LLVM  13.0.0git
BitcodeReader.cpp
Go to the documentation of this file.
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorOr.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
91  "print-summary-global-ids", cl::init(false), cl::Hidden,
92  cl::desc(
93  "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98  SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104  return make_error<StringError>(
106 }
107 
109  if (!Stream.canSkipToPos(4))
110  return createStringError(std::errc::illegal_byte_sequence,
111  "file too small to contain bitcode header");
112  for (unsigned C : {'B', 'C'})
113  if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114  if (Res.get() != C)
115  return createStringError(std::errc::illegal_byte_sequence,
116  "file doesn't start with bitcode header");
117  } else
118  return Res.takeError();
119  for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120  if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121  if (Res.get() != C)
122  return createStringError(std::errc::illegal_byte_sequence,
123  "file doesn't start with bitcode header");
124  } else
125  return Res.takeError();
126  return Error::success();
127 }
128 
130  const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131  const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133  if (Buffer.getBufferSize() & 3)
134  return error("Invalid bitcode signature");
135 
136  // If we have a wrapper header, parse it and ignore the non-bc file contents.
137  // The magic number is 0x0B17C0DE stored in little endian.
138  if (isBitcodeWrapper(BufPtr, BufEnd))
139  if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140  return error("Invalid bitcode wrapper header");
141 
142  BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143  if (Error Err = hasInvalidBitcodeHeader(Stream))
144  return std::move(Err);
145 
146  return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152  StrTy &Result) {
153  if (Idx > Record.size())
154  return true;
155 
156  Result.append(Record.begin() + Idx, Record.end());
157  return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162  for (auto &F : *M) {
163  if (F.isMaterializable())
164  continue;
165  for (auto &I : instructions(F))
166  I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167  }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
174  return std::move(Err);
175 
176  // Read all the records.
178 
179  std::string ProducerIdentification;
180 
181  while (true) {
182  BitstreamEntry Entry;
183  if (Expected<BitstreamEntry> Res = Stream.advance())
184  Entry = Res.get();
185  else
186  return Res.takeError();
187 
188  switch (Entry.Kind) {
189  default:
191  return error("Malformed block");
193  return ProducerIdentification;
195  // The interesting case.
196  break;
197  }
198 
199  // Read a record.
200  Record.clear();
201  Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202  if (!MaybeBitCode)
203  return MaybeBitCode.takeError();
204  switch (MaybeBitCode.get()) {
205  default: // Default behavior: reject
206  return error("Invalid value");
207  case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208  convertToString(Record, 0, ProducerIdentification);
209  break;
210  case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211  unsigned epoch = (unsigned)Record[0];
212  if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213  return error(
214  Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215  "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216  }
217  }
218  }
219  }
220 }
221 
223  // We expect a number of well-defined blocks, though we don't necessarily
224  // need to understand them all.
225  while (true) {
226  if (Stream.AtEndOfStream())
227  return "";
228 
229  BitstreamEntry Entry;
230  if (Expected<BitstreamEntry> Res = Stream.advance())
231  Entry = std::move(Res.get());
232  else
233  return Res.takeError();
234 
235  switch (Entry.Kind) {
238  return error("Malformed block");
239 
241  if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242  return readIdentificationBlock(Stream);
243 
244  // Ignore other sub-blocks.
245  if (Error Err = Stream.SkipBlock())
246  return std::move(Err);
247  continue;
249  if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250  continue;
251  else
252  return Skipped.takeError();
253  }
254  }
255 }
256 
258  if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259  return std::move(Err);
260 
262  // Read all the records for this module.
263 
264  while (true) {
266  if (!MaybeEntry)
267  return MaybeEntry.takeError();
268  BitstreamEntry Entry = MaybeEntry.get();
269 
270  switch (Entry.Kind) {
271  case BitstreamEntry::SubBlock: // Handled for us already.
273  return error("Malformed block");
275  return false;
277  // The interesting case.
278  break;
279  }
280 
281  // Read a record.
282  Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283  if (!MaybeRecord)
284  return MaybeRecord.takeError();
285  switch (MaybeRecord.get()) {
286  default:
287  break; // Default behavior, ignore unknown content.
288  case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289  std::string S;
290  if (convertToString(Record, 0, S))
291  return error("Invalid record");
292  // Check for the i386 and other (x86_64, ARM) conventions
293  if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294  S.find("__OBJC,__category") != std::string::npos)
295  return true;
296  break;
297  }
298  }
299  Record.clear();
300  }
301  llvm_unreachable("Exit infinite loop");
302 }
303 
305  // We expect a number of well-defined blocks, though we don't necessarily
306  // need to understand them all.
307  while (true) {
308  BitstreamEntry Entry;
309  if (Expected<BitstreamEntry> Res = Stream.advance())
310  Entry = std::move(Res.get());
311  else
312  return Res.takeError();
313 
314  switch (Entry.Kind) {
316  return error("Malformed block");
318  return false;
319 
321  if (Entry.ID == bitc::MODULE_BLOCK_ID)
322  return hasObjCCategoryInModule(Stream);
323 
324  // Ignore other sub-blocks.
325  if (Error Err = Stream.SkipBlock())
326  return std::move(Err);
327  continue;
328 
330  if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331  continue;
332  else
333  return Skipped.takeError();
334  }
335  }
336 }
337 
339  if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340  return std::move(Err);
341 
343 
344  std::string Triple;
345 
346  // Read all the records for this module.
347  while (true) {
349  if (!MaybeEntry)
350  return MaybeEntry.takeError();
351  BitstreamEntry Entry = MaybeEntry.get();
352 
353  switch (Entry.Kind) {
354  case BitstreamEntry::SubBlock: // Handled for us already.
356  return error("Malformed block");
358  return Triple;
360  // The interesting case.
361  break;
362  }
363 
364  // Read a record.
365  Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366  if (!MaybeRecord)
367  return MaybeRecord.takeError();
368  switch (MaybeRecord.get()) {
369  default: break; // Default behavior, ignore unknown content.
370  case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
371  std::string S;
372  if (convertToString(Record, 0, S))
373  return error("Invalid record");
374  Triple = S;
375  break;
376  }
377  }
378  Record.clear();
379  }
380  llvm_unreachable("Exit infinite loop");
381 }
382 
384  // We expect a number of well-defined blocks, though we don't necessarily
385  // need to understand them all.
386  while (true) {
387  Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388  if (!MaybeEntry)
389  return MaybeEntry.takeError();
390  BitstreamEntry Entry = MaybeEntry.get();
391 
392  switch (Entry.Kind) {
394  return error("Malformed block");
396  return "";
397 
399  if (Entry.ID == bitc::MODULE_BLOCK_ID)
400  return readModuleTriple(Stream);
401 
402  // Ignore other sub-blocks.
403  if (Error Err = Stream.SkipBlock())
404  return std::move(Err);
405  continue;
406 
408  if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409  continue;
410  else
411  return Skipped.takeError();
412  }
413  }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420  BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421  : Stream(std::move(Stream)), Strtab(Strtab) {
422  this->Stream.setBlockInfo(&BlockInfo);
423  }
424 
425  BitstreamBlockInfo BlockInfo;
426  BitstreamCursor Stream;
427  StringRef Strtab;
428 
429  /// In version 2 of the bitcode we store names of global values and comdats in
430  /// a string table rather than in the VST.
431  bool UseStrtab = false;
432 
433  Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435  /// If this module uses a string table, pop the reference to the string table
436  /// and return the referenced string and the rest of the record. Otherwise
437  /// just return the record itself.
438  std::pair<StringRef, ArrayRef<uint64_t>>
439  readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441  bool readBlockInfo();
442 
443  // Contains an arbitrary and optional string identifying the bitcode producer
444  std::string ProducerIdentification;
445 
446  Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452  std::string FullMsg = Message.str();
453  if (!ProducerIdentification.empty())
454  FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455  LLVM_VERSION_STRING "')";
456  return ::error(FullMsg);
457 }
458 
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461  if (Record.empty())
462  return error("Invalid record");
463  unsigned ModuleVersion = Record[0];
464  if (ModuleVersion > 2)
465  return error("Invalid value");
466  UseStrtab = ModuleVersion >= 2;
467  return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472  if (!UseStrtab)
473  return {"", Record};
474  // Invalid reference. Let the caller complain about the record being empty.
475  if (Record[0] + Record[1] > Strtab.size())
476  return {"", {}};
477  return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
484  Module *TheModule = nullptr;
485  // Next offset to start scanning for lazy parsing of function bodies.
486  uint64_t NextUnreadBit = 0;
487  // Last function offset found in the VST.
488  uint64_t LastFunctionBlockBit = 0;
489  bool SeenValueSymbolTable = false;
490  uint64_t VSTOffset = 0;
491 
492  std::vector<std::string> SectionTable;
493  std::vector<std::string> GCTable;
494 
495  std::vector<Type*> TypeList;
497  BitcodeReaderValueList ValueList;
498  Optional<MetadataLoader> MDLoader;
499  std::vector<Comdat *> ComdatList;
500  SmallVector<Instruction *, 64> InstructionList;
501 
502  std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504  std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505  std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506  std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507 
508  /// The set of attributes by index. Index zero in the file is for null, and
509  /// is thus not represented here. As such all indices are off by one.
510  std::vector<AttributeList> MAttributes;
511 
512  /// The set of attribute groups.
513  std::map<unsigned, AttributeList> MAttributeGroups;
514 
515  /// While parsing a function body, this is a list of the basic blocks for the
516  /// function.
517  std::vector<BasicBlock*> FunctionBBs;
518 
519  // When reading the module header, this list is populated with functions that
520  // have bodies later in the file.
521  std::vector<Function*> FunctionsWithBodies;
522 
523  // When intrinsic functions are encountered which require upgrading they are
524  // stored here with their replacement function.
525  using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526  UpdatedIntrinsicMap UpgradedIntrinsics;
527  // Intrinsics which were remangled because of types rename
528  UpdatedIntrinsicMap RemangledIntrinsics;
529 
530  // Several operations happen after the module header has been read, but
531  // before function bodies are processed. This keeps track of whether
532  // we've done this yet.
533  bool SeenFirstFunctionBody = false;
534 
535  /// When function bodies are initially scanned, this map contains info about
536  /// where to find deferred function body in the stream.
537  DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538 
539  /// When Metadata block is initially scanned when parsing the module, we may
540  /// choose to defer parsing of the metadata. This vector contains info about
541  /// which Metadata blocks are deferred.
542  std::vector<uint64_t> DeferredMetadataInfo;
543 
544  /// These are basic blocks forward-referenced by block addresses. They are
545  /// inserted lazily into functions when they're loaded. The basic block ID is
546  /// its index into the vector.
548  std::deque<Function *> BasicBlockFwdRefQueue;
549 
550  /// Indicates that we are using a new encoding for instruction operands where
551  /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552  /// instruction number, for a more compact encoding. Some instruction
553  /// operands are not relative to the instruction ID: basic block numbers, and
554  /// types. Once the old style function blocks have been phased out, we would
555  /// not need this flag.
556  bool UseRelativeIDs = false;
557 
558  /// True if all functions will be materialized, negating the need to process
559  /// (e.g.) blockaddress forward references.
560  bool WillMaterializeAllForwardRefs = false;
561 
562  bool StripDebugInfo = false;
563  TBAAVerifier TBAAVerifyHelper;
564 
565  std::vector<std::string> BundleTags;
567 
568 public:
569  BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570  StringRef ProducerIdentification, LLVMContext &Context);
571 
572  Error materializeForwardReferencedFunctions();
573 
574  Error materialize(GlobalValue *GV) override;
575  Error materializeModule() override;
576  std::vector<StructType *> getIdentifiedStructTypes() const override;
577 
578  /// Main interface to parsing a bitcode buffer.
579  /// \returns true if an error occurred.
580  Error parseBitcodeInto(
581  Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
582  DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
583 
584  static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586  /// Materialize any deferred Metadata block.
587  Error materializeMetadata() override;
588 
589  void setStripDebugInfo() override;
590 
591 private:
592  std::vector<StructType *> IdentifiedStructTypes;
593  StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594  StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596  Type *getTypeByID(unsigned ID);
597 
598  Value *getFnValueByID(unsigned ID, Type *Ty) {
599  if (Ty && Ty->isMetadataTy())
600  return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
601  return ValueList.getValueFwdRef(ID, Ty);
602  }
603 
604  Metadata *getFnMetadataByID(unsigned ID) {
605  return MDLoader->getMetadataFwdRefOrLoad(ID);
606  }
607 
608  BasicBlock *getBasicBlock(unsigned ID) const {
609  if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
610  return FunctionBBs[ID];
611  }
612 
613  AttributeList getAttributes(unsigned i) const {
614  if (i-1 < MAttributes.size())
615  return MAttributes[i-1];
616  return AttributeList();
617  }
618 
619  /// Read a value/type pair out of the specified record from slot 'Slot'.
620  /// Increment Slot past the number of slots used in the record. Return true on
621  /// failure.
622  bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
623  unsigned InstNum, Value *&ResVal) {
624  if (Slot == Record.size()) return true;
625  unsigned ValNo = (unsigned)Record[Slot++];
626  // Adjust the ValNo, if it was encoded relative to the InstNum.
627  if (UseRelativeIDs)
628  ValNo = InstNum - ValNo;
629  if (ValNo < InstNum) {
630  // If this is not a forward reference, just return the value we already
631  // have.
632  ResVal = getFnValueByID(ValNo, nullptr);
633  return ResVal == nullptr;
634  }
635  if (Slot == Record.size())
636  return true;
637 
638  unsigned TypeNo = (unsigned)Record[Slot++];
639  ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
640  return ResVal == nullptr;
641  }
642 
643  /// Read a value out of the specified record from slot 'Slot'. Increment Slot
644  /// past the number of slots used by the value in the record. Return true if
645  /// there is an error.
646  bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
647  unsigned InstNum, Type *Ty, Value *&ResVal) {
648  if (getValue(Record, Slot, InstNum, Ty, ResVal))
649  return true;
650  // All values currently take a single record slot.
651  ++Slot;
652  return false;
653  }
654 
655  /// Like popValue, but does not increment the Slot number.
656  bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
657  unsigned InstNum, Type *Ty, Value *&ResVal) {
658  ResVal = getValue(Record, Slot, InstNum, Ty);
659  return ResVal == nullptr;
660  }
661 
662  /// Version of getValue that returns ResVal directly, or 0 if there is an
663  /// error.
664  Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
665  unsigned InstNum, Type *Ty) {
666  if (Slot == Record.size()) return nullptr;
667  unsigned ValNo = (unsigned)Record[Slot];
668  // Adjust the ValNo, if it was encoded relative to the InstNum.
669  if (UseRelativeIDs)
670  ValNo = InstNum - ValNo;
671  return getFnValueByID(ValNo, Ty);
672  }
673 
674  /// Like getValue, but decodes signed VBRs.
675  Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
676  unsigned InstNum, Type *Ty) {
677  if (Slot == Record.size()) return nullptr;
678  unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
679  // Adjust the ValNo, if it was encoded relative to the InstNum.
680  if (UseRelativeIDs)
681  ValNo = InstNum - ValNo;
682  return getFnValueByID(ValNo, Ty);
683  }
684 
685  /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
686  /// corresponding argument's pointee type. Also upgrades intrinsics that now
687  /// require an elementtype attribute.
688  void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys);
689 
690  /// Converts alignment exponent (i.e. power of two (or zero)) to the
691  /// corresponding alignment to use. If alignment is too large, returns
692  /// a corresponding error code.
693  Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
694  Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
696  uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
697  DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
698 
699  Error parseComdatRecord(ArrayRef<uint64_t> Record);
700  Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
701  Error parseFunctionRecord(ArrayRef<uint64_t> Record);
702  Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
704 
705  Error parseAttributeBlock();
706  Error parseAttributeGroupBlock();
707  Error parseTypeTable();
708  Error parseTypeTableBody();
709  Error parseOperandBundleTags();
710  Error parseSyncScopeNames();
711 
713  unsigned NameIndex, Triple &TT);
714  void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
716  Error parseValueSymbolTable(uint64_t Offset = 0);
717  Error parseGlobalValueSymbolTable();
718  Error parseConstants();
719  Error rememberAndSkipFunctionBodies();
720  Error rememberAndSkipFunctionBody();
721  /// Save the positions of the Metadata blocks and skip parsing the blocks.
722  Error rememberAndSkipMetadata();
723  Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
724  Error parseFunctionBody(Function *F);
725  Error globalCleanup();
726  Error resolveGlobalAndIndirectSymbolInits();
727  Error parseUseLists();
728  Error findFunctionInStream(
729  Function *F,
730  DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
731 
732  SyncScope::ID getDecodedSyncScopeID(unsigned Val);
733 };
734 
735 /// Class to manage reading and parsing function summary index bitcode
736 /// files/sections.
737 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
738  /// The module index built during parsing.
739  ModuleSummaryIndex &TheIndex;
740 
741  /// Indicates whether we have encountered a global value summary section
742  /// yet during parsing.
743  bool SeenGlobalValSummary = false;
744 
745  /// Indicates whether we have already parsed the VST, used for error checking.
746  bool SeenValueSymbolTable = false;
747 
748  /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
749  /// Used to enable on-demand parsing of the VST.
750  uint64_t VSTOffset = 0;
751 
752  // Map to save ValueId to ValueInfo association that was recorded in the
753  // ValueSymbolTable. It is used after the VST is parsed to convert
754  // call graph edges read from the function summary from referencing
755  // callees by their ValueId to using the ValueInfo instead, which is how
756  // they are recorded in the summary index being built.
757  // We save a GUID which refers to the same global as the ValueInfo, but
758  // ignoring the linkage, i.e. for values other than local linkage they are
759  // identical.
761  ValueIdToValueInfoMap;
762 
763  /// Map populated during module path string table parsing, from the
764  /// module ID to a string reference owned by the index's module
765  /// path string table, used to correlate with combined index
766  /// summary records.
767  DenseMap<uint64_t, StringRef> ModuleIdMap;
768 
769  /// Original source file name recorded in a bitcode record.
770  std::string SourceFileName;
771 
772  /// The string identifier given to this module by the client, normally the
773  /// path to the bitcode file.
774  StringRef ModulePath;
775 
776  /// For per-module summary indexes, the unique numerical identifier given to
777  /// this module by the client.
778  unsigned ModuleId;
779 
780 public:
781  ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
782  ModuleSummaryIndex &TheIndex,
783  StringRef ModulePath, unsigned ModuleId);
784 
785  Error parseModule();
786 
787 private:
788  void setValueGUID(uint64_t ValueID, StringRef ValueName,
790  StringRef SourceFileName);
791  Error parseValueSymbolTable(
792  uint64_t Offset,
793  DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
794  std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
795  std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
796  bool IsOldProfileFormat,
797  bool HasProfile,
798  bool HasRelBF);
799  Error parseEntireSummary(unsigned ID);
800  Error parseModuleStringTable();
801  void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
802  void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
804  std::vector<FunctionSummary::ParamAccess>
805  parseParamAccesses(ArrayRef<uint64_t> Record);
806 
807  std::pair<ValueInfo, GlobalValue::GUID>
808  getValueInfoFromValueId(unsigned ValueId);
809 
810  void addThisModule();
811  ModuleSummaryIndex::ModuleInfo *getThisModule();
812 };
813 
814 } // end anonymous namespace
815 
817  Error Err) {
818  if (Err) {
819  std::error_code EC;
820  handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
821  EC = EIB.convertToErrorCode();
822  Ctx.emitError(EIB.message());
823  });
824  return EC;
825  }
826  return std::error_code();
827 }
828 
829 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
830  StringRef ProducerIdentification,
832  : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
833  ValueList(Context, Stream.SizeInBytes()) {
834  this->ProducerIdentification = std::string(ProducerIdentification);
835 }
836 
837 Error BitcodeReader::materializeForwardReferencedFunctions() {
838  if (WillMaterializeAllForwardRefs)
839  return Error::success();
840 
841  // Prevent recursion.
842  WillMaterializeAllForwardRefs = true;
843 
844  while (!BasicBlockFwdRefQueue.empty()) {
845  Function *F = BasicBlockFwdRefQueue.front();
846  BasicBlockFwdRefQueue.pop_front();
847  assert(F && "Expected valid function");
848  if (!BasicBlockFwdRefs.count(F))
849  // Already materialized.
850  continue;
851 
852  // Check for a function that isn't materializable to prevent an infinite
853  // loop. When parsing a blockaddress stored in a global variable, there
854  // isn't a trivial way to check if a function will have a body without a
855  // linear search through FunctionsWithBodies, so just check it here.
856  if (!F->isMaterializable())
857  return error("Never resolved function from blockaddress");
858 
859  // Try to materialize F.
860  if (Error Err = materialize(F))
861  return Err;
862  }
863  assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
864 
865  // Reset state.
866  WillMaterializeAllForwardRefs = false;
867  return Error::success();
868 }
869 
870 //===----------------------------------------------------------------------===//
871 // Helper functions to implement forward reference resolution, etc.
872 //===----------------------------------------------------------------------===//
873 
874 static bool hasImplicitComdat(size_t Val) {
875  switch (Val) {
876  default:
877  return false;
878  case 1: // Old WeakAnyLinkage
879  case 4: // Old LinkOnceAnyLinkage
880  case 10: // Old WeakODRLinkage
881  case 11: // Old LinkOnceODRLinkage
882  return true;
883  }
884 }
885 
887  switch (Val) {
888  default: // Map unknown/new linkages to external
889  case 0:
890  return GlobalValue::ExternalLinkage;
891  case 2:
892  return GlobalValue::AppendingLinkage;
893  case 3:
894  return GlobalValue::InternalLinkage;
895  case 5:
896  return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
897  case 6:
898  return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
899  case 7:
900  return GlobalValue::ExternalWeakLinkage;
901  case 8:
902  return GlobalValue::CommonLinkage;
903  case 9:
904  return GlobalValue::PrivateLinkage;
905  case 12:
906  return GlobalValue::AvailableExternallyLinkage;
907  case 13:
908  return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
909  case 14:
910  return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
911  case 15:
912  return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
913  case 1: // Old value with implicit comdat.
914  case 16:
915  return GlobalValue::WeakAnyLinkage;
916  case 10: // Old value with implicit comdat.
917  case 17:
918  return GlobalValue::WeakODRLinkage;
919  case 4: // Old value with implicit comdat.
920  case 18:
921  return GlobalValue::LinkOnceAnyLinkage;
922  case 11: // Old value with implicit comdat.
923  case 19:
924  return GlobalValue::LinkOnceODRLinkage;
925  }
926 }
927 
928 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
930  Flags.ReadNone = RawFlags & 0x1;
931  Flags.ReadOnly = (RawFlags >> 1) & 0x1;
932  Flags.NoRecurse = (RawFlags >> 2) & 0x1;
933  Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
934  Flags.NoInline = (RawFlags >> 4) & 0x1;
935  Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
936  return Flags;
937 }
938 
939 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
940 //
941 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
942 // visibility: [8, 10).
944  uint64_t Version) {
945  // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
946  // like getDecodedLinkage() above. Any future change to the linkage enum and
947  // to getDecodedLinkage() will need to be taken into account here as above.
948  auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
949  auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
950  RawFlags = RawFlags >> 4;
951  bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
952  // The Live flag wasn't introduced until version 3. For dead stripping
953  // to work correctly on earlier versions, we must conservatively treat all
954  // values as live.
955  bool Live = (RawFlags & 0x2) || Version < 3;
956  bool Local = (RawFlags & 0x4);
957  bool AutoHide = (RawFlags & 0x8);
958 
959  return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
960  Live, Local, AutoHide);
961 }
962 
963 // Decode the flags for GlobalVariable in the summary
966  (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
967  (RawFlags & 0x4) ? true : false,
968  (GlobalObject::VCallVisibility)(RawFlags >> 3));
969 }
970 
972  switch (Val) {
973  default: // Map unknown visibilities to default.
974  case 0: return GlobalValue::DefaultVisibility;
975  case 1: return GlobalValue::HiddenVisibility;
976  case 2: return GlobalValue::ProtectedVisibility;
977  }
978 }
979 
982  switch (Val) {
983  default: // Map unknown values to default.
984  case 0: return GlobalValue::DefaultStorageClass;
985  case 1: return GlobalValue::DLLImportStorageClass;
986  case 2: return GlobalValue::DLLExportStorageClass;
987  }
988 }
989 
990 static bool getDecodedDSOLocal(unsigned Val) {
991  switch(Val) {
992  default: // Map unknown values to preemptable.
993  case 0: return false;
994  case 1: return true;
995  }
996 }
997 
998 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
999  switch (Val) {
1000  case 0: return GlobalVariable::NotThreadLocal;
1001  default: // Map unknown non-zero value to general dynamic.
1002  case 1: return GlobalVariable::GeneralDynamicTLSModel;
1003  case 2: return GlobalVariable::LocalDynamicTLSModel;
1004  case 3: return GlobalVariable::InitialExecTLSModel;
1005  case 4: return GlobalVariable::LocalExecTLSModel;
1006  }
1007 }
1008 
1009 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1010  switch (Val) {
1011  default: // Map unknown to UnnamedAddr::None.
1012  case 0: return GlobalVariable::UnnamedAddr::None;
1013  case 1: return GlobalVariable::UnnamedAddr::Global;
1014  case 2: return GlobalVariable::UnnamedAddr::Local;
1015  }
1016 }
1017 
1018 static int getDecodedCastOpcode(unsigned Val) {
1019  switch (Val) {
1020  default: return -1;
1021  case bitc::CAST_TRUNC : return Instruction::Trunc;
1022  case bitc::CAST_ZEXT : return Instruction::ZExt;
1023  case bitc::CAST_SEXT : return Instruction::SExt;
1024  case bitc::CAST_FPTOUI : return Instruction::FPToUI;
1025  case bitc::CAST_FPTOSI : return Instruction::FPToSI;
1026  case bitc::CAST_UITOFP : return Instruction::UIToFP;
1027  case bitc::CAST_SITOFP : return Instruction::SIToFP;
1028  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1029  case bitc::CAST_FPEXT : return Instruction::FPExt;
1030  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1031  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1032  case bitc::CAST_BITCAST : return Instruction::BitCast;
1033  case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1034  }
1035 }
1036 
1037 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1038  bool IsFP = Ty->isFPOrFPVectorTy();
1039  // UnOps are only valid for int/fp or vector of int/fp types
1040  if (!IsFP && !Ty->isIntOrIntVectorTy())
1041  return -1;
1042 
1043  switch (Val) {
1044  default:
1045  return -1;
1046  case bitc::UNOP_FNEG:
1047  return IsFP ? Instruction::FNeg : -1;
1048  }
1049 }
1050 
1051 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1052  bool IsFP = Ty->isFPOrFPVectorTy();
1053  // BinOps are only valid for int/fp or vector of int/fp types
1054  if (!IsFP && !Ty->isIntOrIntVectorTy())
1055  return -1;
1056 
1057  switch (Val) {
1058  default:
1059  return -1;
1060  case bitc::BINOP_ADD:
1061  return IsFP ? Instruction::FAdd : Instruction::Add;
1062  case bitc::BINOP_SUB:
1063  return IsFP ? Instruction::FSub : Instruction::Sub;
1064  case bitc::BINOP_MUL:
1065  return IsFP ? Instruction::FMul : Instruction::Mul;
1066  case bitc::BINOP_UDIV:
1067  return IsFP ? -1 : Instruction::UDiv;
1068  case bitc::BINOP_SDIV:
1069  return IsFP ? Instruction::FDiv : Instruction::SDiv;
1070  case bitc::BINOP_UREM:
1071  return IsFP ? -1 : Instruction::URem;
1072  case bitc::BINOP_SREM:
1073  return IsFP ? Instruction::FRem : Instruction::SRem;
1074  case bitc::BINOP_SHL:
1075  return IsFP ? -1 : Instruction::Shl;
1076  case bitc::BINOP_LSHR:
1077  return IsFP ? -1 : Instruction::LShr;
1078  case bitc::BINOP_ASHR:
1079  return IsFP ? -1 : Instruction::AShr;
1080  case bitc::BINOP_AND:
1081  return IsFP ? -1 : Instruction::And;
1082  case bitc::BINOP_OR:
1083  return IsFP ? -1 : Instruction::Or;
1084  case bitc::BINOP_XOR:
1085  return IsFP ? -1 : Instruction::Xor;
1086  }
1087 }
1088 
1090  switch (Val) {
1091  default: return AtomicRMWInst::BAD_BINOP;
1092  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1093  case bitc::RMW_ADD: return AtomicRMWInst::Add;
1094  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1095  case bitc::RMW_AND: return AtomicRMWInst::And;
1096  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1097  case bitc::RMW_OR: return AtomicRMWInst::Or;
1098  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1099  case bitc::RMW_MAX: return AtomicRMWInst::Max;
1100  case bitc::RMW_MIN: return AtomicRMWInst::Min;
1101  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1102  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1103  case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1104  case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1105  }
1106 }
1107 
1108 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1109  switch (Val) {
1110  case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1112  case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1113  case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1114  case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1115  case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1116  default: // Map unknown orderings to sequentially-consistent.
1117  case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1118  }
1119 }
1120 
1122  switch (Val) {
1123  default: // Map unknown selection kinds to any.
1125  return Comdat::Any;
1127  return Comdat::ExactMatch;
1129  return Comdat::Largest;
1131  return Comdat::NoDeduplicate;
1133  return Comdat::SameSize;
1134  }
1135 }
1136 
1138  FastMathFlags FMF;
1139  if (0 != (Val & bitc::UnsafeAlgebra))
1140  FMF.setFast();
1141  if (0 != (Val & bitc::AllowReassoc))
1142  FMF.setAllowReassoc();
1143  if (0 != (Val & bitc::NoNaNs))
1144  FMF.setNoNaNs();
1145  if (0 != (Val & bitc::NoInfs))
1146  FMF.setNoInfs();
1147  if (0 != (Val & bitc::NoSignedZeros))
1148  FMF.setNoSignedZeros();
1149  if (0 != (Val & bitc::AllowReciprocal))
1150  FMF.setAllowReciprocal();
1151  if (0 != (Val & bitc::AllowContract))
1152  FMF.setAllowContract(true);
1153  if (0 != (Val & bitc::ApproxFunc))
1154  FMF.setApproxFunc();
1155  return FMF;
1156 }
1157 
1158 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1159  switch (Val) {
1160  case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1161  case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1162  }
1163 }
1164 
1165 Type *BitcodeReader::getTypeByID(unsigned ID) {
1166  // The type table size is always specified correctly.
1167  if (ID >= TypeList.size())
1168  return nullptr;
1169 
1170  if (Type *Ty = TypeList[ID])
1171  return Ty;
1172 
1173  // If we have a forward reference, the only possible case is when it is to a
1174  // named struct. Just create a placeholder for now.
1175  return TypeList[ID] = createIdentifiedStructType(Context);
1176 }
1177 
1178 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1179  StringRef Name) {
1180  auto *Ret = StructType::create(Context, Name);
1181  IdentifiedStructTypes.push_back(Ret);
1182  return Ret;
1183 }
1184 
1185 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1186  auto *Ret = StructType::create(Context);
1187  IdentifiedStructTypes.push_back(Ret);
1188  return Ret;
1189 }
1190 
1191 //===----------------------------------------------------------------------===//
1192 // Functions for parsing blocks from the bitcode file
1193 //===----------------------------------------------------------------------===//
1194 
1196  switch (Val) {
1197  case Attribute::EndAttrKinds:
1198  case Attribute::EmptyKey:
1199  case Attribute::TombstoneKey:
1200  llvm_unreachable("Synthetic enumerators which should never get here");
1201 
1202  case Attribute::None: return 0;
1203  case Attribute::ZExt: return 1 << 0;
1204  case Attribute::SExt: return 1 << 1;
1205  case Attribute::NoReturn: return 1 << 2;
1206  case Attribute::InReg: return 1 << 3;
1207  case Attribute::StructRet: return 1 << 4;
1208  case Attribute::NoUnwind: return 1 << 5;
1209  case Attribute::NoAlias: return 1 << 6;
1210  case Attribute::ByVal: return 1 << 7;
1211  case Attribute::Nest: return 1 << 8;
1212  case Attribute::ReadNone: return 1 << 9;
1213  case Attribute::ReadOnly: return 1 << 10;
1214  case Attribute::NoInline: return 1 << 11;
1215  case Attribute::AlwaysInline: return 1 << 12;
1216  case Attribute::OptimizeForSize: return 1 << 13;
1217  case Attribute::StackProtect: return 1 << 14;
1218  case Attribute::StackProtectReq: return 1 << 15;
1219  case Attribute::Alignment: return 31 << 16;
1220  case Attribute::NoCapture: return 1 << 21;
1221  case Attribute::NoRedZone: return 1 << 22;
1222  case Attribute::NoImplicitFloat: return 1 << 23;
1223  case Attribute::Naked: return 1 << 24;
1224  case Attribute::InlineHint: return 1 << 25;
1225  case Attribute::StackAlignment: return 7 << 26;
1226  case Attribute::ReturnsTwice: return 1 << 29;
1227  case Attribute::UWTable: return 1 << 30;
1228  case Attribute::NonLazyBind: return 1U << 31;
1229  case Attribute::SanitizeAddress: return 1ULL << 32;
1230  case Attribute::MinSize: return 1ULL << 33;
1231  case Attribute::NoDuplicate: return 1ULL << 34;
1232  case Attribute::StackProtectStrong: return 1ULL << 35;
1233  case Attribute::SanitizeThread: return 1ULL << 36;
1234  case Attribute::SanitizeMemory: return 1ULL << 37;
1235  case Attribute::NoBuiltin: return 1ULL << 38;
1236  case Attribute::Returned: return 1ULL << 39;
1237  case Attribute::Cold: return 1ULL << 40;
1238  case Attribute::Builtin: return 1ULL << 41;
1239  case Attribute::OptimizeNone: return 1ULL << 42;
1240  case Attribute::InAlloca: return 1ULL << 43;
1241  case Attribute::NonNull: return 1ULL << 44;
1242  case Attribute::JumpTable: return 1ULL << 45;
1243  case Attribute::Convergent: return 1ULL << 46;
1244  case Attribute::SafeStack: return 1ULL << 47;
1245  case Attribute::NoRecurse: return 1ULL << 48;
1246  case Attribute::InaccessibleMemOnly: return 1ULL << 49;
1247  case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1248  case Attribute::SwiftSelf: return 1ULL << 51;
1249  case Attribute::SwiftError: return 1ULL << 52;
1250  case Attribute::WriteOnly: return 1ULL << 53;
1251  case Attribute::Speculatable: return 1ULL << 54;
1252  case Attribute::StrictFP: return 1ULL << 55;
1253  case Attribute::SanitizeHWAddress: return 1ULL << 56;
1254  case Attribute::NoCfCheck: return 1ULL << 57;
1255  case Attribute::OptForFuzzing: return 1ULL << 58;
1256  case Attribute::ShadowCallStack: return 1ULL << 59;
1257  case Attribute::SpeculativeLoadHardening:
1258  return 1ULL << 60;
1259  case Attribute::ImmArg:
1260  return 1ULL << 61;
1261  case Attribute::WillReturn:
1262  return 1ULL << 62;
1263  case Attribute::NoFree:
1264  return 1ULL << 63;
1265  default:
1266  // Other attributes are not supported in the raw format,
1267  // as we ran out of space.
1268  return 0;
1269  }
1270  llvm_unreachable("Unsupported attribute type");
1271 }
1272 
1273 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1274  if (!Val) return;
1275 
1276  for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1277  I = Attribute::AttrKind(I + 1)) {
1278  if (uint64_t A = (Val & getRawAttributeMask(I))) {
1279  if (I == Attribute::Alignment)
1280  B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1281  else if (I == Attribute::StackAlignment)
1282  B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1283  else if (Attribute::isTypeAttrKind(I))
1284  B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1285  else
1286  B.addAttribute(I);
1287  }
1288  }
1289 }
1290 
1291 /// This fills an AttrBuilder object with the LLVM attributes that have
1292 /// been decoded from the given integer. This function must stay in sync with
1293 /// 'encodeLLVMAttributesForBitcode'.
1295  uint64_t EncodedAttrs) {
1296  // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1297  // the bits above 31 down by 11 bits.
1298  unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1299  assert((!Alignment || isPowerOf2_32(Alignment)) &&
1300  "Alignment must be a power of two.");
1301 
1302  if (Alignment)
1303  B.addAlignmentAttr(Alignment);
1304  addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1305  (EncodedAttrs & 0xffff));
1306 }
1307 
1308 Error BitcodeReader::parseAttributeBlock() {
1309  if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1310  return Err;
1311 
1312  if (!MAttributes.empty())
1313  return error("Invalid multiple blocks");
1314 
1316 
1318 
1319  // Read all the records.
1320  while (true) {
1321  Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1322  if (!MaybeEntry)
1323  return MaybeEntry.takeError();
1324  BitstreamEntry Entry = MaybeEntry.get();
1325 
1326  switch (Entry.Kind) {
1327  case BitstreamEntry::SubBlock: // Handled for us already.
1328  case BitstreamEntry::Error:
1329  return error("Malformed block");
1330  case BitstreamEntry::EndBlock:
1331  return Error::success();
1332  case BitstreamEntry::Record:
1333  // The interesting case.
1334  break;
1335  }
1336 
1337  // Read a record.
1338  Record.clear();
1339  Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1340  if (!MaybeRecord)
1341  return MaybeRecord.takeError();
1342  switch (MaybeRecord.get()) {
1343  default: // Default behavior: ignore.
1344  break;
1345  case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1346  // Deprecated, but still needed to read old bitcode files.
1347  if (Record.size() & 1)
1348  return error("Invalid record");
1349 
1350  for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1351  AttrBuilder B;
1353  Attrs.push_back(AttributeList::get(Context, Record[i], B));
1354  }
1355 
1356  MAttributes.push_back(AttributeList::get(Context, Attrs));
1357  Attrs.clear();
1358  break;
1359  case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1360  for (unsigned i = 0, e = Record.size(); i != e; ++i)
1361  Attrs.push_back(MAttributeGroups[Record[i]]);
1362 
1363  MAttributes.push_back(AttributeList::get(Context, Attrs));
1364  Attrs.clear();
1365  break;
1366  }
1367  }
1368 }
1369 
1370 // Returns Attribute::None on unrecognized codes.
1372  switch (Code) {
1373  default:
1374  return Attribute::None;
1376  return Attribute::Alignment;
1378  return Attribute::AlwaysInline;
1380  return Attribute::ArgMemOnly;
1382  return Attribute::Builtin;
1384  return Attribute::ByVal;
1386  return Attribute::InAlloca;
1387  case bitc::ATTR_KIND_COLD:
1388  return Attribute::Cold;
1390  return Attribute::Convergent;
1392  return Attribute::ElementType;
1394  return Attribute::InaccessibleMemOnly;
1396  return Attribute::InaccessibleMemOrArgMemOnly;
1398  return Attribute::InlineHint;
1400  return Attribute::InReg;
1402  return Attribute::JumpTable;
1404  return Attribute::MinSize;
1405  case bitc::ATTR_KIND_NAKED:
1406  return Attribute::Naked;
1407  case bitc::ATTR_KIND_NEST:
1408  return Attribute::Nest;
1410  return Attribute::NoAlias;
1412  return Attribute::NoBuiltin;
1414  return Attribute::NoCallback;
1416  return Attribute::NoCapture;
1418  return Attribute::NoDuplicate;
1420  return Attribute::NoFree;
1422  return Attribute::NoImplicitFloat;
1424  return Attribute::NoInline;
1426  return Attribute::NoRecurse;
1428  return Attribute::NoMerge;
1430  return Attribute::NonLazyBind;
1432  return Attribute::NonNull;
1434  return Attribute::Dereferenceable;
1436  return Attribute::DereferenceableOrNull;
1438  return Attribute::AllocSize;
1440  return Attribute::NoRedZone;
1442  return Attribute::NoReturn;
1444  return Attribute::NoSync;
1446  return Attribute::NoCfCheck;
1448  return Attribute::NoProfile;
1450  return Attribute::NoUnwind;
1452  return Attribute::NoSanitizeCoverage;
1454  return Attribute::NullPointerIsValid;
1456  return Attribute::OptForFuzzing;
1458  return Attribute::OptimizeForSize;
1460  return Attribute::OptimizeNone;
1462  return Attribute::ReadNone;
1464  return Attribute::ReadOnly;
1466  return Attribute::Returned;
1468  return Attribute::ReturnsTwice;
1469  case bitc::ATTR_KIND_S_EXT:
1470  return Attribute::SExt;
1472  return Attribute::Speculatable;
1474  return Attribute::StackAlignment;
1476  return Attribute::StackProtect;
1478  return Attribute::StackProtectReq;
1480  return Attribute::StackProtectStrong;
1482  return Attribute::SafeStack;
1484  return Attribute::ShadowCallStack;
1486  return Attribute::StrictFP;
1488  return Attribute::StructRet;
1490  return Attribute::SanitizeAddress;
1492  return Attribute::SanitizeHWAddress;
1494  return Attribute::SanitizeThread;
1496  return Attribute::SanitizeMemory;
1498  return Attribute::SpeculativeLoadHardening;
1500  return Attribute::SwiftError;
1502  return Attribute::SwiftSelf;
1504  return Attribute::SwiftAsync;
1506  return Attribute::UWTable;
1508  return Attribute::VScaleRange;
1510  return Attribute::WillReturn;
1512  return Attribute::WriteOnly;
1513  case bitc::ATTR_KIND_Z_EXT:
1514  return Attribute::ZExt;
1516  return Attribute::ImmArg;
1518  return Attribute::SanitizeMemTag;
1520  return Attribute::Preallocated;
1522  return Attribute::NoUndef;
1523  case bitc::ATTR_KIND_BYREF:
1524  return Attribute::ByRef;
1526  return Attribute::MustProgress;
1527  case bitc::ATTR_KIND_HOT:
1528  return Attribute::Hot;
1529  }
1530 }
1531 
1532 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1533  MaybeAlign &Alignment) {
1534  // Note: Alignment in bitcode files is incremented by 1, so that zero
1535  // can be used for default alignment.
1536  if (Exponent > Value::MaxAlignmentExponent + 1)
1537  return error("Invalid alignment value");
1538  Alignment = decodeMaybeAlign(Exponent);
1539  return Error::success();
1540 }
1541 
1542 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1544  if (*Kind == Attribute::None)
1545  return error("Unknown attribute kind (" + Twine(Code) + ")");
1546  return Error::success();
1547 }
1548 
1549 Error BitcodeReader::parseAttributeGroupBlock() {
1550  if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1551  return Err;
1552 
1553  if (!MAttributeGroups.empty())
1554  return error("Invalid multiple blocks");
1555 
1557 
1558  // Read all the records.
1559  while (true) {
1560  Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1561  if (!MaybeEntry)
1562  return MaybeEntry.takeError();
1563  BitstreamEntry Entry = MaybeEntry.get();
1564 
1565  switch (Entry.Kind) {
1566  case BitstreamEntry::SubBlock: // Handled for us already.
1567  case BitstreamEntry::Error:
1568  return error("Malformed block");
1569  case BitstreamEntry::EndBlock:
1570  return Error::success();
1571  case BitstreamEntry::Record:
1572  // The interesting case.
1573  break;
1574  }
1575 
1576  // Read a record.
1577  Record.clear();
1578  Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1579  if (!MaybeRecord)
1580  return MaybeRecord.takeError();
1581  switch (MaybeRecord.get()) {
1582  default: // Default behavior: ignore.
1583  break;
1584  case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1585  if (Record.size() < 3)
1586  return error("Invalid record");
1587 
1588  uint64_t GrpID = Record[0];
1589  uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1590 
1591  AttrBuilder B;
1592  for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1593  if (Record[i] == 0) { // Enum attribute
1595  if (Error Err = parseAttrKind(Record[++i], &Kind))
1596  return Err;
1597 
1598  // Upgrade old-style byval attribute to one with a type, even if it's
1599  // nullptr. We will have to insert the real type when we associate
1600  // this AttributeList with a function.
1601  if (Kind == Attribute::ByVal)
1602  B.addByValAttr(nullptr);
1603  else if (Kind == Attribute::StructRet)
1604  B.addStructRetAttr(nullptr);
1605  else if (Kind == Attribute::InAlloca)
1606  B.addInAllocaAttr(nullptr);
1607  else if (Attribute::isEnumAttrKind(Kind))
1608  B.addAttribute(Kind);
1609  else
1610  return error("Not an enum attribute");
1611  } else if (Record[i] == 1) { // Integer attribute
1613  if (Error Err = parseAttrKind(Record[++i], &Kind))
1614  return Err;
1615  if (!Attribute::isIntAttrKind(Kind))
1616  return error("Not an int attribute");
1617  if (Kind == Attribute::Alignment)
1618  B.addAlignmentAttr(Record[++i]);
1619  else if (Kind == Attribute::StackAlignment)
1620  B.addStackAlignmentAttr(Record[++i]);
1621  else if (Kind == Attribute::Dereferenceable)
1622  B.addDereferenceableAttr(Record[++i]);
1623  else if (Kind == Attribute::DereferenceableOrNull)
1624  B.addDereferenceableOrNullAttr(Record[++i]);
1625  else if (Kind == Attribute::AllocSize)
1626  B.addAllocSizeAttrFromRawRepr(Record[++i]);
1627  else if (Kind == Attribute::VScaleRange)
1628  B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1629  } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1630  bool HasValue = (Record[i++] == 4);
1631  SmallString<64> KindStr;
1632  SmallString<64> ValStr;
1633 
1634  while (Record[i] != 0 && i != e)
1635  KindStr += Record[i++];
1636  assert(Record[i] == 0 && "Kind string not null terminated");
1637 
1638  if (HasValue) {
1639  // Has a value associated with it.
1640  ++i; // Skip the '0' that terminates the "kind" string.
1641  while (Record[i] != 0 && i != e)
1642  ValStr += Record[i++];
1643  assert(Record[i] == 0 && "Value string not null terminated");
1644  }
1645 
1646  B.addAttribute(KindStr.str(), ValStr.str());
1647  } else {
1648  assert((Record[i] == 5 || Record[i] == 6) &&
1649  "Invalid attribute group entry");
1650  bool HasType = Record[i] == 6;
1652  if (Error Err = parseAttrKind(Record[++i], &Kind))
1653  return Err;
1654  if (!Attribute::isTypeAttrKind(Kind))
1655  return error("Not a type attribute");
1656 
1657  B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1658  }
1659  }
1660 
1662  MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1663  break;
1664  }
1665  }
1666  }
1667 }
1668 
1669 Error BitcodeReader::parseTypeTable() {
1670  if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1671  return Err;
1672 
1673  return parseTypeTableBody();
1674 }
1675 
1676 Error BitcodeReader::parseTypeTableBody() {
1677  if (!TypeList.empty())
1678  return error("Invalid multiple blocks");
1679 
1681  unsigned NumRecords = 0;
1682 
1684 
1685  // Read all the records for this type table.
1686  while (true) {
1687  Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1688  if (!MaybeEntry)
1689  return MaybeEntry.takeError();
1690  BitstreamEntry Entry = MaybeEntry.get();
1691 
1692  switch (Entry.Kind) {
1693  case BitstreamEntry::SubBlock: // Handled for us already.
1694  case BitstreamEntry::Error:
1695  return error("Malformed block");
1696  case BitstreamEntry::EndBlock:
1697  if (NumRecords != TypeList.size())
1698  return error("Malformed block");
1699  return Error::success();
1700  case BitstreamEntry::Record:
1701  // The interesting case.
1702  break;
1703  }
1704 
1705  // Read a record.
1706  Record.clear();
1707  Type *ResultTy = nullptr;
1708  Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1709  if (!MaybeRecord)
1710  return MaybeRecord.takeError();
1711  switch (MaybeRecord.get()) {
1712  default:
1713  return error("Invalid value");
1714  case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1715  // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1716  // type list. This allows us to reserve space.
1717  if (Record.empty())
1718  return error("Invalid record");
1719  TypeList.resize(Record[0]);
1720  continue;
1721  case bitc::TYPE_CODE_VOID: // VOID
1722  ResultTy = Type::getVoidTy(Context);
1723  break;
1724  case bitc::TYPE_CODE_HALF: // HALF
1725  ResultTy = Type::getHalfTy(Context);
1726  break;
1727  case bitc::TYPE_CODE_BFLOAT: // BFLOAT
1728  ResultTy = Type::getBFloatTy(Context);
1729  break;
1730  case bitc::TYPE_CODE_FLOAT: // FLOAT
1731  ResultTy = Type::getFloatTy(Context);
1732  break;
1733  case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1734  ResultTy = Type::getDoubleTy(Context);
1735  break;
1736  case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1737  ResultTy = Type::getX86_FP80Ty(Context);
1738  break;
1739  case bitc::TYPE_CODE_FP128: // FP128
1740  ResultTy = Type::getFP128Ty(Context);
1741  break;
1742  case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1743  ResultTy = Type::getPPC_FP128Ty(Context);
1744  break;
1745  case bitc::TYPE_CODE_LABEL: // LABEL
1746  ResultTy = Type::getLabelTy(Context);
1747  break;
1748  case bitc::TYPE_CODE_METADATA: // METADATA
1749  ResultTy = Type::getMetadataTy(Context);
1750  break;
1751  case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1752  ResultTy = Type::getX86_MMXTy(Context);
1753  break;
1754  case bitc::TYPE_CODE_X86_AMX: // X86_AMX
1755  ResultTy = Type::getX86_AMXTy(Context);
1756  break;
1757  case bitc::TYPE_CODE_TOKEN: // TOKEN
1758  ResultTy = Type::getTokenTy(Context);
1759  break;
1760  case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1761  if (Record.empty())
1762  return error("Invalid record");
1763 
1764  uint64_t NumBits = Record[0];
1765  if (NumBits < IntegerType::MIN_INT_BITS ||
1766  NumBits > IntegerType::MAX_INT_BITS)
1767  return error("Bitwidth for integer type out of range");
1768  ResultTy = IntegerType::get(Context, NumBits);
1769  break;
1770  }
1771  case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1772  // [pointee type, address space]
1773  if (Record.empty())
1774  return error("Invalid record");
1775  unsigned AddressSpace = 0;
1776  if (Record.size() == 2)
1777  AddressSpace = Record[1];
1778  ResultTy = getTypeByID(Record[0]);
1779  if (!ResultTy ||
1781  return error("Invalid type");
1782  ResultTy = PointerType::get(ResultTy, AddressSpace);
1783  break;
1784  }
1785  case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1786  if (Record.size() != 1)
1787  return error("Invalid record");
1788  unsigned AddressSpace = Record[0];
1789  ResultTy = PointerType::get(Context, AddressSpace);
1790  break;
1791  }
1793  // Deprecated, but still needed to read old bitcode files.
1794  // FUNCTION: [vararg, attrid, retty, paramty x N]
1795  if (Record.size() < 3)
1796  return error("Invalid record");
1797  SmallVector<Type*, 8> ArgTys;
1798  for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1799  if (Type *T = getTypeByID(Record[i]))
1800  ArgTys.push_back(T);
1801  else
1802  break;
1803  }
1804 
1805  ResultTy = getTypeByID(Record[2]);
1806  if (!ResultTy || ArgTys.size() < Record.size()-3)
1807  return error("Invalid type");
1808 
1809  ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1810  break;
1811  }
1812  case bitc::TYPE_CODE_FUNCTION: {
1813  // FUNCTION: [vararg, retty, paramty x N]
1814  if (Record.size() < 2)
1815  return error("Invalid record");
1816  SmallVector<Type*, 8> ArgTys;
1817  for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1818  if (Type *T = getTypeByID(Record[i])) {
1819  if (!FunctionType::isValidArgumentType(T))
1820  return error("Invalid function argument type");
1821  ArgTys.push_back(T);
1822  }
1823  else
1824  break;
1825  }
1826 
1827  ResultTy = getTypeByID(Record[1]);
1828  if (!ResultTy || ArgTys.size() < Record.size()-2)
1829  return error("Invalid type");
1830 
1831  ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1832  break;
1833  }
1834  case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
1835  if (Record.empty())
1836  return error("Invalid record");
1837  SmallVector<Type*, 8> EltTys;
1838  for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1839  if (Type *T = getTypeByID(Record[i]))
1840  EltTys.push_back(T);
1841  else
1842  break;
1843  }
1844  if (EltTys.size() != Record.size()-1)
1845  return error("Invalid type");
1846  ResultTy = StructType::get(Context, EltTys, Record[0]);
1847  break;
1848  }
1849  case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
1850  if (convertToString(Record, 0, TypeName))
1851  return error("Invalid record");
1852  continue;
1853 
1854  case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1855  if (Record.empty())
1856  return error("Invalid record");
1857 
1858  if (NumRecords >= TypeList.size())
1859  return error("Invalid TYPE table");
1860 
1861  // Check to see if this was forward referenced, if so fill in the temp.
1862  StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1863  if (Res) {
1864  Res->setName(TypeName);
1865  TypeList[NumRecords] = nullptr;
1866  } else // Otherwise, create a new struct.
1867  Res = createIdentifiedStructType(Context, TypeName);
1868  TypeName.clear();
1869 
1870  SmallVector<Type*, 8> EltTys;
1871  for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1872  if (Type *T = getTypeByID(Record[i]))
1873  EltTys.push_back(T);
1874  else
1875  break;
1876  }
1877  if (EltTys.size() != Record.size()-1)
1878  return error("Invalid record");
1879  Res->setBody(EltTys, Record[0]);
1880  ResultTy = Res;
1881  break;
1882  }
1883  case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
1884  if (Record.size() != 1)
1885  return error("Invalid record");
1886 
1887  if (NumRecords >= TypeList.size())
1888  return error("Invalid TYPE table");
1889 
1890  // Check to see if this was forward referenced, if so fill in the temp.
1891  StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1892  if (Res) {
1893  Res->setName(TypeName);
1894  TypeList[NumRecords] = nullptr;
1895  } else // Otherwise, create a new struct with no body.
1896  Res = createIdentifiedStructType(Context, TypeName);
1897  TypeName.clear();
1898  ResultTy = Res;
1899  break;
1900  }
1901  case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1902  if (Record.size() < 2)
1903  return error("Invalid record");
1904  ResultTy = getTypeByID(Record[1]);
1905  if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1906  return error("Invalid type");
1907  ResultTy = ArrayType::get(ResultTy, Record[0]);
1908  break;
1909  case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or
1910  // [numelts, eltty, scalable]
1911  if (Record.size() < 2)
1912  return error("Invalid record");
1913  if (Record[0] == 0)
1914  return error("Invalid vector length");
1915  ResultTy = getTypeByID(Record[1]);
1916  if (!ResultTy || !StructType::isValidElementType(ResultTy))
1917  return error("Invalid type");
1918  bool Scalable = Record.size() > 2 ? Record[2] : false;
1919  ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1920  break;
1921  }
1922 
1923  if (NumRecords >= TypeList.size())
1924  return error("Invalid TYPE table");
1925  if (TypeList[NumRecords])
1926  return error(
1927  "Invalid TYPE table: Only named structs can be forward referenced");
1928  assert(ResultTy && "Didn't read a type?");
1929  TypeList[NumRecords++] = ResultTy;
1930  }
1931 }
1932 
1933 Error BitcodeReader::parseOperandBundleTags() {
1934  if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1935  return Err;
1936 
1937  if (!BundleTags.empty())
1938  return error("Invalid multiple blocks");
1939 
1941 
1942  while (true) {
1943  Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1944  if (!MaybeEntry)
1945  return MaybeEntry.takeError();
1946  BitstreamEntry Entry = MaybeEntry.get();
1947 
1948  switch (Entry.Kind) {
1949  case BitstreamEntry::SubBlock: // Handled for us already.
1950  case BitstreamEntry::Error:
1951  return error("Malformed block");
1952  case BitstreamEntry::EndBlock:
1953  return Error::success();
1954  case BitstreamEntry::Record:
1955  // The interesting case.
1956  break;
1957  }
1958 
1959  // Tags are implicitly mapped to integers by their order.
1960 
1961  Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1962  if (!MaybeRecord)
1963  return MaybeRecord.takeError();
1964  if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1965  return error("Invalid record");
1966 
1967  // OPERAND_BUNDLE_TAG: [strchr x N]
1968  BundleTags.emplace_back();
1969  if (convertToString(Record, 0, BundleTags.back()))
1970  return error("Invalid record");
1971  Record.clear();
1972  }
1973 }
1974 
1975 Error BitcodeReader::parseSyncScopeNames() {
1976  if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1977  return Err;
1978 
1979  if (!SSIDs.empty())
1980  return error("Invalid multiple synchronization scope names blocks");
1981 
1983  while (true) {
1984  Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1985  if (!MaybeEntry)
1986  return MaybeEntry.takeError();
1987  BitstreamEntry Entry = MaybeEntry.get();
1988 
1989  switch (Entry.Kind) {
1990  case BitstreamEntry::SubBlock: // Handled for us already.
1991  case BitstreamEntry::Error:
1992  return error("Malformed block");
1993  case BitstreamEntry::EndBlock:
1994  if (SSIDs.empty())
1995  return error("Invalid empty synchronization scope names block");
1996  return Error::success();
1997  case BitstreamEntry::Record:
1998  // The interesting case.
1999  break;
2000  }
2001 
2002  // Synchronization scope names are implicitly mapped to synchronization
2003  // scope IDs by their order.
2004 
2005  Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2006  if (!MaybeRecord)
2007  return MaybeRecord.takeError();
2008  if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2009  return error("Invalid record");
2010 
2011  SmallString<16> SSN;
2012  if (convertToString(Record, 0, SSN))
2013  return error("Invalid record");
2014 
2015  SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2016  Record.clear();
2017  }
2018 }
2019 
2020 /// Associate a value with its name from the given index in the provided record.
2021 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2022  unsigned NameIndex, Triple &TT) {
2024  if (convertToString(Record, NameIndex, ValueName))
2025  return error("Invalid record");
2026  unsigned ValueID = Record[0];
2027  if (ValueID >= ValueList.size() || !ValueList[ValueID])
2028  return error("Invalid record");
2029  Value *V = ValueList[ValueID];
2030 
2031  StringRef NameStr(ValueName.data(), ValueName.size());
2032  if (NameStr.find_first_of(0) != StringRef::npos)
2033  return error("Invalid value name");
2034  V->setName(NameStr);
2035  auto *GO = dyn_cast<GlobalObject>(V);
2036  if (GO) {
2037  if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2038  if (TT.supportsCOMDAT())
2039  GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2040  else
2041  GO->setComdat(nullptr);
2042  }
2043  }
2044  return V;
2045 }
2046 
2047 /// Helper to note and return the current location, and jump to the given
2048 /// offset.
2050  BitstreamCursor &Stream) {
2051  // Save the current parsing location so we can jump back at the end
2052  // of the VST read.
2053  uint64_t CurrentBit = Stream.GetCurrentBitNo();
2054  if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2055  return std::move(JumpFailed);
2056  Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2057  if (!MaybeEntry)
2058  return MaybeEntry.takeError();
2059  assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2060  assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2061  return CurrentBit;
2062 }
2063 
2064 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2065  Function *F,
2067  // Note that we subtract 1 here because the offset is relative to one word
2068  // before the start of the identification or module block, which was
2069  // historically always the start of the regular bitcode header.
2070  uint64_t FuncWordOffset = Record[1] - 1;
2071  uint64_t FuncBitOffset = FuncWordOffset * 32;
2072  DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2073  // Set the LastFunctionBlockBit to point to the last function block.
2074  // Later when parsing is resumed after function materialization,
2075  // we can simply skip that last function block.
2076  if (FuncBitOffset > LastFunctionBlockBit)
2077  LastFunctionBlockBit = FuncBitOffset;
2078 }
2079 
2080 /// Read a new-style GlobalValue symbol table.
2081 Error BitcodeReader::parseGlobalValueSymbolTable() {
2082  unsigned FuncBitcodeOffsetDelta =
2083  Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2084 
2085  if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2086  return Err;
2087 
2089  while (true) {
2090  Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2091  if (!MaybeEntry)
2092  return MaybeEntry.takeError();
2093  BitstreamEntry Entry = MaybeEntry.get();
2094 
2095  switch (Entry.Kind) {
2096  case BitstreamEntry::SubBlock:
2097  case BitstreamEntry::Error:
2098  return error("Malformed block");
2099  case BitstreamEntry::EndBlock:
2100  return Error::success();
2101  case BitstreamEntry::Record:
2102  break;
2103  }
2104 
2105  Record.clear();
2106  Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2107  if (!MaybeRecord)
2108  return MaybeRecord.takeError();
2109  switch (MaybeRecord.get()) {
2110  case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2111  setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2112  cast<Function>(ValueList[Record[0]]), Record);
2113  break;
2114  }
2115  }
2116 }
2117 
2118 /// Parse the value symbol table at either the current parsing location or
2119 /// at the given bit offset if provided.
2120 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2121  uint64_t CurrentBit;
2122  // Pass in the Offset to distinguish between calling for the module-level
2123  // VST (where we want to jump to the VST offset) and the function-level
2124  // VST (where we don't).
2125  if (Offset > 0) {
2126  Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2127  if (!MaybeCurrentBit)
2128  return MaybeCurrentBit.takeError();
2129  CurrentBit = MaybeCurrentBit.get();
2130  // If this module uses a string table, read this as a module-level VST.
2131  if (UseStrtab) {
2132  if (Error Err = parseGlobalValueSymbolTable())
2133  return Err;
2134  if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2135  return JumpFailed;
2136  return Error::success();
2137  }
2138  // Otherwise, the VST will be in a similar format to a function-level VST,
2139  // and will contain symbol names.
2140  }
2141 
2142  // Compute the delta between the bitcode indices in the VST (the word offset
2143  // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2144  // expected by the lazy reader. The reader's EnterSubBlock expects to have
2145  // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2146  // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2147  // just before entering the VST subblock because: 1) the EnterSubBlock
2148  // changes the AbbrevID width; 2) the VST block is nested within the same
2149  // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2150  // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2151  // jump to the FUNCTION_BLOCK using this offset later, we don't want
2152  // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2153  unsigned FuncBitcodeOffsetDelta =
2154  Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2155 
2156  if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2157  return Err;
2158 
2160 
2161  Triple TT(TheModule->getTargetTriple());
2162 
2163  // Read all the records for this value table.
2165 
2166  while (true) {
2167  Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2168  if (!MaybeEntry)
2169  return MaybeEntry.takeError();
2170  BitstreamEntry Entry = MaybeEntry.get();
2171 
2172  switch (Entry.Kind) {
2173  case BitstreamEntry::SubBlock: // Handled for us already.
2174  case BitstreamEntry::Error:
2175  return error("Malformed block");
2176  case BitstreamEntry::EndBlock:
2177  if (Offset > 0)
2178  if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2179  return JumpFailed;
2180  return Error::success();
2181  case BitstreamEntry::Record:
2182  // The interesting case.
2183  break;
2184  }
2185 
2186  // Read a record.
2187  Record.clear();
2188  Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2189  if (!MaybeRecord)
2190  return MaybeRecord.takeError();
2191  switch (MaybeRecord.get()) {
2192  default: // Default behavior: unknown type.
2193  break;
2194  case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
2195  Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2196  if (Error Err = ValOrErr.takeError())
2197  return Err;
2198  ValOrErr.get();
2199  break;
2200  }
2201  case bitc::VST_CODE_FNENTRY: {
2202  // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2203  Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2204  if (Error Err = ValOrErr.takeError())
2205  return Err;
2206  Value *V = ValOrErr.get();
2207 
2208  // Ignore function offsets emitted for aliases of functions in older
2209  // versions of LLVM.
2210  if (auto *F = dyn_cast<Function>(V))
2211  setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2212  break;
2213  }
2214  case bitc::VST_CODE_BBENTRY: {
2215  if (convertToString(Record, 1, ValueName))
2216  return error("Invalid record");
2217  BasicBlock *BB = getBasicBlock(Record[0]);
2218  if (!BB)
2219  return error("Invalid record");
2220 
2221  BB->setName(StringRef(ValueName.data(), ValueName.size()));
2222  ValueName.clear();
2223  break;
2224  }
2225  }
2226  }
2227 }
2228 
2229 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2230 /// encoding.
2231 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2232  if ((V & 1) == 0)
2233  return V >> 1;
2234  if (V != 1)
2235  return -(V >> 1);
2236  // There is no such thing as -0 with integers. "-0" really means MININT.
2237  return 1ULL << 63;
2238 }
2239 
2240 /// Resolve all of the initializers for global values and aliases that we can.
2241 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2242  std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2243  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2244  IndirectSymbolInitWorklist;
2245  std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2246  std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2247  std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2248 
2249  GlobalInitWorklist.swap(GlobalInits);
2250  IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2251  FunctionPrefixWorklist.swap(FunctionPrefixes);
2252  FunctionPrologueWorklist.swap(FunctionPrologues);
2253  FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2254 
2255  while (!GlobalInitWorklist.empty()) {
2256  unsigned ValID = GlobalInitWorklist.back().second;
2257  if (ValID >= ValueList.size()) {
2258  // Not ready to resolve this yet, it requires something later in the file.
2259  GlobalInits.push_back(GlobalInitWorklist.back());
2260  } else {
2261  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2262  GlobalInitWorklist.back().first->setInitializer(C);
2263  else
2264  return error("Expected a constant");
2265  }
2266  GlobalInitWorklist.pop_back();
2267  }
2268 
2269  while (!IndirectSymbolInitWorklist.empty()) {
2270  unsigned ValID = IndirectSymbolInitWorklist.back().second;
2271  if (ValID >= ValueList.size()) {
2272  IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2273  } else {
2274  Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2275  if (!C)
2276  return error("Expected a constant");
2277  GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2278  if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2279  return error("Alias and aliasee types don't match");
2280  GIS->setIndirectSymbol(C);
2281  }
2282  IndirectSymbolInitWorklist.pop_back();
2283  }
2284 
2285  while (!FunctionPrefixWorklist.empty()) {
2286  unsigned ValID = FunctionPrefixWorklist.back().second;
2287  if (ValID >= ValueList.size()) {
2288  FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2289  } else {
2290  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2291  FunctionPrefixWorklist.back().first->setPrefixData(C);
2292  else
2293  return error("Expected a constant");
2294  }
2295  FunctionPrefixWorklist.pop_back();
2296  }
2297 
2298  while (!FunctionPrologueWorklist.empty()) {
2299  unsigned ValID = FunctionPrologueWorklist.back().second;
2300  if (ValID >= ValueList.size()) {
2301  FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2302  } else {
2303  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2304  FunctionPrologueWorklist.back().first->setPrologueData(C);
2305  else
2306  return error("Expected a constant");
2307  }
2308  FunctionPrologueWorklist.pop_back();
2309  }
2310 
2311  while (!FunctionPersonalityFnWorklist.empty()) {
2312  unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2313  if (ValID >= ValueList.size()) {
2314  FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2315  } else {
2316  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2317  FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2318  else
2319  return error("Expected a constant");
2320  }
2321  FunctionPersonalityFnWorklist.pop_back();
2322  }
2323 
2324  return Error::success();
2325 }
2326 
2328  SmallVector<uint64_t, 8> Words(Vals.size());
2329  transform(Vals, Words.begin(),
2331 
2332  return APInt(TypeBits, Words);
2333 }
2334 
2335 Error BitcodeReader::parseConstants() {
2336  if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2337  return Err;
2338 
2340 
2341  // Read all the records for this value table.
2342  Type *CurTy = Type::getInt32Ty(Context);
2343  unsigned NextCstNo = ValueList.size();
2344 
2345  struct DelayedShufTy {
2346  VectorType *OpTy;
2347  VectorType *RTy;
2348  uint64_t Op0Idx;
2349  uint64_t Op1Idx;
2350  uint64_t Op2Idx;
2351  unsigned CstNo;
2352  };
2353  std::vector<DelayedShufTy> DelayedShuffles;
2354  while (true) {
2355  Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2356  if (!MaybeEntry)
2357  return MaybeEntry.takeError();
2358  BitstreamEntry Entry = MaybeEntry.get();
2359 
2360  switch (Entry.Kind) {
2361  case BitstreamEntry::SubBlock: // Handled for us already.
2362  case BitstreamEntry::Error:
2363  return error("Malformed block");
2364  case BitstreamEntry::EndBlock:
2365  // Once all the constants have been read, go through and resolve forward
2366  // references.
2367  //
2368  // We have to treat shuffles specially because they don't have three
2369  // operands anymore. We need to convert the shuffle mask into an array,
2370  // and we can't convert a forward reference.
2371  for (auto &DelayedShuffle : DelayedShuffles) {
2372  VectorType *OpTy = DelayedShuffle.OpTy;
2373  VectorType *RTy = DelayedShuffle.RTy;
2374  uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2375  uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2376  uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2377  uint64_t CstNo = DelayedShuffle.CstNo;
2378  Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2379  Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2380  Type *ShufTy =
2381  VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2382  Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2383  if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2384  return error("Invalid shufflevector operands");
2386  ShuffleVectorInst::getShuffleMask(Op2, Mask);
2387  Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2388  ValueList.assignValue(V, CstNo);
2389  }
2390 
2391  if (NextCstNo != ValueList.size())
2392  return error("Invalid constant reference");
2393 
2394  ValueList.resolveConstantForwardRefs();
2395  return Error::success();
2396  case BitstreamEntry::Record:
2397  // The interesting case.
2398  break;
2399  }
2400 
2401  // Read a record.
2402  Record.clear();
2403  Type *VoidType = Type::getVoidTy(Context);
2404  Value *V = nullptr;
2405  Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2406  if (!MaybeBitCode)
2407  return MaybeBitCode.takeError();
2408  switch (unsigned BitCode = MaybeBitCode.get()) {
2409  default: // Default behavior: unknown constant
2410  case bitc::CST_CODE_UNDEF: // UNDEF
2411  V = UndefValue::get(CurTy);
2412  break;
2413  case bitc::CST_CODE_POISON: // POISON
2414  V = PoisonValue::get(CurTy);
2415  break;
2416  case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
2417  if (Record.empty())
2418  return error("Invalid record");
2419  if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2420  return error("Invalid record");
2421  if (TypeList[Record[0]] == VoidType)
2422  return error("Invalid constant type");
2423  CurTy = TypeList[Record[0]];
2424  continue; // Skip the ValueList manipulation.
2425  case bitc::CST_CODE_NULL: // NULL
2426  if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2427  return error("Invalid type for a constant null value");
2428  V = Constant::getNullValue(CurTy);
2429  break;
2430  case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
2431  if (!CurTy->isIntegerTy() || Record.empty())
2432  return error("Invalid record");
2434  break;
2435  case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2436  if (!CurTy->isIntegerTy() || Record.empty())
2437  return error("Invalid record");
2438 
2439  APInt VInt =
2440  readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2441  V = ConstantInt::get(Context, VInt);
2442 
2443  break;
2444  }
2445  case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
2446  if (Record.empty())
2447  return error("Invalid record");
2448  if (CurTy->isHalfTy())
2449  V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2450  APInt(16, (uint16_t)Record[0])));
2451  else if (CurTy->isBFloatTy())
2452  V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2453  APInt(16, (uint32_t)Record[0])));
2454  else if (CurTy->isFloatTy())
2455  V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2456  APInt(32, (uint32_t)Record[0])));
2457  else if (CurTy->isDoubleTy())
2458  V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2459  APInt(64, Record[0])));
2460  else if (CurTy->isX86_FP80Ty()) {
2461  // Bits are not stored the same way as a normal i80 APInt, compensate.
2462  uint64_t Rearrange[2];
2463  Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2464  Rearrange[1] = Record[0] >> 48;
2465  V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2466  APInt(80, Rearrange)));
2467  } else if (CurTy->isFP128Ty())
2468  V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2469  APInt(128, Record)));
2470  else if (CurTy->isPPC_FP128Ty())
2471  V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2472  APInt(128, Record)));
2473  else
2474  V = UndefValue::get(CurTy);
2475  break;
2476  }
2477 
2478  case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2479  if (Record.empty())
2480  return error("Invalid record");
2481 
2482  unsigned Size = Record.size();
2484 
2485  if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2486  for (unsigned i = 0; i != Size; ++i)
2487  Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2488  STy->getElementType(i)));
2489  V = ConstantStruct::get(STy, Elts);
2490  } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2491  Type *EltTy = ATy->getElementType();
2492  for (unsigned i = 0; i != Size; ++i)
2493  Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2494  V = ConstantArray::get(ATy, Elts);
2495  } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2496  Type *EltTy = VTy->getElementType();
2497  for (unsigned i = 0; i != Size; ++i)
2498  Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2499  V = ConstantVector::get(Elts);
2500  } else {
2501  V = UndefValue::get(CurTy);
2502  }
2503  break;
2504  }
2505  case bitc::CST_CODE_STRING: // STRING: [values]
2506  case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2507  if (Record.empty())
2508  return error("Invalid record");
2509 
2510  SmallString<16> Elts(Record.begin(), Record.end());
2511  V = ConstantDataArray::getString(Context, Elts,
2512  BitCode == bitc::CST_CODE_CSTRING);
2513  break;
2514  }
2515  case bitc::CST_CODE_DATA: {// DATA: [n x value]
2516  if (Record.empty())
2517  return error("Invalid record");
2518 
2519  Type *EltTy;
2520  if (auto *Array = dyn_cast<ArrayType>(CurTy))
2521  EltTy = Array->getElementType();
2522  else
2523  EltTy = cast<VectorType>(CurTy)->getElementType();
2524  if (EltTy->isIntegerTy(8)) {
2525  SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2526  if (isa<VectorType>(CurTy))
2527  V = ConstantDataVector::get(Context, Elts);
2528  else
2529  V = ConstantDataArray::get(Context, Elts);
2530  } else if (EltTy->isIntegerTy(16)) {
2531  SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2532  if (isa<VectorType>(CurTy))
2533  V = ConstantDataVector::get(Context, Elts);
2534  else
2535  V = ConstantDataArray::get(Context, Elts);
2536  } else if (EltTy->isIntegerTy(32)) {
2537  SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2538  if (isa<VectorType>(CurTy))
2539  V = ConstantDataVector::get(Context, Elts);
2540  else
2541  V = ConstantDataArray::get(Context, Elts);
2542  } else if (EltTy->isIntegerTy(64)) {
2543  SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2544  if (isa<VectorType>(CurTy))
2545  V = ConstantDataVector::get(Context, Elts);
2546  else
2547  V = ConstantDataArray::get(Context, Elts);
2548  } else if (EltTy->isHalfTy()) {
2549  SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2550  if (isa<VectorType>(CurTy))
2551  V = ConstantDataVector::getFP(EltTy, Elts);
2552  else
2553  V = ConstantDataArray::getFP(EltTy, Elts);
2554  } else if (EltTy->isBFloatTy()) {
2555  SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2556  if (isa<VectorType>(CurTy))
2557  V = ConstantDataVector::getFP(EltTy, Elts);
2558  else
2559  V = ConstantDataArray::getFP(EltTy, Elts);
2560  } else if (EltTy->isFloatTy()) {
2561  SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2562  if (isa<VectorType>(CurTy))
2563  V = ConstantDataVector::getFP(EltTy, Elts);
2564  else
2565  V = ConstantDataArray::getFP(EltTy, Elts);
2566  } else if (EltTy->isDoubleTy()) {
2567  SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2568  if (isa<VectorType>(CurTy))
2569  V = ConstantDataVector::getFP(EltTy, Elts);
2570  else
2571  V = ConstantDataArray::getFP(EltTy, Elts);
2572  } else {
2573  return error("Invalid type for value");
2574  }
2575  break;
2576  }
2577  case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
2578  if (Record.size() < 2)
2579  return error("Invalid record");
2580  int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2581  if (Opc < 0) {
2582  V = UndefValue::get(CurTy); // Unknown unop.
2583  } else {
2584  Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2585  unsigned Flags = 0;
2586  V = ConstantExpr::get(Opc, LHS, Flags);
2587  }
2588  break;
2589  }
2590  case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
2591  if (Record.size() < 3)
2592  return error("Invalid record");
2593  int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2594  if (Opc < 0) {
2595  V = UndefValue::get(CurTy); // Unknown binop.
2596  } else {
2597  Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2598  Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2599  unsigned Flags = 0;
2600  if (Record.size() >= 4) {
2601  if (Opc == Instruction::Add ||
2602  Opc == Instruction::Sub ||
2603  Opc == Instruction::Mul ||
2604  Opc == Instruction::Shl) {
2605  if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2606  Flags |= OverflowingBinaryOperator::NoSignedWrap;
2607  if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2608  Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2609  } else if (Opc == Instruction::SDiv ||
2610  Opc == Instruction::UDiv ||
2611  Opc == Instruction::LShr ||
2612  Opc == Instruction::AShr) {
2613  if (Record[3] & (1 << bitc::PEO_EXACT))
2614  Flags |= SDivOperator::IsExact;
2615  }
2616  }
2617  V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2618  }
2619  break;
2620  }
2621  case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
2622  if (Record.size() < 3)
2623  return error("Invalid record");
2624  int Opc = getDecodedCastOpcode(Record[0]);
2625  if (Opc < 0) {
2626  V = UndefValue::get(CurTy); // Unknown cast.
2627  } else {
2628  Type *OpTy = getTypeByID(Record[1]);
2629  if (!OpTy)
2630  return error("Invalid record");
2631  Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2632  V = UpgradeBitCastExpr(Opc, Op, CurTy);
2633  if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2634  }
2635  break;
2636  }
2637  case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2638  case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2639  case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2640  // operands]
2641  unsigned OpNum = 0;
2642  Type *PointeeType = nullptr;
2644  Record.size() % 2)
2645  PointeeType = getTypeByID(Record[OpNum++]);
2646 
2647  bool InBounds = false;
2648  Optional<unsigned> InRangeIndex;
2650  uint64_t Op = Record[OpNum++];
2651  InBounds = Op & 1;
2652  InRangeIndex = Op >> 1;
2653  } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2654  InBounds = true;
2655 
2657  Type *Elt0FullTy = nullptr;
2658  while (OpNum != Record.size()) {
2659  if (!Elt0FullTy)
2660  Elt0FullTy = getTypeByID(Record[OpNum]);
2661  Type *ElTy = getTypeByID(Record[OpNum++]);
2662  if (!ElTy)
2663  return error("Invalid record");
2664  Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2665  }
2666 
2667  if (Elts.size() < 1)
2668  return error("Invalid gep with no operands");
2669 
2670  PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType());
2671  if (!PointeeType)
2672  PointeeType = OrigPtrTy->getElementType();
2673  else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2674  return error("Explicit gep operator type does not match pointee type "
2675  "of pointer operand");
2676 
2677  ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2678  V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2679  InBounds, InRangeIndex);
2680  break;
2681  }
2682  case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
2683  if (Record.size() < 3)
2684  return error("Invalid record");
2685 
2686  Type *SelectorTy = Type::getInt1Ty(Context);
2687 
2688  // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2689  // Get the type from the ValueList before getting a forward ref.
2690  if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2691  if (Value *V = ValueList[Record[0]])
2692  if (SelectorTy != V->getType())
2693  SelectorTy = VectorType::get(SelectorTy,
2694  VTy->getElementCount());
2695 
2696  V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2697  SelectorTy),
2698  ValueList.getConstantFwdRef(Record[1],CurTy),
2699  ValueList.getConstantFwdRef(Record[2],CurTy));
2700  break;
2701  }
2703  : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2704  if (Record.size() < 3)
2705  return error("Invalid record");
2706  VectorType *OpTy =
2707  dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2708  if (!OpTy)
2709  return error("Invalid record");
2710  Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2711  Constant *Op1 = nullptr;
2712  if (Record.size() == 4) {
2713  Type *IdxTy = getTypeByID(Record[2]);
2714  if (!IdxTy)
2715  return error("Invalid record");
2716  Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2717  } else {
2718  // Deprecated, but still needed to read old bitcode files.
2719  Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2720  }
2721  if (!Op1)
2722  return error("Invalid record");
2723  V = ConstantExpr::getExtractElement(Op0, Op1);
2724  break;
2725  }
2727  : { // CE_INSERTELT: [opval, opval, opty, opval]
2728  VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2729  if (Record.size() < 3 || !OpTy)
2730  return error("Invalid record");
2731  Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2732  Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2733  OpTy->getElementType());
2734  Constant *Op2 = nullptr;
2735  if (Record.size() == 4) {
2736  Type *IdxTy = getTypeByID(Record[2]);
2737  if (!IdxTy)
2738  return error("Invalid record");
2739  Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2740  } else {
2741  // Deprecated, but still needed to read old bitcode files.
2742  Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2743  }
2744  if (!Op2)
2745  return error("Invalid record");
2746  V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2747  break;
2748  }
2749  case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2750  VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2751  if (Record.size() < 3 || !OpTy)
2752  return error("Invalid record");
2753  DelayedShuffles.push_back(
2754  {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2755  ++NextCstNo;
2756  continue;
2757  }
2758  case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2759  VectorType *RTy = dyn_cast<VectorType>(CurTy);
2760  VectorType *OpTy =
2761  dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2762  if (Record.size() < 4 || !RTy || !OpTy)
2763  return error("Invalid record");
2764  DelayedShuffles.push_back(
2765  {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo});
2766  ++NextCstNo;
2767  continue;
2768  }
2769  case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
2770  if (Record.size() < 4)
2771  return error("Invalid record");
2772  Type *OpTy = getTypeByID(Record[0]);
2773  if (!OpTy)
2774  return error("Invalid record");
2775  Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2776  Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2777 
2778  if (OpTy->isFPOrFPVectorTy())
2779  V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2780  else
2781  V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2782  break;
2783  }
2784  // This maintains backward compatibility, pre-asm dialect keywords.
2785  // Deprecated, but still needed to read old bitcode files.
2787  if (Record.size() < 2)
2788  return error("Invalid record");
2789  std::string AsmStr, ConstrStr;
2790  bool HasSideEffects = Record[0] & 1;
2791  bool IsAlignStack = Record[0] >> 1;
2792  unsigned AsmStrSize = Record[1];
2793  if (2+AsmStrSize >= Record.size())
2794  return error("Invalid record");
2795  unsigned ConstStrSize = Record[2+AsmStrSize];
2796  if (3+AsmStrSize+ConstStrSize > Record.size())
2797  return error("Invalid record");
2798 
2799  for (unsigned i = 0; i != AsmStrSize; ++i)
2800  AsmStr += (char)Record[2+i];
2801  for (unsigned i = 0; i != ConstStrSize; ++i)
2802  ConstrStr += (char)Record[3+AsmStrSize+i];
2803  UpgradeInlineAsmString(&AsmStr);
2804  V = InlineAsm::get(
2805  cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2806  AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2807  break;
2808  }
2809  // This version adds support for the asm dialect keywords (e.g.,
2810  // inteldialect).
2812  if (Record.size() < 2)
2813  return error("Invalid record");
2814  std::string AsmStr, ConstrStr;
2815  bool HasSideEffects = Record[0] & 1;
2816  bool IsAlignStack = (Record[0] >> 1) & 1;
2817  unsigned AsmDialect = Record[0] >> 2;
2818  unsigned AsmStrSize = Record[1];
2819  if (2+AsmStrSize >= Record.size())
2820  return error("Invalid record");
2821  unsigned ConstStrSize = Record[2+AsmStrSize];
2822  if (3+AsmStrSize+ConstStrSize > Record.size())
2823  return error("Invalid record");
2824 
2825  for (unsigned i = 0; i != AsmStrSize; ++i)
2826  AsmStr += (char)Record[2+i];
2827  for (unsigned i = 0; i != ConstStrSize; ++i)
2828  ConstrStr += (char)Record[3+AsmStrSize+i];
2829  UpgradeInlineAsmString(&AsmStr);
2830  V = InlineAsm::get(
2831  cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2832  AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2833  InlineAsm::AsmDialect(AsmDialect));
2834  break;
2835  }
2836  // This version adds support for the unwind keyword.
2837  case bitc::CST_CODE_INLINEASM: {
2838  if (Record.size() < 2)
2839  return error("Invalid record");
2840  std::string AsmStr, ConstrStr;
2841  bool HasSideEffects = Record[0] & 1;
2842  bool IsAlignStack = (Record[0] >> 1) & 1;
2843  unsigned AsmDialect = (Record[0] >> 2) & 1;
2844  bool CanThrow = (Record[0] >> 3) & 1;
2845  unsigned AsmStrSize = Record[1];
2846  if (2 + AsmStrSize >= Record.size())
2847  return error("Invalid record");
2848  unsigned ConstStrSize = Record[2 + AsmStrSize];
2849  if (3 + AsmStrSize + ConstStrSize > Record.size())
2850  return error("Invalid record");
2851 
2852  for (unsigned i = 0; i != AsmStrSize; ++i)
2853  AsmStr += (char)Record[2 + i];
2854  for (unsigned i = 0; i != ConstStrSize; ++i)
2855  ConstrStr += (char)Record[3 + AsmStrSize + i];
2856  UpgradeInlineAsmString(&AsmStr);
2857  V = InlineAsm::get(
2858  cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2859  AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2860  InlineAsm::AsmDialect(AsmDialect), CanThrow);
2861  break;
2862  }
2864  if (Record.size() < 3)
2865  return error("Invalid record");
2866  Type *FnTy = getTypeByID(Record[0]);
2867  if (!FnTy)
2868  return error("Invalid record");
2869  Function *Fn =
2870  dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2871  if (!Fn)
2872  return error("Invalid record");
2873 
2874  // If the function is already parsed we can insert the block address right
2875  // away.
2876  BasicBlock *BB;
2877  unsigned BBID = Record[2];
2878  if (!BBID)
2879  // Invalid reference to entry block.
2880  return error("Invalid ID");
2881  if (!Fn->empty()) {
2882  Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2883  for (size_t I = 0, E = BBID; I != E; ++I) {
2884  if (BBI == BBE)
2885  return error("Invalid ID");
2886  ++BBI;
2887  }
2888  BB = &*BBI;
2889  } else {
2890  // Otherwise insert a placeholder and remember it so it can be inserted
2891  // when the function is parsed.
2892  auto &FwdBBs = BasicBlockFwdRefs[Fn];
2893  if (FwdBBs.empty())
2894  BasicBlockFwdRefQueue.push_back(Fn);
2895  if (FwdBBs.size() < BBID + 1)
2896  FwdBBs.resize(BBID + 1);
2897  if (!FwdBBs[BBID])
2898  FwdBBs[BBID] = BasicBlock::Create(Context);
2899  BB = FwdBBs[BBID];
2900  }
2901  V = BlockAddress::get(Fn, BB);
2902  break;
2903  }
2905  if (Record.size() < 2)
2906  return error("Invalid record");
2907  Type *GVTy = getTypeByID(Record[0]);
2908  if (!GVTy)
2909  return error("Invalid record");
2910  GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2911  ValueList.getConstantFwdRef(Record[1], GVTy));
2912  if (!GV)
2913  return error("Invalid record");
2914 
2915  V = DSOLocalEquivalent::get(GV);
2916  break;
2917  }
2918  }
2919 
2920  ValueList.assignValue(V, NextCstNo);
2921  ++NextCstNo;
2922  }
2923 }
2924 
2925 Error BitcodeReader::parseUseLists() {
2926  if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2927  return Err;
2928 
2929  // Read all the records.
2931 
2932  while (true) {
2933  Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2934  if (!MaybeEntry)
2935  return MaybeEntry.takeError();
2936  BitstreamEntry Entry = MaybeEntry.get();
2937 
2938  switch (Entry.Kind) {
2939  case BitstreamEntry::SubBlock: // Handled for us already.
2940  case BitstreamEntry::Error:
2941  return error("Malformed block");
2942  case BitstreamEntry::EndBlock:
2943  return Error::success();
2944  case BitstreamEntry::Record:
2945  // The interesting case.
2946  break;
2947  }
2948 
2949  // Read a use list record.
2950  Record.clear();
2951  bool IsBB = false;
2952  Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2953  if (!MaybeRecord)
2954  return MaybeRecord.takeError();
2955  switch (MaybeRecord.get()) {
2956  default: // Default behavior: unknown type.
2957  break;
2958  case bitc::USELIST_CODE_BB:
2959  IsBB = true;
2962  unsigned RecordLength = Record.size();
2963  if (RecordLength < 3)
2964  // Records should have at least an ID and two indexes.
2965  return error("Invalid record");
2966  unsigned ID = Record.pop_back_val();
2967 
2968  Value *V;
2969  if (IsBB) {
2970  assert(ID < FunctionBBs.size() && "Basic block not found");
2971  V = FunctionBBs[ID];
2972  } else
2973  V = ValueList[ID];
2974  unsigned NumUses = 0;
2976  for (const Use &U : V->materialized_uses()) {
2977  if (++NumUses > Record.size())
2978  break;
2979  Order[&U] = Record[NumUses - 1];
2980  }
2981  if (Order.size() != Record.size() || NumUses > Record.size())
2982  // Mismatches can happen if the functions are being materialized lazily
2983  // (out-of-order), or a value has been upgraded.
2984  break;
2985 
2986  V->sortUseList([&](const Use &L, const Use &R) {
2987  return Order.lookup(&L) < Order.lookup(&R);
2988  });
2989  break;
2990  }
2991  }
2992  }
2993 }
2994 
2995 /// When we see the block for metadata, remember where it is and then skip it.
2996 /// This lets us lazily deserialize the metadata.
2997 Error BitcodeReader::rememberAndSkipMetadata() {
2998  // Save the current stream state.
2999  uint64_t CurBit = Stream.GetCurrentBitNo();
3000  DeferredMetadataInfo.push_back(CurBit);
3001 
3002  // Skip over the block for now.
3003  if (Error Err = Stream.SkipBlock())
3004  return Err;
3005  return Error::success();
3006 }
3007 
3008 Error BitcodeReader::materializeMetadata() {
3009  for (uint64_t BitPos : DeferredMetadataInfo) {
3010  // Move the bit stream to the saved position.
3011  if (Error JumpFailed = Stream.JumpToBit(BitPos))
3012  return JumpFailed;
3013  if (Error Err = MDLoader->parseModuleMetadata())
3014  return Err;
3015  }
3016 
3017  // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3018  // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3019  // multiple times.
3020  if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3021  if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3022  NamedMDNode *LinkerOpts =
3023  TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3024  for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3025  LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3026  }
3027  }
3028 
3029  DeferredMetadataInfo.clear();
3030  return Error::success();
3031 }
3032 
3033 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3034 
3035 /// When we see the block for a function body, remember where it is and then
3036 /// skip it. This lets us lazily deserialize the functions.
3037 Error BitcodeReader::rememberAndSkipFunctionBody() {
3038  // Get the function we are talking about.
3039  if (FunctionsWithBodies.empty())
3040  return error("Insufficient function protos");
3041 
3042  Function *Fn = FunctionsWithBodies.back();
3043  FunctionsWithBodies.pop_back();
3044 
3045  // Save the current stream state.
3046  uint64_t CurBit = Stream.GetCurrentBitNo();
3047  assert(
3048  (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3049  "Mismatch between VST and scanned function offsets");
3050  DeferredFunctionInfo[Fn] = CurBit;
3051 
3052  // Skip over the function block for now.
3053  if (Error Err = Stream.SkipBlock())
3054  return Err;
3055  return Error::success();
3056 }
3057 
3058 Error BitcodeReader::globalCleanup() {
3059  // Patch the initializers for globals and aliases up.
3060  if (Error Err = resolveGlobalAndIndirectSymbolInits())
3061  return Err;
3062  if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3063  return error("Malformed global initializer set");
3064 
3065  // Look for intrinsic functions which need to be upgraded at some point
3066  // and functions that need to have their function attributes upgraded.
3067  for (Function &F : *TheModule) {
3068  MDLoader->upgradeDebugIntrinsics(F);
3069  Function *NewFn;
3070  if (UpgradeIntrinsicFunction(&F, NewFn))
3071  UpgradedIntrinsics[&F] = NewFn;
3072  else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3073  // Some types could be renamed during loading if several modules are
3074  // loaded in the same LLVMContext (LTO scenario). In this case we should
3075  // remangle intrinsics names as well.
3076  RemangledIntrinsics[&F] = Remangled.getValue();
3077  // Look for functions that rely on old function attribute behavior.
3079  }
3080 
3081  // Look for global variables which need to be renamed.
3082  std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3083  for (GlobalVariable &GV : TheModule->globals())
3084  if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3085  UpgradedVariables.emplace_back(&GV, Upgraded);
3086  for (auto &Pair : UpgradedVariables) {
3087  Pair.first->eraseFromParent();
3088  TheModule->getGlobalList().push_back(Pair.second);
3089  }
3090 
3091  // Force deallocation of memory for these vectors to favor the client that
3092  // want lazy deserialization.
3093  std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3094  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3095  IndirectSymbolInits);
3096  return Error::success();
3097 }
3098 
3099 /// Support for lazy parsing of function bodies. This is required if we
3100 /// either have an old bitcode file without a VST forward declaration record,
3101 /// or if we have an anonymous function being materialized, since anonymous
3102 /// functions do not have a name and are therefore not in the VST.
3103 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3104  if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3105  return JumpFailed;
3106 
3107  if (Stream.AtEndOfStream())
3108  return error("Could not find function in stream");
3109 
3110  if (!SeenFirstFunctionBody)
3111  return error("Trying to materialize functions before seeing function blocks");
3112 
3113  // An old bitcode file with the symbol table at the end would have
3114  // finished the parse greedily.
3115  assert(SeenValueSymbolTable);
3116 
3118 
3119  while (true) {
3120  Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3121  if (!MaybeEntry)
3122  return MaybeEntry.takeError();
3123  llvm::BitstreamEntry Entry = MaybeEntry.get();
3124 
3125  switch (Entry.Kind) {
3126  default:
3127  return error("Expect SubBlock");
3128  case BitstreamEntry::SubBlock:
3129  switch (Entry.ID) {
3130  default:
3131  return error("Expect function block");
3133  if (Error Err = rememberAndSkipFunctionBody())
3134  return Err;
3135  NextUnreadBit = Stream.GetCurrentBitNo();
3136  return Error::success();
3137  }
3138  }
3139  }
3140 }
3141 
3142 bool BitcodeReaderBase::readBlockInfo() {
3143  Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3144  Stream.ReadBlockInfoBlock();
3145  if (!MaybeNewBlockInfo)
3146  return true; // FIXME Handle the error.
3147  Optional<BitstreamBlockInfo> NewBlockInfo =
3148  std::move(MaybeNewBlockInfo.get());
3149  if (!NewBlockInfo)
3150  return true;
3151  BlockInfo = std::move(*NewBlockInfo);
3152  return false;
3153 }
3154 
3155 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3156  // v1: [selection_kind, name]
3157  // v2: [strtab_offset, strtab_size, selection_kind]
3158  StringRef Name;
3159  std::tie(Name, Record) = readNameFromStrtab(Record);
3160 
3161  if (Record.empty())
3162  return error("Invalid record");
3164  std::string OldFormatName;
3165  if (!UseStrtab) {
3166  if (Record.size() < 2)
3167  return error("Invalid record");
3168  unsigned ComdatNameSize = Record[1];
3169  OldFormatName.reserve(ComdatNameSize);
3170  for (unsigned i = 0; i != ComdatNameSize; ++i)
3171  OldFormatName += (char)Record[2 + i];
3172  Name = OldFormatName;
3173  }
3174  Comdat *C = TheModule->getOrInsertComdat(Name);
3175  C->setSelectionKind(SK);
3176  ComdatList.push_back(C);
3177  return Error::success();
3178 }
3179 
3180 static void inferDSOLocal(GlobalValue *GV) {
3181  // infer dso_local from linkage and visibility if it is not encoded.
3182  if (GV->hasLocalLinkage() ||
3183  (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3184  GV->setDSOLocal(true);
3185 }
3186 
3187 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3188  // v1: [pointer type, isconst, initid, linkage, alignment, section,
3189  // visibility, threadlocal, unnamed_addr, externally_initialized,
3190  // dllstorageclass, comdat, attributes, preemption specifier,
3191  // partition strtab offset, partition strtab size] (name in VST)
3192  // v2: [strtab_offset, strtab_size, v1]
3193  StringRef Name;
3194  std::tie(Name, Record) = readNameFromStrtab(Record);
3195 
3196  if (Record.size() < 6)
3197  return error("Invalid record");
3198  Type *Ty = getTypeByID(Record[0]);
3199  if (!Ty)
3200  return error("Invalid record");
3201  bool isConstant = Record[1] & 1;
3202  bool explicitType = Record[1] & 2;
3203  unsigned AddressSpace;
3204  if (explicitType) {
3205  AddressSpace = Record[1] >> 2;
3206  } else {
3207  if (!Ty->isPointerTy())
3208  return error("Invalid type for value");
3209  AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3210  Ty = cast<PointerType>(Ty)->getElementType();
3211  }
3212 
3213  uint64_t RawLinkage = Record[3];
3215  MaybeAlign Alignment;
3216  if (Error Err = parseAlignmentValue(Record[4], Alignment))
3217  return Err;
3218  std::string Section;
3219  if (Record[5]) {
3220  if (Record[5] - 1 >= SectionTable.size())
3221  return error("Invalid ID");
3222  Section = SectionTable[Record[5] - 1];
3223  }
3224  GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3225  // Local linkage must have default visibility.
3226  // auto-upgrade `hidden` and `protected` for old bitcode.
3227  if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3228  Visibility = getDecodedVisibility(Record[6]);
3229 
3230  GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3231  if (Record.size() > 7)
3233 
3235  if (Record.size() > 8)
3236  UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3237 
3238  bool ExternallyInitialized = false;
3239  if (Record.size() > 9)
3240  ExternallyInitialized = Record[9];
3241 
3242  GlobalVariable *NewGV =
3243  new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3244  nullptr, TLM, AddressSpace, ExternallyInitialized);
3245  NewGV->setAlignment(Alignment);
3246  if (!Section.empty())
3247  NewGV->setSection(Section);
3248  NewGV->setVisibility(Visibility);
3249  NewGV->setUnnamedAddr(UnnamedAddr);
3250 
3251  if (Record.size() > 10)
3253  else
3254  upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3255 
3256  ValueList.push_back(NewGV);
3257 
3258  // Remember which value to use for the global initializer.
3259  if (unsigned InitID = Record[2])
3260  GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3261 
3262  if (Record.size() > 11) {
3263  if (unsigned ComdatID = Record[11]) {
3264  if (ComdatID > ComdatList.size())
3265  return error("Invalid global variable comdat ID");
3266  NewGV->setComdat(ComdatList[ComdatID - 1]);
3267  }
3268  } else if (hasImplicitComdat(RawLinkage)) {
3269  NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3270  }
3271 
3272  if (Record.size() > 12) {
3273  auto AS = getAttributes(Record[12]).getFnAttributes();
3274  NewGV->setAttributes(AS);
3275  }
3276 
3277  if (Record.size() > 13) {
3278  NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3279  }
3280  inferDSOLocal(NewGV);
3281 
3282  // Check whether we have enough values to read a partition name.
3283  if (Record.size() > 15)
3284  NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3285 
3286  return Error::success();
3287 }
3288 
3289 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3290  // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3291  // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3292  // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
3293  // v2: [strtab_offset, strtab_size, v1]
3294  StringRef Name;
3295  std::tie(Name, Record) = readNameFromStrtab(Record);
3296 
3297  if (Record.size() < 8)
3298  return error("Invalid record");
3299  Type *FTy = getTypeByID(Record[0]);
3300  if (!FTy)
3301  return error("Invalid record");
3302  if (auto *PTy = dyn_cast<PointerType>(FTy))
3303  FTy = PTy->getElementType();
3304 
3305  if (!isa<FunctionType>(FTy))
3306  return error("Invalid type for value");
3307  auto CC = static_cast<CallingConv::ID>(Record[1]);
3308  if (CC & ~CallingConv::MaxID)
3309  return error("Invalid calling convention ID");
3310 
3311  unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3312  if (Record.size() > 16)
3313  AddrSpace = Record[16];
3314 
3315  Function *Func =
3316  Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3317  AddrSpace, Name, TheModule);
3318 
3319  assert(Func->getFunctionType() == FTy &&
3320  "Incorrect fully specified type provided for function");
3321  FunctionTypes[Func] = cast<FunctionType>(FTy);
3322 
3323  Func->setCallingConv(CC);
3324  bool isProto = Record[2];
3325  uint64_t RawLinkage = Record[3];
3326  Func->setLinkage(getDecodedLinkage(RawLinkage));
3327  Func->setAttributes(getAttributes(Record[4]));
3328 
3329  // Upgrade any old-style byval or sret without a type by propagating the
3330  // argument's pointee type. There should be no opaque pointers where the byval
3331  // type is implicit.
3332  for (unsigned i = 0; i != Func->arg_size(); ++i) {
3333  for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3334  Attribute::InAlloca}) {
3335  if (!Func->hasParamAttribute(i, Kind))
3336  continue;
3337 
3338  if (Func->getParamAttribute(i, Kind).getValueAsType())
3339  continue;
3340 
3341  Func->removeParamAttr(i, Kind);
3342 
3343  Type *PTy = cast<FunctionType>(FTy)->getParamType(i);
3344  Type *PtrEltTy = cast<PointerType>(PTy)->getElementType();
3345  Attribute NewAttr;
3346  switch (Kind) {
3347  case Attribute::ByVal:
3348  NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3349  break;
3350  case Attribute::StructRet:
3351  NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3352  break;
3353  case Attribute::InAlloca:
3354  NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3355  break;
3356  default:
3357  llvm_unreachable("not an upgraded type attribute");
3358  }
3359 
3360  Func->addParamAttr(i, NewAttr);
3361  }
3362  }
3363 
3364  MaybeAlign Alignment;
3365  if (Error Err = parseAlignmentValue(Record[5], Alignment))
3366  return Err;
3367  Func->setAlignment(Alignment);
3368  if (Record[6]) {
3369  if (Record[6] - 1 >= SectionTable.size())
3370  return error("Invalid ID");
3371  Func->setSection(SectionTable[Record[6] - 1]);
3372  }
3373  // Local linkage must have default visibility.
3374  // auto-upgrade `hidden` and `protected` for old bitcode.
3375  if (!Func->hasLocalLinkage())
3376  Func->setVisibility(getDecodedVisibility(Record[7]));
3377  if (Record.size() > 8 && Record[8]) {
3378  if (Record[8] - 1 >= GCTable.size())
3379  return error("Invalid ID");
3380  Func->setGC(GCTable[Record[8] - 1]);
3381  }
3383  if (Record.size() > 9)
3384  UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3385  Func->setUnnamedAddr(UnnamedAddr);
3386  if (Record.size() > 10 && Record[10] != 0)
3387  FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3388 
3389  if (Record.size() > 11)
3390  Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3391  else
3392  upgradeDLLImportExportLinkage(Func, RawLinkage);
3393 
3394  if (Record.size() > 12) {
3395  if (unsigned ComdatID = Record[12]) {
3396  if (ComdatID > ComdatList.size())
3397  return error("Invalid function comdat ID");
3398  Func->setComdat(ComdatList[ComdatID - 1]);
3399  }
3400  } else if (hasImplicitComdat(RawLinkage)) {
3401  Func->setComdat(reinterpret_cast<Comdat *>(1));
3402  }
3403 
3404  if (Record.size() > 13 && Record[13] != 0)
3405  FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3406 
3407  if (Record.size() > 14 && Record[14] != 0)
3408  FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3409 
3410  if (Record.size() > 15) {
3411  Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3412  }
3413  inferDSOLocal(Func);
3414 
3415  // Record[16] is the address space number.
3416 
3417  // Check whether we have enough values to read a partition name. Also make
3418  // sure Strtab has enough values.
3419  if (Record.size() > 18 && Strtab.data() &&
3420  Record[17] + Record[18] <= Strtab.size()) {
3421  Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3422  }
3423 
3424  ValueList.push_back(Func);
3425 
3426  // If this is a function with a body, remember the prototype we are
3427  // creating now, so that we can match up the body with them later.
3428  if (!isProto) {
3429  Func->setIsMaterializable(true);
3430  FunctionsWithBodies.push_back(Func);
3431  DeferredFunctionInfo[Func] = 0;
3432  }
3433  return Error::success();
3434 }
3435 
3436 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3437  unsigned BitCode, ArrayRef<uint64_t> Record) {
3438  // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3439  // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3440  // dllstorageclass, threadlocal, unnamed_addr,
3441  // preemption specifier] (name in VST)
3442  // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3443  // visibility, dllstorageclass, threadlocal, unnamed_addr,
3444  // preemption specifier] (name in VST)
3445  // v2: [strtab_offset, strtab_size, v1]
3446  StringRef Name;
3447  std::tie(Name, Record) = readNameFromStrtab(Record);
3448 
3449  bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3450  if (Record.size() < (3 + (unsigned)NewRecord))
3451  return error("Invalid record");
3452  unsigned OpNum = 0;
3453  Type *Ty = getTypeByID(Record[OpNum++]);
3454  if (!Ty)
3455  return error("Invalid record");
3456 
3457  unsigned AddrSpace;
3458  if (!NewRecord) {
3459  auto *PTy = dyn_cast<PointerType>(Ty);
3460  if (!PTy)
3461  return error("Invalid type for value");
3462  Ty = PTy->getElementType();
3463  AddrSpace = PTy->getAddressSpace();
3464  } else {
3465  AddrSpace = Record[OpNum++];
3466  }
3467 
3468  auto Val = Record[OpNum++];
3469  auto Linkage = Record[OpNum++];
3470  GlobalIndirectSymbol *NewGA;
3471  if (BitCode == bitc::MODULE_CODE_ALIAS ||
3472  BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3473  NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3474  TheModule);
3475  else
3476  NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3477  nullptr, TheModule);
3478 
3479  // Local linkage must have default visibility.
3480  // auto-upgrade `hidden` and `protected` for old bitcode.
3481  if (OpNum != Record.size()) {
3482  auto VisInd = OpNum++;
3483  if (!NewGA->hasLocalLinkage())
3484  NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3485  }
3486  if (BitCode == bitc::MODULE_CODE_ALIAS ||
3487  BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3488  if (OpNum != Record.size())
3490  else
3492  if (OpNum != Record.size())
3494  if (OpNum != Record.size())
3496  }
3497  if (OpNum != Record.size())
3498  NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3499  inferDSOLocal(NewGA);
3500 
3501  // Check whether we have enough values to read a partition name.
3502  if (OpNum + 1 < Record.size()) {
3503  NewGA->setPartition(
3504  StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3505  OpNum += 2;
3506  }
3507 
3508  ValueList.push_back(NewGA);
3509  IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3510  return Error::success();
3511 }
3512 
3513 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3514  bool ShouldLazyLoadMetadata,
3515  DataLayoutCallbackTy DataLayoutCallback) {
3516  if (ResumeBit) {
3517  if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3518  return JumpFailed;
3519  } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3520  return Err;
3521 
3523 
3524  // Parts of bitcode parsing depend on the datalayout. Make sure we
3525  // finalize the datalayout before we run any of that code.
3526  bool ResolvedDataLayout = false;
3527  auto ResolveDataLayout = [&] {
3528  if (ResolvedDataLayout)
3529  return;
3530 
3531  // datalayout and triple can't be parsed after this point.
3532  ResolvedDataLayout = true;
3533 
3534  // Upgrade data layout string.
3535  std::string DL = llvm::UpgradeDataLayoutString(
3536  TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3537  TheModule->setDataLayout(DL);
3538 
3539  if (auto LayoutOverride =
3540  DataLayoutCallback(TheModule->getTargetTriple()))
3541  TheModule->setDataLayout(*LayoutOverride);
3542  };
3543 
3544  // Read all the records for this module.
3545  while (true) {
3546  Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3547  if (!MaybeEntry)
3548  return MaybeEntry.takeError();
3549  llvm::BitstreamEntry Entry = MaybeEntry.get();
3550 
3551  switch (Entry.Kind) {
3552  case BitstreamEntry::Error:
3553  return error("Malformed block");
3554  case BitstreamEntry::EndBlock:
3555  ResolveDataLayout();
3556  return globalCleanup();
3557 
3558  case BitstreamEntry::SubBlock:
3559  switch (Entry.ID) {
3560  default: // Skip unknown content.
3561  if (Error Err = Stream.SkipBlock())
3562  return Err;
3563  break;
3565  if (readBlockInfo())
3566  return error("Malformed block");
3567  break;
3569  if (Error Err = parseAttributeBlock())
3570  return Err;
3571  break;
3573  if (Error Err = parseAttributeGroupBlock())
3574  return Err;
3575  break;
3577  if (Error Err = parseTypeTable())
3578  return Err;
3579  break;
3581  if (!SeenValueSymbolTable) {
3582  // Either this is an old form VST without function index and an
3583  // associated VST forward declaration record (which would have caused
3584  // the VST to be jumped to and parsed before it was encountered
3585  // normally in the stream), or there were no function blocks to
3586  // trigger an earlier parsing of the VST.
3587  assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3588  if (Error Err = parseValueSymbolTable())
3589  return Err;
3590  SeenValueSymbolTable = true;
3591  } else {
3592  // We must have had a VST forward declaration record, which caused
3593  // the parser to jump to and parse the VST earlier.
3594  assert(VSTOffset > 0);
3595  if (Error Err = Stream.SkipBlock())
3596  return Err;
3597  }
3598  break;
3600  if (Error Err = parseConstants())
3601  return Err;
3602  if (Error Err = resolveGlobalAndIndirectSymbolInits())
3603  return Err;
3604  break;
3606  if (ShouldLazyLoadMetadata) {
3607  if (Error Err = rememberAndSkipMetadata())
3608  return Err;
3609  break;
3610  }
3611  assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3612  if (Error Err = MDLoader->parseModuleMetadata())
3613  return Err;
3614  break;
3616  if (Error Err = MDLoader->parseMetadataKinds())
3617  return Err;
3618  break;
3620  ResolveDataLayout();
3621 
3622  // If this is the first function body we've seen, reverse the
3623  // FunctionsWithBodies list.
3624  if (!SeenFirstFunctionBody) {
3625  std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3626  if (Error Err = globalCleanup())
3627  return Err;
3628  SeenFirstFunctionBody = true;
3629  }
3630 
3631  if (VSTOffset > 0) {
3632  // If we have a VST forward declaration record, make sure we
3633  // parse the VST now if we haven't already. It is needed to
3634  // set up the DeferredFunctionInfo vector for lazy reading.
3635  if (!SeenValueSymbolTable) {
3636  if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3637  return Err;
3638  SeenValueSymbolTable = true;
3639  // Fall through so that we record the NextUnreadBit below.
3640  // This is necessary in case we have an anonymous function that
3641  // is later materialized. Since it will not have a VST entry we
3642  // need to fall back to the lazy parse to find its offset.
3643  } else {
3644  // If we have a VST forward declaration record, but have already
3645  // parsed the VST (just above, when the first function body was
3646  // encountered here), then we are resuming the parse after
3647  // materializing functions. The ResumeBit points to the
3648  // start of the last function block recorded in the
3649  // DeferredFunctionInfo map. Skip it.
3650  if (Error Err = Stream.SkipBlock())
3651  return Err;
3652  continue;
3653  }
3654  }
3655 
3656  // Support older bitcode files that did not have the function
3657  // index in the VST, nor a VST forward declaration record, as
3658  // well as anonymous functions that do not have VST entries.
3659  // Build the DeferredFunctionInfo vector on the fly.
3660  if (Error Err = rememberAndSkipFunctionBody())
3661  return Err;
3662 
3663  // Suspend parsing when we reach the function bodies. Subsequent
3664  // materialization calls will resume it when necessary. If the bitcode
3665  // file is old, the symbol table will be at the end instead and will not
3666  // have been seen yet. In this case, just finish the parse now.
3667  if (SeenValueSymbolTable) {
3668  NextUnreadBit = Stream.GetCurrentBitNo();
3669  // After the VST has been parsed, we need to make sure intrinsic name
3670  // are auto-upgraded.
3671  return globalCleanup();
3672  }
3673  break;
3675  if (Error Err = parseUseLists())
3676  return Err;
3677  break;
3679  if (Error Err = parseOperandBundleTags())
3680  return Err;
3681  break;
3683  if (Error Err = parseSyncScopeNames())
3684  return Err;
3685  break;
3686  }
3687  continue;
3688 
3689  case BitstreamEntry::Record:
3690  // The interesting case.
3691  break;
3692  }
3693 
3694  // Read a record.
3695  Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3696  if (!MaybeBitCode)
3697  return MaybeBitCode.takeError();
3698  switch (unsigned BitCode = MaybeBitCode.get()) {
3699  default: break; // Default behavior, ignore unknown content.
3701  Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3702  if (!VersionOrErr)
3703  return VersionOrErr.takeError();
3704  UseRelativeIDs = *VersionOrErr >= 1;
3705  break;
3706  }
3707  case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
3708  if (ResolvedDataLayout)
3709  return error("target triple too late in module");
3710  std::string S;
3711  if (convertToString(Record, 0, S))
3712  return error("Invalid record");
3713  TheModule->setTargetTriple(S);
3714  break;
3715  }
3716  case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
3717  if (ResolvedDataLayout)
3718  return error("datalayout too late in module");
3719  std::string S;
3720  if (convertToString(Record, 0, S))
3721  return error("Invalid record");
3722  TheModule->setDataLayout(S);
3723  break;
3724  }
3725  case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
3726  std::string S;
3727  if (convertToString(Record, 0, S))
3728  return error("Invalid record");
3729  TheModule->setModuleInlineAsm(S);
3730  break;
3731  }
3732  case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
3733  // Deprecated, but still needed to read old bitcode files.
3734  std::string S;
3735  if (convertToString(Record, 0, S))
3736  return error("Invalid record");
3737  // Ignore value.
3738  break;
3739  }
3740  case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
3741  std::string S;
3742  if (convertToString(Record, 0, S))
3743  return error("Invalid record");
3744  SectionTable.push_back(S);
3745  break;
3746  }
3747  case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
3748  std::string S;
3749  if (convertToString(Record, 0, S))
3750  return error("Invalid record");
3751  GCTable.push_back(S);
3752  break;
3753  }
3755  if (Error Err = parseComdatRecord(Record))
3756  return Err;
3757  break;
3759  if (Error Err = parseGlobalVarRecord(Record))
3760  return Err;
3761  break;
3763  ResolveDataLayout();
3764  if (Error Err = parseFunctionRecord(Record))
3765  return Err;
3766  break;
3770  if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3771  return Err;
3772  break;
3773  /// MODULE_CODE_VSTOFFSET: [offset]
3775  if (Record.empty())
3776  return error("Invalid record");
3777  // Note that we subtract 1 here because the offset is relative to one word
3778  // before the start of the identification or module block, which was
3779  // historically always the start of the regular bitcode header.
3780  VSTOffset = Record[0] - 1;
3781  break;
3782  /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3785  if (convertToString(Record, 0, ValueName))
3786  return error("Invalid record");
3787  TheModule->setSourceFileName(ValueName);
3788  break;
3789  }
3790  Record.clear();
3791  }
3792 }
3793 
3794 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3795  bool IsImporting,
3796  DataLayoutCallbackTy DataLayoutCallback) {
3797  TheModule = M;
3798  MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3799  [&](unsigned ID) { return getTypeByID(ID); });
3800  return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3801 }
3802 
3803 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3804  if (!isa<PointerType>(PtrType))
3805  return error("Load/Store operand is not a pointer type");
3806 
3807  if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3808  return error("Explicit load/store type does not match pointee "
3809  "type of pointer operand");
3810  if (!PointerType::isLoadableOrStorableType(ValType))
3811  return error("Cannot load/store from pointer");
3812  return Error::success();
3813 }
3814 
3815 void BitcodeReader::propagateAttributeTypes(CallBase *CB,
3816  ArrayRef<Type *> ArgsTys) {
3817  for (unsigned i = 0; i != CB->arg_size(); ++i) {
3818  for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3819  Attribute::InAlloca}) {
3820  if (!CB->paramHasAttr(i, Kind))
3821  continue;
3822 
3823  CB->removeParamAttr(i, Kind);
3824 
3825  Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType();
3826  Attribute NewAttr;
3827  switch (Kind) {
3828  case Attribute::ByVal:
3829  NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3830  break;
3831  case Attribute::StructRet:
3832  NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3833  break;
3834  case Attribute::InAlloca:
3835  NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3836  break;
3837  default:
3838  llvm_unreachable("not an upgraded type attribute");
3839  }
3840 
3841  CB->addParamAttr(i, NewAttr);
3842  }
3843  }
3844 
3845  switch (CB->getIntrinsicID()) {
3846  case Intrinsic::preserve_array_access_index:
3847  case Intrinsic::preserve_struct_access_index:
3848  if (!CB->getAttributes().getParamElementType(0)) {
3849  Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType();
3850  Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
3851  CB->addParamAttr(0, NewAttr);
3852  }
3853  break;
3854  default:
3855  break;
3856  }
3857 }
3858 
3859 /// Lazily parse the specified function body block.
3860 Error BitcodeReader::parseFunctionBody(Function *F) {
3861  if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3862  return Err;
3863 
3864  // Unexpected unresolved metadata when parsing function.
3865  if (MDLoader->hasFwdRefs())
3866  return error("Invalid function metadata: incoming forward references");
3867 
3868  InstructionList.clear();
3869  unsigned ModuleValueListSize = ValueList.size();
3870  unsigned ModuleMDLoaderSize = MDLoader->size();
3871 
3872  // Add all the function arguments to the value table.
3873 #ifndef NDEBUG
3874  unsigned ArgNo = 0;
3875  FunctionType *FTy = FunctionTypes[F];
3876 #endif
3877  for (Argument &I : F->args()) {
3878  assert(I.getType() == FTy->getParamType(ArgNo++) &&
3879  "Incorrect fully specified type for Function Argument");
3880  ValueList.push_back(&I);
3881  }
3882  unsigned NextValueNo = ValueList.size();
3883  BasicBlock *CurBB = nullptr;
3884  unsigned CurBBNo = 0;
3885 
3886  DebugLoc LastLoc;
3887  auto getLastInstruction = [&]() -> Instruction * {
3888  if (CurBB && !CurBB->empty())
3889  return &CurBB->back();
3890  else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3891  !FunctionBBs[CurBBNo - 1]->empty())
3892  return &FunctionBBs[CurBBNo - 1]->back();
3893  return nullptr;
3894  };
3895 
3896  std::vector<OperandBundleDef> OperandBundles;
3897 
3898  // Read all the records.
3900 
3901  while (true) {
3902  Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3903  if (!MaybeEntry)
3904  return MaybeEntry.takeError();
3905  llvm::BitstreamEntry Entry = MaybeEntry.get();
3906 
3907  switch (Entry.Kind) {
3908  case BitstreamEntry::Error:
3909  return error("Malformed block");
3910  case BitstreamEntry::EndBlock:
3911  goto OutOfRecordLoop;
3912 
3913  case BitstreamEntry::SubBlock:
3914  switch (Entry.ID) {
3915  default: // Skip unknown content.
3916  if (Error Err = Stream.SkipBlock())
3917  return Err;
3918  break;
3920  if (Error Err = parseConstants())
3921  return Err;
3922  NextValueNo = ValueList.size();
3923  break;
3925  if (Error Err = parseValueSymbolTable())
3926  return Err;
3927  break;
3929  if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3930  return Err;
3931  break;
3933  assert(DeferredMetadataInfo.empty() &&
3934  "Must read all module-level metadata before function-level");
3935  if (Error Err = MDLoader->parseFunctionMetadata())
3936  return Err;
3937  break;
3939  if (Error Err = parseUseLists())
3940  return Err;
3941  break;
3942  }
3943  continue;
3944 
3945  case BitstreamEntry::Record:
3946  // The interesting case.
3947  break;
3948  }
3949 
3950  // Read a record.
3951  Record.clear();
3952  Instruction *I = nullptr;
3953  Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3954  if (!MaybeBitCode)
3955  return MaybeBitCode.takeError();
3956  switch (unsigned BitCode = MaybeBitCode.get()) {
3957  default: // Default behavior: reject
3958  return error("Invalid value");
3959  case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
3960  if (Record.empty() || Record[0] == 0)
3961  return error("Invalid record");
3962  // Create all the basic blocks for the function.
3963  FunctionBBs.resize(Record[0]);
3964 
3965  // See if anything took the address of blocks in this function.
3966  auto BBFRI = BasicBlockFwdRefs.find(F);
3967  if (BBFRI == BasicBlockFwdRefs.end()) {
3968  for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3969  FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3970  } else {
3971  auto &BBRefs = BBFRI->second;
3972  // Check for invalid basic block references.
3973  if (BBRefs.size() > FunctionBBs.size())
3974  return error("Invalid ID");
3975  assert(!BBRefs.empty() && "Unexpected empty array");
3976  assert(!BBRefs.front() && "Invalid reference to entry block");
3977  for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3978  ++I)
3979  if (I < RE && BBRefs[I]) {
3980  BBRefs[I]->insertInto(F);
3981  FunctionBBs[I] = BBRefs[I];
3982  } else {
3983  FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3984  }
3985 
3986  // Erase from the table.
3987  BasicBlockFwdRefs.erase(BBFRI);
3988  }
3989 
3990  CurBB = FunctionBBs[0];
3991  continue;
3992  }
3993 
3994  case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
3995  // This record indicates that the last instruction is at the same
3996  // location as the previous instruction with a location.
3997  I = getLastInstruction();
3998 
3999  if (!I)
4000  return error("Invalid record");
4001  I->setDebugLoc(LastLoc);
4002  I = nullptr;
4003  continue;
4004 
4005  case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
4006  I = getLastInstruction();
4007  if (!I || Record.size() < 4)
4008  return error("Invalid record");
4009 
4010  unsigned Line = Record[0], Col = Record[1];
4011  unsigned ScopeID = Record[2], IAID = Record[3];
4012  bool isImplicitCode = Record.size() == 5 && Record[4];
4013 
4014  MDNode *Scope = nullptr, *IA = nullptr;
4015  if (ScopeID) {
4016  Scope = dyn_cast_or_null<MDNode>(
4017  MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4018  if (!Scope)
4019  return error("Invalid record");
4020  }
4021  if (IAID) {
4022  IA = dyn_cast_or_null<MDNode>(
4023  MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4024  if (!IA)
4025  return error("Invalid record");
4026  }
4027  LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4028  isImplicitCode);
4029  I->setDebugLoc(LastLoc);
4030  I = nullptr;
4031  continue;
4032  }
4033  case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
4034  unsigned OpNum = 0;
4035  Value *LHS;
4036  if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4037  OpNum+1 > Record.size())
4038  return error("Invalid record");
4039 
4040  int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4041  if (Opc == -1)
4042  return error("Invalid record");
4043  I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4044  InstructionList.push_back(I);
4045  if (OpNum < Record.size()) {
4046  if (isa<FPMathOperator>(I)) {
4048  if (FMF.any())
4049  I->setFastMathFlags(FMF);
4050  }
4051  }
4052  break;
4053  }
4054  case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
4055  unsigned OpNum = 0;
4056  Value *LHS, *RHS;
4057  if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4058  popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4059  OpNum+1 > Record.size())
4060  return error("Invalid record");
4061 
4062  int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4063  if (Opc == -1)
4064  return error("Invalid record");
4065  I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4066  InstructionList.push_back(I);
4067  if (OpNum < Record.size()) {
4068  if (Opc == Instruction::Add ||
4069  Opc == Instruction::Sub ||
4070  Opc == Instruction::Mul ||
4071  Opc == Instruction::Shl) {
4072  if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4073  cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4074  if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4075  cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4076  } else if (Opc == Instruction::SDiv ||
4077  Opc == Instruction::UDiv ||
4078  Opc == Instruction::LShr ||
4079  Opc == Instruction::AShr) {
4080  if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4081  cast<BinaryOperator>(I)->setIsExact(true);
4082  } else if (isa<FPMathOperator>(I)) {
4084  if (FMF.any())
4085  I->setFastMathFlags(FMF);
4086  }
4087 
4088  }
4089  break;
4090  }
4091  case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
4092  unsigned OpNum = 0;
4093  Value *Op;
4094  if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4095  OpNum+2 != Record.size())
4096  return error("Invalid record");
4097 
4098  Type *ResTy = getTypeByID(Record[OpNum]);
4099  int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4100  if (Opc == -1 || !ResTy)
4101  return error("Invalid record");
4102  Instruction *Temp = nullptr;
4103  if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4104  if (Temp) {
4105  InstructionList.push_back(Temp);
4106  assert(CurBB && "No current BB?");
4107  CurBB->getInstList().push_back(Temp);
4108  }
4109  } else {
4110  auto CastOp = (Instruction::CastOps)Opc;
4111  if (!CastInst::castIsValid(CastOp, Op, ResTy))
4112  return error("Invalid cast");
4113  I = CastInst::Create(CastOp, Op, ResTy);
4114  }
4115  InstructionList.push_back(I);
4116  break;
4117  }
4120  case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4121  unsigned OpNum = 0;
4122 
4123  Type *Ty;
4124  bool InBounds;
4125 
4126  if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4127  InBounds = Record[OpNum++];
4128  Ty = getTypeByID(Record[OpNum++]);
4129  } else {
4130  InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4131  Ty = nullptr;
4132  }
4133 
4134  Value *BasePtr;
4135  if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4136  return error("Invalid record");
4137 
4138  if (!Ty) {
4139  Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
4140  ->getElementType();
4141  } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4142  ->isOpaqueOrPointeeTypeMatches(Ty)) {
4143  return error(
4144  "Explicit gep type does not match pointee type of pointer operand");
4145  }
4146 
4147  SmallVector<Value*, 16> GEPIdx;
4148  while (OpNum != Record.size()) {
4149  Value *Op;
4150  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4151  return error("Invalid record");
4152  GEPIdx.push_back(Op);
4153  }
4154 
4155  I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4156 
4157  InstructionList.push_back(I);
4158  if (InBounds)
4159  cast<GetElementPtrInst>(I)->setIsInBounds(true);
4160  break;
4161  }
4162 
4164  // EXTRACTVAL: [opty, opval, n x indices]
4165  unsigned OpNum = 0;
4166  Value *Agg;
4167  if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4168  return error("Invalid record");
4169  Type *Ty = Agg->getType();
4170 
4171  unsigned RecSize = Record.size();
4172  if (OpNum == RecSize)
4173  return error("EXTRACTVAL: Invalid instruction with 0 indices");
4174 
4175  SmallVector<unsigned, 4> EXTRACTVALIdx;
4176  for (; OpNum != RecSize; ++OpNum) {
4177  bool IsArray = Ty->isArrayTy();
4178  bool IsStruct = Ty->isStructTy();
4179  uint64_t Index = Record[OpNum];
4180 
4181  if (!IsStruct && !IsArray)
4182  return error("EXTRACTVAL: Invalid type");
4183  if ((unsigned)Index != Index)
4184  return error("Invalid value");
4185  if (IsStruct && Index >= Ty->getStructNumElements())
4186  return error("EXTRACTVAL: Invalid struct index");
4187  if (IsArray && Index >= Ty->getArrayNumElements())
4188  return error("EXTRACTVAL: Invalid array index");
4189  EXTRACTVALIdx.push_back((unsigned)Index);
4190 
4191  if (IsStruct)
4192  Ty = Ty->getStructElementType(Index);
4193  else
4194  Ty = Ty->getArrayElementType();
4195  }
4196 
4197  I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4198  InstructionList.push_back(I);
4199  break;
4200  }
4201 
4203  // INSERTVAL: [opty, opval, opty, opval, n x indices]
4204  unsigned OpNum = 0;
4205  Value *Agg;
4206  if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4207  return error("Invalid record");
4208  Value *Val;
4209  if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4210  return error("Invalid record");
4211 
4212  unsigned RecSize = Record.size();
4213  if (OpNum == RecSize)
4214  return error("INSERTVAL: Invalid instruction with 0 indices");
4215 
4216  SmallVector<unsigned, 4> INSERTVALIdx;
4217  Type *CurTy = Agg->getType();
4218  for (; OpNum != RecSize; ++OpNum) {
4219  bool IsArray = CurTy->isArrayTy();
4220  bool IsStruct = CurTy->isStructTy();
4221  uint64_t Index = Record[OpNum];
4222 
4223  if (!IsStruct && !IsArray)
4224  return error("INSERTVAL: Invalid type");
4225  if ((unsigned)Index != Index)
4226  return error("Invalid value");
4227  if (IsStruct && Index >= CurTy->getStructNumElements())
4228  return error("INSERTVAL: Invalid struct index");
4229  if (IsArray && Index >= CurTy->getArrayNumElements())
4230  return error("INSERTVAL: Invalid array index");
4231 
4232  INSERTVALIdx.push_back((unsigned)Index);
4233  if (IsStruct)
4234  CurTy = CurTy->getStructElementType(Index);
4235  else
4236  CurTy = CurTy->getArrayElementType();
4237  }
4238 
4239  if (CurTy != Val->getType())
4240  return error("Inserted value type doesn't match aggregate type");
4241 
4242  I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4243  InstructionList.push_back(I);
4244  break;
4245  }
4246 
4247  case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4248  // obsolete form of select
4249  // handles select i1 ... in old bitcode
4250  unsigned OpNum = 0;
4251  Value *TrueVal, *FalseVal, *Cond;
4252  if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4253  popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4254  popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4255  return error("Invalid record");
4256 
4257  I = SelectInst::Create(Cond, TrueVal, FalseVal);
4258  InstructionList.push_back(I);
4259  break;
4260  }
4261 
4262  case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4263  // new form of select
4264  // handles select i1 or select [N x i1]
4265  unsigned OpNum = 0;
4266  Value *TrueVal, *FalseVal, *Cond;
4267  if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4268  popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4269  getValueTypePair(Record, OpNum, NextValueNo, Cond))
4270  return error("Invalid record");
4271 
4272  // select condition can be either i1 or [N x i1]
4273  if (VectorType* vector_type =
4274  dyn_cast<VectorType>(Cond->getType())) {
4275  // expect <n x i1>
4276  if (vector_type->getElementType() != Type::getInt1Ty(Context))
4277  return error("Invalid type for value");
4278  } else {
4279  // expect i1
4280  if (Cond->getType() != Type::getInt1Ty(Context))
4281  return error("Invalid type for value");
4282  }
4283 
4284  I = SelectInst::Create(Cond, TrueVal, FalseVal);
4285  InstructionList.push_back(I);
4286  if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4288  if (FMF.any())
4289  I->setFastMathFlags(FMF);
4290  }
4291  break;
4292  }
4293 
4294  case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4295  unsigned OpNum = 0;
4296  Value *Vec, *Idx;
4297  if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4298  getValueTypePair(Record, OpNum, NextValueNo, Idx))
4299  return error("Invalid record");
4300  if (!Vec->getType()->isVectorTy())
4301  return error("Invalid type for value");
4302  I = ExtractElementInst::Create(Vec, Idx);
4303  InstructionList.push_back(I);
4304  break;
4305  }
4306 
4307  case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4308  unsigned OpNum = 0;
4309  Value *Vec, *Elt, *Idx;
4310  if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4311  return error("Invalid record");
4312  if (!Vec->getType()->isVectorTy())
4313  return error("Invalid type for value");
4314  if (popValue(Record, OpNum, NextValueNo,
4315  cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4316  getValueTypePair(Record, OpNum, NextValueNo, Idx))
4317  return error("Invalid record");
4318  I = InsertElementInst::Create(Vec, Elt, Idx);
4319  InstructionList.push_back(I);
4320  break;
4321  }
4322 
4323  case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4324  unsigned OpNum = 0;
4325  Value *Vec1, *Vec2, *Mask;
4326  if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4327  popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4328  return error("Invalid record");
4329 
4330  if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4331  return error("Invalid record");
4332  if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4333  return error("Invalid type for value");
4334 
4335  I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4336  InstructionList.push_back(I);
4337  break;
4338  }
4339 
4340  case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
4341  // Old form of ICmp/FCmp returning bool
4342  // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4343  // both legal on vectors but had different behaviour.
4344  case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4345  // FCmp/ICmp returning bool or vector of bool
4346 
4347  unsigned OpNum = 0;
4348  Value *LHS, *RHS;
4349  if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4350  popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4351  return error("Invalid record");
4352 
4353  if (OpNum >= Record.size())
4354  return error(
4355  "Invalid record: operand number exceeded available operands");
4356 
4357  unsigned PredVal = Record[OpNum];
4358  bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4359  FastMathFlags FMF;
4360  if (IsFP && Record.size() > OpNum+1)
4361  FMF = getDecodedFastMathFlags(Record[++OpNum]);
4362 
4363  if (OpNum+1 != Record.size())
4364  return error("Invalid record");
4365 
4366  if (LHS->getType()->isFPOrFPVectorTy())
4367  I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4368  else
4369  I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4370 
4371  if (FMF.any())
4372  I->setFastMathFlags(FMF);
4373  InstructionList.push_back(I);
4374  break;
4375  }
4376 
4377  case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4378  {
4379  unsigned Size = Record.size();
4380  if (Size == 0) {
4381  I = ReturnInst::Create(Context);
4382  InstructionList.push_back(I);
4383  break;
4384  }
4385 
4386  unsigned OpNum = 0;
4387  Value *Op = nullptr;
4388  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4389  return error("Invalid record");
4390  if (OpNum != Record.size())
4391  return error("Invalid record");
4392 
4393  I = ReturnInst::Create(Context, Op);
4394  InstructionList.push_back(I);
4395  break;
4396  }
4397  case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4398  if (Record.size() != 1 && Record.size() != 3)
4399  return error("Invalid record");
4400  BasicBlock *TrueDest = getBasicBlock(Record[0]);
4401  if (!TrueDest)
4402  return error("Invalid record");
4403 
4404  if (Record.size() == 1) {
4405  I = BranchInst::Create(TrueDest);
4406  InstructionList.push_back(I);
4407  }
4408  else {
4409  BasicBlock *FalseDest = getBasicBlock(Record[1]);
4410  Value *Cond = getValue(Record, 2, NextValueNo,
4411  Type::getInt1Ty(Context));
4412  if (!FalseDest || !Cond)
4413  return error("Invalid record");
4414  I = BranchInst::Create(TrueDest, FalseDest, Cond);
4415  InstructionList.push_back(I);
4416  }
4417  break;
4418  }
4419  case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4420  if (Record.size() != 1 && Record.size() != 2)
4421  return error("Invalid record");
4422  unsigned Idx = 0;
4423  Value *CleanupPad =
4424  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4425  if (!CleanupPad)
4426  return error("Invalid record");
4427  BasicBlock *UnwindDest = nullptr;
4428  if (Record.size() == 2) {
4429  UnwindDest = getBasicBlock(Record[Idx++]);
4430  if (!UnwindDest)
4431  return error("Invalid record");
4432  }
4433 
4434  I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4435  InstructionList.push_back(I);
4436  break;
4437  }
4438  case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4439  if (Record.size() != 2)
4440  return error("Invalid record");
4441  unsigned Idx = 0;
4442  Value *CatchPad =
4443  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4444  if (!CatchPad)
4445  return error("Invalid record");
4446  BasicBlock *BB = getBasicBlock(Record[Idx++]);
4447  if (!BB)
4448  return error("Invalid record");
4449 
4450  I = CatchReturnInst::Create(CatchPad, BB);
4451  InstructionList.push_back(I);
4452  break;
4453  }
4454  case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4455  // We must have, at minimum, the outer scope and the number of arguments.
4456  if (Record.size() < 2)
4457  return error("Invalid record");
4458 
4459  unsigned Idx = 0;
4460 
4461  Value *ParentPad =
4462  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4463 
4464  unsigned NumHandlers = Record[Idx++];
4465 
4467  for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4468  BasicBlock *BB = getBasicBlock(Record[Idx++]);
4469  if (!BB)
4470  return error("Invalid record");
4471  Handlers.push_back(BB);
4472  }
4473 
4474  BasicBlock *UnwindDest = nullptr;
4475  if (Idx + 1 == Record.size()) {
4476  UnwindDest = getBasicBlock(Record[Idx++]);
4477  if (!UnwindDest)
4478  return error("Invalid record");
4479  }
4480 
4481  if (Record.size() != Idx)
4482  return error("Invalid record");
4483 
4484  auto *CatchSwitch =
4485  CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4486  for (BasicBlock *Handler : Handlers)
4487  CatchSwitch->addHandler(Handler);
4488  I = CatchSwitch;
4489  InstructionList.push_back(I);
4490  break;
4491  }
4493  case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4494  // We must have, at minimum, the outer scope and the number of arguments.
4495  if (Record.size() < 2)
4496  return error("Invalid record");
4497 
4498  unsigned Idx = 0;
4499 
4500  Value *ParentPad =
4501  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4502 
4503  unsigned NumArgOperands = Record[Idx++];
4504 
4506  for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4507  Value *Val;
4508  if (getValueTypePair(Record, Idx, NextValueNo, Val))
4509  return error("Invalid record");
4510  Args.push_back(Val);
4511  }
4512 
4513  if (Record.size() != Idx)
4514  return error("Invalid record");
4515 
4516  if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4517  I = CleanupPadInst::Create(ParentPad, Args);
4518  else
4519  I = CatchPadInst::Create(ParentPad, Args);
4520  InstructionList.push_back(I);
4521  break;
4522  }
4523  case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4524  // Check magic
4525  if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4526  // "New" SwitchInst format with case ranges. The changes to write this
4527  // format were reverted but we still recognize bitcode that uses it.
4528  // Hopefully someday we will have support for case ranges and can use
4529  // this format again.
4530 
4531  Type *OpTy = getTypeByID(Record[1]);
4532  unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4533 
4534  Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4535  BasicBlock *Default = getBasicBlock(Record[3]);
4536  if (!OpTy || !Cond || !Default)
4537  return error("Invalid record");
4538 
4539  unsigned NumCases = Record[4];
4540 
4541  SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4542  InstructionList.push_back(SI);
4543 
4544  unsigned CurIdx = 5;
4545  for (unsigned i = 0; i != NumCases; ++i) {
4547  unsigned NumItems = Record[CurIdx++];
4548  for (unsigned ci = 0; ci != NumItems; ++ci) {
4549  bool isSingleNumber = Record[CurIdx++];
4550 
4551  APInt Low;
4552  unsigned ActiveWords = 1;
4553  if (ValueBitWidth > 64)
4554  ActiveWords = Record[CurIdx++];
4555  Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4556  ValueBitWidth);
4557  CurIdx += ActiveWords;
4558 
4559  if (!isSingleNumber) {
4560  ActiveWords = 1;
4561  if (ValueBitWidth > 64)
4562  ActiveWords = Record[CurIdx++];
4564  makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4565  CurIdx += ActiveWords;
4566 
4567  // FIXME: It is not clear whether values in the range should be
4568  // compared as signed or unsigned values. The partially
4569  // implemented changes that used this format in the past used
4570  // unsigned comparisons.
4571  for ( ; Low.ule(High); ++Low)
4572  CaseVals.push_back(ConstantInt::get(Context, Low));
4573  } else
4574  CaseVals.push_back(ConstantInt::get(Context, Low));
4575  }
4576  BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4577  for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4578  cve = CaseVals.end(); cvi != cve; ++cvi)
4579  SI->addCase(*cvi, DestBB);
4580  }
4581  I = SI;
4582  break;
4583  }
4584 
4585  // Old SwitchInst format without case ranges.
4586 
4587  if (Record.size() < 3 || (Record.size() & 1) == 0)
4588  return error("Invalid record");
4589  Type *OpTy = getTypeByID(Record[0]);
4590  Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4591  BasicBlock *Default = getBasicBlock(Record[2]);
4592  if (!OpTy || !Cond || !Default)
4593  return error("Invalid record");
4594  unsigned NumCases = (Record.size()-3)/2;
4595  SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4596  InstructionList.push_back(SI);
4597  for (unsigned i = 0, e = NumCases; i != e; ++i) {
4598  ConstantInt *CaseVal =
4599  dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4600  BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4601  if (!CaseVal || !DestBB) {
4602  delete SI;
4603  return error("Invalid record");
4604  }
4605  SI->addCase(CaseVal, DestBB);
4606  }
4607  I = SI;
4608  break;
4609  }
4610  case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4611  if (Record.size() < 2)
4612  return error("Invalid record");
4613  Type *OpTy = getTypeByID(Record[0]);
4614  Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4615  if (!OpTy || !Address)
4616  return error("Invalid record");
4617  unsigned NumDests = Record.size()-2;
4618  IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4619  InstructionList.push_back(IBI);
4620  for (unsigned i = 0, e = NumDests; i != e; ++i) {
4621  if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4622  IBI->addDestination(DestBB);
4623  } else {
4624  delete IBI;
4625  return error("Invalid record");
4626  }
4627  }
4628  I = IBI;
4629  break;
4630  }
4631 
4633  // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4634  if (Record.size() < 4)
4635  return error("Invalid record");
4636  unsigned OpNum = 0;
4637  AttributeList PAL = getAttributes(Record[OpNum++]);
4638  unsigned CCInfo = Record[OpNum++];
4639  BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4640  BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4641 
4642  FunctionType *FTy = nullptr;
4643  if ((CCInfo >> 13) & 1) {
4644  FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4645  if (!FTy)
4646  return error("Explicit invoke type is not a function type");
4647  }
4648 
4649  Value *Callee;
4650  if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4651  return error("Invalid record");
4652 
4653  PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4654  if (!CalleeTy)
4655  return error("Callee is not a pointer");
4656  if (!FTy) {
4657  FTy = dyn_cast<FunctionType>(
4658  cast<PointerType>(Callee->getType())->getElementType());
4659  if (!FTy)
4660  return error("Callee is not of pointer to function type");
4661  } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
4662  return error("Explicit invoke type does not match pointee type of "
4663  "callee operand");
4664  if (Record.size() < FTy->getNumParams() + OpNum)
4665  return error("Insufficient operands to call");
4666 
4668  SmallVector<Type *, 16> ArgsTys;
4669  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4670  Ops.push_back(getValue(Record, OpNum, NextValueNo,
4671  FTy->getParamType(i)));
4672  ArgsTys.push_back(FTy->getParamType(i));
4673  if (!Ops.back())
4674  return error("Invalid record");
4675  }
4676 
4677  if (!FTy->isVarArg()) {
4678  if (Record.size() != OpNum)
4679  return error("Invalid record");
4680  } else {
4681  // Read type/value pairs for varargs params.
4682  while (OpNum != Record.size()) {
4683  Value *Op;
4684  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4685  return error("Invalid record");
4686  Ops.push_back(Op);
4687  ArgsTys.push_back(Op->getType());
4688  }
4689  }
4690 
4691  I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4692  OperandBundles);
4693  OperandBundles.clear();
4694  InstructionList.push_back(I);
4695  cast<InvokeInst>(I)->setCallingConv(
4696  static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4697  cast<InvokeInst>(I)->setAttributes(PAL);
4698  propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4699 
4700  break;
4701  }
4702  case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4703  unsigned Idx = 0;
4704  Value *Val = nullptr;
4705  if (getValueTypePair(Record, Idx, NextValueNo, Val))
4706  return error("Invalid record");
4707  I = ResumeInst::Create(Val);
4708  InstructionList.push_back(I);
4709  break;
4710  }
4712  // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4713  unsigned OpNum = 0;
4714  AttributeList PAL = getAttributes(Record[OpNum++]);
4715  unsigned CCInfo = Record[OpNum++];
4716 
4717  BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4718  unsigned NumIndirectDests = Record[OpNum++];
4719  SmallVector<BasicBlock *, 16> IndirectDests;
4720  for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4721  IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4722 
4723  FunctionType *FTy = nullptr;
4724  if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4725  FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4726  if (!FTy)
4727  return error("Explicit call type is not a function type");
4728  }
4729 
4730  Value *Callee;
4731  if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4732  return error("Invalid record");
4733 
4734  PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4735  if (!OpTy)
4736  return error("Callee is not a pointer type");
4737  if (!FTy) {
4738  FTy = dyn_cast<FunctionType>(
4739  cast<PointerType>(Callee->getType())->getElementType());
4740  if (!FTy)
4741  return error("Callee is not of pointer to function type");
4742  } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy)
4743  return error("Explicit call type does not match pointee type of "
4744  "callee operand");
4745  if (Record.size() < FTy->getNumParams() + OpNum)
4746  return error("Insufficient operands to call");
4747 
4749  // Read the fixed params.
4750  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4751  if (FTy->getParamType(i)->isLabelTy())
4752  Args.push_back(getBasicBlock(Record[OpNum]));
4753  else
4754  Args.push_back(getValue(Record, OpNum, NextValueNo,
4755  FTy->getParamType(i)));
4756  if (!Args.back())
4757  return error("Invalid record");
4758  }
4759 
4760  // Read type/value pairs for varargs params.
4761  if (!FTy->isVarArg()) {
4762  if (OpNum != Record.size())
4763  return error("Invalid record");
4764  } else {
4765  while (OpNum != Record.size()) {
4766  Value *Op;
4767  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4768  return error("Invalid record");
4769  Args.push_back(Op);
4770  }
4771  }
4772 
4773  I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4774  OperandBundles);
4775  OperandBundles.clear();
4776  InstructionList.push_back(I);
4777  cast<CallBrInst>(I)->setCallingConv(
4778  static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4779  cast<CallBrInst>(I)->setAttributes(PAL);
4780  break;
4781  }
4782  case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4783  I = new UnreachableInst(Context);
4784  InstructionList.push_back(I);
4785  break;
4786  case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4787  if (Record.empty())
4788  return error("Invalid record");
4789  // The first record specifies the type.
4790  Type *Ty = getTypeByID(Record[0]);
4791  if (!Ty)
4792  return error("Invalid record");
4793 
4794  // Phi arguments are pairs of records of [value, basic block].
4795  // There is an optional final record for fast-math-flags if this phi has a
4796  // floating-point type.
4797  size_t NumArgs = (Record.size() - 1) / 2;
4798  PHINode *PN = PHINode::Create(Ty, NumArgs);
4799  if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4800  return error("Invalid record");
4801  InstructionList.push_back(PN);
4802 
4803  for (unsigned i = 0; i != NumArgs; i++) {
4804  Value *V;
4805  // With the new function encoding, it is possible that operands have
4806  // negative IDs (for forward references). Use a signed VBR
4807  // representation to keep the encoding small.
4808  if (UseRelativeIDs)
4809  V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4810  else
4811  V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4812  BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4813  if (!V || !BB)
4814  return error("Invalid record");
4815  PN->addIncoming(V, BB);
4816  }
4817  I = PN;
4818 
4819  // If there are an even number of records, the final record must be FMF.
4820  if (Record.size() % 2 == 0) {
4821  assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4823  if (FMF.any())
4824  I->setFastMathFlags(FMF);
4825  }
4826 
4827  break;
4828  }
4829 
4832  // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4833  unsigned Idx = 0;
4834  if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4835  if (Record.size() < 3)
4836  return error("Invalid record");
4837  } else {
4839  if (Record.size() < 4)
4840  return error("Invalid record");
4841  }
4842  Type *Ty = getTypeByID(Record[Idx++]);
4843  if (!Ty)
4844  return error("Invalid record");
4845  if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4846  Value *PersFn = nullptr;
4847  if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4848  return error("Invalid record");
4849 
4850  if (!F->hasPersonalityFn())
4851  F->setPersonalityFn(cast<Constant>(PersFn));
4852  else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4853  return error("Personality function mismatch");
4854  }
4855 
4856  bool IsCleanup = !!Record[Idx++];
4857  unsigned NumClauses = Record[Idx++];
4858  LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4859  LP->setCleanup(IsCleanup);
4860  for (unsigned J = 0; J != NumClauses; ++J) {
4862  LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4863  Value *Val;
4864 
4865  if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4866  delete LP;
4867  return error("Invalid record");
4868  }
4869 
4870  assert((CT != LandingPadInst::Catch ||
4871  !isa<ArrayType>(Val->getType())) &&
4872  "Catch clause has a invalid type!");
4873  assert((CT != LandingPadInst::Filter ||
4874  isa<ArrayType>(Val->getType())) &&
4875  "Filter clause has invalid type!");
4876  LP->addClause(cast<Constant>(Val));
4877  }
4878 
4879  I = LP;
4880  InstructionList.push_back(I);
4881  break;
4882  }
4883 
4884  case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4885  if (Record.size() != 4)
4886  return error("Invalid record");
4887  using APV = AllocaPackedValues;
4888  const uint64_t Rec = Record[3];
4889  const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4890  const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4891  Type *Ty = getTypeByID(Record[0]);
4892  if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4893  auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4894  if (!PTy)
4895  return error("Old-style alloca with a non-pointer type");
4896  Ty = PTy->getElementType();
4897  }
4898  Type *OpTy = getTypeByID(Record[1]);
4899  Value *Size = getFnValueByID(Record[2], OpTy);
4900  MaybeAlign Align;
4901  if (Error Err =
4902  parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) {
4903  return Err;
4904  }
4905  if (!Ty || !Size)
4906  return error("Invalid record");
4907 
4908  // FIXME: Make this an optional field.
4909  const DataLayout &DL = TheModule->getDataLayout();
4910  unsigned AS = DL.getAllocaAddrSpace();
4911 
4912  SmallPtrSet<Type *, 4> Visited;
4913  if (!Align && !Ty->isSized(&Visited))
4914  return error("alloca of unsized type");
4915  if (!Align)
4916  Align = DL.getPrefTypeAlign(Ty);
4917 
4918  AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4919  AI->setUsedWithInAlloca(InAlloca);
4920  AI->setSwiftError(SwiftError);
4921  I = AI;
4922  InstructionList.push_back(I);
4923  break;
4924  }
4925  case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4926  unsigned OpNum = 0;
4927  Value *Op;
4928  if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4929  (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4930  return error("Invalid record");
4931 
4932  if (!isa<PointerType>(Op->getType()))
4933  return error("Load operand is not a pointer type");
4934 
4935  Type *Ty = nullptr;
4936  if (OpNum + 3 == Record.size()) {
4937  Ty = getTypeByID(Record[OpNum++]);
4938  } else {
4939  Ty = cast<PointerType>(Op->getType())->getElementType();
4940  }
4941 
4942  if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4943  return Err;
4944 
4945  MaybeAlign Align;
4946  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4947  return Err;
4948  SmallPtrSet<Type *, 4> Visited;
4949  if (!Align && !Ty->isSized(&Visited))
4950  return error("load of unsized type");
4951  if (!Align)
4952  Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4953  I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4954  InstructionList.push_back(I);
4955  break;
4956  }
4958  // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4959  unsigned OpNum = 0;
4960  Value *Op;
4961  if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4962  (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4963  return error("Invalid record");
4964 
4965  if (!isa<PointerType>(Op->getType()))
4966  return error("Load operand is not a pointer type");
4967 
4968  Type *Ty = nullptr;
4969  if (OpNum + 5 == Record.size()) {
4970  Ty = getTypeByID(Record[OpNum++]);
4971  } else {
4972  Ty = cast<PointerType>(Op->getType())->getElementType();
4973  }
4974 
4975  if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4976  return Err;
4977 
4978  AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4979  if (Ordering == AtomicOrdering::NotAtomic ||
4980  Ordering == AtomicOrdering::Release ||
4981  Ordering == AtomicOrdering::AcquireRelease)
4982  return error("Invalid record");
4983  if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4984  return error("Invalid record");
4985  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4986 
4987  MaybeAlign Align;
4988  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4989  return Err;
4990  if (!Align)
4991  return error("Alignment missing from atomic load");
4992  I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
4993  InstructionList.push_back(I);
4994  break;
4995  }
4997  case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4998  unsigned OpNum = 0;
4999  Value *Val, *Ptr;
5000  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5001  (BitCode == bitc::FUNC_CODE_INST_STORE
5002  ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5003  : popValue(Record, OpNum, NextValueNo,
5004  cast<PointerType>(Ptr->getType())->getElementType(),
5005  Val)) ||
5006  OpNum + 2 != Record.size())
5007  return error("Invalid record");
5008 
5009  if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5010  return Err;
5011  MaybeAlign Align;
5012  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5013  return Err;
5014  SmallPtrSet<Type *, 4> Visited;
5015  if (!Align && !Val->getType()->isSized(&Visited))
5016  return error("store of unsized type");
5017  if (!Align)
5018  Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5019  I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5020  InstructionList.push_back(I);
5021  break;
5022  }
5025  // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5026  unsigned OpNum = 0;
5027  Value *Val, *Ptr;
5028  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5029  !isa<PointerType>(Ptr->getType()) ||
5031  ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5032  : popValue(Record, OpNum, NextValueNo,
5033  cast<PointerType>(Ptr->getType())->getElementType(),
5034  Val)) ||
5035  OpNum + 4 != Record.size())
5036  return error("Invalid record");
5037 
5038  if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5039  return Err;
5040  AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5041  if (Ordering == AtomicOrdering::NotAtomic ||
5042  Ordering == AtomicOrdering::Acquire ||
5043  Ordering == AtomicOrdering::AcquireRelease)
5044  return error("Invalid record");
5045  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5046  if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5047  return error("Invalid record");
5048 
5049  MaybeAlign Align;
5050  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5051  return Err;
5052  if (!Align)
5053  return error("Alignment missing from atomic store");
5054  I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5055  InstructionList.push_back(I);
5056  break;
5057  }
5059  // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5060  // failure_ordering?, weak?]
5061  const size_t NumRecords = Record.size();
5062  unsigned OpNum = 0;
5063  Value *Ptr = nullptr;
5064  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5065  return error("Invalid record");
5066 
5067  if (!isa<PointerType>(Ptr->getType()))
5068  return error("Cmpxchg operand is not a pointer type");
5069 
5070  Value *Cmp = nullptr;
5071  if (popValue(Record, OpNum, NextValueNo,
5072  cast<PointerType>(Ptr->getType())->getPointerElementType(),
5073  Cmp))
5074  return error("Invalid record");
5075 
5076  Value *New = nullptr;
5077  if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5078  NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5079  return error("Invalid record");
5080 
5081  const AtomicOrdering SuccessOrdering =
5082  getDecodedOrdering(Record[OpNum + 1]);
5083  if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5084  SuccessOrdering == AtomicOrdering::Unordered)
5085  return error("Invalid record");
5086 
5087  const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5088 
5089  if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5090  return Err;
5091 
5092  const AtomicOrdering FailureOrdering =
5093  NumRecords < 7
5094  ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5095  : getDecodedOrdering(Record[OpNum + 3]);
5096 
5097  if (FailureOrdering == AtomicOrdering::NotAtomic ||
5098  FailureOrdering == AtomicOrdering::Unordered)
5099  return error("Invalid record");
5100 
5101  const Align Alignment(
5102  TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5103 
5104  I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5105  FailureOrdering, SSID);
5106  cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5107 
5108  if (NumRecords < 8) {
5109  // Before weak cmpxchgs existed, the instruction simply returned the
5110  // value loaded from memory, so bitcode files from that era will be
5111  // expecting the first component of a modern cmpxchg.
5112  CurBB->getInstList().push_back(I);
5113  I = ExtractValueInst::Create(I, 0);
5114  } else {
5115  cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5116  }
5117 
5118  InstructionList.push_back(I);
5119  break;
5120  }
5122  // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5123  // failure_ordering, weak, align?]
5124  const size_t NumRecords = Record.size();
5125  unsigned OpNum = 0;
5126  Value *Ptr = nullptr;
5127  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5128  return error("Invalid record");
5129 
5130  if (!isa<PointerType>(Ptr->getType()))
5131  return error("Cmpxchg operand is not a pointer type");
5132 
5133  Value *Cmp = nullptr;
5134  if (getValueTypePair(Record, OpNum, NextValueNo, Cmp))
5135  return error("Invalid record");
5136 
5137  Value *Val = nullptr;
5138  if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5139  return error("Invalid record");
5140 
5141  if (NumRecords &