * 8)
1137 .setMIFlag(Flag);
1138 break;
1139 }
1140 case AArch64::STPQi:
1141 case AArch64::LDPQi: {
1142 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
1143 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1144 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQP))
1145 .addImm(Reg0)
1146 .addImm(Reg1)
1147 .addImm(Imm * 16)
1148 .setMIFlag(Flag);
1149 break;
1150 }
1151 case AArch64::LDPQpost:
1152 Imm = -Imm;
1153 [[fallthrough]];
1154 case AArch64::STPQpre: {
1155 unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
1156 unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg());
1157 MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQPX))
1158 .addImm(Reg0)
1159 .addImm(Reg1)
1160 .addImm(Imm * 16)
1161 .setMIFlag(Flag);
1162 break;
1163 }
1164 }
1165 auto I = MBB->insertAfter(MBBI, MIB);
1166 return I;
1167}
1168
1171 if (!AFI->needsDwarfUnwindInfo(MF) || !AFI->hasStreamingModeChanges())
1172 return false;
1173 // For Darwin platforms we don't save VG for non-SVE functions, even if SME
1174 // is enabled with streaming mode changes.
1175 auto &ST = MF.getSubtarget<AArch64Subtarget>();
1176 if (ST.isTargetDarwin())
1177 return ST.hasSVE();
1178 return true;
1179}
1180
1182 MachineFunction &MF) const {
1183 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1184 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
1185
1186 auto EmitSignRA = [&](MachineBasicBlock &MBB) {
1187 DebugLoc DL; // Set debug location to unknown.
1189
1190 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PAUTH_PROLOGUE))
1192 };
1193
1194 auto EmitAuthRA = [&](MachineBasicBlock &MBB) {
1195 DebugLoc DL;
1196 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1197 if (MBBI != MBB.end())
1198 DL = MBBI->getDebugLoc();
1199
1200 BuildMI(MBB, MBBI, DL, TII->get(AArch64::PAUTH_EPILOGUE))
1202 };
1203
1204 // This should be in sync with PEIImpl::calculateSaveRestoreBlocks.
1205 EmitSignRA(MF.front());
1206 for (MachineBasicBlock &MBB : MF) {
1207 if (MBB.isEHFuncletEntry())
1208 EmitSignRA(MBB);
1209 if (MBB.isReturnBlock())
1210 EmitAuthRA(MBB);
1211 }
1212}
1213
1215 MachineBasicBlock &MBB) const {
1216 AArch64PrologueEmitter PrologueEmitter(MF, MBB, *this);
1217 PrologueEmitter.emitPrologue();
1218}
1219
1221 MachineBasicBlock &MBB) const {
1222 AArch64EpilogueEmitter EpilogueEmitter(MF, MBB, *this);
1223 EpilogueEmitter.emitEpilogue();
1224}
1225
1228 MF.getInfo<AArch64FunctionInfo>()->needsDwarfUnwindInfo(MF);
1229}
1230
1232 return enableCFIFixup(MF) &&
1233 MF.getInfo<AArch64FunctionInfo>()->needsAsyncDwarfUnwindInfo(MF);
1234}
1235
1236/// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1237/// debug info. It's the same as what we use for resolving the code-gen
1238/// references for now. FIXME: This can go wrong when references are
1239/// SP-relative and simple call frames aren't used.
1242 Register &FrameReg) const {
1244 MF, FI, FrameReg,
1245 /*PreferFP=*/
1246 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress) ||
1247 MF.getFunction().hasFnAttribute(Attribute::SanitizeMemTag),
1248 /*ForSimm=*/false);
1249}
1250
1253 int FI) const {
1254 // This function serves to provide a comparable offset from a single reference
1255 // point (the value of SP at function entry) that can be used for analysis,
1256 // e.g. the stack-frame-layout analysis pass. It is not guaranteed to be
1257 // correct for all objects in the presence of VLA-area objects or dynamic
1258 // stack re-alignment.
1259
1260 const auto &MFI = MF.getFrameInfo();
1261
1262 int64_t ObjectOffset = MFI.getObjectOffset(FI);
1263 StackOffset ZPRStackSize = getZPRStackSize(MF);
1264 StackOffset PPRStackSize = getPPRStackSize(MF);
1265 StackOffset SVEStackSize = ZPRStackSize + PPRStackSize;
1266
1267 // For VLA-area objects, just emit an offset at the end of the stack frame.
1268 // Whilst not quite correct, these objects do live at the end of the frame and
1269 // so it is more useful for analysis for the offset to reflect this.
1270 if (MFI.isVariableSizedObjectIndex(FI)) {
1271 return StackOffset::getFixed(-((int64_t)MFI.getStackSize())) - SVEStackSize;
1272 }
1273
1274 // This is correct in the absence of any SVE stack objects.
1275 if (!SVEStackSize)
1276 return StackOffset::getFixed(ObjectOffset - getOffsetOfLocalArea());
1277
1278 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1279 bool FPAfterSVECalleeSaves = hasSVECalleeSavesAboveFrameRecord(MF);
1280 if (MFI.hasScalableStackID(FI)) {
1281 if (FPAfterSVECalleeSaves &&
1282 -ObjectOffset <= (int64_t)AFI->getSVECalleeSavedStackSize()) {
1283 assert(!AFI->hasSplitSVEObjects() &&
1284 "split-sve-objects not supported with FPAfterSVECalleeSaves");
1285 return StackOffset::getScalable(ObjectOffset);
1286 }
1287 StackOffset AccessOffset{};
1288 // The scalable vectors are below (lower address) the scalable predicates
1289 // with split SVE objects, so we must subtract the size of the predicates.
1290 if (AFI->hasSplitSVEObjects() &&
1291 MFI.getStackID(FI) == TargetStackID::ScalableVector)
1292 AccessOffset = -PPRStackSize;
1293 return AccessOffset +
1294 StackOffset::get(-((int64_t)AFI->getCalleeSavedStackSize()),
1295 ObjectOffset);
1296 }
1297
1298 bool IsFixed = MFI.isFixedObjectIndex(FI);
1299 bool IsCSR =
1300 !IsFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
1301
1302 StackOffset ScalableOffset = {};
1303 if (!IsFixed && !IsCSR) {
1304 ScalableOffset = -SVEStackSize;
1305 } else if (FPAfterSVECalleeSaves && IsCSR) {
1306 ScalableOffset =
1308 }
1309
1310 return StackOffset::getFixed(ObjectOffset) + ScalableOffset;
1311}
1312
1318
1319StackOffset AArch64FrameLowering::getFPOffset(const MachineFunction &MF,
1320 int64_t ObjectOffset) const {
1321 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1322 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1323 const Function &F = MF.getFunction();
1324 bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv(), F.isVarArg());
1325 unsigned FixedObject =
1326 getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false);
1327 int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo());
1328 int64_t FPAdjust =
1329 CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset();
1330 return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust);
1331}
1332
1333StackOffset AArch64FrameLowering::getStackOffset(const MachineFunction &MF,
1334 int64_t ObjectOffset) const {
1335 const auto &MFI = MF.getFrameInfo();
1336 return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize());
1337}
1338
1339// TODO: This function currently does not work for scalable vectors.
1341 int FI) const {
1342 const AArch64RegisterInfo *RegInfo =
1343 MF.getSubtarget<AArch64Subtarget>().getRegisterInfo();
1344 int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI);
1345 return RegInfo->getLocalAddressRegister(MF) == AArch64::FP
1346 ? getFPOffset(MF, ObjectOffset).getFixed()
1347 : getStackOffset(MF, ObjectOffset).getFixed();
1348}
1349
1351 const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP,
1352 bool ForSimm) const {
1353 const auto &MFI = MF.getFrameInfo();
1354 int64_t ObjectOffset = MFI.getObjectOffset(FI);
1355 bool isFixed = MFI.isFixedObjectIndex(FI);
1356 auto StackID = static_cast<TargetStackID::Value>(MFI.getStackID(FI));
1357 return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, StackID,
1358 FrameReg, PreferFP, ForSimm);
1359}
1360
1362 const MachineFunction &MF, int64_t ObjectOffset, bool isFixed,
1363 TargetStackID::Value StackID, Register &FrameReg, bool PreferFP,
1364 bool ForSimm) const {
1365 const auto &MFI = MF.getFrameInfo();
1366 const auto &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1367 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
1368 const auto *AFI = MF.getInfo<AArch64FunctionInfo>();
1369
1370 int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed();
1371 int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed();
1372 bool isCSR =
1373 !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI));
1374 bool isSVE = MFI.isScalableStackID(StackID);
1375
1376 StackOffset ZPRStackSize = getZPRStackSize(MF);
1377 StackOffset PPRStackSize = getPPRStackSize(MF);
1378 StackOffset SVEStackSize = ZPRStackSize + PPRStackSize;
1379
1380 // Use frame pointer to reference fixed objects. Use it for locals if
1381 // there are VLAs or a dynamically realigned SP (and thus the SP isn't
1382 // reliable as a base). Make sure useFPForScavengingIndex() does the
1383 // right thing for the emergency spill slot.
1384 bool UseFP = false;
1385 if (AFI->hasStackFrame() && !isSVE) {
1386 // We shouldn't prefer using the FP to access fixed-sized stack objects when
1387 // there are scalable (SVE) objects in between the FP and the fixed-sized
1388 // objects.
1389 PreferFP &= !SVEStackSize;
1390
1391 // Note: Keeping the following as multiple 'if' statements rather than
1392 // merging to a single expression for readability.
1393 //
1394 // Argument access should always use the FP.
1395 if (isFixed) {
1396 UseFP = hasFP(MF);
1397 } else if (isCSR && RegInfo->hasStackRealignment(MF)) {
1398 // References to the CSR area must use FP if we're re-aligning the stack
1399 // since the dynamically-sized alignment padding is between the SP/BP and
1400 // the CSR area.
1401 assert(hasFP(MF) && "Re-aligned stack must have frame pointer");
1402 UseFP = true;
1403 } else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) {
1404 // If the FPOffset is negative and we're producing a signed immediate, we
1405 // have to keep in mind that the available offset range for negative
1406 // offsets is smaller than for positive ones. If an offset is available
1407 // via the FP and the SP, use whichever is closest.
1408 bool FPOffsetFits = !ForSimm || FPOffset >= -256;
1409 PreferFP |= Offset > -FPOffset && !SVEStackSize;
1410
1411 if (FPOffset >= 0) {
1412 // If the FPOffset is positive, that'll always be best, as the SP/BP
1413 // will be even further away.
1414 UseFP = true;
1415 } else if (MFI.hasVarSizedObjects()) {
1416 // If we have variable sized objects, we can use either FP or BP, as the
1417 // SP offset is unknown. We can use the base pointer if we have one and
1418 // FP is not preferred. If not, we're stuck with using FP.
1419 bool CanUseBP = RegInfo->hasBasePointer(MF);
1420 if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best.
1421 UseFP = PreferFP;
1422 else if (!CanUseBP) // Can't use BP. Forced to use FP.
1423 UseFP = true;
1424 // else we can use BP and FP, but the offset from FP won't fit.
1425 // That will make us scavenge registers which we can probably avoid by
1426 // using BP. If it won't fit for BP either, we'll scavenge anyway.
1427 } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) {
1428 // Funclets access the locals contained in the parent's stack frame
1429 // via the frame pointer, so we have to use the FP in the parent
1430 // function.
1431 (void) Subtarget;
1432 assert(Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv(),
1433 MF.getFunction().isVarArg()) &&
1434 "Funclets should only be present on Win64");
1435 UseFP = true;
1436 } else {
1437 // We have the choice between FP and (SP or BP).
1438 if (FPOffsetFits && PreferFP) // If FP is the best fit, use it.
1439 UseFP = true;
1440 }
1441 }
1442 }
1443
1444 assert(
1445 ((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) &&
1446 "In the presence of dynamic stack pointer realignment, "
1447 "non-argument/CSR objects cannot be accessed through the frame pointer");
1448
1449 bool FPAfterSVECalleeSaves = hasSVECalleeSavesAboveFrameRecord(MF);
1450
1451 if (isSVE) {
1452 StackOffset FPOffset = StackOffset::get(
1453 -AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset);
1454 StackOffset SPOffset =
1455 SVEStackSize +
1456 StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(),
1457 ObjectOffset);
1458
1459 // With split SVE objects the ObjectOffset is relative to the split area
1460 // (i.e. the PPR area or ZPR area respectively).
1461 if (AFI->hasSplitSVEObjects() && StackID == TargetStackID::ScalableVector) {
1462 // If we're accessing an SVE vector with split SVE objects...
1463 // - From the FP we need to move down past the PPR area:
1464 FPOffset -= PPRStackSize;
1465 // - From the SP we only need to move up to the ZPR area:
1466 SPOffset -= PPRStackSize;
1467 // Note: `SPOffset = SVEStackSize + ...`, so `-= PPRStackSize` results in
1468 // `SPOffset = ZPRStackSize + ...`.
1469 }
1470
1471 if (FPAfterSVECalleeSaves) {
1473 if (-ObjectOffset <= (int64_t)AFI->getSVECalleeSavedStackSize()) {
1476 }
1477 }
1478
1479 // Always use the FP for SVE spills if available and beneficial.
1480 if (hasFP(MF) && (SPOffset.getFixed() ||
1481 FPOffset.getScalable() < SPOffset.getScalable() ||
1482 RegInfo->hasStackRealignment(MF))) {
1483 FrameReg = RegInfo->getFrameRegister(MF);
1484 return FPOffset;
1485 }
1486 FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister()
1487 : MCRegister(AArch64::SP);
1488
1489 return SPOffset;
1490 }
1491
1492 StackOffset SVEAreaOffset = {};
1493 if (FPAfterSVECalleeSaves) {
1494 // In this stack layout, the FP is in between the callee saves and other
1495 // SVE allocations.
1496 StackOffset SVECalleeSavedStack =
1498 if (UseFP) {
1499 if (isFixed)
1500 SVEAreaOffset = SVECalleeSavedStack;
1501 else if (!isCSR)
1502 SVEAreaOffset = SVECalleeSavedStack - SVEStackSize;
1503 } else {
1504 if (isFixed)
1505 SVEAreaOffset = SVEStackSize;
1506 else if (isCSR)
1507 SVEAreaOffset = SVEStackSize - SVECalleeSavedStack;
1508 }
1509 } else {
1510 if (UseFP && !(isFixed || isCSR))
1511 SVEAreaOffset = -SVEStackSize;
1512 if (!UseFP && (isFixed || isCSR))
1513 SVEAreaOffset = SVEStackSize;
1514 }
1515
1516 if (UseFP) {
1517 FrameReg = RegInfo->getFrameRegister(MF);
1518 return StackOffset::getFixed(FPOffset) + SVEAreaOffset;
1519 }
1520
1521 // Use the base pointer if we have one.
1522 if (RegInfo->hasBasePointer(MF))
1523 FrameReg = RegInfo->getBaseRegister();
1524 else {
1525 assert(!MFI.hasVarSizedObjects() &&
1526 "Can't use SP when we have var sized objects.");
1527 FrameReg = AArch64::SP;
1528 // If we're using the red zone for this function, the SP won't actually
1529 // be adjusted, so the offsets will be negative. They're also all
1530 // within range of the signed 9-bit immediate instructions.
1531 if (canUseRedZone(MF))
1532 Offset -= AFI->getLocalStackSize();
1533 }
1534
1535 return StackOffset::getFixed(Offset) + SVEAreaOffset;
1536}
1537
1538static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) {
1539 // Do not set a kill flag on values that are also marked as live-in. This
1540 // happens with the @llvm-returnaddress intrinsic and with arguments passed in
1541 // callee saved registers.
1542 // Omitting the kill flags is conservatively correct even if the live-in
1543 // is not used after all.
1544 bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg);
1545 return getKillRegState(!IsLiveIn);
1546}
1547
1549 MachineFunction &MF) {
1550 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
1551 AttributeList Attrs = MF.getFunction().getAttributes();
1553 return Subtarget.isTargetMachO() &&
1554 !(Subtarget.getTargetLowering()->supportSwiftError() &&
1555 Attrs.hasAttrSomewhere(Attribute::SwiftError)) &&
1557 !AFL.requiresSaveVG(MF) && !AFI->isSVECC();
1558}
1559
1560static bool invalidateWindowsRegisterPairing(bool SpillExtendedVolatile,
1561 unsigned SpillCount, unsigned Reg1,
1562 unsigned Reg2, bool NeedsWinCFI,
1563 bool IsFirst,
1564 const TargetRegisterInfo *TRI) {
1565 // If we are generating register pairs for a Windows function that requires
1566 // EH support, then pair consecutive registers only. There are no unwind
1567 // opcodes for saves/restores of non-consecutive register pairs.
1568 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x,
1569 // save_lrpair.
1570 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
1571
1572 if (Reg2 == AArch64::FP)
1573 return true;
1574 if (!NeedsWinCFI)
1575 return false;
1576
1577 // ARM64EC introduced `save_any_regp`, which expects 16-byte alignment.
1578 // This is handled by only allowing paired spills for registers spilled at
1579 // even positions (which should be 16-byte aligned, as other GPRs/FPRs are
1580 // 8-bytes). We carve out an exception for {FP,LR}, which does not require
1581 // 16-byte alignment in the uop representation.
1582 if (TRI->getEncodingValue(Reg2) == TRI->getEncodingValue(Reg1) + 1)
1583 return SpillExtendedVolatile
1584 ? !((Reg1 == AArch64::FP && Reg2 == AArch64::LR) ||
1585 (SpillCount % 2) == 0)
1586 : false;
1587
1588 // If pairing a GPR with LR, the pair can be described by the save_lrpair
1589 // opcode. If this is the first register pair, it would end up with a
1590 // predecrement, but there's no save_lrpair_x opcode, so we can only do this
1591 // if LR is paired with something else than the first register.
1592 // The save_lrpair opcode requires the first register to be an odd one.
1593 if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 &&
1594 (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst)
1595 return false;
1596 return true;
1597}
1598
1599/// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
1600/// WindowsCFI requires that only consecutive registers can be paired.
1601/// LR and FP need to be allocated together when the frame needs to save
1602/// the frame-record. This means any other register pairing with LR is invalid.
1603static bool invalidateRegisterPairing(bool SpillExtendedVolatile,
1604 unsigned SpillCount, unsigned Reg1,
1605 unsigned Reg2, bool UsesWinAAPCS,
1606 bool NeedsWinCFI, bool NeedsFrameRecord,
1607 bool IsFirst,
1608 const TargetRegisterInfo *TRI) {
1609 if (UsesWinAAPCS)
1610 return invalidateWindowsRegisterPairing(SpillExtendedVolatile, SpillCount,
1611 Reg1, Reg2, NeedsWinCFI, IsFirst,
1612 TRI);
1613
1614 // If we need to store the frame record, don't pair any register
1615 // with LR other than FP.
1616 if (NeedsFrameRecord)
1617 return Reg2 == AArch64::LR;
1618
1619 return false;
1620}
1621
1622namespace {
1623
1624struct RegPairInfo {
1625 Register Reg1;
1626 Register Reg2;
1627 int FrameIdx;
1628 int Offset;
1629 enum RegType { GPR, FPR64, FPR128, PPR, ZPR, VG } Type;
1630 const TargetRegisterClass *RC;
1631
1632 RegPairInfo() = default;
1633
1634 bool isPaired() const { return Reg2.isValid(); }
1635
1636 bool isScalable() const { return Type == PPR || Type == ZPR; }
1637};
1638
1639} // end anonymous namespace
1640
1642 for (unsigned PReg = AArch64::P8; PReg <= AArch64::P15; ++PReg) {
1643 if (SavedRegs.test(PReg)) {
1644 unsigned PNReg = PReg - AArch64::P0 + AArch64::PN0;
1645 return MCRegister(PNReg);
1646 }
1647 }
1648 return MCRegister();
1649}
1650
1651// The multivector LD/ST are available only for SME or SVE2p1 targets
1653 MachineFunction &MF) {
1655 return false;
1656
1657 SMEAttrs FuncAttrs = MF.getInfo<AArch64FunctionInfo>()->getSMEFnAttrs();
1658 bool IsLocallyStreaming =
1659 FuncAttrs.hasStreamingBody() && !FuncAttrs.hasStreamingInterface();
1660
1661 // Only when in streaming mode SME2 instructions can be safely used.
1662 // It is not safe to use SME2 instructions when in streaming compatible or
1663 // locally streaming mode.
1664 return Subtarget.hasSVE2p1() ||
1665 (Subtarget.hasSME2() &&
1666 (!IsLocallyStreaming && Subtarget.isStreaming()));
1667}
1668
1670 MachineFunction &MF,
1672 const TargetRegisterInfo *TRI,
1674 bool NeedsFrameRecord) {
1675
1676 if (CSI.empty())
1677 return;
1678
1679 bool IsWindows = isTargetWindows(MF);
1681 unsigned StackHazardSize = getStackHazardSize(MF);
1682 MachineFrameInfo &MFI = MF.getFrameInfo();
1684 unsigned Count = CSI.size();
1685 (void)CC;
1686 // MachO's compact unwind format relies on all registers being stored in
1687 // pairs.
1688 assert((!produceCompactUnwindFrame(AFL, MF) ||
1691 (Count & 1) == 0) &&
1692 "Odd number of callee-saved regs to spill!");
1693 int ByteOffset = AFI->getCalleeSavedStackSize();
1694 int StackFillDir = -1;
1695 int RegInc = 1;
1696 unsigned FirstReg = 0;
1697 if (IsWindows) {
1698 // For WinCFI, fill the stack from the bottom up.
1699 ByteOffset = 0;
1700 StackFillDir = 1;
1701 // As the CSI array is reversed to match PrologEpilogInserter, iterate
1702 // backwards, to pair up registers starting from lower numbered registers.
1703 RegInc = -1;
1704 FirstReg = Count - 1;
1705 }
1706
1707 bool FPAfterSVECalleeSaves = AFL.hasSVECalleeSavesAboveFrameRecord(MF);
1708 // Windows AAPCS has x9-x15 as volatile registers, x16-x17 as intra-procedural
1709 // scratch, x18 as platform reserved. However, clang has extended calling
1710 // convensions such as preserve_most and preserve_all which treat these as
1711 // CSR. As such, the ARM64 unwind uOPs bias registers by 19. We use ARM64EC
1712 // uOPs which have separate restrictions. We need to check for that.
1713 //
1714 // NOTE: we currently do not account for the D registers as LLVM does not
1715 // support non-ABI compliant D register spills.
1716 bool SpillExtendedVolatile =
1717 IsWindows && llvm::any_of(CSI, [](const CalleeSavedInfo &CSI) {
1718 const auto &Reg = CSI.getReg();
1719 return Reg >= AArch64::X0 && Reg <= AArch64::X18;
1720 });
1721
1722 int ZPRByteOffset = 0;
1723 int PPRByteOffset = 0;
1724 bool SplitPPRs = AFI->hasSplitSVEObjects();
1725 if (SplitPPRs) {
1726 ZPRByteOffset = AFI->getZPRCalleeSavedStackSize();
1727 PPRByteOffset = AFI->getPPRCalleeSavedStackSize();
1728 } else if (!FPAfterSVECalleeSaves) {
1729 ZPRByteOffset =
1731 // Unused: Everything goes in ZPR space.
1732 PPRByteOffset = 0;
1733 }
1734
1735 bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace();
1736 Register LastReg = 0;
1737 bool HasCSHazardPadding = AFI->hasStackHazardSlotIndex() && !SplitPPRs;
1738
1739 // When iterating backwards, the loop condition relies on unsigned wraparound.
1740 for (unsigned i = FirstReg; i < Count; i += RegInc) {
1741 RegPairInfo RPI;
1742 RPI.Reg1 = CSI[i].getReg();
1743
1744 if (AArch64::GPR64RegClass.contains(RPI.Reg1)) {
1745 RPI.Type = RegPairInfo::GPR;
1746 RPI.RC = &AArch64::GPR64RegClass;
1747 } else if (AArch64::FPR64RegClass.contains(RPI.Reg1)) {
1748 RPI.Type = RegPairInfo::FPR64;
1749 RPI.RC = &AArch64::FPR64RegClass;
1750 } else if (AArch64::FPR128RegClass.contains(RPI.Reg1)) {
1751 RPI.Type = RegPairInfo::FPR128;
1752 RPI.RC = &AArch64::FPR128RegClass;
1753 } else if (AArch64::ZPRRegClass.contains(RPI.Reg1)) {
1754 RPI.Type = RegPairInfo::ZPR;
1755 RPI.RC = &AArch64::ZPRRegClass;
1756 } else if (AArch64::PPRRegClass.contains(RPI.Reg1)) {
1757 RPI.Type = RegPairInfo::PPR;
1758 RPI.RC = &AArch64::PPRRegClass;
1759 } else if (RPI.Reg1 == AArch64::VG) {
1760 RPI.Type = RegPairInfo::VG;
1761 RPI.RC = &AArch64::FIXED_REGSRegClass;
1762 } else {
1763 llvm_unreachable("Unsupported register class.");
1764 }
1765
1766 int &ScalableByteOffset = RPI.Type == RegPairInfo::PPR && SplitPPRs
1767 ? PPRByteOffset
1768 : ZPRByteOffset;
1769
1770 // Add the stack hazard size as we transition from GPR->FPR CSRs.
1771 if (HasCSHazardPadding &&
1772 (!LastReg || !AArch64InstrInfo::isFpOrNEON(LastReg)) &&
1774 ByteOffset += StackFillDir * StackHazardSize;
1775 LastReg = RPI.Reg1;
1776
1777 bool NeedsWinCFI = AFL.needsWinCFI(MF);
1778 int Scale = TRI->getSpillSize(*RPI.RC);
1779 // Add the next reg to the pair if it is in the same register class.
1780 if (unsigned(i + RegInc) < Count && !HasCSHazardPadding) {
1781 MCRegister NextReg = CSI[i + RegInc].getReg();
1782 bool IsFirst = i == FirstReg;
1783 unsigned SpillCount = NeedsWinCFI ? FirstReg - i : i;
1784 switch (RPI.Type) {
1785 case RegPairInfo::GPR:
1786 if (AArch64::GPR64RegClass.contains(NextReg) &&
1788 SpillExtendedVolatile, SpillCount, RPI.Reg1, NextReg, IsWindows,
1789 NeedsWinCFI, NeedsFrameRecord, IsFirst, TRI))
1790 RPI.Reg2 = NextReg;
1791 break;
1792 case RegPairInfo::FPR64:
1793 if (AArch64::FPR64RegClass.contains(NextReg) &&
1795 SpillExtendedVolatile, SpillCount, RPI.Reg1, NextReg, IsWindows,
1796 NeedsWinCFI, NeedsFrameRecord, IsFirst, TRI))
1797 RPI.Reg2 = NextReg;
1798 break;
1799 case RegPairInfo::FPR128:
1800 if (AArch64::FPR128RegClass.contains(NextReg))
1801 RPI.Reg2 = NextReg;
1802 break;
1803 case RegPairInfo::PPR:
1804 break;
1805 case RegPairInfo::ZPR:
1806 if (AFI->getPredicateRegForFillSpill() != 0 &&
1807 ((RPI.Reg1 - AArch64::Z0) & 1) == 0 && (NextReg == RPI.Reg1 + 1)) {
1808 // Calculate offset of register pair to see if pair instruction can be
1809 // used.
1810 int Offset = (ScalableByteOffset + StackFillDir * 2 * Scale) / Scale;
1811 if ((-16 <= Offset && Offset <= 14) && (Offset % 2 == 0))
1812 RPI.Reg2 = NextReg;
1813 }
1814 break;
1815 case RegPairInfo::VG:
1816 break;
1817 }
1818 }
1819
1820 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
1821 // list to come in sorted by frame index so that we can issue the store
1822 // pair instructions directly. Assert if we see anything otherwise.
1823 //
1824 // The order of the registers in the list is controlled by
1825 // getCalleeSavedRegs(), so they will always be in-order, as well.
1826 assert((!RPI.isPaired() ||
1827 (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) &&
1828 "Out of order callee saved regs!");
1829
1830 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP ||
1831 RPI.Reg1 == AArch64::LR) &&
1832 "FrameRecord must be allocated together with LR");
1833
1834 // Windows AAPCS has FP and LR reversed.
1835 assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP ||
1836 RPI.Reg2 == AArch64::LR) &&
1837 "FrameRecord must be allocated together with LR");
1838
1839 // MachO's compact unwind format relies on all registers being stored in
1840 // adjacent register pairs.
1841 assert((!produceCompactUnwindFrame(AFL, MF) ||
1844 (RPI.isPaired() &&
1845 ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) ||
1846 RPI.Reg1 + 1 == RPI.Reg2))) &&
1847 "Callee-save registers not saved as adjacent register pair!");
1848
1849 RPI.FrameIdx = CSI[i].getFrameIdx();
1850 if (IsWindows &&
1851 RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair
1852 RPI.FrameIdx = CSI[i + RegInc].getFrameIdx();
1853
1854 // Realign the scalable offset if necessary. This is relevant when
1855 // spilling predicates on Windows.
1856 if (RPI.isScalable() && ScalableByteOffset % Scale != 0) {
1857 ScalableByteOffset = alignTo(ScalableByteOffset, Scale);
1858 }
1859
1860 int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
1861 assert(OffsetPre % Scale == 0);
1862
1863 if (RPI.isScalable())
1864 ScalableByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
1865 else
1866 ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale);
1867
1868 // Swift's async context is directly before FP, so allocate an extra
1869 // 8 bytes for it.
1870 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
1871 ((!IsWindows && RPI.Reg2 == AArch64::FP) ||
1872 (IsWindows && RPI.Reg2 == AArch64::LR)))
1873 ByteOffset += StackFillDir * 8;
1874
1875 // Round up size of non-pair to pair size if we need to pad the
1876 // callee-save area to ensure 16-byte alignment.
1877 if (NeedGapToAlignStack && !IsWindows && !RPI.isScalable() &&
1878 RPI.Type != RegPairInfo::FPR128 && !RPI.isPaired() &&
1879 ByteOffset % 16 != 0) {
1880 ByteOffset += 8 * StackFillDir;
1881 assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16));
1882 // A stack frame with a gap looks like this, bottom up:
1883 // d9, d8. x21, gap, x20, x19.
1884 // Set extra alignment on the x21 object to create the gap above it.
1885 MFI.setObjectAlignment(RPI.FrameIdx, Align(16));
1886 NeedGapToAlignStack = false;
1887 }
1888
1889 int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset;
1890 assert(OffsetPost % Scale == 0);
1891 // If filling top down (default), we want the offset after incrementing it.
1892 // If filling bottom up (WinCFI) we need the original offset.
1893 int Offset = IsWindows ? OffsetPre : OffsetPost;
1894
1895 // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the
1896 // Swift context can directly precede FP.
1897 if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() &&
1898 ((!IsWindows && RPI.Reg2 == AArch64::FP) ||
1899 (IsWindows && RPI.Reg2 == AArch64::LR)))
1900 Offset += 8;
1901 RPI.Offset = Offset / Scale;
1902
1903 assert((!RPI.isPaired() ||
1904 (!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) ||
1905 (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) &&
1906 "Offset out of bounds for LDP/STP immediate");
1907
1908 auto isFrameRecord = [&] {
1909 if (RPI.isPaired())
1910 return IsWindows ? RPI.Reg1 == AArch64::FP && RPI.Reg2 == AArch64::LR
1911 : RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP;
1912 // Otherwise, look for the frame record as two unpaired registers. This is
1913 // needed for -aarch64-stack-hazard-size=<val>, which disables register
1914 // pairing (as the padding may be too large for the LDP/STP offset). Note:
1915 // On Windows, this check works out as current reg == FP, next reg == LR,
1916 // and on other platforms current reg == FP, previous reg == LR. This
1917 // works out as the correct pre-increment or post-increment offsets
1918 // respectively.
1919 return i > 0 && RPI.Reg1 == AArch64::FP &&
1920 CSI[i - 1].getReg() == AArch64::LR;
1921 };
1922
1923 // Save the offset to frame record so that the FP register can point to the
1924 // innermost frame record (spilled FP and LR registers).
1925 if (NeedsFrameRecord && isFrameRecord())
1927
1928 RegPairs.push_back(RPI);
1929 if (RPI.isPaired())
1930 i += RegInc;
1931 }
1932 if (IsWindows) {
1933 // If we need an alignment gap in the stack, align the topmost stack
1934 // object. A stack frame with a gap looks like this, bottom up:
1935 // x19, d8. d9, gap.
1936 // Set extra alignment on the topmost stack object (the first element in
1937 // CSI, which goes top down), to create the gap above it.
1938 if (AFI->hasCalleeSaveStackFreeSpace())
1939 MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16));
1940 // We iterated bottom up over the registers; flip RegPairs back to top
1941 // down order.
1942 std::reverse(RegPairs.begin(), RegPairs.end());
1943 }
1944}
1945
1949 MachineFunction &MF = *MBB.getParent();
1950 auto &TLI = *MF.getSubtarget<AArch64Subtarget>().getTargetLowering();
1952 bool NeedsWinCFI = needsWinCFI(MF);
1953 DebugLoc DL;
1955
1956 computeCalleeSaveRegisterPairs(*this, MF, CSI, TRI, RegPairs, hasFP(MF));
1957
1959 // Refresh the reserved regs in case there are any potential changes since the
1960 // last freeze.
1961 MRI.freezeReservedRegs();
1962
1963 if (homogeneousPrologEpilog(MF)) {
1964 auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog))
1966
1967 for (auto &RPI : RegPairs) {
1968 MIB.addReg(RPI.Reg1);
1969 MIB.addReg(RPI.Reg2);
1970
1971 // Update register live in.
1972 if (!MRI.isReserved(RPI.Reg1))
1973 MBB.addLiveIn(RPI.Reg1);
1974 if (RPI.isPaired() && !MRI.isReserved(RPI.Reg2))
1975 MBB.addLiveIn(RPI.Reg2);
1976 }
1977 return true;
1978 }
1979 bool PTrueCreated = false;
1980 for (const RegPairInfo &RPI : llvm::reverse(RegPairs)) {
1981 Register Reg1 = RPI.Reg1;
1982 Register Reg2 = RPI.Reg2;
1983 unsigned StrOpc;
1984
1985 // Issue sequence of spills for cs regs. The first spill may be converted
1986 // to a pre-decrement store later by emitPrologue if the callee-save stack
1987 // area allocation can't be combined with the local stack area allocation.
1988 // For example:
1989 // stp x22, x21, [sp, #0] // addImm(+0)
1990 // stp x20, x19, [sp, #16] // addImm(+2)
1991 // stp fp, lr, [sp, #32] // addImm(+4)
1992 // Rationale: This sequence saves uop updates compared to a sequence of
1993 // pre-increment spills like stp xi,xj,[sp,#-16]!
1994 // Note: Similar rationale and sequence for restores in epilog.
1995 unsigned Size = TRI->getSpillSize(*RPI.RC);
1996 Align Alignment = TRI->getSpillAlign(*RPI.RC);
1997 switch (RPI.Type) {
1998 case RegPairInfo::GPR:
1999 StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui;
2000 break;
2001 case RegPairInfo::FPR64:
2002 StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui;
2003 break;
2004 case RegPairInfo::FPR128:
2005 StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui;
2006 break;
2007 case RegPairInfo::ZPR:
2008 StrOpc = RPI.isPaired() ? AArch64::ST1B_2Z_IMM : AArch64::STR_ZXI;
2009 break;
2010 case RegPairInfo::PPR:
2011 StrOpc = AArch64::STR_PXI;
2012 break;
2013 case RegPairInfo::VG:
2014 StrOpc = AArch64::STRXui;
2015 break;
2016 }
2017
2018 Register X0Scratch;
2019 auto RestoreX0 = make_scope_exit([&] {
2020 if (X0Scratch != AArch64::NoRegister)
2021 BuildMI(MBB, MI, DL, TII.get(TargetOpcode::COPY), AArch64::X0)
2022 .addReg(X0Scratch)
2024 });
2025
2026 if (Reg1 == AArch64::VG) {
2027 // Find an available register to store value of VG to.
2028 Reg1 = findScratchNonCalleeSaveRegister(&MBB, true);
2029 assert(Reg1 != AArch64::NoRegister);
2030 if (MF.getSubtarget<AArch64Subtarget>().hasSVE()) {
2031 BuildMI(MBB, MI, DL, TII.get(AArch64::CNTD_XPiI), Reg1)
2032 .addImm(31)
2033 .addImm(1)
2035 } else {
2037 if (any_of(MBB.liveins(),
2038 [&STI](const MachineBasicBlock::RegisterMaskPair &LiveIn) {
2039 return STI.getRegisterInfo()->isSuperOrSubRegisterEq(
2040 AArch64::X0, LiveIn.PhysReg);
2041 })) {
2042 X0Scratch = Reg1;
2043 BuildMI(MBB, MI, DL, TII.get(TargetOpcode::COPY), X0Scratch)
2044 .addReg(AArch64::X0)
2046 }
2047
2048 RTLIB::Libcall LC = RTLIB::SMEABI_GET_CURRENT_VG;
2049 const uint32_t *RegMask =
2050 TRI->getCallPreservedMask(MF, TLI.getLibcallCallingConv(LC));
2051 BuildMI(MBB, MI, DL, TII.get(AArch64::BL))
2052 .addExternalSymbol(TLI.getLibcallName(LC))
2053 .addRegMask(RegMask)
2054 .addReg(AArch64::X0, RegState::ImplicitDefine)
2056 Reg1 = AArch64::X0;
2057 }
2058 }
2059
2060 LLVM_DEBUG({
2061 dbgs() << "CSR spill: (" << printReg(Reg1, TRI);
2062 if (RPI.isPaired())
2063 dbgs() << ", " << printReg(Reg2, TRI);
2064 dbgs() << ") -> fi#(" << RPI.FrameIdx;
2065 if (RPI.isPaired())
2066 dbgs() << ", " << RPI.FrameIdx + 1;
2067 dbgs() << ")\n";
2068 });
2069
2070 assert((!isTargetWindows(MF) ||
2071 !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) &&
2072 "Windows unwdinding requires a consecutive (FP,LR) pair");
2073 // Windows unwind codes require consecutive registers if registers are
2074 // paired. Make the switch here, so that the code below will save (x,x+1)
2075 // and not (x+1,x).
2076 unsigned FrameIdxReg1 = RPI.FrameIdx;
2077 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2078 if (isTargetWindows(MF) && RPI.isPaired()) {
2079 std::swap(Reg1, Reg2);
2080 std::swap(FrameIdxReg1, FrameIdxReg2);
2081 }
2082
2083 if (RPI.isPaired() && RPI.isScalable()) {
2084 [[maybe_unused]] const AArch64Subtarget &Subtarget =
2087 unsigned PnReg = AFI->getPredicateRegForFillSpill();
2088 assert((PnReg != 0 && enableMultiVectorSpillFill(Subtarget, MF)) &&
2089 "Expects SVE2.1 or SME2 target and a predicate register");
2090#ifdef EXPENSIVE_CHECKS
2091 auto IsPPR = [](const RegPairInfo &c) {
2092 return c.Reg1 == RegPairInfo::PPR;
2093 };
2094 auto PPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsPPR);
2095 auto IsZPR = [](const RegPairInfo &c) {
2096 return c.Type == RegPairInfo::ZPR;
2097 };
2098 auto ZPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsZPR);
2099 assert(!(PPRBegin < ZPRBegin) &&
2100 "Expected callee save predicate to be handled first");
2101#endif
2102 if (!PTrueCreated) {
2103 PTrueCreated = true;
2104 BuildMI(MBB, MI, DL, TII.get(AArch64::PTRUE_C_B), PnReg)
2106 }
2107 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
2108 if (!MRI.isReserved(Reg1))
2109 MBB.addLiveIn(Reg1);
2110 if (!MRI.isReserved(Reg2))
2111 MBB.addLiveIn(Reg2);
2112 MIB.addReg(/*PairRegs*/ AArch64::Z0_Z1 + (RPI.Reg1 - AArch64::Z0));
2114 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2115 MachineMemOperand::MOStore, Size, Alignment));
2116 MIB.addReg(PnReg);
2117 MIB.addReg(AArch64::SP)
2118 .addImm(RPI.Offset / 2) // [sp, #imm*2*vscale],
2119 // where 2*vscale is implicit
2122 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2123 MachineMemOperand::MOStore, Size, Alignment));
2124 if (NeedsWinCFI)
2125 insertSEH(MIB, TII, MachineInstr::FrameSetup);
2126 } else { // The code when the pair of ZReg is not present
2127 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc));
2128 if (!MRI.isReserved(Reg1))
2129 MBB.addLiveIn(Reg1);
2130 if (RPI.isPaired()) {
2131 if (!MRI.isReserved(Reg2))
2132 MBB.addLiveIn(Reg2);
2133 MIB.addReg(Reg2, getPrologueDeath(MF, Reg2));
2135 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2136 MachineMemOperand::MOStore, Size, Alignment));
2137 }
2138 MIB.addReg(Reg1, getPrologueDeath(MF, Reg1))
2139 .addReg(AArch64::SP)
2140 .addImm(RPI.Offset) // [sp, #offset*vscale],
2141 // where factor*vscale is implicit
2144 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2145 MachineMemOperand::MOStore, Size, Alignment));
2146 if (NeedsWinCFI)
2147 insertSEH(MIB, TII, MachineInstr::FrameSetup);
2148 }
2149 // Update the StackIDs of the SVE stack slots.
2150 MachineFrameInfo &MFI = MF.getFrameInfo();
2151 if (RPI.Type == RegPairInfo::ZPR) {
2152 MFI.setStackID(FrameIdxReg1, TargetStackID::ScalableVector);
2153 if (RPI.isPaired())
2154 MFI.setStackID(FrameIdxReg2, TargetStackID::ScalableVector);
2155 } else if (RPI.Type == RegPairInfo::PPR) {
2157 if (RPI.isPaired())
2159 }
2160 }
2161 return true;
2162}
2163
2167 MachineFunction &MF = *MBB.getParent();
2169 DebugLoc DL;
2171 bool NeedsWinCFI = needsWinCFI(MF);
2172
2173 if (MBBI != MBB.end())
2174 DL = MBBI->getDebugLoc();
2175
2176 computeCalleeSaveRegisterPairs(*this, MF, CSI, TRI, RegPairs, hasFP(MF));
2177 if (homogeneousPrologEpilog(MF, &MBB)) {
2178 auto MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::HOM_Epilog))
2180 for (auto &RPI : RegPairs) {
2181 MIB.addReg(RPI.Reg1, RegState::Define);
2182 MIB.addReg(RPI.Reg2, RegState::Define);
2183 }
2184 return true;
2185 }
2186
2187 // For performance reasons restore SVE register in increasing order
2188 auto IsPPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::PPR; };
2189 auto PPRBegin = llvm::find_if(RegPairs, IsPPR);
2190 auto PPREnd = std::find_if_not(PPRBegin, RegPairs.end(), IsPPR);
2191 std::reverse(PPRBegin, PPREnd);
2192 auto IsZPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::ZPR; };
2193 auto ZPRBegin = llvm::find_if(RegPairs, IsZPR);
2194 auto ZPREnd = std::find_if_not(ZPRBegin, RegPairs.end(), IsZPR);
2195 std::reverse(ZPRBegin, ZPREnd);
2196
2197 bool PTrueCreated = false;
2198 for (const RegPairInfo &RPI : RegPairs) {
2199 Register Reg1 = RPI.Reg1;
2200 Register Reg2 = RPI.Reg2;
2201
2202 // Issue sequence of restores for cs regs. The last restore may be converted
2203 // to a post-increment load later by emitEpilogue if the callee-save stack
2204 // area allocation can't be combined with the local stack area allocation.
2205 // For example:
2206 // ldp fp, lr, [sp, #32] // addImm(+4)
2207 // ldp x20, x19, [sp, #16] // addImm(+2)
2208 // ldp x22, x21, [sp, #0] // addImm(+0)
2209 // Note: see comment in spillCalleeSavedRegisters()
2210 unsigned LdrOpc;
2211 unsigned Size = TRI->getSpillSize(*RPI.RC);
2212 Align Alignment = TRI->getSpillAlign(*RPI.RC);
2213 switch (RPI.Type) {
2214 case RegPairInfo::GPR:
2215 LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui;
2216 break;
2217 case RegPairInfo::FPR64:
2218 LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui;
2219 break;
2220 case RegPairInfo::FPR128:
2221 LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui;
2222 break;
2223 case RegPairInfo::ZPR:
2224 LdrOpc = RPI.isPaired() ? AArch64::LD1B_2Z_IMM : AArch64::LDR_ZXI;
2225 break;
2226 case RegPairInfo::PPR:
2227 LdrOpc = AArch64::LDR_PXI;
2228 break;
2229 case RegPairInfo::VG:
2230 continue;
2231 }
2232 LLVM_DEBUG({
2233 dbgs() << "CSR restore: (" << printReg(Reg1, TRI);
2234 if (RPI.isPaired())
2235 dbgs() << ", " << printReg(Reg2, TRI);
2236 dbgs() << ") -> fi#(" << RPI.FrameIdx;
2237 if (RPI.isPaired())
2238 dbgs() << ", " << RPI.FrameIdx + 1;
2239 dbgs() << ")\n";
2240 });
2241
2242 // Windows unwind codes require consecutive registers if registers are
2243 // paired. Make the switch here, so that the code below will save (x,x+1)
2244 // and not (x+1,x).
2245 unsigned FrameIdxReg1 = RPI.FrameIdx;
2246 unsigned FrameIdxReg2 = RPI.FrameIdx + 1;
2247 if (isTargetWindows(MF) && RPI.isPaired()) {
2248 std::swap(Reg1, Reg2);
2249 std::swap(FrameIdxReg1, FrameIdxReg2);
2250 }
2251
2253 if (RPI.isPaired() && RPI.isScalable()) {
2254 [[maybe_unused]] const AArch64Subtarget &Subtarget =
2256 unsigned PnReg = AFI->getPredicateRegForFillSpill();
2257 assert((PnReg != 0 && enableMultiVectorSpillFill(Subtarget, MF)) &&
2258 "Expects SVE2.1 or SME2 target and a predicate register");
2259#ifdef EXPENSIVE_CHECKS
2260 assert(!(PPRBegin < ZPRBegin) &&
2261 "Expected callee save predicate to be handled first");
2262#endif
2263 if (!PTrueCreated) {
2264 PTrueCreated = true;
2265 BuildMI(MBB, MBBI, DL, TII.get(AArch64::PTRUE_C_B), PnReg)
2267 }
2268 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
2269 MIB.addReg(/*PairRegs*/ AArch64::Z0_Z1 + (RPI.Reg1 - AArch64::Z0),
2270 getDefRegState(true));
2272 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2273 MachineMemOperand::MOLoad, Size, Alignment));
2274 MIB.addReg(PnReg);
2275 MIB.addReg(AArch64::SP)
2276 .addImm(RPI.Offset / 2) // [sp, #imm*2*vscale]
2277 // where 2*vscale is implicit
2280 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2281 MachineMemOperand::MOLoad, Size, Alignment));
2282 if (NeedsWinCFI)
2283 insertSEH(MIB, TII, MachineInstr::FrameDestroy);
2284 } else {
2285 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc));
2286 if (RPI.isPaired()) {
2287 MIB.addReg(Reg2, getDefRegState(true));
2289 MachinePointerInfo::getFixedStack(MF, FrameIdxReg2),
2290 MachineMemOperand::MOLoad, Size, Alignment));
2291 }
2292 MIB.addReg(Reg1, getDefRegState(true));
2293 MIB.addReg(AArch64::SP)
2294 .addImm(RPI.Offset) // [sp, #offset*vscale]
2295 // where factor*vscale is implicit
2298 MachinePointerInfo::getFixedStack(MF, FrameIdxReg1),
2299 MachineMemOperand::MOLoad, Size, Alignment));
2300 if (NeedsWinCFI)
2301 insertSEH(MIB, TII, MachineInstr::FrameDestroy);
2302 }
2303 }
2304 return true;
2305}
2306
2307// Return the FrameID for a MMO.
2308static std::optional<int> getMMOFrameID(MachineMemOperand *MMO,
2309 const MachineFrameInfo &MFI) {
2310 auto *PSV =
2312 if (PSV)
2313 return std::optional<int>(PSV->getFrameIndex());
2314
2315 if (MMO->getValue()) {
2316 if (auto *Al = dyn_cast<AllocaInst>(getUnderlyingObject(MMO->getValue()))) {
2317 for (int FI = MFI.getObjectIndexBegin(); FI < MFI.getObjectIndexEnd();
2318 FI++)
2319 if (MFI.getObjectAllocation(FI) == Al)
2320 return FI;
2321 }
2322 }
2323
2324 return std::nullopt;
2325}
2326
2327// Return the FrameID for a Load/Store instruction by looking at the first MMO.
2328static std::optional<int> getLdStFrameID(const MachineInstr &MI,
2329 const MachineFrameInfo &MFI) {
2330 if (!MI.mayLoadOrStore() || MI.getNumMemOperands() < 1)
2331 return std::nullopt;
2332
2333 return getMMOFrameID(*MI.memoperands_begin(), MFI);
2334}
2335
2336// Returns true if the LDST MachineInstr \p MI is a PPR access.
2337static bool isPPRAccess(const MachineInstr &MI) {
2338 return AArch64::PPRRegClass.contains(MI.getOperand(0).getReg());
2339}
2340
2341// Check if a Hazard slot is needed for the current function, and if so create
2342// one for it. The index is stored in AArch64FunctionInfo->StackHazardSlotIndex,
2343// which can be used to determine if any hazard padding is needed.
2344void AArch64FrameLowering::determineStackHazardSlot(
2345 MachineFunction &MF, BitVector &SavedRegs) const {
2346 unsigned StackHazardSize = getStackHazardSize(MF);
2347 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2348 if (StackHazardSize == 0 || StackHazardSize % 16 != 0 ||
2350 return;
2351
2352 // Stack hazards are only needed in streaming functions.
2353 SMEAttrs Attrs = AFI->getSMEFnAttrs();
2354 if (!StackHazardInNonStreaming && Attrs.hasNonStreamingInterfaceAndBody())
2355 return;
2356
2357 MachineFrameInfo &MFI = MF.getFrameInfo();
2358
2359 // Add a hazard slot if there are any CSR FPR registers, or are any fp-only
2360 // stack objects.
2361 bool HasFPRCSRs = any_of(SavedRegs.set_bits(), [](unsigned Reg) {
2362 return AArch64::FPR64RegClass.contains(Reg) ||
2363 AArch64::FPR128RegClass.contains(Reg) ||
2364 AArch64::ZPRRegClass.contains(Reg);
2365 });
2366 bool HasPPRCSRs = any_of(SavedRegs.set_bits(), [](unsigned Reg) {
2367 return AArch64::PPRRegClass.contains(Reg);
2368 });
2369 bool HasFPRStackObjects = false;
2370 bool HasPPRStackObjects = false;
2371 if (!HasFPRCSRs || SplitSVEObjects) {
2372 enum SlotType : uint8_t {
2373 Unknown = 0,
2374 ZPRorFPR = 1 << 0,
2375 PPR = 1 << 1,
2376 GPR = 1 << 2,
2378 };
2379
2380 // Find stack slots solely used for one kind of register (ZPR, PPR, etc.),
2381 // based on the kinds of accesses used in the function.
2382 SmallVector<SlotType> SlotTypes(MFI.getObjectIndexEnd(), SlotType::Unknown);
2383 for (auto &MBB : MF) {
2384 for (auto &MI : MBB) {
2385 std::optional<int> FI = getLdStFrameID(MI, MFI);
2386 if (!FI || FI < 0 || FI > int(SlotTypes.size()))
2387 continue;
2388 if (MFI.hasScalableStackID(*FI)) {
2389 SlotTypes[*FI] |=
2390 isPPRAccess(MI) ? SlotType::PPR : SlotType::ZPRorFPR;
2391 } else {
2392 SlotTypes[*FI] |= AArch64InstrInfo::isFpOrNEON(MI)
2393 ? SlotType::ZPRorFPR
2394 : SlotType::GPR;
2395 }
2396 }
2397 }
2398
2399 for (int FI = 0; FI < int(SlotTypes.size()); ++FI) {
2400 HasFPRStackObjects |= SlotTypes[FI] == SlotType::ZPRorFPR;
2401 // For SplitSVEObjects remember that this stack slot is a predicate, this
2402 // will be needed later when determining the frame layout.
2403 if (SlotTypes[FI] == SlotType::PPR) {
2405 HasPPRStackObjects = true;
2406 }
2407 }
2408 }
2409
2410 if (HasFPRCSRs || HasFPRStackObjects) {
2411 int ID = MFI.CreateStackObject(StackHazardSize, Align(16), false);
2412 LLVM_DEBUG(dbgs() << "Created Hazard slot at " << ID << " size "
2413 << StackHazardSize << "\n");
2415 }
2416
2417 if (!AFI->hasStackHazardSlotIndex())
2418 return;
2419
2420 if (SplitSVEObjects) {
2421 CallingConv::ID CC = MF.getFunction().getCallingConv();
2422 if (AFI->isSVECC() || CC == CallingConv::AArch64_SVE_VectorCall) {
2423 AFI->setSplitSVEObjects(true);
2424 LLVM_DEBUG(dbgs() << "Using SplitSVEObjects for SVE CC function\n");
2425 return;
2426 }
2427
2428 // We only use SplitSVEObjects in non-SVE CC functions if there's a
2429 // possibility of a stack hazard between PPRs and ZPRs/FPRs.
2430 LLVM_DEBUG(dbgs() << "Determining if SplitSVEObjects should be used in "
2431 "non-SVE CC function...\n");
2432
2433 // If another calling convention is explicitly set FPRs can't be promoted to
2434 // ZPR callee-saves.
2436 LLVM_DEBUG(
2437 dbgs()
2438 << "Calling convention is not supported with SplitSVEObjects\n");
2439 return;
2440 }
2441
2442 if (!HasPPRCSRs && !HasPPRStackObjects) {
2443 LLVM_DEBUG(
2444 dbgs() << "Not using SplitSVEObjects as no PPRs are on the stack\n");
2445 return;
2446 }
2447
2448 if (!HasFPRCSRs && !HasFPRStackObjects) {
2449 LLVM_DEBUG(
2450 dbgs()
2451 << "Not using SplitSVEObjects as no FPRs or ZPRs are on the stack\n");
2452 return;
2453 }
2454
2455 [[maybe_unused]] const AArch64Subtarget &Subtarget =
2456 MF.getSubtarget<AArch64Subtarget>();
2458 "Expected SVE to be available for PPRs");
2459
2460 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2461 // With SplitSVEObjects the CS hazard padding is placed between the
2462 // PPRs and ZPRs. If there are any FPR CS there would be a hazard between
2463 // them and the CS GRPs. Avoid this by promoting all FPR CS to ZPRs.
2464 BitVector FPRZRegs(SavedRegs.size());
2465 for (size_t Reg = 0, E = SavedRegs.size(); HasFPRCSRs && Reg < E; ++Reg) {
2466 BitVector::reference RegBit = SavedRegs[Reg];
2467 if (!RegBit)
2468 continue;
2469 unsigned SubRegIdx = 0;
2470 if (AArch64::FPR64RegClass.contains(Reg))
2471 SubRegIdx = AArch64::dsub;
2472 else if (AArch64::FPR128RegClass.contains(Reg))
2473 SubRegIdx = AArch64::zsub;
2474 else
2475 continue;
2476 // Clear the bit for the FPR save.
2477 RegBit = false;
2478 // Mark that we should save the corresponding ZPR.
2479 Register ZReg =
2480 TRI->getMatchingSuperReg(Reg, SubRegIdx, &AArch64::ZPRRegClass);
2481 FPRZRegs.set(ZReg);
2482 }
2483 SavedRegs |= FPRZRegs;
2484
2485 AFI->setSplitSVEObjects(true);
2486 LLVM_DEBUG(dbgs() << "SplitSVEObjects enabled!\n");
2487 }
2488}
2489
2491 BitVector &SavedRegs,
2492 RegScavenger *RS) const {
2493 // All calls are tail calls in GHC calling conv, and functions have no
2494 // prologue/epilogue.
2496 return;
2497
2498 const AArch64Subtarget &Subtarget = MF.getSubtarget<AArch64Subtarget>();
2499
2501 const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
2503 unsigned UnspilledCSGPR = AArch64::NoRegister;
2504 unsigned UnspilledCSGPRPaired = AArch64::NoRegister;
2505
2506 MachineFrameInfo &MFI = MF.getFrameInfo();
2507 const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
2508
2509 MCRegister BasePointerReg =
2510 RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister() : MCRegister();
2511
2512 unsigned ExtraCSSpill = 0;
2513 bool HasUnpairedGPR64 = false;
2514 bool HasPairZReg = false;
2515 BitVector UserReservedRegs = RegInfo->getUserReservedRegs(MF);
2516 BitVector ReservedRegs = RegInfo->getReservedRegs(MF);
2517
2518 // Figure out which callee-saved registers to save/restore.
2519 for (unsigned i = 0; CSRegs[i]; ++i) {
2520 const MCRegister Reg = CSRegs[i];
2521
2522 // Add the base pointer register to SavedRegs if it is callee-save.
2523 if (Reg == BasePointerReg)
2524 SavedRegs.set(Reg);
2525
2526 // Don't save manually reserved registers set through +reserve-x#i,
2527 // even for callee-saved registers, as per GCC's behavior.
2528 if (UserReservedRegs[Reg]) {
2529 SavedRegs.reset(Reg);
2530 continue;
2531 }
2532
2533 bool RegUsed = SavedRegs.test(Reg);
2534 MCRegister PairedReg;
2535 const bool RegIsGPR64 = AArch64::GPR64RegClass.contains(Reg);
2536 if (RegIsGPR64 || AArch64::FPR64RegClass.contains(Reg) ||
2537 AArch64::FPR128RegClass.contains(Reg)) {
2538 // Compensate for odd numbers of GP CSRs.
2539 // For now, all the known cases of odd number of CSRs are of GPRs.
2540 if (HasUnpairedGPR64)
2541 PairedReg = CSRegs[i % 2 == 0 ? i - 1 : i + 1];
2542 else
2543 PairedReg = CSRegs[i ^ 1];
2544 }
2545
2546 // If the function requires all the GP registers to save (SavedRegs),
2547 // and there are an odd number of GP CSRs at the same time (CSRegs),
2548 // PairedReg could be in a different register class from Reg, which would
2549 // lead to a FPR (usually D8) accidentally being marked saved.
2550 if (RegIsGPR64 && !AArch64::GPR64RegClass.contains(PairedReg)) {
2551 PairedReg = AArch64::NoRegister;
2552 HasUnpairedGPR64 = true;
2553 }
2554 assert(PairedReg == AArch64::NoRegister ||
2555 AArch64::GPR64RegClass.contains(Reg, PairedReg) ||
2556 AArch64::FPR64RegClass.contains(Reg, PairedReg) ||
2557 AArch64::FPR128RegClass.contains(Reg, PairedReg));
2558
2559 if (!RegUsed) {
2560 if (AArch64::GPR64RegClass.contains(Reg) && !ReservedRegs[Reg]) {
2561 UnspilledCSGPR = Reg;
2562 UnspilledCSGPRPaired = PairedReg;
2563 }
2564 continue;
2565 }
2566
2567 // MachO's compact unwind format relies on all registers being stored in
2568 // pairs.
2569 // FIXME: the usual format is actually better if unwinding isn't needed.
2570 if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister &&
2571 !SavedRegs.test(PairedReg)) {
2572 SavedRegs.set(PairedReg);
2573 if (AArch64::GPR64RegClass.contains(PairedReg) &&
2574 !ReservedRegs[PairedReg])
2575 ExtraCSSpill = PairedReg;
2576 }
2577 // Check if there is a pair of ZRegs, so it can select PReg for spill/fill
2578 HasPairZReg |= (AArch64::ZPRRegClass.contains(Reg, CSRegs[i ^ 1]) &&
2579 SavedRegs.test(CSRegs[i ^ 1]));
2580 }
2581
2582 if (HasPairZReg && enableMultiVectorSpillFill(Subtarget, MF)) {
2584 // Find a suitable predicate register for the multi-vector spill/fill
2585 // instructions.
2586 MCRegister PnReg = findFreePredicateReg(SavedRegs);
2587 if (PnReg.isValid())
2588 AFI->setPredicateRegForFillSpill(PnReg);
2589 // If no free callee-save has been found assign one.
2590 if (!AFI->getPredicateRegForFillSpill() &&
2591 MF.getFunction().getCallingConv() ==
2593 SavedRegs.set(AArch64::P8);
2594 AFI->setPredicateRegForFillSpill(AArch64::PN8);
2595 }
2596
2597 assert(!ReservedRegs[AFI->getPredicateRegForFillSpill()] &&
2598 "Predicate cannot be a reserved register");
2599 }
2600
2602 !Subtarget.isTargetWindows()) {
2603 // For Windows calling convention on a non-windows OS, where X18 is treated
2604 // as reserved, back up X18 when entering non-windows code (marked with the
2605 // Windows calling convention) and restore when returning regardless of
2606 // whether the individual function uses it - it might call other functions
2607 // that clobber it.
2608 SavedRegs.set(AArch64::X18);
2609 }
2610
2611 // Determine if a Hazard slot should be used and where it should go.
2612 // If SplitSVEObjects is used, the hazard padding is placed between the PPRs
2613 // and ZPRs. Otherwise, it goes in the callee save area.
2614 determineStackHazardSlot(MF, SavedRegs);
2615
2616 // Calculates the callee saved stack size.
2617 unsigned CSStackSize = 0;
2618 unsigned ZPRCSStackSize = 0;
2619 unsigned PPRCSStackSize = 0;
2621 for (unsigned Reg : SavedRegs.set_bits()) {
2622 auto *RC = TRI->getMinimalPhysRegClass(MCRegister(Reg));
2623 assert(RC && "expected register class!");
2624 auto SpillSize = TRI->getSpillSize(*RC);
2625 bool IsZPR = AArch64::ZPRRegClass.contains(Reg);
2626 bool IsPPR = !IsZPR && AArch64::PPRRegClass.contains(Reg);
2627 if (IsZPR)
2628 ZPRCSStackSize += SpillSize;
2629 else if (IsPPR)
2630 PPRCSStackSize += SpillSize;
2631 else
2632 CSStackSize += SpillSize;
2633 }
2634
2635 // Save number of saved regs, so we can easily update CSStackSize later to
2636 // account for any additional 64-bit GPR saves. Note: After this point
2637 // only 64-bit GPRs can be added to SavedRegs.
2638 unsigned NumSavedRegs = SavedRegs.count();
2639
2640 // If we have hazard padding in the CS area add that to the size.
2642 CSStackSize += getStackHazardSize(MF);
2643
2644 // Increase the callee-saved stack size if the function has streaming mode
2645 // changes, as we will need to spill the value of the VG register.
2646 if (requiresSaveVG(MF))
2647 CSStackSize += 8;
2648
2649 // If we must call __arm_get_current_vg in the prologue preserve the LR.
2650 if (requiresSaveVG(MF) && !Subtarget.hasSVE())
2651 SavedRegs.set(AArch64::LR);
2652
2653 // The frame record needs to be created by saving the appropriate registers
2654 uint64_t EstimatedStackSize = MFI.estimateStackSize(MF);
2655 if (hasFP(MF) ||
2656 windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) {
2657 SavedRegs.set(AArch64::FP);
2658 SavedRegs.set(AArch64::LR);
2659 }
2660
2661 LLVM_DEBUG({
2662 dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
2663 for (unsigned Reg : SavedRegs.set_bits())
2664 dbgs() << ' ' << printReg(MCRegister(Reg), RegInfo);
2665 dbgs() << "\n";
2666 });
2667
2668 // If any callee-saved registers are used, the frame cannot be eliminated.
2669 auto [ZPRLocalStackSize, PPRLocalStackSize] =
2671 uint64_t SVELocals = ZPRLocalStackSize + PPRLocalStackSize;
2672 uint64_t SVEStackSize =
2673 alignTo(ZPRCSStackSize + PPRCSStackSize + SVELocals, 16);
2674 bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize;
2675
2676 // The CSR spill slots have not been allocated yet, so estimateStackSize
2677 // won't include them.
2678 unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF);
2679
2680 // We may address some of the stack above the canonical frame address, either
2681 // for our own arguments or during a call. Include that in calculating whether
2682 // we have complicated addressing concerns.
2683 int64_t CalleeStackUsed = 0;
2684 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) {
2685 int64_t FixedOff = MFI.getObjectOffset(I);
2686 if (FixedOff > CalleeStackUsed)
2687 CalleeStackUsed = FixedOff;
2688 }
2689
2690 // Conservatively always assume BigStack when there are SVE spills.
2691 bool BigStack = SVEStackSize || (EstimatedStackSize + CSStackSize +
2692 CalleeStackUsed) > EstimatedStackSizeLimit;
2693 if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF))
2694 AFI->setHasStackFrame(true);
2695
2696 // Estimate if we might need to scavenge a register at some point in order
2697 // to materialize a stack offset. If so, either spill one additional
2698 // callee-saved register or reserve a special spill slot to facilitate
2699 // register scavenging. If we already spilled an extra callee-saved register
2700 // above to keep the number of spills even, we don't need to do anything else
2701 // here.
2702 if (BigStack) {
2703 if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) {
2704 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo)
2705 << " to get a scratch register.\n");
2706 SavedRegs.set(UnspilledCSGPR);
2707 ExtraCSSpill = UnspilledCSGPR;
2708
2709 // MachO's compact unwind format relies on all registers being stored in
2710 // pairs, so if we need to spill one extra for BigStack, then we need to
2711 // store the pair.
2712 if (producePairRegisters(MF)) {
2713 if (UnspilledCSGPRPaired == AArch64::NoRegister) {
2714 // Failed to make a pair for compact unwind format, revert spilling.
2715 if (produceCompactUnwindFrame(*this, MF)) {
2716 SavedRegs.reset(UnspilledCSGPR);
2717 ExtraCSSpill = AArch64::NoRegister;
2718 }
2719 } else
2720 SavedRegs.set(UnspilledCSGPRPaired);
2721 }
2722 }
2723
2724 // If we didn't find an extra callee-saved register to spill, create
2725 // an emergency spill slot.
2726 if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) {
2728 const TargetRegisterClass &RC = AArch64::GPR64RegClass;
2729 unsigned Size = TRI->getSpillSize(RC);
2730 Align Alignment = TRI->getSpillAlign(RC);
2731 int FI = MFI.CreateSpillStackObject(Size, Alignment);
2732 RS->addScavengingFrameIndex(FI);
2733 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
2734 << " as the emergency spill slot.\n");
2735 }
2736 }
2737
2738 // Adding the size of additional 64bit GPR saves.
2739 CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs);
2740
2741 // A Swift asynchronous context extends the frame record with a pointer
2742 // directly before FP.
2743 if (hasFP(MF) && AFI->hasSwiftAsyncContext())
2744 CSStackSize += 8;
2745
2746 uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16);
2747 LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
2748 << EstimatedStackSize + AlignedCSStackSize << " bytes.\n");
2749
2751 AFI->getCalleeSavedStackSize() == AlignedCSStackSize) &&
2752 "Should not invalidate callee saved info");
2753
2754 // Round up to register pair alignment to avoid additional SP adjustment
2755 // instructions.
2756 AFI->setCalleeSavedStackSize(AlignedCSStackSize);
2757 AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize);
2758 AFI->setSVECalleeSavedStackSize(ZPRCSStackSize, alignTo(PPRCSStackSize, 16));
2759}
2760
2762 MachineFunction &MF, const TargetRegisterInfo *RegInfo,
2763 std::vector<CalleeSavedInfo> &CSI) const {
2764 bool IsWindows = isTargetWindows(MF);
2765 unsigned StackHazardSize = getStackHazardSize(MF);
2766 // To match the canonical windows frame layout, reverse the list of
2767 // callee saved registers to get them laid out by PrologEpilogInserter
2768 // in the right order. (PrologEpilogInserter allocates stack objects top
2769 // down. Windows canonical prologs store higher numbered registers at
2770 // the top, thus have the CSI array start from the highest registers.)
2771 if (IsWindows)
2772 std::reverse(CSI.begin(), CSI.end());
2773
2774 if (CSI.empty())
2775 return true; // Early exit if no callee saved registers are modified!
2776
2777 // Now that we know which registers need to be saved and restored, allocate
2778 // stack slots for them.
2779 MachineFrameInfo &MFI = MF.getFrameInfo();
2780 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2781
2782 if (IsWindows && hasFP(MF) && AFI->hasSwiftAsyncContext()) {
2783 int FrameIdx = MFI.CreateStackObject(8, Align(16), true);
2784 AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
2785 MFI.setIsCalleeSavedObjectIndex(FrameIdx, true);
2786 }
2787
2788 // Insert VG into the list of CSRs, immediately before LR if saved.
2789 if (requiresSaveVG(MF)) {
2790 CalleeSavedInfo VGInfo(AArch64::VG);
2791 auto It =
2792 find_if(CSI, [](auto &Info) { return Info.getReg() == AArch64::LR; });
2793 if (It != CSI.end())
2794 CSI.insert(It, VGInfo);
2795 else
2796 CSI.push_back(VGInfo);
2797 }
2798
2799 Register LastReg = 0;
2800 int HazardSlotIndex = std::numeric_limits<int>::max();
2801 for (auto &CS : CSI) {
2802 MCRegister Reg = CS.getReg();
2803 const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
2804
2805 // Create a hazard slot as we switch between GPR and FPR CSRs.
2807 (!LastReg || !AArch64InstrInfo::isFpOrNEON(LastReg)) &&
2809 assert(HazardSlotIndex == std::numeric_limits<int>::max() &&
2810 "Unexpected register order for hazard slot");
2811 HazardSlotIndex = MFI.CreateStackObject(StackHazardSize, Align(8), true);
2812 LLVM_DEBUG(dbgs() << "Created CSR Hazard at slot " << HazardSlotIndex
2813 << "\n");
2814 AFI->setStackHazardCSRSlotIndex(HazardSlotIndex);
2815 MFI.setIsCalleeSavedObjectIndex(HazardSlotIndex, true);
2816 }
2817
2818 unsigned Size = RegInfo->getSpillSize(*RC);
2819 Align Alignment(RegInfo->getSpillAlign(*RC));
2820 int FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
2821 CS.setFrameIdx(FrameIdx);
2822 MFI.setIsCalleeSavedObjectIndex(FrameIdx, true);
2823
2824 // Grab 8 bytes below FP for the extended asynchronous frame info.
2825 if (hasFP(MF) && AFI->hasSwiftAsyncContext() && !IsWindows &&
2826 Reg == AArch64::FP) {
2827 FrameIdx = MFI.CreateStackObject(8, Alignment, true);
2828 AFI->setSwiftAsyncContextFrameIdx(FrameIdx);
2829 MFI.setIsCalleeSavedObjectIndex(FrameIdx, true);
2830 }
2831 LastReg = Reg;
2832 }
2833
2834 // Add hazard slot in the case where no FPR CSRs are present.
2836 HazardSlotIndex == std::numeric_limits<int>::max()) {
2837 HazardSlotIndex = MFI.CreateStackObject(StackHazardSize, Align(8), true);
2838 LLVM_DEBUG(dbgs() << "Created CSR Hazard at slot " << HazardSlotIndex
2839 << "\n");
2840 AFI->setStackHazardCSRSlotIndex(HazardSlotIndex);
2841 MFI.setIsCalleeSavedObjectIndex(HazardSlotIndex, true);
2842 }
2843
2844 return true;
2845}
2846
2848 const MachineFunction &MF) const {
2850 // If the function has streaming-mode changes, don't scavenge a
2851 // spillslot in the callee-save area, as that might require an
2852 // 'addvl' in the streaming-mode-changing call-sequence when the
2853 // function doesn't use a FP.
2854 if (AFI->hasStreamingModeChanges() && !hasFP(MF))
2855 return false;
2856 // Don't allow register salvaging with hazard slots, in case it moves objects
2857 // into the wrong place.
2858 if (AFI->hasStackHazardSlotIndex())
2859 return false;
2860 return AFI->hasCalleeSaveStackFreeSpace();
2861}
2862
2863/// returns true if there are any SVE callee saves.
2865 int &Min, int &Max) {
2866 Min = std::numeric_limits<int>::max();
2867 Max = std::numeric_limits<int>::min();
2868
2869 if (!MFI.isCalleeSavedInfoValid())
2870 return false;
2871
2872 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
2873 for (auto &CS : CSI) {
2874 if (AArch64::ZPRRegClass.contains(CS.getReg()) ||
2875 AArch64::PPRRegClass.contains(CS.getReg())) {
2876 assert((Max == std::numeric_limits<int>::min() ||
2877 Max + 1 == CS.getFrameIdx()) &&
2878 "SVE CalleeSaves are not consecutive");
2879 Min = std::min(Min, CS.getFrameIdx());
2880 Max = std::max(Max, CS.getFrameIdx());
2881 }
2882 }
2883 return Min != std::numeric_limits<int>::max();
2884}
2885
2887 AssignObjectOffsets AssignOffsets) {
2888 MachineFrameInfo &MFI = MF.getFrameInfo();
2889 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2890
2891 SVEStackSizes SVEStack{};
2892
2893 // With SplitSVEObjects we maintain separate stack offsets for predicates
2894 // (PPRs) and SVE vectors (ZPRs). When SplitSVEObjects is disabled predicates
2895 // are included in the SVE vector area.
2896 uint64_t &ZPRStackTop = SVEStack.ZPRStackSize;
2897 uint64_t &PPRStackTop =
2898 AFI->hasSplitSVEObjects() ? SVEStack.PPRStackSize : SVEStack.ZPRStackSize;
2899
2900#ifndef NDEBUG
2901 // First process all fixed stack objects.
2902 for (int I = MFI.getObjectIndexBegin(); I != 0; ++I)
2903 assert(!MFI.hasScalableStackID(I) &&
2904 "SVE vectors should never be passed on the stack by value, only by "
2905 "reference.");
2906#endif
2907
2908 auto AllocateObject = [&](int FI) {
2910 ? ZPRStackTop
2911 : PPRStackTop;
2912
2913 // FIXME: Given that the length of SVE vectors is not necessarily a power of
2914 // two, we'd need to align every object dynamically at runtime if the
2915 // alignment is larger than 16. This is not yet supported.
2916 Align Alignment = MFI.getObjectAlign(FI);
2917 if (Alignment > Align(16))
2919 "Alignment of scalable vectors > 16 bytes is not yet supported");
2920
2921 StackTop += MFI.getObjectSize(FI);
2922 StackTop = alignTo(StackTop, Alignment);
2923
2924 assert(StackTop < (uint64_t)std::numeric_limits<int64_t>::max() &&
2925 "SVE StackTop far too large?!");
2926
2927 int64_t Offset = -int64_t(StackTop);
2928 if (AssignOffsets == AssignObjectOffsets::Yes)
2929 MFI.setObjectOffset(FI, Offset);
2930
2931 LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n");
2932 };
2933
2934 // Then process all callee saved slots.
2935 int MinCSFrameIndex, MaxCSFrameIndex;
2936 if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) {
2937 for (int FI = MinCSFrameIndex; FI <= MaxCSFrameIndex; ++FI)
2938 AllocateObject(FI);
2939 }
2940
2941 // Ensure the CS area is 16-byte aligned.
2942 PPRStackTop = alignTo(PPRStackTop, Align(16U));
2943 ZPRStackTop = alignTo(ZPRStackTop, Align(16U));
2944
2945 // Create a buffer of SVE objects to allocate and sort it.
2946 SmallVector<int, 8> ObjectsToAllocate;
2947 // If we have a stack protector, and we've previously decided that we have SVE
2948 // objects on the stack and thus need it to go in the SVE stack area, then it
2949 // needs to go first.
2950 int StackProtectorFI = -1;
2951 if (MFI.hasStackProtectorIndex()) {
2952 StackProtectorFI = MFI.getStackProtectorIndex();
2953 if (MFI.getStackID(StackProtectorFI) == TargetStackID::ScalableVector)
2954 ObjectsToAllocate.push_back(StackProtectorFI);
2955 }
2956
2957 for (int FI = 0, E = MFI.getObjectIndexEnd(); FI != E; ++FI) {
2958 if (FI == StackProtectorFI || MFI.isDeadObjectIndex(FI) ||
2960 continue;
2961
2964 continue;
2965
2966 ObjectsToAllocate.push_back(FI);
2967 }
2968
2969 // Allocate all SVE locals and spills
2970 for (unsigned FI : ObjectsToAllocate)
2971 AllocateObject(FI);
2972
2973 PPRStackTop = alignTo(PPRStackTop, Align(16U));
2974 ZPRStackTop = alignTo(ZPRStackTop, Align(16U));
2975
2976 if (AssignOffsets == AssignObjectOffsets::Yes)
2977 AFI->setStackSizeSVE(SVEStack.ZPRStackSize, SVEStack.PPRStackSize);
2978
2979 return SVEStack;
2980}
2981
2983 MachineFunction &MF, RegScavenger *RS) const {
2985 "Upwards growing stack unsupported");
2986
2988
2989 // If this function isn't doing Win64-style C++ EH, we don't need to do
2990 // anything.
2991 if (!MF.hasEHFunclets())
2992 return;
2993
2994 MachineFrameInfo &MFI = MF.getFrameInfo();
2995 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
2996
2997 // Win64 C++ EH needs to allocate space for the catch objects in the fixed
2998 // object area right next to the UnwindHelp object.
2999 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3000 int64_t CurrentOffset =
3002 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3003 for (WinEHHandlerType &H : TBME.HandlerArray) {
3004 int FrameIndex = H.CatchObj.FrameIndex;
3005 if ((FrameIndex != INT_MAX) && MFI.getObjectOffset(FrameIndex) == 0) {
3006 CurrentOffset =
3007 alignTo(CurrentOffset, MFI.getObjectAlign(FrameIndex).value());
3008 CurrentOffset += MFI.getObjectSize(FrameIndex);
3009 MFI.setObjectOffset(FrameIndex, -CurrentOffset);
3010 }
3011 }
3012 }
3013
3014 // Create an UnwindHelp object.
3015 // The UnwindHelp object is allocated at the start of the fixed object area
3016 int64_t UnwindHelpOffset = alignTo(CurrentOffset + 8, Align(16));
3017 assert(UnwindHelpOffset == getFixedObjectSize(MF, AFI, /*IsWin64*/ true,
3018 /*IsFunclet*/ false) &&
3019 "UnwindHelpOffset must be at the start of the fixed object area");
3020 int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8, -UnwindHelpOffset,
3021 /*IsImmutable=*/false);
3022 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3023
3024 MachineBasicBlock &MBB = MF.front();
3025 auto MBBI = MBB.begin();
3026 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3027 ++MBBI;
3028
3029 // We need to store -2 into the UnwindHelp object at the start of the
3030 // function.
3031 DebugLoc DL;
3032 RS->enterBasicBlockEnd(MBB);
3033 RS->backward(MBBI);
3034 Register DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass);
3035 assert(DstReg && "There must be a free register after frame setup");
3037 BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2);
3038 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi))
3039 .addReg(DstReg, getKillRegState(true))
3040 .addFrameIndex(UnwindHelpFI)
3041 .addImm(0);
3042}
3043
3044namespace {
3045struct TagStoreInstr {
3047 int64_t Offset, Size;
3048 explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size)
3049 : MI(MI), Offset(Offset), Size(Size) {}
3050};
3051
3052class TagStoreEdit {
3053 MachineFunction *MF;
3054 MachineBasicBlock *MBB;
3055 MachineRegisterInfo *MRI;
3056 // Tag store instructions that are being replaced.
3058 // Combined memref arguments of the above instructions.
3060
3061 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
3062 // FrameRegOffset + Size) with the address tag of SP.
3063 Register FrameReg;
3064 StackOffset FrameRegOffset;
3065 int64_t Size;
3066 // If not std::nullopt, move FrameReg to (FrameReg + FrameRegUpdate) at the
3067 // end.
3068 std::optional<int64_t> FrameRegUpdate;
3069 // MIFlags for any FrameReg updating instructions.
3070 unsigned FrameRegUpdateFlags;
3071
3072 // Use zeroing instruction variants.
3073 bool ZeroData;
3074 DebugLoc DL;
3075
3076 void emitUnrolled(MachineBasicBlock::iterator InsertI);
3077 void emitLoop(MachineBasicBlock::iterator InsertI);
3078
3079public:
3080 TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData)
3081 : MBB(MBB), ZeroData(ZeroData) {
3082 MF = MBB->getParent();
3083 MRI = &MF->getRegInfo();
3084 }
3085 // Add an instruction to be replaced. Instructions must be added in the
3086 // ascending order of Offset, and have to be adjacent.
3087 void addInstruction(TagStoreInstr I) {
3088 assert((TagStores.empty() ||
3089 TagStores.back().Offset + TagStores.back().Size == I.Offset) &&
3090 "Non-adjacent tag store instructions.");
3091 TagStores.push_back(I);
3092 }
3093 void clear() { TagStores.clear(); }
3094 // Emit equivalent code at the given location, and erase the current set of
3095 // instructions. May skip if the replacement is not profitable. May invalidate
3096 // the input iterator and replace it with a valid one.
3097 void emitCode(MachineBasicBlock::iterator &InsertI,
3098 const AArch64FrameLowering *TFI, bool TryMergeSPUpdate);
3099};
3100
3101void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) {
3102 const AArch64InstrInfo *TII =
3103 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3104
3105 const int64_t kMinOffset = -256 * 16;
3106 const int64_t kMaxOffset = 255 * 16;
3107
3108 Register BaseReg = FrameReg;
3109 int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed();
3110 if (BaseRegOffsetBytes < kMinOffset ||
3111 BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset ||
3112 // BaseReg can be FP, which is not necessarily aligned to 16-bytes. In
3113 // that case, BaseRegOffsetBytes will not be aligned to 16 bytes, which
3114 // is required for the offset of ST2G.
3115 BaseRegOffsetBytes % 16 != 0) {
3116 Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3117 emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg,
3118 StackOffset::getFixed(BaseRegOffsetBytes), TII);
3119 BaseReg = ScratchReg;
3120 BaseRegOffsetBytes = 0;
3121 }
3122
3123 MachineInstr *LastI = nullptr;
3124 while (Size) {
3125 int64_t InstrSize = (Size > 16) ? 32 : 16;
3126 unsigned Opcode =
3127 InstrSize == 16
3128 ? (ZeroData ? AArch64::STZGi : AArch64::STGi)
3129 : (ZeroData ? AArch64::STZ2Gi : AArch64::ST2Gi);
3130 assert(BaseRegOffsetBytes % 16 == 0);
3131 MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode))
3132 .addReg(AArch64::SP)
3133 .addReg(BaseReg)
3134 .addImm(BaseRegOffsetBytes / 16)
3135 .setMemRefs(CombinedMemRefs);
3136 // A store to [BaseReg, #0] should go last for an opportunity to fold the
3137 // final SP adjustment in the epilogue.
3138 if (BaseRegOffsetBytes == 0)
3139 LastI = I;
3140 BaseRegOffsetBytes += InstrSize;
3141 Size -= InstrSize;
3142 }
3143
3144 if (LastI)
3145 MBB->splice(InsertI, MBB, LastI);
3146}
3147
3148void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) {
3149 const AArch64InstrInfo *TII =
3150 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
3151
3152 Register BaseReg = FrameRegUpdate
3153 ? FrameReg
3154 : MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3155 Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass);
3156
3157 emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII);
3158
3159 int64_t LoopSize = Size;
3160 // If the loop size is not a multiple of 32, split off one 16-byte store at
3161 // the end to fold BaseReg update into.
3162 if (FrameRegUpdate && *FrameRegUpdate)
3163 LoopSize -= LoopSize % 32;
3164 MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL,
3165 TII->get(ZeroData ? AArch64::STZGloop_wback
3166 : AArch64::STGloop_wback))
3167 .addDef(SizeReg)
3168 .addDef(BaseReg)
3169 .addImm(LoopSize)
3170 .addReg(BaseReg)
3171 .setMemRefs(CombinedMemRefs);
3172 if (FrameRegUpdate)
3173 LoopI->setFlags(FrameRegUpdateFlags);
3174
3175 int64_t ExtraBaseRegUpdate =
3176 FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0;
3177 LLVM_DEBUG(dbgs() << "TagStoreEdit::emitLoop: LoopSize=" << LoopSize
3178 << ", Size=" << Size
3179 << ", ExtraBaseRegUpdate=" << ExtraBaseRegUpdate
3180 << ", FrameRegUpdate=" << FrameRegUpdate
3181 << ", FrameRegOffset.getFixed()="
3182 << FrameRegOffset.getFixed() << "\n");
3183 if (LoopSize < Size) {
3184 assert(FrameRegUpdate);
3185 assert(Size - LoopSize == 16);
3186 // Tag 16 more bytes at BaseReg and update BaseReg.
3187 int64_t STGOffset = ExtraBaseRegUpdate + 16;
3188 assert(STGOffset % 16 == 0 && STGOffset >= -4096 && STGOffset <= 4080 &&
3189 "STG immediate out of range");
3190 BuildMI(*MBB, InsertI, DL,
3191 TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex))
3192 .addDef(BaseReg)
3193 .addReg(BaseReg)
3194 .addReg(BaseReg)
3195 .addImm(STGOffset / 16)
3196 .setMemRefs(CombinedMemRefs)
3197 .setMIFlags(FrameRegUpdateFlags);
3198 } else if (ExtraBaseRegUpdate) {
3199 // Update BaseReg.
3200 int64_t AddSubOffset = std::abs(ExtraBaseRegUpdate);
3201 assert(AddSubOffset <= 4095 && "ADD/SUB immediate out of range");
3202 BuildMI(
3203 *MBB, InsertI, DL,
3204 TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri))
3205 .addDef(BaseReg)
3206 .addReg(BaseReg)
3207 .addImm(AddSubOffset)
3208 .addImm(0)
3209 .setMIFlags(FrameRegUpdateFlags);
3210 }
3211}
3212
3213// Check if *II is a register update that can be merged into STGloop that ends
3214// at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
3215// end of the loop.
3216bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg,
3217 int64_t Size, int64_t *TotalOffset) {
3218 MachineInstr &MI = *II;
3219 if ((MI.getOpcode() == AArch64::ADDXri ||
3220 MI.getOpcode() == AArch64::SUBXri) &&
3221 MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) {
3222 unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm());
3223 int64_t Offset = MI.getOperand(2).getImm() << Shift;
3224 if (MI.getOpcode() == AArch64::SUBXri)
3225 Offset = -Offset;
3226 int64_t PostOffset = Offset - Size;
3227 // TagStoreEdit::emitLoop might emit either an ADD/SUB after the loop, or
3228 // an STGPostIndex which does the last 16 bytes of tag write. Which one is
3229 // chosen depends on the alignment of the loop size, but the difference
3230 // between the valid ranges for the two instructions is small, so we
3231 // conservatively assume that it could be either case here.
3232 //
3233 // Max offset of STGPostIndex, minus the 16 byte tag write folded into that
3234 // instruction.
3235 const int64_t kMaxOffset = 4080 - 16;
3236 // Max offset of SUBXri.
3237 const int64_t kMinOffset = -4095;
3238 if (PostOffset <= kMaxOffset && PostOffset >= kMinOffset &&
3239 PostOffset % 16 == 0) {
3240 *TotalOffset = Offset;
3241 return true;
3242 }
3243 }
3244 return false;
3245}
3246
3247void mergeMemRefs(const SmallVectorImpl<TagStoreInstr> &TSE,
3249 MemRefs.clear();
3250 for (auto &TS : TSE) {
3251 MachineInstr *MI = TS.MI;
3252 // An instruction without memory operands may access anything. Be
3253 // conservative and return an empty list.
3254 if (MI->memoperands_empty()) {
3255 MemRefs.clear();
3256 return;
3257 }
3258 MemRefs.append(MI->memoperands_begin(), MI->memoperands_end());
3259 }
3260}
3261
3262void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI,
3263 const AArch64FrameLowering *TFI,
3264 bool TryMergeSPUpdate) {
3265 if (TagStores.empty())
3266 return;
3267 TagStoreInstr &FirstTagStore = TagStores[0];
3268 TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1];
3269 Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size;
3270 DL = TagStores[0].MI->getDebugLoc();
3271
3272 Register Reg;
3273 FrameRegOffset = TFI->resolveFrameOffsetReference(
3274 *MF, FirstTagStore.Offset, false /*isFixed*/,
3275 TargetStackID::Default /*StackID*/, Reg,
3276 /*PreferFP=*/false, /*ForSimm=*/true);
3277 FrameReg = Reg;
3278 FrameRegUpdate = std::nullopt;
3279
3280 mergeMemRefs(TagStores, CombinedMemRefs);
3281
3282 LLVM_DEBUG({
3283 dbgs() << "Replacing adjacent STG instructions:\n";
3284 for (const auto &Instr : TagStores) {
3285 dbgs() << " " << *Instr.MI;
3286 }
3287 });
3288
3289 // Size threshold where a loop becomes shorter than a linear sequence of
3290 // tagging instructions.
3291 const int kSetTagLoopThreshold = 176;
3292 if (Size < kSetTagLoopThreshold) {
3293 if (TagStores.size() < 2)
3294 return;
3295 emitUnrolled(InsertI);
3296 } else {
3297 MachineInstr *UpdateInstr = nullptr;
3298 int64_t TotalOffset = 0;
3299 if (TryMergeSPUpdate) {
3300 // See if we can merge base register update into the STGloop.
3301 // This is done in AArch64LoadStoreOptimizer for "normal" stores,
3302 // but STGloop is way too unusual for that, and also it only
3303 // realistically happens in function epilogue. Also, STGloop is expanded
3304 // before that pass.
3305 if (InsertI != MBB->end() &&
3306 canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size,
3307 &TotalOffset)) {
3308 UpdateInstr = &*InsertI++;
3309 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n "
3310 << *UpdateInstr);
3311 }
3312 }
3313
3314 if (!UpdateInstr && TagStores.size() < 2)
3315 return;
3316
3317 if (UpdateInstr) {
3318 FrameRegUpdate = TotalOffset;
3319 FrameRegUpdateFlags = UpdateInstr->getFlags();
3320 }
3321 emitLoop(InsertI);
3322 if (UpdateInstr)
3323 UpdateInstr->eraseFromParent();
3324 }
3325
3326 for (auto &TS : TagStores)
3327 TS.MI->eraseFromParent();
3328}
3329
3330bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset,
3331 int64_t &Size, bool &ZeroData) {
3332 MachineFunction &MF = *MI.getParent()->getParent();
3333 const MachineFrameInfo &MFI = MF.getFrameInfo();
3334
3335 unsigned Opcode = MI.getOpcode();
3336 ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGi ||
3337 Opcode == AArch64::STZ2Gi);
3338
3339 if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) {
3340 if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead())
3341 return false;
3342 if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI())
3343 return false;
3344 Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex());
3345 Size = MI.getOperand(2).getImm();
3346 return true;
3347 }
3348
3349 if (Opcode == AArch64::STGi || Opcode == AArch64::STZGi)
3350 Size = 16;
3351 else if (Opcode == AArch64::ST2Gi || Opcode == AArch64::STZ2Gi)
3352 Size = 32;
3353 else
3354 return false;
3355
3356 if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI())
3357 return false;
3358
3359 Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) +
3360 16 * MI.getOperand(2).getImm();
3361 return true;
3362}
3363
3364// Detect a run of memory tagging instructions for adjacent stack frame slots,
3365// and replace them with a shorter instruction sequence:
3366// * replace STG + STG with ST2G
3367// * replace STGloop + STGloop with STGloop
3368// This code needs to run when stack slot offsets are already known, but before
3369// FrameIndex operands in STG instructions are eliminated.
3371 const AArch64FrameLowering *TFI,
3372 RegScavenger *RS) {
3373 bool FirstZeroData;
3374 int64_t Size, Offset;
3375 MachineInstr &MI = *II;
3376 MachineBasicBlock *MBB = MI.getParent();
3378 if (&MI == &MBB->instr_back())
3379 return II;
3380 if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData))
3381 return II;
3382
3384 Instrs.emplace_back(&MI, Offset, Size);
3385
3386 constexpr int kScanLimit = 10;
3387 int Count = 0;
3389 NextI != E && Count < kScanLimit; ++NextI) {
3390 MachineInstr &MI = *NextI;
3391 bool ZeroData;
3392 int64_t Size, Offset;
3393 // Collect instructions that update memory tags with a FrameIndex operand
3394 // and (when applicable) constant size, and whose output registers are dead
3395 // (the latter is almost always the case in practice). Since these
3396 // instructions effectively have no inputs or outputs, we are free to skip
3397 // any non-aliasing instructions in between without tracking used registers.
3398 if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) {
3399 if (ZeroData != FirstZeroData)
3400 break;
3401 Instrs.emplace_back(&MI, Offset, Size);
3402 continue;
3403 }
3404
3405 // Only count non-transient, non-tagging instructions toward the scan
3406 // limit.
3407 if (!MI.isTransient())
3408 ++Count;
3409
3410 // Just in case, stop before the epilogue code starts.
3411 if (MI.getFlag(MachineInstr::FrameSetup) ||
3413 break;
3414
3415 // Reject anything that may alias the collected instructions.
3416 if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects() || MI.isCall())
3417 break;
3418 }
3419
3420 // New code will be inserted after the last tagging instruction we've found.
3421 MachineBasicBlock::iterator InsertI = Instrs.back().MI;
3422
3423 // All the gathered stack tag instructions are merged and placed after
3424 // last tag store in the list. The check should be made if the nzcv
3425 // flag is live at the point where we are trying to insert. Otherwise
3426 // the nzcv flag might get clobbered if any stg loops are present.
3427
3428 // FIXME : This approach of bailing out from merge is conservative in
3429 // some ways like even if stg loops are not present after merge the
3430 // insert list, this liveness check is done (which is not needed).
3432 LiveRegs.addLiveOuts(*MBB);
3433 for (auto I = MBB->rbegin();; ++I) {
3434 MachineInstr &MI = *I;
3435 if (MI == InsertI)
3436 break;
3437 LiveRegs.stepBackward(*I);
3438 }
3439 InsertI++;
3440 if (LiveRegs.contains(AArch64::NZCV))
3441 return InsertI;
3442
3443 llvm::stable_sort(Instrs,
3444 [](const TagStoreInstr &Left, const TagStoreInstr &Right) {
3445 return Left.Offset < Right.Offset;
3446 });
3447
3448 // Make sure that we don't have any overlapping stores.
3449 int64_t CurOffset = Instrs[0].Offset;
3450 for (auto &Instr : Instrs) {
3451 if (CurOffset > Instr.Offset)
3452 return NextI;
3453 CurOffset = Instr.Offset + Instr.Size;
3454 }
3455
3456 // Find contiguous runs of tagged memory and emit shorter instruction
3457 // sequences for them when possible.
3458 TagStoreEdit TSE(MBB, FirstZeroData);
3459 std::optional<int64_t> EndOffset;
3460 for (auto &Instr : Instrs) {
3461 if (EndOffset && *EndOffset != Instr.Offset) {
3462 // Found a gap.
3463 TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */ false);
3464 TSE.clear();
3465 }
3466
3467 TSE.addInstruction(Instr);
3468 EndOffset = Instr.Offset + Instr.Size;
3469 }
3470
3471 const MachineFunction *MF = MBB->getParent();
3472 // Multiple FP/SP updates in a loop cannot be described by CFI instructions.
3473 TSE.emitCode(
3474 InsertI, TFI, /*TryMergeSPUpdate = */
3476
3477 return InsertI;
3478}
3479} // namespace
3480
3482 MachineFunction &MF, RegScavenger *RS = nullptr) const {
3483 for (auto &BB : MF)
3484 for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();) {
3486 II = tryMergeAdjacentSTG(II, this, RS);
3487 }
3488
3489 // By the time this method is called, most of the prologue/epilogue code is
3490 // already emitted, whether its location was affected by the shrink-wrapping
3491 // optimization or not.
3492 if (!MF.getFunction().hasFnAttribute(Attribute::Naked) &&
3493 shouldSignReturnAddressEverywhere(MF))
3495}
3496
3497/// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
3498/// before the update. This is easily retrieved as it is exactly the offset
3499/// that is set in processFunctionBeforeFrameFinalized.
3501 const MachineFunction &MF, int FI, Register &FrameReg,
3502 bool IgnoreSPUpdates) const {
3503 const MachineFrameInfo &MFI = MF.getFrameInfo();
3504 if (IgnoreSPUpdates) {
3505 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is "
3506 << MFI.getObjectOffset(FI) << "\n");
3507 FrameReg = AArch64::SP;
3508 return StackOffset::getFixed(MFI.getObjectOffset(FI));
3509 }
3510
3511 // Go to common code if we cannot provide sp + offset.
3512 if (MFI.hasVarSizedObjects() ||
3515 return getFrameIndexReference(MF, FI, FrameReg);
3516
3517 FrameReg = AArch64::SP;
3518 return getStackOffset(MF, MFI.getObjectOffset(FI));
3519}
3520
3521/// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
3522/// the parent's frame pointer
3524 const MachineFunction &MF) const {
3525 return 0;
3526}
3527
3528/// Funclets only need to account for space for the callee saved registers,
3529/// as the locals are accounted for in the parent's stack frame.
3531 const MachineFunction &MF) const {
3532 // This is the size of the pushed CSRs.
3533 unsigned CSSize =
3534 MF.getInfo<AArch64FunctionInfo>()->getCalleeSavedStackSize();
3535 // This is the amount of stack a funclet needs to allocate.
3536 return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(),
3537 getStackAlign());
3538}
3539
3540namespace {
3541struct FrameObject {
3542 bool IsValid = false;
3543 // Index of the object in MFI.
3544 int ObjectIndex = 0;
3545 // Group ID this object belongs to.
3546 int GroupIndex = -1;
3547 // This object should be placed first (closest to SP).
3548 bool ObjectFirst = false;
3549 // This object's group (which always contains the object with
3550 // ObjectFirst==true) should be placed first.
3551 bool GroupFirst = false;
3552
3553 // Used to distinguish between FP and GPR accesses. The values are decided so
3554 // that they sort FPR < Hazard < GPR and they can be or'd together.
3555 unsigned Accesses = 0;
3556 enum { AccessFPR = 1, AccessHazard = 2, AccessGPR = 4 };
3557};
3558
3559class GroupBuilder {
3560 SmallVector<int, 8> CurrentMembers;
3561 int NextGroupIndex = 0;
3562 std::vector<FrameObject> &Objects;
3563
3564public:
3565 GroupBuilder(std::vector<FrameObject> &Objects) : Objects(Objects) {}
3566 void AddMember(int Index) { CurrentMembers.push_back(Index); }
3567 void EndCurrentGroup() {
3568 if (CurrentMembers.size() > 1) {
3569 // Create a new group with the current member list. This might remove them
3570 // from their pre-existing groups. That's OK, dealing with overlapping
3571 // groups is too hard and unlikely to make a difference.
3572 LLVM_DEBUG(dbgs() << "group:");
3573 for (int Index : CurrentMembers) {
3574 Objects[Index].GroupIndex = NextGroupIndex;
3575 LLVM_DEBUG(dbgs() << " " << Index);
3576 }
3577 LLVM_DEBUG(dbgs() << "\n");
3578 NextGroupIndex++;
3579 }
3580 CurrentMembers.clear();
3581 }
3582};
3583
3584bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) {
3585 // Objects at a lower index are closer to FP; objects at a higher index are
3586 // closer to SP.
3587 //
3588 // For consistency in our comparison, all invalid objects are placed
3589 // at the end. This also allows us to stop walking when we hit the
3590 // first invalid item after it's all sorted.
3591 //
3592 // If we want to include a stack hazard region, order FPR accesses < the
3593 // hazard object < GPRs accesses in order to create a separation between the
3594 // two. For the Accesses field 1 = FPR, 2 = Hazard Object, 4 = GPR.
3595 //
3596 // Otherwise the "first" object goes first (closest to SP), followed by the
3597 // members of the "first" group.
3598 //
3599 // The rest are sorted by the group index to keep the groups together.
3600 // Higher numbered groups are more likely to be around longer (i.e. untagged
3601 // in the function epilogue and not at some earlier point). Place them closer
3602 // to SP.
3603 //
3604 // If all else equal, sort by the object index to keep the objects in the
3605 // original order.
3606 return std::make_tuple(!A.IsValid, A.Accesses, A.ObjectFirst, A.GroupFirst,
3607 A.GroupIndex, A.ObjectIndex) <
3608 std::make_tuple(!B.IsValid, B.Accesses, B.ObjectFirst, B.GroupFirst,
3609 B.GroupIndex, B.ObjectIndex);
3610}
3611} // namespace
3612
3614 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3616
3617 if ((!OrderFrameObjects && !AFI.hasSplitSVEObjects()) ||
3618 ObjectsToAllocate.empty())
3619 return;
3620
3621 const MachineFrameInfo &MFI = MF.getFrameInfo();
3622 std::vector<FrameObject> FrameObjects(MFI.getObjectIndexEnd());
3623 for (auto &Obj : ObjectsToAllocate) {
3624 FrameObjects[Obj].IsValid = true;
3625 FrameObjects[Obj].ObjectIndex = Obj;
3626 }
3627
3628 // Identify FPR vs GPR slots for hazards, and stack slots that are tagged at
3629 // the same time.
3630 GroupBuilder GB(FrameObjects);
3631 for (auto &MBB : MF) {
3632 for (auto &MI : MBB) {
3633 if (MI.isDebugInstr())
3634 continue;
3635
3636 if (AFI.hasStackHazardSlotIndex()) {
3637 std::optional<int> FI = getLdStFrameID(MI, MFI);
3638 if (FI && *FI >= 0 && *FI < (int)FrameObjects.size()) {
3639 if (MFI.getStackID(*FI) == TargetStackID::ScalableVector ||
3641 FrameObjects[*FI].Accesses |= FrameObject::AccessFPR;
3642 else
3643 FrameObjects[*FI].Accesses |= FrameObject::AccessGPR;
3644 }
3645 }
3646
3647 int OpIndex;
3648 switch (MI.getOpcode()) {
3649 case AArch64::STGloop:
3650 case AArch64::STZGloop:
3651 OpIndex = 3;
3652 break;
3653 case AArch64::STGi:
3654 case AArch64::STZGi:
3655 case AArch64::ST2Gi:
3656 case AArch64::STZ2Gi:
3657 OpIndex = 1;
3658 break;
3659 default:
3660 OpIndex = -1;
3661 }
3662
3663 int TaggedFI = -1;
3664 if (OpIndex >= 0) {
3665 const MachineOperand &MO = MI.getOperand(OpIndex);
3666 if (MO.isFI()) {
3667 int FI = MO.getIndex();
3668 if (FI >= 0 && FI < MFI.getObjectIndexEnd() &&
3669 FrameObjects[FI].IsValid)
3670 TaggedFI = FI;
3671 }
3672 }
3673
3674 // If this is a stack tagging instruction for a slot that is not part of a
3675 // group yet, either start a new group or add it to the current one.
3676 if (TaggedFI >= 0)
3677 GB.AddMember(TaggedFI);
3678 else
3679 GB.EndCurrentGroup();
3680 }
3681 // Groups should never span multiple basic blocks.
3682 GB.EndCurrentGroup();
3683 }
3684
3685 if (AFI.hasStackHazardSlotIndex()) {
3686 FrameObjects[AFI.getStackHazardSlotIndex()].Accesses =
3687 FrameObject::AccessHazard;
3688 // If a stack object is unknown or both GPR and FPR, sort it into GPR.
3689 for (auto &Obj : FrameObjects)
3690 if (!Obj.Accesses ||
3691 Obj.Accesses == (FrameObject::AccessGPR | FrameObject::AccessFPR))
3692 Obj.Accesses = FrameObject::AccessGPR;
3693 }
3694
3695 // If the function's tagged base pointer is pinned to a stack slot, we want to
3696 // put that slot first when possible. This will likely place it at SP + 0,
3697 // and save one instruction when generating the base pointer because IRG does
3698 // not allow an immediate offset.
3699 std::optional<int> TBPI = AFI.getTaggedBasePointerIndex();
3700 if (TBPI) {
3701 FrameObjects[*TBPI].ObjectFirst = true;
3702 FrameObjects[*TBPI].GroupFirst = true;
3703 int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex;
3704 if (FirstGroupIndex >= 0)
3705 for (FrameObject &Object : FrameObjects)
3706 if (Object.GroupIndex == FirstGroupIndex)
3707 Object.GroupFirst = true;
3708 }
3709
3710 llvm::stable_sort(FrameObjects, FrameObjectCompare);
3711
3712 int i = 0;
3713 for (auto &Obj : FrameObjects) {
3714 // All invalid items are sorted at the end, so it's safe to stop.
3715 if (!Obj.IsValid)
3716 break;
3717 ObjectsToAllocate[i++] = Obj.ObjectIndex;
3718 }
3719
3720 LLVM_DEBUG({
3721 dbgs() << "Final frame order:\n";
3722 for (auto &Obj : FrameObjects) {
3723 if (!Obj.IsValid)
3724 break;
3725 dbgs() << " " << Obj.ObjectIndex << ": group " << Obj.GroupIndex;
3726 if (Obj.ObjectFirst)
3727 dbgs() << ", first";
3728 if (Obj.GroupFirst)
3729 dbgs() << ", group-first";
3730 dbgs() << "\n";
3731 }
3732 });
3733}
3734
3735/// Emit a loop to decrement SP until it is equal to TargetReg, with probes at
3736/// least every ProbeSize bytes. Returns an iterator of the first instruction
3737/// after the loop. The difference between SP and TargetReg must be an exact
3738/// multiple of ProbeSize.
3740AArch64FrameLowering::inlineStackProbeLoopExactMultiple(
3741 MachineBasicBlock::iterator MBBI, int64_t ProbeSize,
3742 Register TargetReg) const {
3743 MachineBasicBlock &MBB = *MBBI->getParent();
3744 MachineFunction &MF = *MBB.getParent();
3745 const AArch64InstrInfo *TII =
3746 MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
3747 DebugLoc DL = MBB.findDebugLoc(MBBI);
3748
3749 MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
3750 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock());
3751 MF.insert(MBBInsertPoint, LoopMBB);
3752 MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock());
3753 MF.insert(MBBInsertPoint, ExitMBB);
3754
3755 // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not encodable
3756 // in SUB).
3757 emitFrameOffset(*LoopMBB, LoopMBB->end(), DL, AArch64::SP, AArch64::SP,
3758 StackOffset::getFixed(-ProbeSize), TII,
3760 // STR XZR, [SP]
3761 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::STRXui))
3762 .addReg(AArch64::XZR)
3763 .addReg(AArch64::SP)
3764 .addImm(0)
3766 // CMP SP, TargetReg
3767 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::SUBSXrx64),
3768 AArch64::XZR)
3769 .addReg(AArch64::SP)
3770 .addReg(TargetReg)
3773 // B.CC Loop
3774 BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::Bcc))
3776 .addMBB(LoopMBB)
3778
3779 LoopMBB->addSuccessor(ExitMBB);
3780 LoopMBB->addSuccessor(LoopMBB);
3781 // Synthesize the exit MBB.
3782 ExitMBB->splice(ExitMBB->end(), &MBB, MBBI, MBB.end());
3784 MBB.addSuccessor(LoopMBB);
3785 // Update liveins.
3786 fullyRecomputeLiveIns({ExitMBB, LoopMBB});
3787
3788 return ExitMBB->begin();
3789}
3790
3791void AArch64FrameLowering::inlineStackProbeFixed(
3792 MachineBasicBlock::iterator MBBI, Register ScratchReg, int64_t FrameSize,
3793 StackOffset CFAOffset) const {
3794 MachineBasicBlock *MBB = MBBI->getParent();
3795 MachineFunction &MF = *MBB->getParent();
3796 const AArch64InstrInfo *TII =
3797 MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
3798 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
3799 bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF);
3800 bool HasFP = hasFP(MF);
3801
3802 DebugLoc DL;
3803 int64_t ProbeSize = MF.getInfo<AArch64FunctionInfo>()->getStackProbeSize();
3804 int64_t NumBlocks = FrameSize / ProbeSize;
3805 int64_t ResidualSize = FrameSize % ProbeSize;
3806
3807 LLVM_DEBUG(dbgs() << "Stack probing: total " << FrameSize << " bytes, "
3808 << NumBlocks << " blocks of " << ProbeSize
3809 << " bytes, plus " << ResidualSize << " bytes\n");
3810
3811 // Decrement SP by NumBlock * ProbeSize bytes, with either unrolled or
3812 // ordinary loop.
3813 if (NumBlocks <= AArch64::StackProbeMaxLoopUnroll) {
3814 for (int i = 0; i < NumBlocks; ++i) {
3815 // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not
3816 // encodable in a SUB).
3817 emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP,
3818 StackOffset::getFixed(-ProbeSize), TII,
3819 MachineInstr::FrameSetup, false, false, nullptr,
3820 EmitAsyncCFI && !HasFP, CFAOffset);
3821 CFAOffset += StackOffset::getFixed(ProbeSize);
3822 // STR XZR, [SP]
3823 BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui))
3824 .addReg(AArch64::XZR)
3825 .addReg(AArch64::SP)
3826 .addImm(0)
3828 }
3829 } else if (NumBlocks != 0) {
3830 // SUB ScratchReg, SP, #FrameSize (or equivalent if FrameSize is not
3831 // encodable in ADD). ScrathReg may temporarily become the CFA register.
3832 emitFrameOffset(*MBB, MBBI, DL, ScratchReg, AArch64::SP,
3833 StackOffset::getFixed(-ProbeSize * NumBlocks), TII,
3834 MachineInstr::FrameSetup, false, false, nullptr,
3835 EmitAsyncCFI && !HasFP, CFAOffset);
3836 CFAOffset += StackOffset::getFixed(ProbeSize * NumBlocks);
3837 MBBI = inlineStackProbeLoopExactMultiple(MBBI, ProbeSize, ScratchReg);
3838 MBB = MBBI->getParent();
3839 if (EmitAsyncCFI && !HasFP) {
3840 // Set the CFA register back to SP.
3841 CFIInstBuilder(*MBB, MBBI, MachineInstr::FrameSetup)
3842 .buildDefCFARegister(AArch64::SP);
3843 }
3844 }
3845
3846 if (ResidualSize != 0) {
3847 // SUB SP, SP, #ResidualSize (or equivalent if ResidualSize is not encodable
3848 // in SUB).
3849 emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP,
3850 StackOffset::getFixed(-ResidualSize), TII,
3851 MachineInstr::FrameSetup, false, false, nullptr,
3852 EmitAsyncCFI && !HasFP, CFAOffset);
3853 if (ResidualSize > AArch64::StackProbeMaxUnprobedStack) {
3854 // STR XZR, [SP]
3855 BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui))
3856 .addReg(AArch64::XZR)
3857 .addReg(AArch64::SP)
3858 .addImm(0)
3860 }
3861 }
3862}
3863
3864void AArch64FrameLowering::inlineStackProbe(MachineFunction &MF,
3865 MachineBasicBlock &MBB) const {
3866 // Get the instructions that need to be replaced. We emit at most two of
3867 // these. Remember them in order to avoid complications coming from the need
3868 // to traverse the block while potentially creating more blocks.
3869 SmallVector<MachineInstr *, 4> ToReplace;
3870 for (MachineInstr &MI : MBB)
3871 if (MI.getOpcode() == AArch64::PROBED_STACKALLOC ||
3872 MI.getOpcode() == AArch64::PROBED_STACKALLOC_VAR)
3873 ToReplace.push_back(&MI);
3874
3875 for (MachineInstr *MI : ToReplace) {
3876 if (MI->getOpcode() == AArch64::PROBED_STACKALLOC) {
3877 Register ScratchReg = MI->getOperand(0).getReg();
3878 int64_t FrameSize = MI->getOperand(1).getImm();
3879 StackOffset CFAOffset = StackOffset::get(MI->getOperand(2).getImm(),
3880 MI->getOperand(3).getImm());
3881 inlineStackProbeFixed(MI->getIterator(), ScratchReg, FrameSize,
3882 CFAOffset);
3883 } else {
3884 assert(MI->getOpcode() == AArch64::PROBED_STACKALLOC_VAR &&
3885 "Stack probe pseudo-instruction expected");
3886 const AArch64InstrInfo *TII =
3887 MI->getMF()->getSubtarget<AArch64Subtarget>().getInstrInfo();
3888 Register TargetReg = MI->getOperand(0).getReg();
3889 (void)TII->probedStackAlloc(MI->getIterator(), TargetReg, true);
3890 }
3891 MI->eraseFromParent();
3892 }
3893}
3894
3897 NotAccessed = 0, // Stack object not accessed by load/store instructions.
3898 GPR = 1 << 0, // A general purpose register.
3899 PPR = 1 << 1, // A predicate register.
3900 FPR = 1 << 2, // A floating point/Neon/SVE register.
3901 };
3902
3903 int Idx;
3905 int64_t Size;
3906 unsigned AccessTypes;
3907
3909
3910 bool operator<(const StackAccess &Rhs) const {
3911 return std::make_tuple(start(), Idx) <
3912 std::make_tuple(Rhs.start(), Rhs.Idx);
3913 }
3914
3915 bool isCPU() const {
3916 // Predicate register load and store instructions execute on the CPU.
3918 }
3919 bool isSME() const { return AccessTypes & AccessType::FPR; }
3920 bool isMixed() const { return isCPU() && isSME(); }
3921
3922 int64_t start() const { return Offset.getFixed() + Offset.getScalable(); }
3923 int64_t end() const { return start() + Size; }
3924
3925 std::string getTypeString() const {
3926 switch (AccessTypes) {
3927 case AccessType::FPR:
3928 return "FPR";
3929 case AccessType::PPR:
3930 return "PPR";
3931 case AccessType::GPR:
3932 return "GPR";
3934 return "NA";
3935 default:
3936 return "Mixed";
3937 }
3938 }
3939
3940 void print(raw_ostream &OS) const {
3941 OS << getTypeString() << " stack object at [SP"
3942 << (Offset.getFixed() < 0 ? "" : "+") << Offset.getFixed();
3943 if (Offset.getScalable())
3944 OS << (Offset.getScalable() < 0 ? "" : "+") << Offset.getScalable()
3945 << " * vscale";
3946 OS << "]";
3947 }
3948};
3949
3950static inline raw_ostream &operator<<(raw_ostream &OS, const StackAccess &SA) {
3951 SA.print(OS);
3952 return OS;
3953}
3954
3955void AArch64FrameLowering::emitRemarks(
3956 const MachineFunction &MF, MachineOptimizationRemarkEmitter *ORE) const {
3957
3958 auto *AFI = MF.getInfo<AArch64FunctionInfo>();
3960 return;
3961
3962 unsigned StackHazardSize = getStackHazardSize(MF);
3963 const uint64_t HazardSize =
3964 (StackHazardSize) ? StackHazardSize : StackHazardRemarkSize;
3965
3966 if (HazardSize == 0)
3967 return;
3968
3969 const MachineFrameInfo &MFI = MF.getFrameInfo();
3970 // Bail if function has no stack objects.
3971 if (!MFI.hasStackObjects())
3972 return;
3973
3974 std::vector<StackAccess> StackAccesses(MFI.getNumObjects());
3975
3976 size_t NumFPLdSt = 0;
3977 size_t NumNonFPLdSt = 0;
3978
3979 // Collect stack accesses via Load/Store instructions.
3980 for (const MachineBasicBlock &MBB : MF) {
3981 for (const MachineInstr &MI : MBB) {
3982 if (!MI.mayLoadOrStore() || MI.getNumMemOperands() < 1)
3983 continue;
3984 for (MachineMemOperand *MMO : MI.memoperands()) {
3985 std::optional<int> FI = getMMOFrameID(MMO, MFI);
3986 if (FI && !MFI.isDeadObjectIndex(*FI)) {
3987 int FrameIdx = *FI;
3988
3989 size_t ArrIdx = FrameIdx + MFI.getNumFixedObjects();
3990 if (StackAccesses[ArrIdx].AccessTypes == StackAccess::NotAccessed) {
3991 StackAccesses[ArrIdx].Idx = FrameIdx;
3992 StackAccesses[ArrIdx].Offset =
3993 getFrameIndexReferenceFromSP(MF, FrameIdx);
3994 StackAccesses[ArrIdx].Size = MFI.getObjectSize(FrameIdx);
3995 }
3996
3997 unsigned RegTy = StackAccess::AccessType::GPR;
3998 if (MFI.hasScalableStackID(FrameIdx))
4001 RegTy = StackAccess::FPR;
4002
4003 StackAccesses[ArrIdx].AccessTypes |= RegTy;
4004
4005 if (RegTy == StackAccess::FPR)
4006 ++NumFPLdSt;
4007 else
4008 ++NumNonFPLdSt;
4009 }
4010 }
4011 }
4012 }
4013
4014 if (NumFPLdSt == 0 || NumNonFPLdSt == 0)
4015 return;
4016
4017 llvm::sort(StackAccesses);
4018 llvm::erase_if(StackAccesses, [](const StackAccess &S) {
4020 });
4021
4024
4025 if (StackAccesses.front().isMixed())
4026 MixedObjects.push_back(&StackAccesses.front());
4027
4028 for (auto It = StackAccesses.begin(), End = std::prev(StackAccesses.end());
4029 It != End; ++It) {
4030 const auto &First = *It;
4031 const auto &Second = *(It + 1);
4032
4033 if (Second.isMixed())
4034 MixedObjects.push_back(&Second);
4035
4036 if ((First.isSME() && Second.isCPU()) ||
4037 (First.isCPU() && Second.isSME())) {
4038 uint64_t Distance = static_cast<uint64_t>(Second.start() - First.end());
4039 if (Distance < HazardSize)
4040 HazardPairs.emplace_back(&First, &Second);
4041 }
4042 }
4043
4044 auto EmitRemark = [&](llvm::StringRef Str) {
4045 ORE->emit([&]() {
4046 auto R = MachineOptimizationRemarkAnalysis(
4047 "sme", "StackHazard", MF.getFunction().getSubprogram(), &MF.front());
4048 return R << formatv("stack hazard in '{0}': ", MF.getName()).str() << Str;
4049 });
4050 };
4051
4052 for (const auto &P : HazardPairs)
4053 EmitRemark(formatv("{0} is too close to {1}", *P.first, *P.second).str());
4054
4055 for (const auto *Obj : MixedObjects)
4056 EmitRemark(
4057 formatv("{0} accessed by both GP and FP instructions", *Obj).str());
4058}
unsigned const MachineRegisterInfo * MRI
static void getLiveRegsForEntryMBB(LivePhysRegs &LiveRegs, const MachineBasicBlock &MBB)
static const unsigned DefaultSafeSPDisplacement
This is the biggest offset to the stack pointer we can encode in aarch64 instructions (without using ...
static bool produceCompactUnwindFrame(const AArch64FrameLowering &, MachineFunction &MF)
static cl::opt< bool > StackTaggingMergeSetTag("stack-tagging-merge-settag", cl::desc("merge settag instruction in function epilog"), cl::init(true), cl::Hidden)
bool enableMultiVectorSpillFill(const AArch64Subtarget &Subtarget, MachineFunction &MF)
static std::optional< int > getLdStFrameID(const MachineInstr &MI, const MachineFrameInfo &MFI)
static cl::opt< bool > SplitSVEObjects("aarch64-split-sve-objects", cl::desc("Split allocation of ZPR & PPR objects"), cl::init(true), cl::Hidden)
static cl::opt< bool > StackHazardInNonStreaming("aarch64-stack-hazard-in-non-streaming", cl::init(false), cl::Hidden)
void computeCalleeSaveRegisterPairs(const AArch64FrameLowering &AFL, MachineFunction &MF, ArrayRef< CalleeSavedInfo > CSI, const TargetRegisterInfo *TRI, SmallVectorImpl< RegPairInfo > &RegPairs, bool NeedsFrameRecord)
static cl::opt< bool > OrderFrameObjects("aarch64-order-frame-objects", cl::desc("sort stack allocations"), cl::init(true), cl::Hidden)
static bool invalidateRegisterPairing(bool SpillExtendedVolatile, unsigned SpillCount, unsigned Reg1, unsigned Reg2, bool UsesWinAAPCS, bool NeedsWinCFI, bool NeedsFrameRecord, bool IsFirst, const TargetRegisterInfo *TRI)
Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
static cl::opt< bool > DisableMultiVectorSpillFill("aarch64-disable-multivector-spill-fill", cl::desc("Disable use of LD/ST pairs for SME2 or SVE2p1"), cl::init(false), cl::Hidden)
static cl::opt< bool > EnableRedZone("aarch64-redzone", cl::desc("enable use of redzone on AArch64"), cl::init(false), cl::Hidden)
cl::opt< bool > EnableHomogeneousPrologEpilog("homogeneous-prolog-epilog", cl::Hidden, cl::desc("Emit homogeneous prologue and epilogue for the size " "optimization (default = off)"))
static bool isLikelyToHaveSVEStack(const AArch64FrameLowering &AFL, const MachineFunction &MF)
static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg)
static SVEStackSizes determineSVEStackSizes(MachineFunction &MF, AssignObjectOffsets AssignOffsets)
Process all the SVE stack objects and the SVE stack size and offsets for each object.
static bool isTargetWindows(const MachineFunction &MF)
static unsigned estimateRSStackSizeLimit(MachineFunction &MF)
Look at each instruction that references stack frames and return the stack size limit beyond which so...
static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI, int &Min, int &Max)
returns true if there are any SVE callee saves.
static cl::opt< unsigned > StackHazardRemarkSize("aarch64-stack-hazard-remark-size", cl::init(0), cl::Hidden)
static MCRegister getRegisterOrZero(MCRegister Reg, bool HasSVE)
static unsigned getStackHazardSize(const MachineFunction &MF)
static bool invalidateWindowsRegisterPairing(bool SpillExtendedVolatile, unsigned SpillCount, unsigned Reg1, unsigned Reg2, bool NeedsWinCFI, bool IsFirst, const TargetRegisterInfo *TRI)
MCRegister findFreePredicateReg(BitVector &SavedRegs)
static bool isPPRAccess(const MachineInstr &MI)
static std::optional< int > getMMOFrameID(MachineMemOperand *MMO, const MachineFrameInfo &MFI)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file contains the declaration of the AArch64PrologueEmitter and AArch64EpilogueEmitter classes,...
static const int kSetTagLoopThreshold
static int getArgumentStackToRestore(MachineFunction &MF, MachineBasicBlock &MBB)
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
This file contains the simple types necessary to represent the attributes associated with functions a...
#define CASE(ATTRNAME, AANAME,...)
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
DXIL Forward Handle Accesses
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
static std::string getTypeString(Type *T)
Definition LLParser.cpp:67
This file implements the LivePhysRegs utility for tracking liveness of physical registers.
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
#define H(x, y, z)
Definition MD5.cpp:56
Register Reg
Register const TargetRegisterInfo * TRI
Promote Memory to Register
Definition Mem2Reg.cpp:110
uint64_t IntrinsicInst * II
#define P(N)
This file declares the machine register scavenger class.
unsigned OpIndex
static bool contains(SmallPtrSetImpl< ConstantExpr * > &Cache, ConstantExpr *Expr, Constant *C)
Definition Value.cpp:480
This file defines the make_scope_exit function, which executes user-defined cleanup logic at scope ex...
This file defines the SmallVector class.
#define LLVM_DEBUG(...)
Definition Debug.h:114
StackOffset getSVEStackSize(const MachineFunction &MF) const
Returns the size of the entire SVE stackframe (PPRs + ZPRs).
StackOffset getZPRStackSize(const MachineFunction &MF) const
Returns the size of the entire ZPR stackframe (calleesaves + spills).
void processFunctionBeforeFrameIndicesReplaced(MachineFunction &MF, RegScavenger *RS) const override
processFunctionBeforeFrameIndicesReplaced - This method is called immediately before MO_FrameIndex op...
MachineBasicBlock::iterator eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const override
This method is called during prolog/epilog code insertion to eliminate call frame setup and destroy p...
bool canUseAsPrologue(const MachineBasicBlock &MBB) const override
Check whether or not the given MBB can be used as a prologue for the target.
bool enableStackSlotScavenging(const MachineFunction &MF) const override
Returns true if the stack slot holes in the fixed and callee-save stack area should be used when allo...
bool assignCalleeSavedSpillSlots(MachineFunction &MF, const TargetRegisterInfo *TRI, std::vector< CalleeSavedInfo > &CSI) const override
assignCalleeSavedSpillSlots - Allows target to override spill slot assignment logic.
bool spillCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, ArrayRef< CalleeSavedInfo > CSI, const TargetRegisterInfo *TRI) const override
spillCalleeSavedRegisters - Issues instruction(s) to spill all callee saved registers and returns tru...
bool restoreCalleeSavedRegisters(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, MutableArrayRef< CalleeSavedInfo > CSI, const TargetRegisterInfo *TRI) const override
restoreCalleeSavedRegisters - Issues instruction(s) to restore all callee saved registers and returns...
bool enableFullCFIFixup(const MachineFunction &MF) const override
enableFullCFIFixup - Returns true if we may need to fix the unwind information such that it is accura...
StackOffset getFrameIndexReferenceFromSP(const MachineFunction &MF, int FI) const override
getFrameIndexReferenceFromSP - This method returns the offset from the stack pointer to the slot of t...
bool enableCFIFixup(const MachineFunction &MF) const override
Returns true if we may need to fix the unwind information for the function.
StackOffset getNonLocalFrameIndexReference(const MachineFunction &MF, int FI) const override
getNonLocalFrameIndexReference - This method returns the offset used to reference a frame index locat...
TargetStackID::Value getStackIDForScalableVectors() const override
Returns the StackID that scalable vectors should be associated with.
bool hasFPImpl(const MachineFunction &MF) const override
hasFPImpl - Return true if the specified function should have a dedicated frame pointer register.
void emitPrologue(MachineFunction &MF, MachineBasicBlock &MBB) const override
emitProlog/emitEpilog - These methods insert prolog and epilog code into the function.
void resetCFIToInitialState(MachineBasicBlock &MBB) const override
Emit CFI instructions that recreate the state of the unwind information upon function entry.
bool hasReservedCallFrame(const MachineFunction &MF) const override
hasReservedCallFrame - Under normal circumstances, when a frame pointer is not required,...
bool hasSVECalleeSavesAboveFrameRecord(const MachineFunction &MF) const
StackOffset resolveFrameOffsetReference(const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, TargetStackID::Value StackID, Register &FrameReg, bool PreferFP, bool ForSimm) const
bool canUseRedZone(const MachineFunction &MF) const
Can this function use the red zone for local allocations.
bool needsWinCFI(const MachineFunction &MF) const
bool isFPReserved(const MachineFunction &MF) const
Should the Frame Pointer be reserved for the current function?
void processFunctionBeforeFrameFinalized(MachineFunction &MF, RegScavenger *RS) const override
processFunctionBeforeFrameFinalized - This method is called immediately before the specified function...
int getSEHFrameIndexOffset(const MachineFunction &MF, int FI) const
unsigned getWinEHFuncletFrameSize(const MachineFunction &MF) const
Funclets only need to account for space for the callee saved registers, as the locals are accounted f...
void orderFrameObjects(const MachineFunction &MF, SmallVectorImpl< int > &ObjectsToAllocate) const override
Order the symbols in the local stack frame.
void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const override
StackOffset getPPRStackSize(const MachineFunction &MF) const
Returns the size of the entire PPR stackframe (calleesaves + spills + hazard padding).
void determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, RegScavenger *RS) const override
This method determines which of the registers reported by TargetRegisterInfo::getCalleeSavedRegs() sh...
StackOffset getFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg) const override
getFrameIndexReference - Provide a base+offset reference to an FI slot for debug info.
StackOffset getFrameIndexReferencePreferSP(const MachineFunction &MF, int FI, Register &FrameReg, bool IgnoreSPUpdates) const override
For Win64 AArch64 EH, the offset to the Unwind object is from the SP before the update.
StackOffset resolveFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP, bool ForSimm) const
unsigned getWinEHParentFrameOffset(const MachineFunction &MF) const override
The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve the parent's frame pointer...
bool requiresSaveVG(const MachineFunction &MF) const
void emitPacRetPlusLeafHardening(MachineFunction &MF) const
Harden the entire function with pac-ret.
AArch64FunctionInfo - This class is derived from MachineFunctionInfo and contains private AArch64-spe...
unsigned getCalleeSavedStackSize(const MachineFrameInfo &MFI) const
void setCalleeSaveBaseToFrameRecordOffset(int Offset)
SignReturnAddress getSignReturnAddressCondition() const
void setStackSizeSVE(uint64_t ZPR, uint64_t PPR)
std::optional< int > getTaggedBasePointerIndex() const
bool needsDwarfUnwindInfo(const MachineFunction &MF) const
void setSVECalleeSavedStackSize(unsigned ZPR, unsigned PPR)
bool needsAsyncDwarfUnwindInfo(const MachineFunction &MF) const
static bool isTailCallReturnInst(const MachineInstr &MI)
Returns true if MI is one of the TCRETURN* instructions.
static bool isFpOrNEON(Register Reg)
Returns whether the physical register is FP or NEON.
const AArch64RegisterInfo * getRegisterInfo() const override
bool isNeonAvailable() const
Returns true if the target has NEON and the function at runtime is known to have NEON enabled (e....
const AArch64InstrInfo * getInstrInfo() const override
const AArch64TargetLowering * getTargetLowering() const override
bool isSVEorStreamingSVEAvailable() const
Returns true if the target has access to either the full range of SVE instructions,...
bool isStreaming() const
Returns true if the function has a streaming body.
bool hasInlineStackProbe(const MachineFunction &MF) const override
True if stack clash protection is enabled for this functions.
unsigned getRedZoneSize(const Function &F) const
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
size_t size() const
size - Get the array size.
Definition ArrayRef.h:142
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
bool test(unsigned Idx) const
Definition BitVector.h:480
BitVector & reset()
Definition BitVector.h:411
size_type count() const
count - Returns the number of bits which are set.
Definition BitVector.h:181
BitVector & set()
Definition BitVector.h:370
iterator_range< const_set_bits_iterator > set_bits() const
Definition BitVector.h:159
size_type size() const
size - Returns the number of bits in this bitvector.
Definition BitVector.h:178
Helper class for creating CFI instructions and inserting them into MIR.
The CalleeSavedInfo class tracks the information need to locate where a callee saved register is in t...
A debug info location.
Definition DebugLoc.h:123
bool hasMinSize() const
Optimize this function for minimum size (-Oz).
Definition Function.h:703
CallingConv::ID getCallingConv() const
getCallingConv()/setCallingConv(CC) - These method get and set the calling convention of this functio...
Definition Function.h:270
AttributeList getAttributes() const
Return the attribute list for this Function.
Definition Function.h:352
bool isVarArg() const
isVarArg - Return true if this function takes a variable number of arguments.
Definition Function.h:227
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition Function.cpp:730
A set of physical registers with utility functions to track liveness when walking backward/forward th...
bool usesWindowsCFI() const
Definition MCAsmInfo.h:652
Wrapper class representing physical registers. Should be passed by value.
Definition MCRegister.h:41
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
LLVM_ABI iterator getFirstTerminator()
Returns an iterator to the first terminator instruction of this basic block.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
reverse_iterator rbegin()
iterator insertAfter(iterator I, MachineInstr *MI)
Insert MI into the instruction list after I.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
MachineInstrBundleIterator< MachineInstr > iterator
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
LLVM_ABI int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, bool isAliased=false)
Create a new object at a fixed location on the stack.
bool hasVarSizedObjects() const
This method may be called any time after instruction selection is complete to determine if the stack ...
const AllocaInst * getObjectAllocation(int ObjectIdx) const
Return the underlying Alloca of the specified stack object if it exists.
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
bool hasCalls() const
Return true if the current function has any function calls.
bool isFrameAddressTaken() const
This method may be called any time after instruction selection is complete to determine if there is a...
void setObjectOffset(int ObjectIdx, int64_t SPOffset)
Set the stack frame offset of the specified object.
bool isCalleeSavedObjectIndex(int ObjectIdx) const
uint64_t getMaxCallFrameSize() const
Return the maximum size of a call frame that must be allocated for an outgoing function call.
bool hasPatchPoint() const
This method may be called any time after instruction selection is complete to determine if there is a...
bool hasScalableStackID(int ObjectIdx) const
int getStackProtectorIndex() const
Return the index for the stack protector object.
LLVM_ABI int CreateSpillStackObject(uint64_t Size, Align Alignment)
Create a new statically sized stack object that represents a spill slot, returning a nonnegative iden...
LLVM_ABI uint64_t estimateStackSize(const MachineFunction &MF) const
Estimate and return the size of the stack frame.
void setStackID(int ObjectIdx, uint8_t ID)
bool isCalleeSavedInfoValid() const
Has the callee saved info been calculated yet?
Align getObjectAlign(int ObjectIdx) const
Return the alignment of the specified stack object.
int64_t getObjectSize(int ObjectIdx) const
Return the size of the specified object.
bool isMaxCallFrameSizeComputed() const
bool hasStackMap() const
This method may be called any time after instruction selection is complete to determine if there is a...
const std::vector< CalleeSavedInfo > & getCalleeSavedInfo() const
Returns a reference to call saved info vector for the current function.
unsigned getNumObjects() const
Return the number of objects.
int getObjectIndexEnd() const
Return one past the maximum frame object index.
bool hasStackProtectorIndex() const
bool hasStackObjects() const
Return true if there are any stack objects in this function.
uint8_t getStackID(int ObjectIdx) const
unsigned getNumFixedObjects() const
Return the number of fixed objects.
void setIsCalleeSavedObjectIndex(int ObjectIdx, bool IsCalleeSaved)
int64_t getObjectOffset(int ObjectIdx) const
Return the assigned stack offset of the specified object from the incoming stack pointer.
int getObjectIndexBegin() const
Return the minimum frame object index.
void setObjectAlignment(int ObjectIdx, Align Alignment)
setObjectAlignment - Change the alignment of the specified stack object.
bool isDeadObjectIndex(int ObjectIdx) const
Returns true if the specified index corresponds to a dead object.
const WinEHFuncInfo * getWinEHFuncInfo() const
getWinEHFuncInfo - Return information about how the current function uses Windows exception handling.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineMemOperand * getMachineMemOperand(MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, Align base_alignment, const AAMDNodes &AAInfo=AAMDNodes(), const MDNode *Ranges=nullptr, SyncScope::ID SSID=SyncScope::System, AtomicOrdering Ordering=AtomicOrdering::NotAtomic, AtomicOrdering FailureOrdering=AtomicOrdering::NotAtomic)
getMachineMemOperand - Allocate a new MachineMemOperand.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineBasicBlock & front() const
MachineBasicBlock * CreateMachineBasicBlock(const BasicBlock *BB=nullptr, std::optional< UniqueBBID > BBID=std::nullopt)
CreateMachineInstr - Allocate a new MachineInstr.
void insert(iterator MBBI, MachineBasicBlock *MBB)
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
const MachineInstrBuilder & setMemRefs(ArrayRef< MachineMemOperand * > MMOs) const
const MachineInstrBuilder & addExternalSymbol(const char *FnName, unsigned TargetFlags=0) const
const MachineInstrBuilder & setMIFlag(MachineInstr::MIFlag Flag) const
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & addFrameIndex(int Idx) const
const MachineInstrBuilder & addRegMask(const uint32_t *Mask) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
const MachineInstrBuilder & setMIFlags(unsigned Flags) const
const MachineInstrBuilder & addMemOperand(MachineMemOperand *MMO) const
const MachineInstrBuilder & addDef(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a virtual register definition operand.
Representation of each machine instruction.
void setFlags(unsigned flags)
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
uint32_t getFlags() const
Return the MI flags bitvector.
A description of a memory reference used in the backend.
const PseudoSourceValue * getPseudoValue() const
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
const Value * getValue() const
Return the base address of the memory access.
MachineOperand class - Representation of each machine instruction operand.
int64_t getImm() const
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
LLVM_ABI void emit(DiagnosticInfoOptimizationBase &OptDiag)
Emit an optimization remark.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
LLVM_ABI bool isLiveIn(Register Reg) const
LLVM_ABI const MCPhysReg * getCalleeSavedRegs() const
Returns list of callee saved registers.
LLVM_ABI bool isPhysRegUsed(MCRegister PhysReg, bool SkipRegMaskTest=false) const
Return true if the specified register is modified or read in this function.
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition ArrayRef.h:298
Wrapper class representing virtual and physical registers.
Definition Register.h:20
constexpr bool isValid() const
Definition Register.h:112
SMEAttrs is a utility class to parse the SME ACLE attributes on functions.
bool hasStreamingInterface() const
bool hasNonStreamingInterfaceAndBody() const
bool hasStreamingBody() const
bool insert(const value_type &X)
Insert a new element into the SetVector.
Definition SetVector.h:151
A SetVector that performs no allocations if smaller than a certain size.
Definition SetVector.h:339
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
Definition TypeSize.h:30
int64_t getFixed() const
Returns the fixed component of the stack.
Definition TypeSize.h:46
int64_t getScalable() const
Returns the scalable component of the stack.
Definition TypeSize.h:49
static StackOffset get(int64_t Fixed, int64_t Scalable)
Definition TypeSize.h:41
static StackOffset getScalable(int64_t Scalable)
Definition TypeSize.h:40
static StackOffset getFixed(int64_t Fixed)
Definition TypeSize.h:39
bool hasFP(const MachineFunction &MF) const
hasFP - Return true if the specified function should have a dedicated frame pointer register.
virtual void determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, RegScavenger *RS=nullptr) const
This method determines which of the registers reported by TargetRegisterInfo::getCalleeSavedRegs() sh...
int getOffsetOfLocalArea() const
getOffsetOfLocalArea - This method returns the offset of the local area from the stack pointer on ent...
Align getStackAlign() const
getStackAlignment - This method returns the number of bytes to which the stack pointer must be aligne...
StackDirection getStackGrowthDirection() const
getStackGrowthDirection - Return the direction the stack grows
virtual bool enableCFIFixup(const MachineFunction &MF) const
Returns true if we may need to fix the unwind information for the function.
TargetInstrInfo - Interface to description of machine instruction set.
Primary interface to the complete machine description for the target machine.
const Triple & getTargetTriple() const
TargetOptions Options
const MCAsmInfo * getMCAsmInfo() const
Return target specific asm information.
LLVM_ABI bool FramePointerIsReserved(const MachineFunction &MF) const
FramePointerIsReserved - This returns true if the frame pointer must always either point to a new fra...
LLVM_ABI bool DisableFramePointerElim(const MachineFunction &MF) const
DisableFramePointerElim - This returns true if frame pointer elimination optimization should be disab...
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
bool hasStackRealignment(const MachineFunction &MF) const
True if stack realignment is required and still possible.
virtual const TargetInstrInfo * getInstrInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
static unsigned getShiftValue(unsigned Imm)
getShiftValue - Extract the shift value.
static unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET, unsigned Imm)
getArithExtendImm - Encode the extend type and shift amount for an arithmetic instruction: imm: 3-bit...
const unsigned StackProbeMaxLoopUnroll
Maximum number of iterations to unroll for a constant size probing loop.
const unsigned StackProbeMaxUnprobedStack
Maximum allowed number of unprobed bytes above SP at an ABI boundary.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr char Attrs[]
Key for Kernel::Metadata::mAttrs.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition CallingConv.h:24
@ AArch64_SVE_VectorCall
Used between AArch64 SVE functions.
@ PreserveMost
Used for runtime calls that preserves most registers.
Definition CallingConv.h:63
@ CXX_FAST_TLS
Used for access functions.
Definition CallingConv.h:72
@ GHC
Used by the Glasgow Haskell Compiler (GHC).
Definition CallingConv.h:50
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
Definition CallingConv.h:66
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition CallingConv.h:41
@ PreserveNone
Used for runtime calls that preserves none general registers.
Definition CallingConv.h:90
@ Win64
The C convention as implemented on Windows/x86-64 and AArch64.
@ SwiftTail
This follows the Swift calling convention in how arguments are passed but guarantees tail calls will ...
Definition CallingConv.h:87
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ Define
Register definition.
initializer< Ty > init(const Ty &Val)
NodeAddr< InstrNode * > Instr
Definition RDFGraph.h:389
BaseReg
Stack frame base register. Bit 0 of FREInfo.Info.
Definition SFrame.h:77
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:532
void stable_sort(R &&Range)
Definition STLExtras.h:2070
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
int isAArch64FrameOffsetLegal(const MachineInstr &MI, StackOffset &Offset, bool *OutUseUnscaledOp=nullptr, unsigned *OutUnscaledOp=nullptr, int64_t *EmittableOffset=nullptr)
Check if the Offset is a valid frame offset for MI.
detail::scope_exit< std::decay_t< Callable > > make_scope_exit(Callable &&F)
Definition ScopeExit.h:59
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
@ AArch64FrameOffsetCannotUpdate
Offset cannot apply.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1744
auto formatv(bool Validate, const char *Fmt, Ts &&...Vals)
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
LLVM_ABI raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition Debug.cpp:207
void emitFrameOffset(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, unsigned DestReg, unsigned SrcReg, StackOffset Offset, const TargetInstrInfo *TII, MachineInstr::MIFlag=MachineInstr::NoFlags, bool SetNZCV=false, bool NeedsWinCFI=false, bool *HasWinCFI=nullptr, bool EmitCFAOffset=false, StackOffset InitialOffset={}, unsigned FrameReg=AArch64::SP)
emitFrameOffset - Emit instructions as needed to set DestReg to SrcReg plus Offset.
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
FunctionAddr VTableAddr Count
Definition InstrProf.h:139
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
@ LLVM_MARK_AS_BITMASK_ENUM
Definition ModRef.h:37
@ First
Helpers to iterate all locations in the MemoryEffectsBase class.
Definition ModRef.h:74
unsigned getDefRegState(bool B)
unsigned getKillRegState(bool B)
uint16_t MCPhysReg
An unsigned integer type large enough to represent all physical registers, but not necessarily virtua...
Definition MCRegister.h:21
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
raw_ostream & operator<<(raw_ostream &OS, const APFixedPoint &FX)
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1770
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition STLExtras.h:2132
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition STLExtras.h:1909
LLVM_ABI const Value * getUnderlyingObject(const Value *V, unsigned MaxLookup=MaxLookupSearchDepth)
This method strips off any GEP address adjustments, pointer casts or llvm.threadlocal....
void fullyRecomputeLiveIns(ArrayRef< MachineBasicBlock * > MBBs)
Convenience function for recomputing live-in's for a set of MBBs until the computation converges.
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
bool operator<(const StackAccess &Rhs) const
void print(raw_ostream &OS) const
int64_t start() const
std::string getTypeString() const
int64_t end() const
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
constexpr uint64_t value() const
This is a hole in the type system and should not be abused.
Definition Alignment.h:77
Pair of physical register and lane mask.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
SmallVector< WinEHTryBlockMapEntry, 4 > TryBlockMap
SmallVector< WinEHHandlerType, 1 > HandlerArray