LLVM  9.0.0svn
BitcodeReader.cpp
Go to the documentation of this file.
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorOr.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
91  "print-summary-global-ids", cl::init(false), cl::Hidden,
92  cl::desc(
93  "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98  SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104  return make_error<StringError>(
106 }
107 
108 /// Helper to read the header common to all bitcode files.
110  // Sniff for the signature.
111  if (!Stream.canSkipToPos(4) ||
112  Stream.Read(8) != 'B' ||
113  Stream.Read(8) != 'C' ||
114  Stream.Read(4) != 0x0 ||
115  Stream.Read(4) != 0xC ||
116  Stream.Read(4) != 0xE ||
117  Stream.Read(4) != 0xD)
118  return false;
119  return true;
120 }
121 
123  const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
124  const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
125 
126  if (Buffer.getBufferSize() & 3)
127  return error("Invalid bitcode signature");
128 
129  // If we have a wrapper header, parse it and ignore the non-bc file contents.
130  // The magic number is 0x0B17C0DE stored in little endian.
131  if (isBitcodeWrapper(BufPtr, BufEnd))
132  if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
133  return error("Invalid bitcode wrapper header");
134 
135  BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
136  if (!hasValidBitcodeHeader(Stream))
137  return error("Invalid bitcode signature");
138 
139  return std::move(Stream);
140 }
141 
142 /// Convert a string from a record into an std::string, return true on failure.
143 template <typename StrTy>
144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
145  StrTy &Result) {
146  if (Idx > Record.size())
147  return true;
148 
149  for (unsigned i = Idx, e = Record.size(); i != e; ++i)
150  Result += (char)Record[i];
151  return false;
152 }
153 
154 // Strip all the TBAA attachment for the module.
155 static void stripTBAA(Module *M) {
156  for (auto &F : *M) {
157  if (F.isMaterializable())
158  continue;
159  for (auto &I : instructions(F))
160  I.setMetadata(LLVMContext::MD_tbaa, nullptr);
161  }
162 }
163 
164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
165 /// "epoch" encoded in the bitcode, and return the producer name if any.
168  return error("Invalid record");
169 
170  // Read all the records.
172 
173  std::string ProducerIdentification;
174 
175  while (true) {
176  BitstreamEntry Entry = Stream.advance();
177 
178  switch (Entry.Kind) {
179  default:
181  return error("Malformed block");
183  return ProducerIdentification;
185  // The interesting case.
186  break;
187  }
188 
189  // Read a record.
190  Record.clear();
191  unsigned BitCode = Stream.readRecord(Entry.ID, Record);
192  switch (BitCode) {
193  default: // Default behavior: reject
194  return error("Invalid value");
195  case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
196  convertToString(Record, 0, ProducerIdentification);
197  break;
198  case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
199  unsigned epoch = (unsigned)Record[0];
200  if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
201  return error(
202  Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
203  "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
204  }
205  }
206  }
207  }
208 }
209 
211  // We expect a number of well-defined blocks, though we don't necessarily
212  // need to understand them all.
213  while (true) {
214  if (Stream.AtEndOfStream())
215  return "";
216 
217  BitstreamEntry Entry = Stream.advance();
218  switch (Entry.Kind) {
221  return error("Malformed block");
222 
224  if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
225  return readIdentificationBlock(Stream);
226 
227  // Ignore other sub-blocks.
228  if (Stream.SkipBlock())
229  return error("Malformed block");
230  continue;
232  Stream.skipRecord(Entry.ID);
233  continue;
234  }
235  }
236 }
237 
240  return error("Invalid record");
241 
243  // Read all the records for this module.
244 
245  while (true) {
247 
248  switch (Entry.Kind) {
249  case BitstreamEntry::SubBlock: // Handled for us already.
251  return error("Malformed block");
253  return false;
255  // The interesting case.
256  break;
257  }
258 
259  // Read a record.
260  switch (Stream.readRecord(Entry.ID, Record)) {
261  default:
262  break; // Default behavior, ignore unknown content.
263  case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
264  std::string S;
265  if (convertToString(Record, 0, S))
266  return error("Invalid record");
267  // Check for the i386 and other (x86_64, ARM) conventions
268  if (S.find("__DATA,__objc_catlist") != std::string::npos ||
269  S.find("__OBJC,__category") != std::string::npos)
270  return true;
271  break;
272  }
273  }
274  Record.clear();
275  }
276  llvm_unreachable("Exit infinite loop");
277 }
278 
280  // We expect a number of well-defined blocks, though we don't necessarily
281  // need to understand them all.
282  while (true) {
283  BitstreamEntry Entry = Stream.advance();
284 
285  switch (Entry.Kind) {
287  return error("Malformed block");
289  return false;
290 
292  if (Entry.ID == bitc::MODULE_BLOCK_ID)
293  return hasObjCCategoryInModule(Stream);
294 
295  // Ignore other sub-blocks.
296  if (Stream.SkipBlock())
297  return error("Malformed block");
298  continue;
299 
301  Stream.skipRecord(Entry.ID);
302  continue;
303  }
304  }
305 }
306 
309  return error("Invalid record");
310 
312 
313  std::string Triple;
314 
315  // Read all the records for this module.
316  while (true) {
318 
319  switch (Entry.Kind) {
320  case BitstreamEntry::SubBlock: // Handled for us already.
322  return error("Malformed block");
324  return Triple;
326  // The interesting case.
327  break;
328  }
329 
330  // Read a record.
331  switch (Stream.readRecord(Entry.ID, Record)) {
332  default: break; // Default behavior, ignore unknown content.
333  case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
334  std::string S;
335  if (convertToString(Record, 0, S))
336  return error("Invalid record");
337  Triple = S;
338  break;
339  }
340  }
341  Record.clear();
342  }
343  llvm_unreachable("Exit infinite loop");
344 }
345 
347  // We expect a number of well-defined blocks, though we don't necessarily
348  // need to understand them all.
349  while (true) {
350  BitstreamEntry Entry = Stream.advance();
351 
352  switch (Entry.Kind) {
354  return error("Malformed block");
356  return "";
357 
359  if (Entry.ID == bitc::MODULE_BLOCK_ID)
360  return readModuleTriple(Stream);
361 
362  // Ignore other sub-blocks.
363  if (Stream.SkipBlock())
364  return error("Malformed block");
365  continue;
366 
368  Stream.skipRecord(Entry.ID);
369  continue;
370  }
371  }
372 }
373 
374 namespace {
375 
376 class BitcodeReaderBase {
377 protected:
378  BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
379  : Stream(std::move(Stream)), Strtab(Strtab) {
380  this->Stream.setBlockInfo(&BlockInfo);
381  }
382 
383  BitstreamBlockInfo BlockInfo;
384  BitstreamCursor Stream;
385  StringRef Strtab;
386 
387  /// In version 2 of the bitcode we store names of global values and comdats in
388  /// a string table rather than in the VST.
389  bool UseStrtab = false;
390 
391  Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
392 
393  /// If this module uses a string table, pop the reference to the string table
394  /// and return the referenced string and the rest of the record. Otherwise
395  /// just return the record itself.
396  std::pair<StringRef, ArrayRef<uint64_t>>
397  readNameFromStrtab(ArrayRef<uint64_t> Record);
398 
399  bool readBlockInfo();
400 
401  // Contains an arbitrary and optional string identifying the bitcode producer
402  std::string ProducerIdentification;
403 
404  Error error(const Twine &Message);
405 };
406 
407 } // end anonymous namespace
408 
409 Error BitcodeReaderBase::error(const Twine &Message) {
410  std::string FullMsg = Message.str();
411  if (!ProducerIdentification.empty())
412  FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
413  LLVM_VERSION_STRING "')";
414  return ::error(FullMsg);
415 }
416 
418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
419  if (Record.empty())
420  return error("Invalid record");
421  unsigned ModuleVersion = Record[0];
422  if (ModuleVersion > 2)
423  return error("Invalid value");
424  UseStrtab = ModuleVersion >= 2;
425  return ModuleVersion;
426 }
427 
428 std::pair<StringRef, ArrayRef<uint64_t>>
429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
430  if (!UseStrtab)
431  return {"", Record};
432  // Invalid reference. Let the caller complain about the record being empty.
433  if (Record[0] + Record[1] > Strtab.size())
434  return {"", {}};
435  return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
436 }
437 
438 namespace {
439 
440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
442  Module *TheModule = nullptr;
443  // Next offset to start scanning for lazy parsing of function bodies.
444  uint64_t NextUnreadBit = 0;
445  // Last function offset found in the VST.
446  uint64_t LastFunctionBlockBit = 0;
447  bool SeenValueSymbolTable = false;
448  uint64_t VSTOffset = 0;
449 
450  std::vector<std::string> SectionTable;
451  std::vector<std::string> GCTable;
452 
453  std::vector<Type*> TypeList;
454  BitcodeReaderValueList ValueList;
455  Optional<MetadataLoader> MDLoader;
456  std::vector<Comdat *> ComdatList;
457  SmallVector<Instruction *, 64> InstructionList;
458 
459  std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
460  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
461  std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
462  std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
463  std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
464 
465  /// The set of attributes by index. Index zero in the file is for null, and
466  /// is thus not represented here. As such all indices are off by one.
467  std::vector<AttributeList> MAttributes;
468 
469  /// The set of attribute groups.
470  std::map<unsigned, AttributeList> MAttributeGroups;
471 
472  /// While parsing a function body, this is a list of the basic blocks for the
473  /// function.
474  std::vector<BasicBlock*> FunctionBBs;
475 
476  // When reading the module header, this list is populated with functions that
477  // have bodies later in the file.
478  std::vector<Function*> FunctionsWithBodies;
479 
480  // When intrinsic functions are encountered which require upgrading they are
481  // stored here with their replacement function.
482  using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
483  UpdatedIntrinsicMap UpgradedIntrinsics;
484  // Intrinsics which were remangled because of types rename
485  UpdatedIntrinsicMap RemangledIntrinsics;
486 
487  // Several operations happen after the module header has been read, but
488  // before function bodies are processed. This keeps track of whether
489  // we've done this yet.
490  bool SeenFirstFunctionBody = false;
491 
492  /// When function bodies are initially scanned, this map contains info about
493  /// where to find deferred function body in the stream.
494  DenseMap<Function*, uint64_t> DeferredFunctionInfo;
495 
496  /// When Metadata block is initially scanned when parsing the module, we may
497  /// choose to defer parsing of the metadata. This vector contains info about
498  /// which Metadata blocks are deferred.
499  std::vector<uint64_t> DeferredMetadataInfo;
500 
501  /// These are basic blocks forward-referenced by block addresses. They are
502  /// inserted lazily into functions when they're loaded. The basic block ID is
503  /// its index into the vector.
505  std::deque<Function *> BasicBlockFwdRefQueue;
506 
507  /// Indicates that we are using a new encoding for instruction operands where
508  /// most operands in the current FUNCTION_BLOCK are encoded relative to the
509  /// instruction number, for a more compact encoding. Some instruction
510  /// operands are not relative to the instruction ID: basic block numbers, and
511  /// types. Once the old style function blocks have been phased out, we would
512  /// not need this flag.
513  bool UseRelativeIDs = false;
514 
515  /// True if all functions will be materialized, negating the need to process
516  /// (e.g.) blockaddress forward references.
517  bool WillMaterializeAllForwardRefs = false;
518 
519  bool StripDebugInfo = false;
520  TBAAVerifier TBAAVerifyHelper;
521 
522  std::vector<std::string> BundleTags;
524 
525 public:
526  BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
527  StringRef ProducerIdentification, LLVMContext &Context);
528 
529  Error materializeForwardReferencedFunctions();
530 
531  Error materialize(GlobalValue *GV) override;
532  Error materializeModule() override;
533  std::vector<StructType *> getIdentifiedStructTypes() const override;
534 
535  /// Main interface to parsing a bitcode buffer.
536  /// \returns true if an error occurred.
537  Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
538  bool IsImporting = false);
539 
540  static uint64_t decodeSignRotatedValue(uint64_t V);
541 
542  /// Materialize any deferred Metadata block.
543  Error materializeMetadata() override;
544 
545  void setStripDebugInfo() override;
546 
547 private:
548  std::vector<StructType *> IdentifiedStructTypes;
549  StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
550  StructType *createIdentifiedStructType(LLVMContext &Context);
551 
552  Type *getTypeByID(unsigned ID);
553 
554  Value *getFnValueByID(unsigned ID, Type *Ty) {
555  if (Ty && Ty->isMetadataTy())
556  return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
557  return ValueList.getValueFwdRef(ID, Ty);
558  }
559 
560  Metadata *getFnMetadataByID(unsigned ID) {
561  return MDLoader->getMetadataFwdRefOrLoad(ID);
562  }
563 
564  BasicBlock *getBasicBlock(unsigned ID) const {
565  if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
566  return FunctionBBs[ID];
567  }
568 
569  AttributeList getAttributes(unsigned i) const {
570  if (i-1 < MAttributes.size())
571  return MAttributes[i-1];
572  return AttributeList();
573  }
574 
575  /// Read a value/type pair out of the specified record from slot 'Slot'.
576  /// Increment Slot past the number of slots used in the record. Return true on
577  /// failure.
578  bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
579  unsigned InstNum, Value *&ResVal) {
580  if (Slot == Record.size()) return true;
581  unsigned ValNo = (unsigned)Record[Slot++];
582  // Adjust the ValNo, if it was encoded relative to the InstNum.
583  if (UseRelativeIDs)
584  ValNo = InstNum - ValNo;
585  if (ValNo < InstNum) {
586  // If this is not a forward reference, just return the value we already
587  // have.
588  ResVal = getFnValueByID(ValNo, nullptr);
589  return ResVal == nullptr;
590  }
591  if (Slot == Record.size())
592  return true;
593 
594  unsigned TypeNo = (unsigned)Record[Slot++];
595  ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
596  return ResVal == nullptr;
597  }
598 
599  /// Read a value out of the specified record from slot 'Slot'. Increment Slot
600  /// past the number of slots used by the value in the record. Return true if
601  /// there is an error.
602  bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
603  unsigned InstNum, Type *Ty, Value *&ResVal) {
604  if (getValue(Record, Slot, InstNum, Ty, ResVal))
605  return true;
606  // All values currently take a single record slot.
607  ++Slot;
608  return false;
609  }
610 
611  /// Like popValue, but does not increment the Slot number.
612  bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
613  unsigned InstNum, Type *Ty, Value *&ResVal) {
614  ResVal = getValue(Record, Slot, InstNum, Ty);
615  return ResVal == nullptr;
616  }
617 
618  /// Version of getValue that returns ResVal directly, or 0 if there is an
619  /// error.
620  Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
621  unsigned InstNum, Type *Ty) {
622  if (Slot == Record.size()) return nullptr;
623  unsigned ValNo = (unsigned)Record[Slot];
624  // Adjust the ValNo, if it was encoded relative to the InstNum.
625  if (UseRelativeIDs)
626  ValNo = InstNum - ValNo;
627  return getFnValueByID(ValNo, Ty);
628  }
629 
630  /// Like getValue, but decodes signed VBRs.
631  Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
632  unsigned InstNum, Type *Ty) {
633  if (Slot == Record.size()) return nullptr;
634  unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
635  // Adjust the ValNo, if it was encoded relative to the InstNum.
636  if (UseRelativeIDs)
637  ValNo = InstNum - ValNo;
638  return getFnValueByID(ValNo, Ty);
639  }
640 
641  /// Converts alignment exponent (i.e. power of two (or zero)) to the
642  /// corresponding alignment to use. If alignment is too large, returns
643  /// a corresponding error code.
644  Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
645  Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
646  Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
647 
648  Error parseComdatRecord(ArrayRef<uint64_t> Record);
649  Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
650  Error parseFunctionRecord(ArrayRef<uint64_t> Record);
651  Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
652  ArrayRef<uint64_t> Record);
653 
654  Error parseAttributeBlock();
655  Error parseAttributeGroupBlock();
656  Error parseTypeTable();
657  Error parseTypeTableBody();
658  Error parseOperandBundleTags();
659  Error parseSyncScopeNames();
660 
661  Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
662  unsigned NameIndex, Triple &TT);
663  void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
664  ArrayRef<uint64_t> Record);
665  Error parseValueSymbolTable(uint64_t Offset = 0);
666  Error parseGlobalValueSymbolTable();
667  Error parseConstants();
668  Error rememberAndSkipFunctionBodies();
669  Error rememberAndSkipFunctionBody();
670  /// Save the positions of the Metadata blocks and skip parsing the blocks.
671  Error rememberAndSkipMetadata();
672  Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
673  Error parseFunctionBody(Function *F);
674  Error globalCleanup();
675  Error resolveGlobalAndIndirectSymbolInits();
676  Error parseUseLists();
677  Error findFunctionInStream(
678  Function *F,
679  DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
680 
681  SyncScope::ID getDecodedSyncScopeID(unsigned Val);
682 };
683 
684 /// Class to manage reading and parsing function summary index bitcode
685 /// files/sections.
686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
687  /// The module index built during parsing.
688  ModuleSummaryIndex &TheIndex;
689 
690  /// Indicates whether we have encountered a global value summary section
691  /// yet during parsing.
692  bool SeenGlobalValSummary = false;
693 
694  /// Indicates whether we have already parsed the VST, used for error checking.
695  bool SeenValueSymbolTable = false;
696 
697  /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
698  /// Used to enable on-demand parsing of the VST.
699  uint64_t VSTOffset = 0;
700 
701  // Map to save ValueId to ValueInfo association that was recorded in the
702  // ValueSymbolTable. It is used after the VST is parsed to convert
703  // call graph edges read from the function summary from referencing
704  // callees by their ValueId to using the ValueInfo instead, which is how
705  // they are recorded in the summary index being built.
706  // We save a GUID which refers to the same global as the ValueInfo, but
707  // ignoring the linkage, i.e. for values other than local linkage they are
708  // identical.
710  ValueIdToValueInfoMap;
711 
712  /// Map populated during module path string table parsing, from the
713  /// module ID to a string reference owned by the index's module
714  /// path string table, used to correlate with combined index
715  /// summary records.
716  DenseMap<uint64_t, StringRef> ModuleIdMap;
717 
718  /// Original source file name recorded in a bitcode record.
719  std::string SourceFileName;
720 
721  /// The string identifier given to this module by the client, normally the
722  /// path to the bitcode file.
723  StringRef ModulePath;
724 
725  /// For per-module summary indexes, the unique numerical identifier given to
726  /// this module by the client.
727  unsigned ModuleId;
728 
729 public:
730  ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
731  ModuleSummaryIndex &TheIndex,
732  StringRef ModulePath, unsigned ModuleId);
733 
734  Error parseModule();
735 
736 private:
737  void setValueGUID(uint64_t ValueID, StringRef ValueName,
739  StringRef SourceFileName);
740  Error parseValueSymbolTable(
741  uint64_t Offset,
742  DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
743  std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
744  std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
745  bool IsOldProfileFormat,
746  bool HasProfile,
747  bool HasRelBF);
748  Error parseEntireSummary(unsigned ID);
749  Error parseModuleStringTable();
750 
751  std::pair<ValueInfo, GlobalValue::GUID>
752  getValueInfoFromValueId(unsigned ValueId);
753 
754  void addThisModule();
755  ModuleSummaryIndex::ModuleInfo *getThisModule();
756 };
757 
758 } // end anonymous namespace
759 
761  Error Err) {
762  if (Err) {
763  std::error_code EC;
764  handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
765  EC = EIB.convertToErrorCode();
766  Ctx.emitError(EIB.message());
767  });
768  return EC;
769  }
770  return std::error_code();
771 }
772 
773 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
774  StringRef ProducerIdentification,
776  : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
777  ValueList(Context) {
778  this->ProducerIdentification = ProducerIdentification;
779 }
780 
781 Error BitcodeReader::materializeForwardReferencedFunctions() {
782  if (WillMaterializeAllForwardRefs)
783  return Error::success();
784 
785  // Prevent recursion.
786  WillMaterializeAllForwardRefs = true;
787 
788  while (!BasicBlockFwdRefQueue.empty()) {
789  Function *F = BasicBlockFwdRefQueue.front();
790  BasicBlockFwdRefQueue.pop_front();
791  assert(F && "Expected valid function");
792  if (!BasicBlockFwdRefs.count(F))
793  // Already materialized.
794  continue;
795 
796  // Check for a function that isn't materializable to prevent an infinite
797  // loop. When parsing a blockaddress stored in a global variable, there
798  // isn't a trivial way to check if a function will have a body without a
799  // linear search through FunctionsWithBodies, so just check it here.
800  if (!F->isMaterializable())
801  return error("Never resolved function from blockaddress");
802 
803  // Try to materialize F.
804  if (Error Err = materialize(F))
805  return Err;
806  }
807  assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
808 
809  // Reset state.
810  WillMaterializeAllForwardRefs = false;
811  return Error::success();
812 }
813 
814 //===----------------------------------------------------------------------===//
815 // Helper functions to implement forward reference resolution, etc.
816 //===----------------------------------------------------------------------===//
817 
818 static bool hasImplicitComdat(size_t Val) {
819  switch (Val) {
820  default:
821  return false;
822  case 1: // Old WeakAnyLinkage
823  case 4: // Old LinkOnceAnyLinkage
824  case 10: // Old WeakODRLinkage
825  case 11: // Old LinkOnceODRLinkage
826  return true;
827  }
828 }
829 
831  switch (Val) {
832  default: // Map unknown/new linkages to external
833  case 0:
835  case 2:
837  case 3:
839  case 5:
840  return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
841  case 6:
842  return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
843  case 7:
845  case 8:
847  case 9:
849  case 12:
851  case 13:
852  return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
853  case 14:
854  return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
855  case 15:
856  return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
857  case 1: // Old value with implicit comdat.
858  case 16:
860  case 10: // Old value with implicit comdat.
861  case 17:
863  case 4: // Old value with implicit comdat.
864  case 18:
866  case 11: // Old value with implicit comdat.
867  case 19:
869  }
870 }
871 
872 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
874  Flags.ReadNone = RawFlags & 0x1;
875  Flags.ReadOnly = (RawFlags >> 1) & 0x1;
876  Flags.NoRecurse = (RawFlags >> 2) & 0x1;
877  Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
878  Flags.NoInline = (RawFlags >> 4) & 0x1;
879  return Flags;
880 }
881 
882 /// Decode the flags for GlobalValue in the summary.
884  uint64_t Version) {
885  // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
886  // like getDecodedLinkage() above. Any future change to the linkage enum and
887  // to getDecodedLinkage() will need to be taken into account here as above.
888  auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
889  RawFlags = RawFlags >> 4;
890  bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
891  // The Live flag wasn't introduced until version 3. For dead stripping
892  // to work correctly on earlier versions, we must conservatively treat all
893  // values as live.
894  bool Live = (RawFlags & 0x2) || Version < 3;
895  bool Local = (RawFlags & 0x4);
896  bool AutoHide = (RawFlags & 0x8);
897 
898  return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
899 }
900 
901 // Decode the flags for GlobalVariable in the summary
903  return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false);
904 }
905 
907  switch (Val) {
908  default: // Map unknown visibilities to default.
909  case 0: return GlobalValue::DefaultVisibility;
910  case 1: return GlobalValue::HiddenVisibility;
911  case 2: return GlobalValue::ProtectedVisibility;
912  }
913 }
914 
917  switch (Val) {
918  default: // Map unknown values to default.
919  case 0: return GlobalValue::DefaultStorageClass;
920  case 1: return GlobalValue::DLLImportStorageClass;
921  case 2: return GlobalValue::DLLExportStorageClass;
922  }
923 }
924 
925 static bool getDecodedDSOLocal(unsigned Val) {
926  switch(Val) {
927  default: // Map unknown values to preemptable.
928  case 0: return false;
929  case 1: return true;
930  }
931 }
932 
934  switch (Val) {
935  case 0: return GlobalVariable::NotThreadLocal;
936  default: // Map unknown non-zero value to general dynamic.
940  case 4: return GlobalVariable::LocalExecTLSModel;
941  }
942 }
943 
945  switch (Val) {
946  default: // Map unknown to UnnamedAddr::None.
947  case 0: return GlobalVariable::UnnamedAddr::None;
949  case 2: return GlobalVariable::UnnamedAddr::Local;
950  }
951 }
952 
953 static int getDecodedCastOpcode(unsigned Val) {
954  switch (Val) {
955  default: return -1;
956  case bitc::CAST_TRUNC : return Instruction::Trunc;
957  case bitc::CAST_ZEXT : return Instruction::ZExt;
958  case bitc::CAST_SEXT : return Instruction::SExt;
959  case bitc::CAST_FPTOUI : return Instruction::FPToUI;
960  case bitc::CAST_FPTOSI : return Instruction::FPToSI;
961  case bitc::CAST_UITOFP : return Instruction::UIToFP;
962  case bitc::CAST_SITOFP : return Instruction::SIToFP;
963  case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
964  case bitc::CAST_FPEXT : return Instruction::FPExt;
965  case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
966  case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
967  case bitc::CAST_BITCAST : return Instruction::BitCast;
968  case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
969  }
970 }
971 
972 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
973  bool IsFP = Ty->isFPOrFPVectorTy();
974  // UnOps are only valid for int/fp or vector of int/fp types
975  if (!IsFP && !Ty->isIntOrIntVectorTy())
976  return -1;
977 
978  switch (Val) {
979  default:
980  return -1;
981  case bitc::UNOP_NEG:
982  return IsFP ? Instruction::FNeg : -1;
983  }
984 }
985 
986 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
987  bool IsFP = Ty->isFPOrFPVectorTy();
988  // BinOps are only valid for int/fp or vector of int/fp types
989  if (!IsFP && !Ty->isIntOrIntVectorTy())
990  return -1;
991 
992  switch (Val) {
993  default:
994  return -1;
995  case bitc::BINOP_ADD:
996  return IsFP ? Instruction::FAdd : Instruction::Add;
997  case bitc::BINOP_SUB:
998  return IsFP ? Instruction::FSub : Instruction::Sub;
999  case bitc::BINOP_MUL:
1000  return IsFP ? Instruction::FMul : Instruction::Mul;
1001  case bitc::BINOP_UDIV:
1002  return IsFP ? -1 : Instruction::UDiv;
1003  case bitc::BINOP_SDIV:
1004  return IsFP ? Instruction::FDiv : Instruction::SDiv;
1005  case bitc::BINOP_UREM:
1006  return IsFP ? -1 : Instruction::URem;
1007  case bitc::BINOP_SREM:
1008  return IsFP ? Instruction::FRem : Instruction::SRem;
1009  case bitc::BINOP_SHL:
1010  return IsFP ? -1 : Instruction::Shl;
1011  case bitc::BINOP_LSHR:
1012  return IsFP ? -1 : Instruction::LShr;
1013  case bitc::BINOP_ASHR:
1014  return IsFP ? -1 : Instruction::AShr;
1015  case bitc::BINOP_AND:
1016  return IsFP ? -1 : Instruction::And;
1017  case bitc::BINOP_OR:
1018  return IsFP ? -1 : Instruction::Or;
1019  case bitc::BINOP_XOR:
1020  return IsFP ? -1 : Instruction::Xor;
1021  }
1022 }
1023 
1025  switch (Val) {
1026  default: return AtomicRMWInst::BAD_BINOP;
1027  case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1028  case bitc::RMW_ADD: return AtomicRMWInst::Add;
1029  case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1030  case bitc::RMW_AND: return AtomicRMWInst::And;
1031  case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1032  case bitc::RMW_OR: return AtomicRMWInst::Or;
1033  case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1034  case bitc::RMW_MAX: return AtomicRMWInst::Max;
1035  case bitc::RMW_MIN: return AtomicRMWInst::Min;
1036  case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1037  case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1038  case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1039  case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1040  }
1041 }
1042 
1043 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1044  switch (Val) {
1051  default: // Map unknown orderings to sequentially-consistent.
1053  }
1054 }
1055 
1057  switch (Val) {
1058  default: // Map unknown selection kinds to any.
1060  return Comdat::Any;
1062  return Comdat::ExactMatch;
1064  return Comdat::Largest;
1066  return Comdat::NoDuplicates;
1068  return Comdat::SameSize;
1069  }
1070 }
1071 
1073  FastMathFlags FMF;
1074  if (0 != (Val & bitc::UnsafeAlgebra))
1075  FMF.setFast();
1076  if (0 != (Val & bitc::AllowReassoc))
1077  FMF.setAllowReassoc();
1078  if (0 != (Val & bitc::NoNaNs))
1079  FMF.setNoNaNs();
1080  if (0 != (Val & bitc::NoInfs))
1081  FMF.setNoInfs();
1082  if (0 != (Val & bitc::NoSignedZeros))
1083  FMF.setNoSignedZeros();
1084  if (0 != (Val & bitc::AllowReciprocal))
1085  FMF.setAllowReciprocal();
1086  if (0 != (Val & bitc::AllowContract))
1087  FMF.setAllowContract(true);
1088  if (0 != (Val & bitc::ApproxFunc))
1089  FMF.setApproxFunc();
1090  return FMF;
1091 }
1092 
1093 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1094  switch (Val) {
1097  }
1098 }
1099 
1100 Type *BitcodeReader::getTypeByID(unsigned ID) {
1101  // The type table size is always specified correctly.
1102  if (ID >= TypeList.size())
1103  return nullptr;
1104 
1105  if (Type *Ty = TypeList[ID])
1106  return Ty;
1107 
1108  // If we have a forward reference, the only possible case is when it is to a
1109  // named struct. Just create a placeholder for now.
1110  return TypeList[ID] = createIdentifiedStructType(Context);
1111 }
1112 
1113 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1114  StringRef Name) {
1115  auto *Ret = StructType::create(Context, Name);
1116  IdentifiedStructTypes.push_back(Ret);
1117  return Ret;
1118 }
1119 
1120 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1121  auto *Ret = StructType::create(Context);
1122  IdentifiedStructTypes.push_back(Ret);
1123  return Ret;
1124 }
1125 
1126 //===----------------------------------------------------------------------===//
1127 // Functions for parsing blocks from the bitcode file
1128 //===----------------------------------------------------------------------===//
1129 
1131  switch (Val) {
1133  llvm_unreachable("Synthetic enumerators which should never get here");
1134 
1135  case Attribute::None: return 0;
1136  case Attribute::ZExt: return 1 << 0;
1137  case Attribute::SExt: return 1 << 1;
1138  case Attribute::NoReturn: return 1 << 2;
1139  case Attribute::InReg: return 1 << 3;
1140  case Attribute::StructRet: return 1 << 4;
1141  case Attribute::NoUnwind: return 1 << 5;
1142  case Attribute::NoAlias: return 1 << 6;
1143  case Attribute::ByVal: return 1 << 7;
1144  case Attribute::Nest: return 1 << 8;
1145  case Attribute::ReadNone: return 1 << 9;
1146  case Attribute::ReadOnly: return 1 << 10;
1147  case Attribute::NoInline: return 1 << 11;
1148  case Attribute::AlwaysInline: return 1 << 12;
1149  case Attribute::OptimizeForSize: return 1 << 13;
1150  case Attribute::StackProtect: return 1 << 14;
1151  case Attribute::StackProtectReq: return 1 << 15;
1152  case Attribute::Alignment: return 31 << 16;
1153  case Attribute::NoCapture: return 1 << 21;
1154  case Attribute::NoRedZone: return 1 << 22;
1155  case Attribute::NoImplicitFloat: return 1 << 23;
1156  case Attribute::Naked: return 1 << 24;
1157  case Attribute::InlineHint: return 1 << 25;
1158  case Attribute::StackAlignment: return 7 << 26;
1159  case Attribute::ReturnsTwice: return 1 << 29;
1160  case Attribute::UWTable: return 1 << 30;
1161  case Attribute::NonLazyBind: return 1U << 31;
1162  case Attribute::SanitizeAddress: return 1ULL << 32;
1163  case Attribute::MinSize: return 1ULL << 33;
1164  case Attribute::NoDuplicate: return 1ULL << 34;
1165  case Attribute::StackProtectStrong: return 1ULL << 35;
1166  case Attribute::SanitizeThread: return 1ULL << 36;
1167  case Attribute::SanitizeMemory: return 1ULL << 37;
1168  case Attribute::NoBuiltin: return 1ULL << 38;
1169  case Attribute::Returned: return 1ULL << 39;
1170  case Attribute::Cold: return 1ULL << 40;
1171  case Attribute::Builtin: return 1ULL << 41;
1172  case Attribute::OptimizeNone: return 1ULL << 42;
1173  case Attribute::InAlloca: return 1ULL << 43;
1174  case Attribute::NonNull: return 1ULL << 44;
1175  case Attribute::JumpTable: return 1ULL << 45;
1176  case Attribute::Convergent: return 1ULL << 46;
1177  case Attribute::SafeStack: return 1ULL << 47;
1178  case Attribute::NoRecurse: return 1ULL << 48;
1179  case Attribute::InaccessibleMemOnly: return 1ULL << 49;
1180  case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1181  case Attribute::SwiftSelf: return 1ULL << 51;
1182  case Attribute::SwiftError: return 1ULL << 52;
1183  case Attribute::WriteOnly: return 1ULL << 53;
1184  case Attribute::Speculatable: return 1ULL << 54;
1185  case Attribute::StrictFP: return 1ULL << 55;
1186  case Attribute::SanitizeHWAddress: return 1ULL << 56;
1187  case Attribute::NoCfCheck: return 1ULL << 57;
1188  case Attribute::OptForFuzzing: return 1ULL << 58;
1189  case Attribute::ShadowCallStack: return 1ULL << 59;
1190  case Attribute::SpeculativeLoadHardening:
1191  return 1ULL << 60;
1192  case Attribute::ImmArg:
1193  return 1ULL << 61;
1194  case Attribute::Dereferenceable:
1195  llvm_unreachable("dereferenceable attribute not supported in raw format");
1196  break;
1197  case Attribute::DereferenceableOrNull:
1198  llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1199  "format");
1200  break;
1201  case Attribute::ArgMemOnly:
1202  llvm_unreachable("argmemonly attribute not supported in raw format");
1203  break;
1204  case Attribute::AllocSize:
1205  llvm_unreachable("allocsize not supported in raw format");
1206  break;
1207  }
1208  llvm_unreachable("Unsupported attribute type");
1209 }
1210 
1211 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1212  if (!Val) return;
1213 
1215  I = Attribute::AttrKind(I + 1)) {
1216  if (I == Attribute::Dereferenceable ||
1217  I == Attribute::DereferenceableOrNull ||
1218  I == Attribute::ArgMemOnly ||
1219  I == Attribute::AllocSize)
1220  continue;
1221  if (uint64_t A = (Val & getRawAttributeMask(I))) {
1222  if (I == Attribute::Alignment)
1223  B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1224  else if (I == Attribute::StackAlignment)
1225  B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1226  else
1227  B.addAttribute(I);
1228  }
1229  }
1230 }
1231 
1232 /// This fills an AttrBuilder object with the LLVM attributes that have
1233 /// been decoded from the given integer. This function must stay in sync with
1234 /// 'encodeLLVMAttributesForBitcode'.
1236  uint64_t EncodedAttrs) {
1237  // FIXME: Remove in 4.0.
1238 
1239  // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1240  // the bits above 31 down by 11 bits.
1241  unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1242  assert((!Alignment || isPowerOf2_32(Alignment)) &&
1243  "Alignment must be a power of two.");
1244 
1245  if (Alignment)
1246  B.addAlignmentAttr(Alignment);
1247  addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1248  (EncodedAttrs & 0xffff));
1249 }
1250 
1251 Error BitcodeReader::parseAttributeBlock() {
1253  return error("Invalid record");
1254 
1255  if (!MAttributes.empty())
1256  return error("Invalid multiple blocks");
1257 
1259 
1261 
1262  // Read all the records.
1263  while (true) {
1265 
1266  switch (Entry.Kind) {
1267  case BitstreamEntry::SubBlock: // Handled for us already.
1268  case BitstreamEntry::Error:
1269  return error("Malformed block");
1271  return Error::success();
1273  // The interesting case.
1274  break;
1275  }
1276 
1277  // Read a record.
1278  Record.clear();
1279  switch (Stream.readRecord(Entry.ID, Record)) {
1280  default: // Default behavior: ignore.
1281  break;
1282  case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1283  // FIXME: Remove in 4.0.
1284  if (Record.size() & 1)
1285  return error("Invalid record");
1286 
1287  for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1288  AttrBuilder B;
1289  decodeLLVMAttributesForBitcode(B, Record[i+1]);
1290  Attrs.push_back(AttributeList::get(Context, Record[i], B));
1291  }
1292 
1293  MAttributes.push_back(AttributeList::get(Context, Attrs));
1294  Attrs.clear();
1295  break;
1296  case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1297  for (unsigned i = 0, e = Record.size(); i != e; ++i)
1298  Attrs.push_back(MAttributeGroups[Record[i]]);
1299 
1300  MAttributes.push_back(AttributeList::get(Context, Attrs));
1301  Attrs.clear();
1302  break;
1303  }
1304  }
1305 }
1306 
1307 // Returns Attribute::None on unrecognized codes.
1308 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1309  switch (Code) {
1310  default:
1311  return Attribute::None;
1313  return Attribute::Alignment;
1315  return Attribute::AlwaysInline;
1317  return Attribute::ArgMemOnly;
1319  return Attribute::Builtin;
1321  return Attribute::ByVal;
1323  return Attribute::InAlloca;
1324  case bitc::ATTR_KIND_COLD:
1325  return Attribute::Cold;
1327  return Attribute::Convergent;
1329  return Attribute::InaccessibleMemOnly;
1331  return Attribute::InaccessibleMemOrArgMemOnly;
1333  return Attribute::InlineHint;
1335  return Attribute::InReg;
1337  return Attribute::JumpTable;
1339  return Attribute::MinSize;
1340  case bitc::ATTR_KIND_NAKED:
1341  return Attribute::Naked;
1342  case bitc::ATTR_KIND_NEST:
1343  return Attribute::Nest;
1345  return Attribute::NoAlias;
1347  return Attribute::NoBuiltin;
1349  return Attribute::NoCapture;
1351  return Attribute::NoDuplicate;
1353  return Attribute::NoImplicitFloat;
1355  return Attribute::NoInline;
1357  return Attribute::NoRecurse;
1359  return Attribute::NonLazyBind;
1361  return Attribute::NonNull;
1363  return Attribute::Dereferenceable;
1365  return Attribute::DereferenceableOrNull;
1367  return Attribute::AllocSize;
1369  return Attribute::NoRedZone;
1371  return Attribute::NoReturn;
1373  return Attribute::NoCfCheck;
1375  return Attribute::NoUnwind;
1377  return Attribute::OptForFuzzing;
1379  return Attribute::OptimizeForSize;
1381  return Attribute::OptimizeNone;
1383  return Attribute::ReadNone;
1385  return Attribute::ReadOnly;
1387  return Attribute::Returned;
1389  return Attribute::ReturnsTwice;
1390  case bitc::ATTR_KIND_S_EXT:
1391  return Attribute::SExt;
1393  return Attribute::Speculatable;
1395  return Attribute::StackAlignment;
1397  return Attribute::StackProtect;
1399  return Attribute::StackProtectReq;
1401  return Attribute::StackProtectStrong;
1403  return Attribute::SafeStack;
1405  return Attribute::ShadowCallStack;
1407  return Attribute::StrictFP;
1409  return Attribute::StructRet;
1411  return Attribute::SanitizeAddress;
1413  return Attribute::SanitizeHWAddress;
1415  return Attribute::SanitizeThread;
1417  return Attribute::SanitizeMemory;
1419  return Attribute::SpeculativeLoadHardening;
1421  return Attribute::SwiftError;
1423  return Attribute::SwiftSelf;
1425  return Attribute::UWTable;
1427  return Attribute::WriteOnly;
1428  case bitc::ATTR_KIND_Z_EXT:
1429  return Attribute::ZExt;
1431  return Attribute::ImmArg;
1432  }
1433 }
1434 
1435 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1436  unsigned &Alignment) {
1437  // Note: Alignment in bitcode files is incremented by 1, so that zero
1438  // can be used for default alignment.
1439  if (Exponent > Value::MaxAlignmentExponent + 1)
1440  return error("Invalid alignment value");
1441  Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1442  return Error::success();
1443 }
1444 
1446  *Kind = getAttrFromCode(Code);
1447  if (*Kind == Attribute::None)
1448  return error("Unknown attribute kind (" + Twine(Code) + ")");
1449  return Error::success();
1450 }
1451 
1452 Error BitcodeReader::parseAttributeGroupBlock() {
1454  return error("Invalid record");
1455 
1456  if (!MAttributeGroups.empty())
1457  return error("Invalid multiple blocks");
1458 
1460 
1461  // Read all the records.
1462  while (true) {
1464 
1465  switch (Entry.Kind) {
1466  case BitstreamEntry::SubBlock: // Handled for us already.
1467  case BitstreamEntry::Error:
1468  return error("Malformed block");
1470  return Error::success();
1472  // The interesting case.
1473  break;
1474  }
1475 
1476  // Read a record.
1477  Record.clear();
1478  switch (Stream.readRecord(Entry.ID, Record)) {
1479  default: // Default behavior: ignore.
1480  break;
1481  case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1482  if (Record.size() < 3)
1483  return error("Invalid record");
1484 
1485  uint64_t GrpID = Record[0];
1486  uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1487 
1488  AttrBuilder B;
1489  for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1490  if (Record[i] == 0) { // Enum attribute
1492  if (Error Err = parseAttrKind(Record[++i], &Kind))
1493  return Err;
1494 
1495  B.addAttribute(Kind);
1496  } else if (Record[i] == 1) { // Integer attribute
1498  if (Error Err = parseAttrKind(Record[++i], &Kind))
1499  return Err;
1500  if (Kind == Attribute::Alignment)
1501  B.addAlignmentAttr(Record[++i]);
1502  else if (Kind == Attribute::StackAlignment)
1503  B.addStackAlignmentAttr(Record[++i]);
1504  else if (Kind == Attribute::Dereferenceable)
1505  B.addDereferenceableAttr(Record[++i]);
1506  else if (Kind == Attribute::DereferenceableOrNull)
1507  B.addDereferenceableOrNullAttr(Record[++i]);
1508  else if (Kind == Attribute::AllocSize)
1509  B.addAllocSizeAttrFromRawRepr(Record[++i]);
1510  } else { // String attribute
1511  assert((Record[i] == 3 || Record[i] == 4) &&
1512  "Invalid attribute group entry");
1513  bool HasValue = (Record[i++] == 4);
1514  SmallString<64> KindStr;
1515  SmallString<64> ValStr;
1516 
1517  while (Record[i] != 0 && i != e)
1518  KindStr += Record[i++];
1519  assert(Record[i] == 0 && "Kind string not null terminated");
1520 
1521  if (HasValue) {
1522  // Has a value associated with it.
1523  ++i; // Skip the '0' that terminates the "kind" string.
1524  while (Record[i] != 0 && i != e)
1525  ValStr += Record[i++];
1526  assert(Record[i] == 0 && "Value string not null terminated");
1527  }
1528 
1529  B.addAttribute(KindStr.str(), ValStr.str());
1530  }
1531  }
1532 
1533  MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1534  break;
1535  }
1536  }
1537  }
1538 }
1539 
1540 Error BitcodeReader::parseTypeTable() {
1542  return error("Invalid record");
1543 
1544  return parseTypeTableBody();
1545 }
1546 
1547 Error BitcodeReader::parseTypeTableBody() {
1548  if (!TypeList.empty())
1549  return error("Invalid multiple blocks");
1550 
1552  unsigned NumRecords = 0;
1553 
1555 
1556  // Read all the records for this type table.
1557  while (true) {
1559 
1560  switch (Entry.Kind) {
1561  case BitstreamEntry::SubBlock: // Handled for us already.
1562  case BitstreamEntry::Error:
1563  return error("Malformed block");
1565  if (NumRecords != TypeList.size())
1566  return error("Malformed block");
1567  return Error::success();
1569  // The interesting case.
1570  break;
1571  }
1572 
1573  // Read a record.
1574  Record.clear();
1575  Type *ResultTy = nullptr;
1576  switch (Stream.readRecord(Entry.ID, Record)) {
1577  default:
1578  return error("Invalid value");
1579  case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1580  // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1581  // type list. This allows us to reserve space.
1582  if (Record.size() < 1)
1583  return error("Invalid record");
1584  TypeList.resize(Record[0]);
1585  continue;
1586  case bitc::TYPE_CODE_VOID: // VOID
1587  ResultTy = Type::getVoidTy(Context);
1588  break;
1589  case bitc::TYPE_CODE_HALF: // HALF
1590  ResultTy = Type::getHalfTy(Context);
1591  break;
1592  case bitc::TYPE_CODE_FLOAT: // FLOAT
1593  ResultTy = Type::getFloatTy(Context);
1594  break;
1595  case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1596  ResultTy = Type::getDoubleTy(Context);
1597  break;
1598  case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1599  ResultTy = Type::getX86_FP80Ty(Context);
1600  break;
1601  case bitc::TYPE_CODE_FP128: // FP128
1602  ResultTy = Type::getFP128Ty(Context);
1603  break;
1604  case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1605  ResultTy = Type::getPPC_FP128Ty(Context);
1606  break;
1607  case bitc::TYPE_CODE_LABEL: // LABEL
1608  ResultTy = Type::getLabelTy(Context);
1609  break;
1610  case bitc::TYPE_CODE_METADATA: // METADATA
1611  ResultTy = Type::getMetadataTy(Context);
1612  break;
1613  case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1614  ResultTy = Type::getX86_MMXTy(Context);
1615  break;
1616  case bitc::TYPE_CODE_TOKEN: // TOKEN
1617  ResultTy = Type::getTokenTy(Context);
1618  break;
1619  case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1620  if (Record.size() < 1)
1621  return error("Invalid record");
1622 
1623  uint64_t NumBits = Record[0];
1624  if (NumBits < IntegerType::MIN_INT_BITS ||
1625  NumBits > IntegerType::MAX_INT_BITS)
1626  return error("Bitwidth for integer type out of range");
1627  ResultTy = IntegerType::get(Context, NumBits);
1628  break;
1629  }
1630  case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1631  // [pointee type, address space]
1632  if (Record.size() < 1)
1633  return error("Invalid record");
1634  unsigned AddressSpace = 0;
1635  if (Record.size() == 2)
1636  AddressSpace = Record[1];
1637  ResultTy = getTypeByID(Record[0]);
1638  if (!ResultTy ||
1640  return error("Invalid type");
1641  ResultTy = PointerType::get(ResultTy, AddressSpace);
1642  break;
1643  }
1645  // FIXME: attrid is dead, remove it in LLVM 4.0
1646  // FUNCTION: [vararg, attrid, retty, paramty x N]
1647  if (Record.size() < 3)
1648  return error("Invalid record");
1649  SmallVector<Type*, 8> ArgTys;
1650  for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1651  if (Type *T = getTypeByID(Record[i]))
1652  ArgTys.push_back(T);
1653  else
1654  break;
1655  }
1656 
1657  ResultTy = getTypeByID(Record[2]);
1658  if (!ResultTy || ArgTys.size() < Record.size()-3)
1659  return error("Invalid type");
1660 
1661  ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1662  break;
1663  }
1664  case bitc::TYPE_CODE_FUNCTION: {
1665  // FUNCTION: [vararg, retty, paramty x N]
1666  if (Record.size() < 2)
1667  return error("Invalid record");
1668  SmallVector<Type*, 8> ArgTys;
1669  for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1670  if (Type *T = getTypeByID(Record[i])) {
1672  return error("Invalid function argument type");
1673  ArgTys.push_back(T);
1674  }
1675  else
1676  break;
1677  }
1678 
1679  ResultTy = getTypeByID(Record[1]);
1680  if (!ResultTy || ArgTys.size() < Record.size()-2)
1681  return error("Invalid type");
1682 
1683  ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1684  break;
1685  }
1686  case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
1687  if (Record.size() < 1)
1688  return error("Invalid record");
1689  SmallVector<Type*, 8> EltTys;
1690  for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1691  if (Type *T = getTypeByID(Record[i]))
1692  EltTys.push_back(T);
1693  else
1694  break;
1695  }
1696  if (EltTys.size() != Record.size()-1)
1697  return error("Invalid type");
1698  ResultTy = StructType::get(Context, EltTys, Record[0]);
1699  break;
1700  }
1701  case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
1702  if (convertToString(Record, 0, TypeName))
1703  return error("Invalid record");
1704  continue;
1705 
1706  case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1707  if (Record.size() < 1)
1708  return error("Invalid record");
1709 
1710  if (NumRecords >= TypeList.size())
1711  return error("Invalid TYPE table");
1712 
1713  // Check to see if this was forward referenced, if so fill in the temp.
1714  StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1715  if (Res) {
1716  Res->setName(TypeName);
1717  TypeList[NumRecords] = nullptr;
1718  } else // Otherwise, create a new struct.
1719  Res = createIdentifiedStructType(Context, TypeName);
1720  TypeName.clear();
1721 
1722  SmallVector<Type*, 8> EltTys;
1723  for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1724  if (Type *T = getTypeByID(Record[i]))
1725  EltTys.push_back(T);
1726  else
1727  break;
1728  }
1729  if (EltTys.size() != Record.size()-1)
1730  return error("Invalid record");
1731  Res->setBody(EltTys, Record[0]);
1732  ResultTy = Res;
1733  break;
1734  }
1735  case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
1736  if (Record.size() != 1)
1737  return error("Invalid record");
1738 
1739  if (NumRecords >= TypeList.size())
1740  return error("Invalid TYPE table");
1741 
1742  // Check to see if this was forward referenced, if so fill in the temp.
1743  StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1744  if (Res) {
1745  Res->setName(TypeName);
1746  TypeList[NumRecords] = nullptr;
1747  } else // Otherwise, create a new struct with no body.
1748  Res = createIdentifiedStructType(Context, TypeName);
1749  TypeName.clear();
1750  ResultTy = Res;
1751  break;
1752  }
1753  case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1754  if (Record.size() < 2)
1755  return error("Invalid record");
1756  ResultTy = getTypeByID(Record[1]);
1757  if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1758  return error("Invalid type");
1759  ResultTy = ArrayType::get(ResultTy, Record[0]);
1760  break;
1761  case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
1762  if (Record.size() < 2)
1763  return error("Invalid record");
1764  if (Record[0] == 0)
1765  return error("Invalid vector length");
1766  ResultTy = getTypeByID(Record[1]);
1767  if (!ResultTy || !StructType::isValidElementType(ResultTy))
1768  return error("Invalid type");
1769  ResultTy = VectorType::get(ResultTy, Record[0]);
1770  break;
1771  }
1772 
1773  if (NumRecords >= TypeList.size())
1774  return error("Invalid TYPE table");
1775  if (TypeList[NumRecords])
1776  return error(
1777  "Invalid TYPE table: Only named structs can be forward referenced");
1778  assert(ResultTy && "Didn't read a type?");
1779  TypeList[NumRecords++] = ResultTy;
1780  }
1781 }
1782 
1783 Error BitcodeReader::parseOperandBundleTags() {
1785  return error("Invalid record");
1786 
1787  if (!BundleTags.empty())
1788  return error("Invalid multiple blocks");
1789 
1791 
1792  while (true) {
1794 
1795  switch (Entry.Kind) {
1796  case BitstreamEntry::SubBlock: // Handled for us already.
1797  case BitstreamEntry::Error:
1798  return error("Malformed block");
1800  return Error::success();
1802  // The interesting case.
1803  break;
1804  }
1805 
1806  // Tags are implicitly mapped to integers by their order.
1807 
1808  if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1809  return error("Invalid record");
1810 
1811  // OPERAND_BUNDLE_TAG: [strchr x N]
1812  BundleTags.emplace_back();
1813  if (convertToString(Record, 0, BundleTags.back()))
1814  return error("Invalid record");
1815  Record.clear();
1816  }
1817 }
1818 
1819 Error BitcodeReader::parseSyncScopeNames() {
1821  return error("Invalid record");
1822 
1823  if (!SSIDs.empty())
1824  return error("Invalid multiple synchronization scope names blocks");
1825 
1827  while (true) {
1829  switch (Entry.Kind) {
1830  case BitstreamEntry::SubBlock: // Handled for us already.
1831  case BitstreamEntry::Error:
1832  return error("Malformed block");
1834  if (SSIDs.empty())
1835  return error("Invalid empty synchronization scope names block");
1836  return Error::success();
1838  // The interesting case.
1839  break;
1840  }
1841 
1842  // Synchronization scope names are implicitly mapped to synchronization
1843  // scope IDs by their order.
1844 
1845  if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1846  return error("Invalid record");
1847 
1848  SmallString<16> SSN;
1849  if (convertToString(Record, 0, SSN))
1850  return error("Invalid record");
1851 
1852  SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1853  Record.clear();
1854  }
1855 }
1856 
1857 /// Associate a value with its name from the given index in the provided record.
1858 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1859  unsigned NameIndex, Triple &TT) {
1861  if (convertToString(Record, NameIndex, ValueName))
1862  return error("Invalid record");
1863  unsigned ValueID = Record[0];
1864  if (ValueID >= ValueList.size() || !ValueList[ValueID])
1865  return error("Invalid record");
1866  Value *V = ValueList[ValueID];
1867 
1868  StringRef NameStr(ValueName.data(), ValueName.size());
1869  if (NameStr.find_first_of(0) != StringRef::npos)
1870  return error("Invalid value name");
1871  V->setName(NameStr);
1872  auto *GO = dyn_cast<GlobalObject>(V);
1873  if (GO) {
1874  if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1875  if (TT.supportsCOMDAT())
1876  GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1877  else
1878  GO->setComdat(nullptr);
1879  }
1880  }
1881  return V;
1882 }
1883 
1884 /// Helper to note and return the current location, and jump to the given
1885 /// offset.
1886 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1887  BitstreamCursor &Stream) {
1888  // Save the current parsing location so we can jump back at the end
1889  // of the VST read.
1890  uint64_t CurrentBit = Stream.GetCurrentBitNo();
1891  Stream.JumpToBit(Offset * 32);
1892 #ifndef NDEBUG
1893  // Do some checking if we are in debug mode.
1894  BitstreamEntry Entry = Stream.advance();
1897 #else
1898  // In NDEBUG mode ignore the output so we don't get an unused variable
1899  // warning.
1900  Stream.advance();
1901 #endif
1902  return CurrentBit;
1903 }
1904 
1905 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1906  Function *F,
1907  ArrayRef<uint64_t> Record) {
1908  // Note that we subtract 1 here because the offset is relative to one word
1909  // before the start of the identification or module block, which was
1910  // historically always the start of the regular bitcode header.
1911  uint64_t FuncWordOffset = Record[1] - 1;
1912  uint64_t FuncBitOffset = FuncWordOffset * 32;
1913  DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1914  // Set the LastFunctionBlockBit to point to the last function block.
1915  // Later when parsing is resumed after function materialization,
1916  // we can simply skip that last function block.
1917  if (FuncBitOffset > LastFunctionBlockBit)
1918  LastFunctionBlockBit = FuncBitOffset;
1919 }
1920 
1921 /// Read a new-style GlobalValue symbol table.
1922 Error BitcodeReader::parseGlobalValueSymbolTable() {
1923  unsigned FuncBitcodeOffsetDelta =
1925 
1927  return error("Invalid record");
1928 
1930  while (true) {
1932 
1933  switch (Entry.Kind) {
1935  case BitstreamEntry::Error:
1936  return error("Malformed block");
1938  return Error::success();
1940  break;
1941  }
1942 
1943  Record.clear();
1944  switch (Stream.readRecord(Entry.ID, Record)) {
1945  case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1946  setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1947  cast<Function>(ValueList[Record[0]]), Record);
1948  break;
1949  }
1950  }
1951 }
1952 
1953 /// Parse the value symbol table at either the current parsing location or
1954 /// at the given bit offset if provided.
1955 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1956  uint64_t CurrentBit;
1957  // Pass in the Offset to distinguish between calling for the module-level
1958  // VST (where we want to jump to the VST offset) and the function-level
1959  // VST (where we don't).
1960  if (Offset > 0) {
1961  CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1962  // If this module uses a string table, read this as a module-level VST.
1963  if (UseStrtab) {
1964  if (Error Err = parseGlobalValueSymbolTable())
1965  return Err;
1966  Stream.JumpToBit(CurrentBit);
1967  return Error::success();
1968  }
1969  // Otherwise, the VST will be in a similar format to a function-level VST,
1970  // and will contain symbol names.
1971  }
1972 
1973  // Compute the delta between the bitcode indices in the VST (the word offset
1974  // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1975  // expected by the lazy reader. The reader's EnterSubBlock expects to have
1976  // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1977  // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1978  // just before entering the VST subblock because: 1) the EnterSubBlock
1979  // changes the AbbrevID width; 2) the VST block is nested within the same
1980  // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1981  // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1982  // jump to the FUNCTION_BLOCK using this offset later, we don't want
1983  // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1984  unsigned FuncBitcodeOffsetDelta =
1986 
1988  return error("Invalid record");
1989 
1991 
1992  Triple TT(TheModule->getTargetTriple());
1993 
1994  // Read all the records for this value table.
1996 
1997  while (true) {
1999 
2000  switch (Entry.Kind) {
2001  case BitstreamEntry::SubBlock: // Handled for us already.
2002  case BitstreamEntry::Error:
2003  return error("Malformed block");
2005  if (Offset > 0)
2006  Stream.JumpToBit(CurrentBit);
2007  return Error::success();
2009  // The interesting case.
2010  break;
2011  }
2012 
2013  // Read a record.
2014  Record.clear();
2015  switch (Stream.readRecord(Entry.ID, Record)) {
2016  default: // Default behavior: unknown type.
2017  break;
2018  case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
2019  Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2020  if (Error Err = ValOrErr.takeError())
2021  return Err;
2022  ValOrErr.get();
2023  break;
2024  }
2025  case bitc::VST_CODE_FNENTRY: {
2026  // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2027  Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2028  if (Error Err = ValOrErr.takeError())
2029  return Err;
2030  Value *V = ValOrErr.get();
2031 
2032  // Ignore function offsets emitted for aliases of functions in older
2033  // versions of LLVM.
2034  if (auto *F = dyn_cast<Function>(V))
2035  setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2036  break;
2037  }
2038  case bitc::VST_CODE_BBENTRY: {
2039  if (convertToString(Record, 1, ValueName))
2040  return error("Invalid record");
2041  BasicBlock *BB = getBasicBlock(Record[0]);
2042  if (!BB)
2043  return error("Invalid record");
2044 
2045  BB->setName(StringRef(ValueName.data(), ValueName.size()));
2046  ValueName.clear();
2047  break;
2048  }
2049  }
2050  }
2051 }
2052 
2053 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2054 /// encoding.
2055 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2056  if ((V & 1) == 0)
2057  return V >> 1;
2058  if (V != 1)
2059  return -(V >> 1);
2060  // There is no such thing as -0 with integers. "-0" really means MININT.
2061  return 1ULL << 63;
2062 }
2063 
2064 /// Resolve all of the initializers for global values and aliases that we can.
2065 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2066  std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2067  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2068  IndirectSymbolInitWorklist;
2069  std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2070  std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2071  std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2072 
2073  GlobalInitWorklist.swap(GlobalInits);
2074  IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2075  FunctionPrefixWorklist.swap(FunctionPrefixes);
2076  FunctionPrologueWorklist.swap(FunctionPrologues);
2077  FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2078 
2079  while (!GlobalInitWorklist.empty()) {
2080  unsigned ValID = GlobalInitWorklist.back().second;
2081  if (ValID >= ValueList.size()) {
2082  // Not ready to resolve this yet, it requires something later in the file.
2083  GlobalInits.push_back(GlobalInitWorklist.back());
2084  } else {
2085  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2086  GlobalInitWorklist.back().first->setInitializer(C);
2087  else
2088  return error("Expected a constant");
2089  }
2090  GlobalInitWorklist.pop_back();
2091  }
2092 
2093  while (!IndirectSymbolInitWorklist.empty()) {
2094  unsigned ValID = IndirectSymbolInitWorklist.back().second;
2095  if (ValID >= ValueList.size()) {
2096  IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2097  } else {
2098  Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2099  if (!C)
2100  return error("Expected a constant");
2101  GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2102  if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2103  return error("Alias and aliasee types don't match");
2104  GIS->setIndirectSymbol(C);
2105  }
2106  IndirectSymbolInitWorklist.pop_back();
2107  }
2108 
2109  while (!FunctionPrefixWorklist.empty()) {
2110  unsigned ValID = FunctionPrefixWorklist.back().second;
2111  if (ValID >= ValueList.size()) {
2112  FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2113  } else {
2114  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2115  FunctionPrefixWorklist.back().first->setPrefixData(C);
2116  else
2117  return error("Expected a constant");
2118  }
2119  FunctionPrefixWorklist.pop_back();
2120  }
2121 
2122  while (!FunctionPrologueWorklist.empty()) {
2123  unsigned ValID = FunctionPrologueWorklist.back().second;
2124  if (ValID >= ValueList.size()) {
2125  FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2126  } else {
2127  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2128  FunctionPrologueWorklist.back().first->setPrologueData(C);
2129  else
2130  return error("Expected a constant");
2131  }
2132  FunctionPrologueWorklist.pop_back();
2133  }
2134 
2135  while (!FunctionPersonalityFnWorklist.empty()) {
2136  unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2137  if (ValID >= ValueList.size()) {
2138  FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2139  } else {
2140  if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2141  FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2142  else
2143  return error("Expected a constant");
2144  }
2145  FunctionPersonalityFnWorklist.pop_back();
2146  }
2147 
2148  return Error::success();
2149 }
2150 
2151 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2152  SmallVector<uint64_t, 8> Words(Vals.size());
2153  transform(Vals, Words.begin(),
2154  BitcodeReader::decodeSignRotatedValue);
2155 
2156  return APInt(TypeBits, Words);
2157 }
2158 
2159 Error BitcodeReader::parseConstants() {
2161  return error("Invalid record");
2162 
2164 
2165  // Read all the records for this value table.
2166  Type *CurTy = Type::getInt32Ty(Context);
2167  unsigned NextCstNo = ValueList.size();
2168 
2169  while (true) {
2171 
2172  switch (Entry.Kind) {
2173  case BitstreamEntry::SubBlock: // Handled for us already.
2174  case BitstreamEntry::Error:
2175  return error("Malformed block");
2177  if (NextCstNo != ValueList.size())
2178  return error("Invalid constant reference");
2179 
2180  // Once all the constants have been read, go through and resolve forward
2181  // references.
2182  ValueList.resolveConstantForwardRefs();
2183  return Error::success();
2185  // The interesting case.
2186  break;
2187  }
2188 
2189  // Read a record.
2190  Record.clear();
2191  Type *VoidType = Type::getVoidTy(Context);
2192  Value *V = nullptr;
2193  unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2194  switch (BitCode) {
2195  default: // Default behavior: unknown constant
2196  case bitc::CST_CODE_UNDEF: // UNDEF
2197  V = UndefValue::get(CurTy);
2198  break;
2199  case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
2200  if (Record.empty())
2201  return error("Invalid record");
2202  if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2203  return error("Invalid record");
2204  if (TypeList[Record[0]] == VoidType)
2205  return error("Invalid constant type");
2206  CurTy = TypeList[Record[0]];
2207  continue; // Skip the ValueList manipulation.
2208  case bitc::CST_CODE_NULL: // NULL
2209  V = Constant::getNullValue(CurTy);
2210  break;
2211  case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
2212  if (!CurTy->isIntegerTy() || Record.empty())
2213  return error("Invalid record");
2214  V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2215  break;
2216  case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2217  if (!CurTy->isIntegerTy() || Record.empty())
2218  return error("Invalid record");
2219 
2220  APInt VInt =
2221  readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2222  V = ConstantInt::get(Context, VInt);
2223 
2224  break;
2225  }
2226  case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
2227  if (Record.empty())
2228  return error("Invalid record");
2229  if (CurTy->isHalfTy())
2230  V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2231  APInt(16, (uint16_t)Record[0])));
2232  else if (CurTy->isFloatTy())
2234  APInt(32, (uint32_t)Record[0])));
2235  else if (CurTy->isDoubleTy())
2237  APInt(64, Record[0])));
2238  else if (CurTy->isX86_FP80Ty()) {
2239  // Bits are not stored the same way as a normal i80 APInt, compensate.
2240  uint64_t Rearrange[2];
2241  Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2242  Rearrange[1] = Record[0] >> 48;
2244  APInt(80, Rearrange)));
2245  } else if (CurTy->isFP128Ty())
2246  V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2247  APInt(128, Record)));
2248  else if (CurTy->isPPC_FP128Ty())
2250  APInt(128, Record)));
2251  else
2252  V = UndefValue::get(CurTy);
2253  break;
2254  }
2255 
2256  case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2257  if (Record.empty())
2258  return error("Invalid record");
2259 
2260  unsigned Size = Record.size();
2262 
2263  if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2264  for (unsigned i = 0; i != Size; ++i)
2265  Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2266  STy->getElementType(i)));
2267  V = ConstantStruct::get(STy, Elts);
2268  } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2269  Type *EltTy = ATy->getElementType();
2270  for (unsigned i = 0; i != Size; ++i)
2271  Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2272  V = ConstantArray::get(ATy, Elts);
2273  } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2274  Type *EltTy = VTy->getElementType();
2275  for (unsigned i = 0; i != Size; ++i)
2276  Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2277  V = ConstantVector::get(Elts);
2278  } else {
2279  V = UndefValue::get(CurTy);
2280  }
2281  break;
2282  }
2283  case bitc::CST_CODE_STRING: // STRING: [values]
2284  case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2285  if (Record.empty())
2286  return error("Invalid record");
2287 
2288  SmallString<16> Elts(Record.begin(), Record.end());
2289  V = ConstantDataArray::getString(Context, Elts,
2290  BitCode == bitc::CST_CODE_CSTRING);
2291  break;
2292  }
2293  case bitc::CST_CODE_DATA: {// DATA: [n x value]
2294  if (Record.empty())
2295  return error("Invalid record");
2296 
2297  Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2298  if (EltTy->isIntegerTy(8)) {
2299  SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2300  if (isa<VectorType>(CurTy))
2301  V = ConstantDataVector::get(Context, Elts);
2302  else
2303  V = ConstantDataArray::get(Context, Elts);
2304  } else if (EltTy->isIntegerTy(16)) {
2305  SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2306  if (isa<VectorType>(CurTy))
2307  V = ConstantDataVector::get(Context, Elts);
2308  else
2309  V = ConstantDataArray::get(Context, Elts);
2310  } else if (EltTy->isIntegerTy(32)) {
2311  SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2312  if (isa<VectorType>(CurTy))
2313  V = ConstantDataVector::get(Context, Elts);
2314  else
2315  V = ConstantDataArray::get(Context, Elts);
2316  } else if (EltTy->isIntegerTy(64)) {
2317  SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2318  if (isa<VectorType>(CurTy))
2319  V = ConstantDataVector::get(Context, Elts);
2320  else
2321  V = ConstantDataArray::get(Context, Elts);
2322  } else if (EltTy->isHalfTy()) {
2323  SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2324  if (isa<VectorType>(CurTy))
2325  V = ConstantDataVector::getFP(Context, Elts);
2326  else
2327  V = ConstantDataArray::getFP(Context, Elts);
2328  } else if (EltTy->isFloatTy()) {
2329  SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2330  if (isa<VectorType>(CurTy))
2331  V = ConstantDataVector::getFP(Context, Elts);
2332  else
2333  V = ConstantDataArray::getFP(Context, Elts);
2334  } else if (EltTy->isDoubleTy()) {
2335  SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2336  if (isa<VectorType>(CurTy))
2337  V = ConstantDataVector::getFP(Context, Elts);
2338  else
2339  V = ConstantDataArray::getFP(Context, Elts);
2340  } else {
2341  return error("Invalid type for value");
2342  }
2343  break;
2344  }
2345  case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
2346  if (Record.size() < 2)
2347  return error("Invalid record");
2348  int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2349  if (Opc < 0) {
2350  V = UndefValue::get(CurTy); // Unknown unop.
2351  } else {
2352  Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2353  unsigned Flags = 0;
2354  V = ConstantExpr::get(Opc, LHS, Flags);
2355  }
2356  break;
2357  }
2358  case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
2359  if (Record.size() < 3)
2360  return error("Invalid record");
2361  int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2362  if (Opc < 0) {
2363  V = UndefValue::get(CurTy); // Unknown binop.
2364  } else {
2365  Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2366  Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2367  unsigned Flags = 0;
2368  if (Record.size() >= 4) {
2369  if (Opc == Instruction::Add ||
2370  Opc == Instruction::Sub ||
2371  Opc == Instruction::Mul ||
2372  Opc == Instruction::Shl) {
2373  if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2375  if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2377  } else if (Opc == Instruction::SDiv ||
2378  Opc == Instruction::UDiv ||
2379  Opc == Instruction::LShr ||
2380  Opc == Instruction::AShr) {
2381  if (Record[3] & (1 << bitc::PEO_EXACT))
2382  Flags |= SDivOperator::IsExact;
2383  }
2384  }
2385  V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2386  }
2387  break;
2388  }
2389  case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
2390  if (Record.size() < 3)
2391  return error("Invalid record");
2392  int Opc = getDecodedCastOpcode(Record[0]);
2393  if (Opc < 0) {
2394  V = UndefValue::get(CurTy); // Unknown cast.
2395  } else {
2396  Type *OpTy = getTypeByID(Record[1]);
2397  if (!OpTy)
2398  return error("Invalid record");
2399  Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2400  V = UpgradeBitCastExpr(Opc, Op, CurTy);
2401  if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2402  }
2403  break;
2404  }
2405  case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2406  case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2407  case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2408  // operands]
2409  unsigned OpNum = 0;
2410  Type *PointeeType = nullptr;
2412  Record.size() % 2)
2413  PointeeType = getTypeByID(Record[OpNum++]);
2414 
2415  bool InBounds = false;
2416  Optional<unsigned> InRangeIndex;
2418  uint64_t Op = Record[OpNum++];
2419  InBounds = Op & 1;
2420  InRangeIndex = Op >> 1;
2421  } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2422  InBounds = true;
2423 
2425  while (OpNum != Record.size()) {
2426  Type *ElTy = getTypeByID(Record[OpNum++]);
2427  if (!ElTy)
2428  return error("Invalid record");
2429  Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2430  }
2431 
2432  if (Elts.size() < 1)
2433  return error("Invalid gep with no operands");
2434 
2435  Type *ImplicitPointeeType =
2436  cast<PointerType>(Elts[0]->getType()->getScalarType())
2437  ->getElementType();
2438  if (!PointeeType)
2439  PointeeType = ImplicitPointeeType;
2440  else if (PointeeType != ImplicitPointeeType)
2441  return error("Explicit gep operator type does not match pointee type "
2442  "of pointer operand");
2443 
2444  ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2445  V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2446  InBounds, InRangeIndex);
2447  break;
2448  }
2449  case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
2450  if (Record.size() < 3)
2451  return error("Invalid record");
2452 
2453  Type *SelectorTy = Type::getInt1Ty(Context);
2454 
2455  // The selector might be an i1 or an <n x i1>
2456  // Get the type from the ValueList before getting a forward ref.
2457  if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2458  if (Value *V = ValueList[Record[0]])
2459  if (SelectorTy != V->getType())
2460  SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2461 
2462  V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2463  SelectorTy),
2464  ValueList.getConstantFwdRef(Record[1],CurTy),
2465  ValueList.getConstantFwdRef(Record[2],CurTy));
2466  break;
2467  }
2469  : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2470  if (Record.size() < 3)
2471  return error("Invalid record");
2472  VectorType *OpTy =
2473  dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2474  if (!OpTy)
2475  return error("Invalid record");
2476  Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2477  Constant *Op1 = nullptr;
2478  if (Record.size() == 4) {
2479  Type *IdxTy = getTypeByID(Record[2]);
2480  if (!IdxTy)
2481  return error("Invalid record");
2482  Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2483  } else // TODO: Remove with llvm 4.0
2484  Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2485  if (!Op1)
2486  return error("Invalid record");
2487  V = ConstantExpr::getExtractElement(Op0, Op1);
2488  break;
2489  }
2491  : { // CE_INSERTELT: [opval, opval, opty, opval]
2492  VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2493  if (Record.size() < 3 || !OpTy)
2494  return error("Invalid record");
2495  Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2496  Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2497  OpTy->getElementType());
2498  Constant *Op2 = nullptr;
2499  if (Record.size() == 4) {
2500  Type *IdxTy = getTypeByID(Record[2]);
2501  if (!IdxTy)
2502  return error("Invalid record");
2503  Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2504  } else // TODO: Remove with llvm 4.0
2505  Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2506  if (!Op2)
2507  return error("Invalid record");
2508  V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2509  break;
2510  }
2511  case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2512  VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2513  if (Record.size() < 3 || !OpTy)
2514  return error("Invalid record");
2515  Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2516  Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2517  Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2518  OpTy->getNumElements());
2519  Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2520  V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2521  break;
2522  }
2523  case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2524  VectorType *RTy = dyn_cast<VectorType>(CurTy);
2525  VectorType *OpTy =
2526  dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2527  if (Record.size() < 4 || !RTy || !OpTy)
2528  return error("Invalid record");
2529  Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2530  Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2531  Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2532  RTy->getNumElements());
2533  Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2534  V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2535  break;
2536  }
2537  case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
2538  if (Record.size() < 4)
2539  return error("Invalid record");
2540  Type *OpTy = getTypeByID(Record[0]);
2541  if (!OpTy)
2542  return error("Invalid record");
2543  Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2544  Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2545 
2546  if (OpTy->isFPOrFPVectorTy())
2547  V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2548  else
2549  V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2550  break;
2551  }
2552  // This maintains backward compatibility, pre-asm dialect keywords.
2553  // FIXME: Remove with the 4.0 release.
2555  if (Record.size() < 2)
2556  return error("Invalid record");
2557  std::string AsmStr, ConstrStr;
2558  bool HasSideEffects = Record[0] & 1;
2559  bool IsAlignStack = Record[0] >> 1;
2560  unsigned AsmStrSize = Record[1];
2561  if (2+AsmStrSize >= Record.size())
2562  return error("Invalid record");
2563  unsigned ConstStrSize = Record[2+AsmStrSize];
2564  if (3+AsmStrSize+ConstStrSize > Record.size())
2565  return error("Invalid record");
2566 
2567  for (unsigned i = 0; i != AsmStrSize; ++i)
2568  AsmStr += (char)Record[2+i];
2569  for (unsigned i = 0; i != ConstStrSize; ++i)
2570  ConstrStr += (char)Record[3+AsmStrSize+i];
2571  PointerType *PTy = cast<PointerType>(CurTy);
2572  UpgradeInlineAsmString(&AsmStr);
2573  V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2574  AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2575  break;
2576  }
2577  // This version adds support for the asm dialect keywords (e.g.,
2578  // inteldialect).
2579  case bitc::CST_CODE_INLINEASM: {
2580  if (Record.size() < 2)
2581  return error("Invalid record");
2582  std::string AsmStr, ConstrStr;
2583  bool HasSideEffects = Record[0] & 1;
2584  bool IsAlignStack = (Record[0] >> 1) & 1;
2585  unsigned AsmDialect = Record[0] >> 2;
2586  unsigned AsmStrSize = Record[1];
2587  if (2+AsmStrSize >= Record.size())
2588  return error("Invalid record");
2589  unsigned ConstStrSize = Record[2+AsmStrSize];
2590  if (3+AsmStrSize+ConstStrSize > Record.size())
2591  return error("Invalid record");
2592 
2593  for (unsigned i = 0; i != AsmStrSize; ++i)
2594  AsmStr += (char)Record[2+i];
2595  for (unsigned i = 0; i != ConstStrSize; ++i)
2596  ConstrStr += (char)Record[3+AsmStrSize+i];
2597  PointerType *PTy = cast<PointerType>(CurTy);
2598  UpgradeInlineAsmString(&AsmStr);
2599  V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2600  AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2601  InlineAsm::AsmDialect(AsmDialect));
2602  break;
2603  }
2605  if (Record.size() < 3)
2606  return error("Invalid record");
2607  Type *FnTy = getTypeByID(Record[0]);
2608  if (!FnTy)
2609  return error("Invalid record");
2610  Function *Fn =
2611  dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2612  if (!Fn)
2613  return error("Invalid record");
2614 
2615  // If the function is already parsed we can insert the block address right
2616  // away.
2617  BasicBlock *BB;
2618  unsigned BBID = Record[2];
2619  if (!BBID)
2620  // Invalid reference to entry block.
2621  return error("Invalid ID");
2622  if (!Fn->empty()) {
2623  Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2624  for (size_t I = 0, E = BBID; I != E; ++I) {
2625  if (BBI == BBE)
2626  return error("Invalid ID");
2627  ++BBI;
2628  }
2629  BB = &*BBI;
2630  } else {
2631  // Otherwise insert a placeholder and remember it so it can be inserted
2632  // when the function is parsed.
2633  auto &FwdBBs = BasicBlockFwdRefs[Fn];
2634  if (FwdBBs.empty())
2635  BasicBlockFwdRefQueue.push_back(Fn);
2636  if (FwdBBs.size() < BBID + 1)
2637  FwdBBs.resize(BBID + 1);
2638  if (!FwdBBs[BBID])
2639  FwdBBs[BBID] = BasicBlock::Create(Context);
2640  BB = FwdBBs[BBID];
2641  }
2642  V = BlockAddress::get(Fn, BB);
2643  break;
2644  }
2645  }
2646 
2647  ValueList.assignValue(V, NextCstNo);
2648  ++NextCstNo;
2649  }
2650 }
2651 
2652 Error BitcodeReader::parseUseLists() {
2654  return error("Invalid record");
2655 
2656  // Read all the records.
2658 
2659  while (true) {
2661 
2662  switch (Entry.Kind) {
2663  case BitstreamEntry::SubBlock: // Handled for us already.
2664  case BitstreamEntry::Error:
2665  return error("Malformed block");
2667  return Error::success();
2669  // The interesting case.
2670  break;
2671  }
2672 
2673  // Read a use list record.
2674  Record.clear();
2675  bool IsBB = false;
2676  switch (Stream.readRecord(Entry.ID, Record)) {
2677  default: // Default behavior: unknown type.
2678  break;
2679  case bitc::USELIST_CODE_BB:
2680  IsBB = true;
2683  unsigned RecordLength = Record.size();
2684  if (RecordLength < 3)
2685  // Records should have at least an ID and two indexes.
2686  return error("Invalid record");
2687  unsigned ID = Record.back();
2688  Record.pop_back();
2689 
2690  Value *V;
2691  if (IsBB) {
2692  assert(ID < FunctionBBs.size() && "Basic block not found");
2693  V = FunctionBBs[ID];
2694  } else
2695  V = ValueList[ID];
2696  unsigned NumUses = 0;
2698  for (const Use &U : V->materialized_uses()) {
2699  if (++NumUses > Record.size())
2700  break;
2701  Order[&U] = Record[NumUses - 1];
2702  }
2703  if (Order.size() != Record.size() || NumUses > Record.size())
2704  // Mismatches can happen if the functions are being materialized lazily
2705  // (out-of-order), or a value has been upgraded.
2706  break;
2707 
2708  V->sortUseList([&](const Use &L, const Use &R) {
2709  return Order.lookup(&L) < Order.lookup(&R);
2710  });
2711  break;
2712  }
2713  }
2714  }
2715 }
2716 
2717 /// When we see the block for metadata, remember where it is and then skip it.
2718 /// This lets us lazily deserialize the metadata.
2719 Error BitcodeReader::rememberAndSkipMetadata() {
2720  // Save the current stream state.
2721  uint64_t CurBit = Stream.GetCurrentBitNo();
2722  DeferredMetadataInfo.push_back(CurBit);
2723 
2724  // Skip over the block for now.
2725  if (Stream.SkipBlock())
2726  return error("Invalid record");
2727  return Error::success();
2728 }
2729 
2730 Error BitcodeReader::materializeMetadata() {
2731  for (uint64_t BitPos : DeferredMetadataInfo) {
2732  // Move the bit stream to the saved position.
2733  Stream.JumpToBit(BitPos);
2734  if (Error Err = MDLoader->parseModuleMetadata())
2735  return Err;
2736  }
2737 
2738  // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2739  // metadata.
2740  if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2741  NamedMDNode *LinkerOpts =
2742  TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2743  for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2744  LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2745  }
2746 
2747  DeferredMetadataInfo.clear();
2748  return Error::success();
2749 }
2750 
2751 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2752 
2753 /// When we see the block for a function body, remember where it is and then
2754 /// skip it. This lets us lazily deserialize the functions.
2755 Error BitcodeReader::rememberAndSkipFunctionBody() {
2756  // Get the function we are talking about.
2757  if (FunctionsWithBodies.empty())
2758  return error("Insufficient function protos");
2759 
2760  Function *Fn = FunctionsWithBodies.back();
2761  FunctionsWithBodies.pop_back();
2762 
2763  // Save the current stream state.
2764  uint64_t CurBit = Stream.GetCurrentBitNo();
2765  assert(
2766  (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2767  "Mismatch between VST and scanned function offsets");
2768  DeferredFunctionInfo[Fn] = CurBit;
2769 
2770  // Skip over the function block for now.
2771  if (Stream.SkipBlock())
2772  return error("Invalid record");
2773  return Error::success();
2774 }
2775 
2776 Error BitcodeReader::globalCleanup() {
2777  // Patch the initializers for globals and aliases up.
2778  if (Error Err = resolveGlobalAndIndirectSymbolInits())
2779  return Err;
2780  if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2781  return error("Malformed global initializer set");
2782 
2783  // Look for intrinsic functions which need to be upgraded at some point
2784  for (Function &F : *TheModule) {
2785  MDLoader->upgradeDebugIntrinsics(F);
2786  Function *NewFn;
2787  if (UpgradeIntrinsicFunction(&F, NewFn))
2788  UpgradedIntrinsics[&F] = NewFn;
2789  else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2790  // Some types could be renamed during loading if several modules are
2791  // loaded in the same LLVMContext (LTO scenario). In this case we should
2792  // remangle intrinsics names as well.
2793  RemangledIntrinsics[&F] = Remangled.getValue();
2794  }
2795 
2796  // Look for global variables which need to be renamed.
2797  std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
2798  for (GlobalVariable &GV : TheModule->globals())
2799  if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
2800  UpgradedVariables.emplace_back(&GV, Upgraded);
2801  for (auto &Pair : UpgradedVariables) {
2802  Pair.first->eraseFromParent();
2803  TheModule->getGlobalList().push_back(Pair.second);
2804  }
2805 
2806  // Force deallocation of memory for these vectors to favor the client that
2807  // want lazy deserialization.
2808  std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2809  std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2810  IndirectSymbolInits);
2811  return Error::success();
2812 }
2813 
2814 /// Support for lazy parsing of function bodies. This is required if we
2815 /// either have an old bitcode file without a VST forward declaration record,
2816 /// or if we have an anonymous function being materialized, since anonymous
2817 /// functions do not have a name and are therefore not in the VST.
2818 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2819  Stream.JumpToBit(NextUnreadBit);
2820 
2821  if (Stream.AtEndOfStream())
2822  return error("Could not find function in stream");
2823 
2824  if (!SeenFirstFunctionBody)
2825  return error("Trying to materialize functions before seeing function blocks");
2826 
2827  // An old bitcode file with the symbol table at the end would have
2828  // finished the parse greedily.
2829  assert(SeenValueSymbolTable);
2830 
2832 
2833  while (true) {
2834  BitstreamEntry Entry = Stream.advance();
2835  switch (Entry.Kind) {
2836  default:
2837  return error("Expect SubBlock");
2839  switch (Entry.ID) {
2840  default:
2841  return error("Expect function block");
2843  if (Error Err = rememberAndSkipFunctionBody())
2844  return Err;
2845  NextUnreadBit = Stream.GetCurrentBitNo();
2846  return Error::success();
2847  }
2848  }
2849  }
2850 }
2851 
2852 bool BitcodeReaderBase::readBlockInfo() {
2853  Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2854  if (!NewBlockInfo)
2855  return true;
2856  BlockInfo = std::move(*NewBlockInfo);
2857  return false;
2858 }
2859 
2860 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2861  // v1: [selection_kind, name]
2862  // v2: [strtab_offset, strtab_size, selection_kind]
2863  StringRef Name;
2864  std::tie(Name, Record) = readNameFromStrtab(Record);
2865 
2866  if (Record.empty())
2867  return error("Invalid record");
2869  std::string OldFormatName;
2870  if (!UseStrtab) {
2871  if (Record.size() < 2)
2872  return error("Invalid record");
2873  unsigned ComdatNameSize = Record[1];
2874  OldFormatName.reserve(ComdatNameSize);
2875  for (unsigned i = 0; i != ComdatNameSize; ++i)
2876  OldFormatName += (char)Record[2 + i];
2877  Name = OldFormatName;
2878  }
2879  Comdat *C = TheModule->getOrInsertComdat(Name);
2880  C->setSelectionKind(SK);
2881  ComdatList.push_back(C);
2882  return Error::success();
2883 }
2884 
2885 static void inferDSOLocal(GlobalValue *GV) {
2886  // infer dso_local from linkage and visibility if it is not encoded.
2887  if (GV->hasLocalLinkage() ||
2888  (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
2889  GV->setDSOLocal(true);
2890 }
2891 
2892 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2893  // v1: [pointer type, isconst, initid, linkage, alignment, section,
2894  // visibility, threadlocal, unnamed_addr, externally_initialized,
2895  // dllstorageclass, comdat, attributes, preemption specifier] (name in VST)
2896  // v2: [strtab_offset, strtab_size, v1]
2897  StringRef Name;
2898  std::tie(Name, Record) = readNameFromStrtab(Record);
2899 
2900  if (Record.size() < 6)
2901  return error("Invalid record");
2902  Type *Ty = getTypeByID(Record[0]);
2903  if (!Ty)
2904  return error("Invalid record");
2905  bool isConstant = Record[1] & 1;
2906  bool explicitType = Record[1] & 2;
2907  unsigned AddressSpace;
2908  if (explicitType) {
2909  AddressSpace = Record[1] >> 2;
2910  } else {
2911  if (!Ty->isPointerTy())
2912  return error("Invalid type for value");
2913  AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2914  Ty = cast<PointerType>(Ty)->getElementType();
2915  }
2916 
2917  uint64_t RawLinkage = Record[3];
2918  GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2919  unsigned Alignment;
2920  if (Error Err = parseAlignmentValue(Record[4], Alignment))
2921  return Err;
2922  std::string Section;
2923  if (Record[5]) {
2924  if (Record[5] - 1 >= SectionTable.size())
2925  return error("Invalid ID");
2926  Section = SectionTable[Record[5] - 1];
2927  }
2929  // Local linkage must have default visibility.
2930  if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2931  // FIXME: Change to an error if non-default in 4.0.
2932  Visibility = getDecodedVisibility(Record[6]);
2933 
2935  if (Record.size() > 7)
2936  TLM = getDecodedThreadLocalMode(Record[7]);
2937 
2939  if (Record.size() > 8)
2940  UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2941 
2942  bool ExternallyInitialized = false;
2943  if (Record.size() > 9)
2944  ExternallyInitialized = Record[9];
2945 
2946  GlobalVariable *NewGV =
2947  new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2948  nullptr, TLM, AddressSpace, ExternallyInitialized);
2949  NewGV->setAlignment(Alignment);
2950  if (!Section.empty())
2951  NewGV->setSection(Section);
2952  NewGV->setVisibility(Visibility);
2953  NewGV->setUnnamedAddr(UnnamedAddr);
2954 
2955  if (Record.size() > 10)
2956  NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2957  else
2958  upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2959 
2960  ValueList.push_back(NewGV);
2961 
2962  // Remember which value to use for the global initializer.
2963  if (unsigned InitID = Record[2])
2964  GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2965 
2966  if (Record.size() > 11) {
2967  if (unsigned ComdatID = Record[11]) {
2968  if (ComdatID > ComdatList.size())
2969  return error("Invalid global variable comdat ID");
2970  NewGV->setComdat(ComdatList[ComdatID - 1]);
2971  }
2972  } else if (hasImplicitComdat(RawLinkage)) {
2973  NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2974  }
2975 
2976  if (Record.size() > 12) {
2977  auto AS = getAttributes(Record[12]).getFnAttributes();
2978  NewGV->setAttributes(AS);
2979  }
2980 
2981  if (Record.size() > 13) {
2982  NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
2983  }
2984  inferDSOLocal(NewGV);
2985 
2986  return Error::success();
2987 }
2988 
2989 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2990  // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2991  // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2992  // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
2993  // v2: [strtab_offset, strtab_size, v1]
2994  StringRef Name;
2995  std::tie(Name, Record) = readNameFromStrtab(Record);
2996 
2997  if (Record.size() < 8)
2998  return error("Invalid record");
2999  Type *Ty = getTypeByID(Record[0]);
3000  if (!Ty)
3001  return error("Invalid record");
3002  if (auto *PTy = dyn_cast<PointerType>(Ty))
3003  Ty = PTy->getElementType();
3004  auto *FTy = dyn_cast<FunctionType>(Ty);
3005  if (!FTy)
3006  return error("Invalid type for value");
3007  auto CC = static_cast<CallingConv::ID>(Record[1]);
3008  if (CC & ~CallingConv::MaxID)
3009  return error("Invalid calling convention ID");
3010 
3011  unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3012  if (Record.size() > 16)
3013  AddrSpace = Record[16];
3014 
3016  AddrSpace, Name, TheModule);
3017 
3018  Func->setCallingConv(CC);
3019  bool isProto = Record[2];
3020  uint64_t RawLinkage = Record[3];
3021  Func->setLinkage(getDecodedLinkage(RawLinkage));
3022  Func->setAttributes(getAttributes(Record[4]));
3023 
3024  unsigned Alignment;
3025  if (Error Err = parseAlignmentValue(Record[5], Alignment))
3026  return Err;
3027  Func->setAlignment(Alignment);
3028  if (Record[6]) {
3029  if (Record[6] - 1 >= SectionTable.size())
3030  return error("Invalid ID");
3031  Func->setSection(SectionTable[Record[6] - 1]);
3032  }
3033  // Local linkage must have default visibility.
3034  if (!Func->hasLocalLinkage())
3035  // FIXME: Change to an error if non-default in 4.0.
3036  Func->setVisibility(getDecodedVisibility(Record[7]));
3037  if (Record.size() > 8 && Record[8]) {
3038  if (Record[8] - 1 >= GCTable.size())
3039  return error("Invalid ID");
3040  Func->setGC(GCTable[Record[8] - 1]);
3041  }
3043  if (Record.size() > 9)
3044  UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3045  Func->setUnnamedAddr(UnnamedAddr);
3046  if (Record.size() > 10 && Record[10] != 0)
3047  FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3048 
3049  if (Record.size() > 11)
3050  Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3051  else
3052  upgradeDLLImportExportLinkage(Func, RawLinkage);
3053 
3054  if (Record.size() > 12) {
3055  if (unsigned ComdatID = Record[12]) {
3056  if (ComdatID > ComdatList.size())
3057  return error("Invalid function comdat ID");
3058  Func->setComdat(ComdatList[ComdatID - 1]);
3059  }
3060  } else if (hasImplicitComdat(RawLinkage)) {
3061  Func->setComdat(reinterpret_cast<Comdat *>(1));
3062  }
3063 
3064  if (Record.size() > 13 && Record[13] != 0)
3065  FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3066 
3067  if (Record.size() > 14 && Record[14] != 0)
3068  FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3069 
3070  if (Record.size() > 15) {
3071  Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3072  }
3073  inferDSOLocal(Func);
3074 
3075  ValueList.push_back(Func);
3076 
3077  // If this is a function with a body, remember the prototype we are
3078  // creating now, so that we can match up the body with them later.
3079  if (!isProto) {
3080  Func->setIsMaterializable(true);
3081  FunctionsWithBodies.push_back(Func);
3082  DeferredFunctionInfo[Func] = 0;
3083  }
3084  return Error::success();
3085 }
3086 
3087 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3088  unsigned BitCode, ArrayRef<uint64_t> Record) {
3089  // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3090  // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3091  // dllstorageclass, threadlocal, unnamed_addr,
3092  // preemption specifier] (name in VST)
3093  // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3094  // visibility, dllstorageclass, threadlocal, unnamed_addr,
3095  // preemption specifier] (name in VST)
3096  // v2: [strtab_offset, strtab_size, v1]
3097  StringRef Name;
3098  std::tie(Name, Record) = readNameFromStrtab(Record);
3099 
3100  bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3101  if (Record.size() < (3 + (unsigned)NewRecord))
3102  return error("Invalid record");
3103  unsigned OpNum = 0;
3104  Type *Ty = getTypeByID(Record[OpNum++]);
3105  if (!Ty)
3106  return error("Invalid record");
3107 
3108  unsigned AddrSpace;
3109  if (!NewRecord) {
3110  auto *PTy = dyn_cast<PointerType>(Ty);
3111  if (!PTy)
3112  return error("Invalid type for value");
3113  Ty = PTy->getElementType();
3114  AddrSpace = PTy->getAddressSpace();
3115  } else {
3116  AddrSpace = Record[OpNum++];
3117  }
3118 
3119  auto Val = Record[OpNum++];
3120  auto Linkage = Record[OpNum++];
3121  GlobalIndirectSymbol *NewGA;
3122  if (BitCode == bitc::MODULE_CODE_ALIAS ||
3123  BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3124  NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3125  TheModule);
3126  else
3127  NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3128  nullptr, TheModule);
3129  // Old bitcode files didn't have visibility field.
3130  // Local linkage must have default visibility.
3131  if (OpNum != Record.size()) {
3132  auto VisInd = OpNum++;
3133  if (!NewGA->hasLocalLinkage())
3134  // FIXME: Change to an error if non-default in 4.0.
3135  NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3136  }
3137  if (BitCode == bitc::MODULE_CODE_ALIAS ||
3138  BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3139  if (OpNum != Record.size())
3140  NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3141  else
3142  upgradeDLLImportExportLinkage(NewGA, Linkage);
3143  if (OpNum != Record.size())
3144  NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3145  if (OpNum != Record.size())
3146  NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3147  }
3148  if (OpNum != Record.size())
3149  NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3150  inferDSOLocal(NewGA);
3151 
3152  ValueList.push_back(NewGA);
3153  IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3154  return Error::success();
3155 }
3156 
3157 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3158  bool ShouldLazyLoadMetadata) {
3159  if (ResumeBit)
3160  Stream.JumpToBit(ResumeBit);
3161  else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3162  return error("Invalid record");
3163 
3165 
3166  // Read all the records for this module.
3167  while (true) {
3168  BitstreamEntry Entry = Stream.advance();
3169 
3170  switch (Entry.Kind) {
3171  case BitstreamEntry::Error:
3172  return error("Malformed block");
3174  return globalCleanup();
3175 
3177  switch (Entry.ID) {
3178  default: // Skip unknown content.
3179  if (Stream.SkipBlock())
3180  return error("Invalid record");
3181  break;
3183  if (readBlockInfo())
3184  return error("Malformed block");
3185  break;
3187  if (Error Err = parseAttributeBlock())
3188  return Err;
3189  break;
3191  if (Error Err = parseAttributeGroupBlock())
3192  return Err;
3193  break;
3195  if (Error Err = parseTypeTable())
3196  return Err;
3197  break;
3199  if (!SeenValueSymbolTable) {
3200  // Either this is an old form VST without function index and an
3201  // associated VST forward declaration record (which would have caused
3202  // the VST to be jumped to and parsed before it was encountered
3203  // normally in the stream), or there were no function blocks to
3204  // trigger an earlier parsing of the VST.
3205  assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3206  if (Error Err = parseValueSymbolTable())
3207  return Err;
3208  SeenValueSymbolTable = true;
3209  } else {
3210  // We must have had a VST forward declaration record, which caused
3211  // the parser to jump to and parse the VST earlier.
3212  assert(VSTOffset > 0);
3213  if (Stream.SkipBlock())
3214  return error("Invalid record");
3215  }
3216  break;
3218  if (Error Err = parseConstants())
3219  return Err;
3220  if (Error Err = resolveGlobalAndIndirectSymbolInits())
3221  return Err;
3222  break;
3224  if (ShouldLazyLoadMetadata) {
3225  if (Error Err = rememberAndSkipMetadata())
3226  return Err;
3227  break;
3228  }
3229  assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3230  if (Error Err = MDLoader->parseModuleMetadata())
3231  return Err;
3232  break;
3234  if (Error Err = MDLoader->parseMetadataKinds())
3235  return Err;
3236  break;
3238  // If this is the first function body we've seen, reverse the
3239  // FunctionsWithBodies list.
3240  if (!SeenFirstFunctionBody) {
3241  std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3242  if (Error Err = globalCleanup())
3243  return Err;
3244  SeenFirstFunctionBody = true;
3245  }
3246 
3247  if (VSTOffset > 0) {
3248  // If we have a VST forward declaration record, make sure we
3249  // parse the VST now if we haven't already. It is needed to
3250  // set up the DeferredFunctionInfo vector for lazy reading.
3251  if (!SeenValueSymbolTable) {
3252  if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3253  return Err;
3254  SeenValueSymbolTable = true;
3255  // Fall through so that we record the NextUnreadBit below.
3256  // This is necessary in case we have an anonymous function that
3257  // is later materialized. Since it will not have a VST entry we
3258  // need to fall back to the lazy parse to find its offset.
3259  } else {
3260  // If we have a VST forward declaration record, but have already
3261  // parsed the VST (just above, when the first function body was
3262  // encountered here), then we are resuming the parse after
3263  // materializing functions. The ResumeBit points to the
3264  // start of the last function block recorded in the
3265  // DeferredFunctionInfo map. Skip it.
3266  if (Stream.SkipBlock())
3267  return error("Invalid record");
3268  continue;
3269  }
3270  }
3271 
3272  // Support older bitcode files that did not have the function
3273  // index in the VST, nor a VST forward declaration record, as
3274  // well as anonymous functions that do not have VST entries.
3275  // Build the DeferredFunctionInfo vector on the fly.
3276  if (Error Err = rememberAndSkipFunctionBody())
3277  return Err;
3278 
3279  // Suspend parsing when we reach the function bodies. Subsequent
3280  // materialization calls will resume it when necessary. If the bitcode
3281  // file is old, the symbol table will be at the end instead and will not
3282  // have been seen yet. In this case, just finish the parse now.
3283  if (SeenValueSymbolTable) {
3284  NextUnreadBit = Stream.GetCurrentBitNo();
3285  // After the VST has been parsed, we need to make sure intrinsic name
3286  // are auto-upgraded.
3287  return globalCleanup();
3288  }
3289  break;
3291  if (Error Err = parseUseLists())
3292  return Err;
3293  break;
3295  if (Error Err = parseOperandBundleTags())
3296  return Err;
3297  break;
3299  if (Error Err = parseSyncScopeNames())
3300  return Err;
3301  break;
3302  }
3303  continue;
3304 
3306  // The interesting case.
3307  break;
3308  }
3309 
3310  // Read a record.
3311  auto BitCode = Stream.readRecord(Entry.ID, Record);
3312  switch (BitCode) {
3313  default: break; // Default behavior, ignore unknown content.
3315  Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3316  if (!VersionOrErr)
3317  return VersionOrErr.takeError();
3318  UseRelativeIDs = *VersionOrErr >= 1;
3319  break;
3320  }
3321  case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
3322  std::string S;
3323  if (convertToString(Record, 0, S))
3324  return error("Invalid record");
3325  TheModule->setTargetTriple(S);
3326  break;
3327  }
3328  case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
3329  std::string S;
3330  if (convertToString(Record, 0, S))
3331  return error("Invalid record");
3332  TheModule->setDataLayout(S);
3333  break;
3334  }
3335  case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
3336  std::string S;
3337  if (convertToString(Record, 0, S))
3338  return error("Invalid record");
3339  TheModule->setModuleInlineAsm(S);
3340  break;
3341  }
3342  case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
3343  // FIXME: Remove in 4.0.
3344  std::string S;
3345  if (convertToString(Record, 0, S))
3346  return error("Invalid record");
3347  // Ignore value.
3348  break;
3349  }
3350  case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
3351  std::string S;
3352  if (convertToString(Record, 0, S))
3353  return error("Invalid record");
3354  SectionTable.push_back(S);
3355  break;
3356  }
3357  case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
3358  std::string S;
3359  if (convertToString(Record, 0, S))
3360  return error("Invalid record");
3361  GCTable.push_back(S);
3362  break;
3363  }
3365  if (Error Err = parseComdatRecord(Record))
3366  return Err;
3367  break;
3369  if (Error Err = parseGlobalVarRecord(Record))
3370  return Err;
3371  break;
3373  if (Error Err = parseFunctionRecord(Record))
3374  return Err;
3375  break;
3379  if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3380  return Err;
3381  break;
3382  /// MODULE_CODE_VSTOFFSET: [offset]
3384  if (Record.size() < 1)
3385  return error("Invalid record");
3386  // Note that we subtract 1 here because the offset is relative to one word
3387  // before the start of the identification or module block, which was
3388  // historically always the start of the regular bitcode header.
3389  VSTOffset = Record[0] - 1;
3390  break;
3391  /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3394  if (convertToString(Record, 0, ValueName))
3395  return error("Invalid record");
3396  TheModule->setSourceFileName(ValueName);
3397  break;
3398  }
3399  Record.clear();
3400  }
3401 }
3402 
3403 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3404  bool IsImporting) {
3405  TheModule = M;
3406  MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3407  [&](unsigned ID) { return getTypeByID(ID); });
3408  return parseModule(0, ShouldLazyLoadMetadata);
3409 }
3410 
3411 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3412  if (!isa<PointerType>(PtrType))
3413  return error("Load/Store operand is not a pointer type");
3414  Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3415 
3416  if (ValType && ValType != ElemType)
3417  return error("Explicit load/store type does not match pointee "
3418  "type of pointer operand");
3420  return error("Cannot load/store from pointer");
3421  return Error::success();
3422 }
3423 
3424 /// Lazily parse the specified function body block.
3425 Error BitcodeReader::parseFunctionBody(Function *F) {
3427  return error("Invalid record");
3428 
3429  // Unexpected unresolved metadata when parsing function.
3430  if (MDLoader->hasFwdRefs())
3431  return error("Invalid function metadata: incoming forward references");
3432 
3433  InstructionList.clear();
3434  unsigned ModuleValueListSize = ValueList.size();
3435  unsigned ModuleMDLoaderSize = MDLoader->size();
3436 
3437  // Add all the function arguments to the value table.
3438  for (Argument &I : F->args())
3439  ValueList.push_back(&I);
3440 
3441  unsigned NextValueNo = ValueList.size();
3442  BasicBlock *CurBB = nullptr;
3443  unsigned CurBBNo = 0;
3444 
3445  DebugLoc LastLoc;
3446  auto getLastInstruction = [&]() -> Instruction * {
3447  if (CurBB && !CurBB->empty())
3448  return &CurBB->back();
3449  else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3450  !FunctionBBs[CurBBNo - 1]->empty())
3451  return &FunctionBBs[CurBBNo - 1]->back();
3452  return nullptr;
3453  };
3454 
3455  std::vector<OperandBundleDef> OperandBundles;
3456 
3457  // Read all the records.
3459 
3460  while (true) {
3461  BitstreamEntry Entry = Stream.advance();
3462 
3463  switch (Entry.Kind) {
3464  case BitstreamEntry::Error:
3465  return error("Malformed block");
3467  goto OutOfRecordLoop;
3468 
3470  switch (Entry.ID) {
3471  default: // Skip unknown content.
3472  if (Stream.SkipBlock())
3473  return error("Invalid record");
3474  break;
3476  if (Error Err = parseConstants())
3477  return Err;
3478  NextValueNo = ValueList.size();
3479  break;
3481  if (Error Err = parseValueSymbolTable())
3482  return Err;
3483  break;
3485  if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3486  return Err;
3487  break;
3489  assert(DeferredMetadataInfo.empty() &&
3490  "Must read all module-level metadata before function-level");
3491  if (Error Err = MDLoader->parseFunctionMetadata())
3492  return Err;
3493  break;
3495  if (Error Err = parseUseLists())
3496  return Err;
3497  break;
3498  }
3499  continue;
3500 
3502  // The interesting case.
3503  break;
3504  }
3505 
3506  // Read a record.
3507  Record.clear();
3508  Instruction *I = nullptr;
3509  unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3510  switch (BitCode) {
3511  default: // Default behavior: reject
3512  return error("Invalid value");
3513  case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
3514  if (Record.size() < 1 || Record[0] == 0)
3515  return error("Invalid record");
3516  // Create all the basic blocks for the function.
3517  FunctionBBs.resize(Record[0]);
3518 
3519  // See if anything took the address of blocks in this function.
3520  auto BBFRI = BasicBlockFwdRefs.find(F);
3521  if (BBFRI == BasicBlockFwdRefs.end()) {
3522  for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3523  FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3524  } else {
3525  auto &BBRefs = BBFRI->second;
3526  // Check for invalid basic block references.
3527  if (BBRefs.size() > FunctionBBs.size())
3528  return error("Invalid ID");
3529  assert(!BBRefs.empty() && "Unexpected empty array");
3530  assert(!BBRefs.front() && "Invalid reference to entry block");
3531  for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3532  ++I)
3533  if (I < RE && BBRefs[I]) {
3534  BBRefs[I]->insertInto(F);
3535  FunctionBBs[I] = BBRefs[I];
3536  } else {
3537  FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3538  }
3539 
3540  // Erase from the table.
3541  BasicBlockFwdRefs.erase(BBFRI);
3542  }
3543 
3544  CurBB = FunctionBBs[0];
3545  continue;
3546  }
3547 
3548  case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
3549  // This record indicates that the last instruction is at the same
3550  // location as the previous instruction with a location.
3551  I = getLastInstruction();
3552 
3553  if (!I)
3554  return error("Invalid record");
3555  I->setDebugLoc(LastLoc);
3556  I = nullptr;
3557  continue;
3558 
3559  case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
3560  I = getLastInstruction();
3561  if (!I || Record.size() < 4)
3562  return error("Invalid record");
3563 
3564  unsigned Line = Record[0], Col = Record[1];
3565  unsigned ScopeID = Record[2], IAID = Record[3];
3566  bool isImplicitCode = Record.size() == 5 && Record[4];
3567 
3568  MDNode *Scope = nullptr, *IA = nullptr;
3569  if (ScopeID) {
3570  Scope = dyn_cast_or_null<MDNode>(
3571  MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3572  if (!Scope)
3573  return error("Invalid record");
3574  }
3575  if (IAID) {
3576  IA = dyn_cast_or_null<MDNode>(
3577  MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3578  if (!IA)
3579  return error("Invalid record");
3580  }
3581  LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3582  I->setDebugLoc(LastLoc);
3583  I = nullptr;
3584  continue;
3585  }
3586  case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
3587  unsigned OpNum = 0;
3588  Value *LHS;
3589  if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3590  OpNum+1 > Record.size())
3591  return error("Invalid record");
3592 
3593  int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3594  if (Opc == -1)
3595  return error("Invalid record");
3597  InstructionList.push_back(I);
3598  if (OpNum < Record.size()) {
3599  if (isa<FPMathOperator>(I)) {
3600  FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3601  if (FMF.any())
3602  I->setFastMathFlags(FMF);
3603  }
3604  }
3605  break;
3606  }
3607  case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
3608  unsigned OpNum = 0;
3609  Value *LHS, *RHS;
3610  if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3611  popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3612  OpNum+1 > Record.size())
3613  return error("Invalid record");
3614 
3615  int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3616  if (Opc == -1)
3617  return error("Invalid record");
3618  I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3619  InstructionList.push_back(I);
3620  if (OpNum < Record.size()) {
3621  if (Opc == Instruction::Add ||
3622  Opc == Instruction::Sub ||
3623  Opc == Instruction::Mul ||
3624  Opc == Instruction::Shl) {
3625  if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3626  cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3627  if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3628  cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3629  } else if (Opc == Instruction::SDiv ||
3630  Opc == Instruction::UDiv ||
3631  Opc == Instruction::LShr ||
3632  Opc == Instruction::AShr) {
3633  if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3634  cast<BinaryOperator>(I)->setIsExact(true);
3635  } else if (isa<FPMathOperator>(I)) {
3636  FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3637  if (FMF.any())
3638  I->setFastMathFlags(FMF);
3639  }
3640 
3641  }
3642  break;
3643  }
3644  case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
3645  unsigned OpNum = 0;
3646  Value *Op;
3647  if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3648  OpNum+2 != Record.size())
3649  return error("Invalid record");
3650 
3651  Type *ResTy = getTypeByID(Record[OpNum]);
3652  int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3653  if (Opc == -1 || !ResTy)
3654  return error("Invalid record");
3655  Instruction *Temp = nullptr;
3656  if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3657  if (Temp) {
3658  InstructionList.push_back(Temp);
3659  CurBB->getInstList().push_back(Temp);
3660  }
3661  } else {
3662  auto CastOp = (Instruction::CastOps)Opc;
3663  if (!CastInst::castIsValid(CastOp, Op, ResTy))
3664  return error("Invalid cast");
3665  I = CastInst::Create(CastOp, Op, ResTy);
3666  }
3667  InstructionList.push_back(I);
3668  break;
3669  }
3672  case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3673  unsigned OpNum = 0;
3674 
3675  Type *Ty;
3676  bool InBounds;
3677 
3678  if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3679  InBounds = Record[OpNum++];
3680  Ty = getTypeByID(Record[OpNum++]);
3681  } else {
3682  InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3683  Ty = nullptr;
3684  }
3685 
3686  Value *BasePtr;
3687  if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3688  return error("Invalid record");
3689 
3690  if (!Ty)
3691  Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3692  ->getElementType();
3693  else if (Ty !=
3694  cast<PointerType>(BasePtr->getType()->getScalarType())
3695  ->getElementType())
3696  return error(
3697  "Explicit gep type does not match pointee type of pointer operand");
3698 
3699  SmallVector<Value*, 16> GEPIdx;
3700  while (OpNum != Record.size()) {
3701  Value *Op;
3702  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3703  return error("Invalid record");
3704  GEPIdx.push_back(Op);
3705  }
3706 
3707  I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3708 
3709  InstructionList.push_back(I);
3710  if (InBounds)
3711  cast<GetElementPtrInst>(I)->setIsInBounds(true);
3712  break;
3713  }
3714 
3716  // EXTRACTVAL: [opty, opval, n x indices]
3717  unsigned OpNum = 0;
3718  Value *Agg;
3719  if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3720  return error("Invalid record");
3721 
3722  unsigned RecSize = Record.size();
3723  if (OpNum == RecSize)
3724  return error("EXTRACTVAL: Invalid instruction with 0 indices");
3725 
3726  SmallVector<unsigned, 4> EXTRACTVALIdx;
3727  Type *CurTy = Agg->getType();
3728  for (; OpNum != RecSize; ++OpNum) {
3729  bool IsArray = CurTy->isArrayTy();
3730  bool IsStruct = CurTy->isStructTy();
3731  uint64_t Index = Record[OpNum];
3732 
3733  if (!IsStruct && !IsArray)
3734  return error("EXTRACTVAL: Invalid type");
3735  if ((unsigned)Index != Index)
3736  return error("Invalid value");
3737  if (IsStruct && Index >= CurTy->getStructNumElements())
3738  return error("EXTRACTVAL: Invalid struct index");
3739  if (IsArray && Index >= CurTy->getArrayNumElements())
3740  return error("EXTRACTVAL: Invalid array index");
3741  EXTRACTVALIdx.push_back((unsigned)Index);
3742 
3743  if (IsStruct)
3744  CurTy = CurTy->getStructElementType(Index);
3745  else
3746  CurTy = CurTy->getArrayElementType();
3747  }
3748 
3749  I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3750  InstructionList.push_back(I);
3751  break;
3752  }
3753 
3755  // INSERTVAL: [opty, opval, opty, opval, n x indices]
3756  unsigned OpNum = 0;
3757  Value *Agg;
3758  if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3759  return error("Invalid record");
3760  Value *Val;
3761  if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3762  return error("Invalid record");
3763 
3764  unsigned RecSize = Record.size();
3765  if (OpNum == RecSize)
3766  return error("INSERTVAL: Invalid instruction with 0 indices");
3767 
3768  SmallVector<unsigned, 4> INSERTVALIdx;
3769  Type *CurTy = Agg->getType();
3770  for (; OpNum != RecSize; ++OpNum) {
3771  bool IsArray = CurTy->isArrayTy();
3772  bool IsStruct = CurTy->isStructTy();
3773  uint64_t Index = Record[OpNum];
3774 
3775  if (!IsStruct && !IsArray)
3776  return error("INSERTVAL: Invalid type");
3777  if ((unsigned)Index != Index)
3778  return error("Invalid value");
3779  if (IsStruct && Index >= CurTy->getStructNumElements())
3780  return error("INSERTVAL: Invalid struct index");
3781  if (IsArray && Index >= CurTy->getArrayNumElements())
3782  return error("INSERTVAL: Invalid array index");
3783 
3784  INSERTVALIdx.push_back((unsigned)Index);
3785  if (IsStruct)
3786  CurTy = CurTy->getStructElementType(Index);
3787  else
3788  CurTy = CurTy->getArrayElementType();
3789  }
3790 
3791  if (CurTy != Val->getType())
3792  return error("Inserted value type doesn't match aggregate type");
3793 
3794  I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3795  InstructionList.push_back(I);
3796  break;
3797  }
3798 
3799  case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3800  // obsolete form of select
3801  // handles select i1 ... in old bitcode
3802  unsigned OpNum = 0;
3803  Value *TrueVal, *FalseVal, *Cond;
3804  if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3805  popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3806  popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3807  return error("Invalid record");
3808 
3809  I = SelectInst::Create(Cond, TrueVal, FalseVal);
3810  InstructionList.push_back(I);
3811  break;
3812  }
3813 
3814  case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3815  // new form of select
3816  // handles select i1 or select [N x i1]
3817  unsigned OpNum = 0;
3818  Value *TrueVal, *FalseVal, *Cond;
3819  if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3820  popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3821  getValueTypePair(Record, OpNum, NextValueNo, Cond))
3822  return error("Invalid record");
3823 
3824  // select condition can be either i1 or [N x i1]
3825  if (VectorType* vector_type =
3826  dyn_cast<VectorType>(Cond->getType())) {
3827  // expect <n x i1>
3828  if (vector_type->getElementType() != Type::getInt1Ty(Context))
3829  return error("Invalid type for value");
3830  } else {
3831  // expect i1
3832  if (Cond->getType() != Type::getInt1Ty(Context))
3833  return error("Invalid type for value");
3834  }
3835 
3836  I = SelectInst::Create(Cond, TrueVal, FalseVal);
3837  InstructionList.push_back(I);
3838  if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
3839  FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3840  if (FMF.any())
3841  I->setFastMathFlags(FMF);
3842  }
3843  break;
3844  }
3845 
3846  case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3847  unsigned OpNum = 0;
3848  Value *Vec, *Idx;
3849  if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3850  getValueTypePair(Record, OpNum, NextValueNo, Idx))
3851  return error("Invalid record");
3852  if (!Vec->getType()->isVectorTy())
3853  return error("Invalid type for value");
3854  I = ExtractElementInst::Create(Vec, Idx);
3855  InstructionList.push_back(I);
3856  break;
3857  }
3858 
3859  case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3860  unsigned OpNum = 0;
3861  Value *Vec, *Elt, *Idx;
3862  if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3863  return error("Invalid record");
3864  if (!Vec->getType()->isVectorTy())
3865  return error("Invalid type for value");
3866  if (popValue(Record, OpNum, NextValueNo,
3867  cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3868  getValueTypePair(Record, OpNum, NextValueNo, Idx))
3869  return error("Invalid record");
3870  I = InsertElementInst::Create(Vec, Elt, Idx);
3871  InstructionList.push_back(I);
3872  break;
3873  }
3874 
3875  case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3876  unsigned OpNum = 0;
3877  Value *Vec1, *Vec2, *Mask;
3878  if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3879  popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3880  return error("Invalid record");
3881 
3882  if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3883  return error("Invalid record");
3884  if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3885  return error("Invalid type for value");
3886  I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3887  InstructionList.push_back(I);
3888  break;
3889  }
3890 
3891  case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
3892  // Old form of ICmp/FCmp returning bool
3893  // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3894  // both legal on vectors but had different behaviour.
3895  case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3896  // FCmp/ICmp returning bool or vector of bool
3897 
3898  unsigned OpNum = 0;
3899  Value *LHS, *RHS;
3900  if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3901  popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3902  return error("Invalid record");
3903 
3904  unsigned PredVal = Record[OpNum];
3905  bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3906  FastMathFlags FMF;
3907  if (IsFP && Record.size() > OpNum+1)
3908  FMF = getDecodedFastMathFlags(Record[++OpNum]);
3909 
3910  if (OpNum+1 != Record.size())
3911  return error("Invalid record");
3912 
3913  if (LHS->getType()->isFPOrFPVectorTy())
3914  I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3915  else
3916  I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3917 
3918  if (FMF.any())
3919  I->setFastMathFlags(FMF);
3920  InstructionList.push_back(I);
3921  break;
3922  }
3923 
3924  case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3925  {
3926  unsigned Size = Record.size();
3927  if (Size == 0) {
3928  I = ReturnInst::Create(Context);
3929  InstructionList.push_back(I);
3930  break;
3931  }
3932 
3933  unsigned OpNum = 0;
3934  Value *Op = nullptr;
3935  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3936  return error("Invalid record");
3937  if (OpNum != Record.size())
3938  return error("Invalid record");
3939 
3940  I = ReturnInst::Create(Context, Op);
3941  InstructionList.push_back(I);
3942  break;
3943  }
3944  case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3945  if (Record.size() != 1 && Record.size() != 3)
3946  return error("Invalid record");
3947  BasicBlock *TrueDest = getBasicBlock(Record[0]);
3948  if (!TrueDest)
3949  return error("Invalid record");
3950 
3951  if (Record.size() == 1) {
3952  I = BranchInst::Create(TrueDest);
3953  InstructionList.push_back(I);
3954  }
3955  else {
3956  BasicBlock *FalseDest = getBasicBlock(Record[1]);
3957  Value *Cond = getValue(Record, 2, NextValueNo,
3958  Type::getInt1Ty(Context));
3959  if (!FalseDest || !Cond)
3960  return error("Invalid record");
3961  I = BranchInst::Create(TrueDest, FalseDest, Cond);
3962  InstructionList.push_back(I);
3963  }
3964  break;
3965  }
3966  case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3967  if (Record.size() != 1 && Record.size() != 2)
3968  return error("Invalid record");
3969  unsigned Idx = 0;
3970  Value *CleanupPad =
3971  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3972  if (!CleanupPad)
3973  return error("Invalid record");
3974  BasicBlock *UnwindDest = nullptr;
3975  if (Record.size() == 2) {
3976  UnwindDest = getBasicBlock(Record[Idx++]);
3977  if (!UnwindDest)
3978  return error("Invalid record");
3979  }
3980 
3981  I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3982  InstructionList.push_back(I);
3983  break;
3984  }
3985  case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3986  if (Record.size() != 2)
3987  return error("Invalid record");
3988  unsigned Idx = 0;
3989  Value *CatchPad =
3990  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3991  if (!CatchPad)
3992  return error("Invalid record");
3993  BasicBlock *BB = getBasicBlock(Record[Idx++]);
3994  if (!BB)
3995  return error("Invalid record");
3996 
3997  I = CatchReturnInst::Create(CatchPad, BB);
3998  InstructionList.push_back(I);
3999  break;
4000  }
4001  case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4002  // We must have, at minimum, the outer scope and the number of arguments.
4003  if (Record.size() < 2)
4004  return error("Invalid record");
4005 
4006  unsigned Idx = 0;
4007 
4008  Value *ParentPad =
4009  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4010 
4011  unsigned NumHandlers = Record[Idx++];
4012 
4014  for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4015  BasicBlock *BB = getBasicBlock(Record[Idx++]);
4016  if (!BB)
4017  return error("Invalid record");
4018  Handlers.push_back(BB);
4019  }
4020 
4021  BasicBlock *UnwindDest = nullptr;
4022  if (Idx + 1 == Record.size()) {
4023  UnwindDest = getBasicBlock(Record[Idx++]);
4024  if (!UnwindDest)
4025  return error("Invalid record");
4026  }
4027 
4028  if (Record.size() != Idx)
4029  return error("Invalid record");
4030 
4031  auto *CatchSwitch =
4032  CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4033  for (BasicBlock *Handler : Handlers)
4034  CatchSwitch->addHandler(Handler);
4035  I = CatchSwitch;
4036  InstructionList.push_back(I);
4037  break;
4038  }
4040  case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4041  // We must have, at minimum, the outer scope and the number of arguments.
4042  if (Record.size() < 2)
4043  return error("Invalid record");
4044 
4045  unsigned Idx = 0;
4046 
4047  Value *ParentPad =
4048  getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4049 
4050  unsigned NumArgOperands = Record[Idx++];
4051 
4053  for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4054  Value *Val;
4055  if (getValueTypePair(Record, Idx, NextValueNo, Val))
4056  return error("Invalid record");
4057  Args.push_back(Val);
4058  }
4059 
4060  if (Record.size() != Idx)
4061  return error("Invalid record");
4062 
4063  if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4064  I = CleanupPadInst::Create(ParentPad, Args);
4065  else
4066  I = CatchPadInst::Create(ParentPad, Args);
4067  InstructionList.push_back(I);
4068  break;
4069  }
4070  case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4071  // Check magic
4072  if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4073  // "New" SwitchInst format with case ranges. The changes to write this
4074  // format were reverted but we still recognize bitcode that uses it.
4075  // Hopefully someday we will have support for case ranges and can use
4076  // this format again.
4077 
4078  Type *OpTy = getTypeByID(Record[1]);
4079  unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4080 
4081  Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4082  BasicBlock *Default = getBasicBlock(Record[3]);
4083  if (!OpTy || !Cond || !Default)
4084  return error("Invalid record");
4085 
4086  unsigned NumCases = Record[4];
4087 
4088  SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4089  InstructionList.push_back(SI);
4090 
4091  unsigned CurIdx = 5;
4092  for (unsigned i = 0; i != NumCases; ++i) {
4094  unsigned NumItems = Record[CurIdx++];
4095  for (unsigned ci = 0; ci != NumItems; ++ci) {
4096  bool isSingleNumber = Record[CurIdx++];
4097 
4098  APInt Low;
4099  unsigned ActiveWords = 1;
4100  if (ValueBitWidth > 64)
4101  ActiveWords = Record[CurIdx++];
4102  Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4103  ValueBitWidth);
4104  CurIdx += ActiveWords;
4105 
4106  if (!isSingleNumber) {
4107  ActiveWords = 1;
4108  if (ValueBitWidth > 64)
4109  ActiveWords = Record[CurIdx++];
4111  makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4112  CurIdx += ActiveWords;
4113 
4114  // FIXME: It is not clear whether values in the range should be
4115  // compared as signed or unsigned values. The partially
4116  // implemented changes that used this format in the past used
4117  // unsigned comparisons.
4118  for ( ; Low.ule(High); ++Low)
4119  CaseVals.push_back(ConstantInt::get(Context, Low));
4120  } else
4121  CaseVals.push_back(ConstantInt::get(Context, Low));
4122  }
4123  BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4124  for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4125  cve = CaseVals.end(); cvi != cve; ++cvi)
4126  SI->addCase(*cvi, DestBB);
4127  }
4128  I = SI;
4129  break;
4130  }
4131 
4132  // Old SwitchInst format without case ranges.
4133 
4134  if (Record.size() < 3 || (Record.size() & 1) == 0)
4135  return error("Invalid record");
4136  Type *OpTy = getTypeByID(Record[0]);
4137  Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4138  BasicBlock *Default = getBasicBlock(Record[2]);
4139  if (!OpTy || !Cond || !Default)
4140  return error("Invalid record");
4141  unsigned NumCases = (Record.size()-3)/2;
4142  SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4143  InstructionList.push_back(SI);
4144  for (unsigned i = 0, e = NumCases; i != e; ++i) {
4145  ConstantInt *CaseVal =
4146  dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4147  BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4148  if (!CaseVal || !DestBB) {
4149  delete SI;
4150  return error("Invalid record");
4151  }
4152  SI->addCase(CaseVal, DestBB);
4153  }
4154  I = SI;
4155  break;
4156  }
4157  case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4158  if (Record.size() < 2)
4159  return error("Invalid record");
4160  Type *OpTy = getTypeByID(Record[0]);
4161  Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4162  if (!OpTy || !Address)
4163  return error("Invalid record");
4164  unsigned NumDests = Record.size()-2;
4165  IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4166  InstructionList.push_back(IBI);
4167  for (unsigned i = 0, e = NumDests; i != e; ++i) {
4168  if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4169  IBI->addDestination(DestBB);
4170  } else {
4171  delete IBI;
4172  return error("Invalid record");
4173  }
4174  }
4175  I = IBI;
4176  break;
4177  }
4178 
4180  // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4181  if (Record.size() < 4)
4182  return error("Invalid record");
4183  unsigned OpNum = 0;
4184  AttributeList PAL = getAttributes(Record[OpNum++]);
4185  unsigned CCInfo = Record[OpNum++];
4186  BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4187  BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4188 
4189  FunctionType *FTy = nullptr;
4190  if (CCInfo >> 13 & 1 &&
4191  !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4192  return error("Explicit invoke type is not a function type");
4193 
4194  Value *Callee;
4195  if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4196  return error("Invalid record");
4197 
4198  PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4199  if (!CalleeTy)
4200  return error("Callee is not a pointer");
4201  if (!FTy) {
4202  FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4203  if (!FTy)
4204  return error("Callee is not of pointer to function type");
4205  } else if (CalleeTy->getElementType() != FTy)
4206  return error("Explicit invoke type does not match pointee type of "
4207  "callee operand");
4208  if (Record.size() < FTy->getNumParams() + OpNum)
4209  return error("Insufficient operands to call");
4210 
4212  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4213  Ops.push_back(getValue(Record, OpNum, NextValueNo,
4214  FTy->getParamType(i)));
4215  if (!Ops.back())
4216  return error("Invalid record");
4217  }
4218 
4219  if (!FTy->isVarArg()) {
4220  if (Record.size() != OpNum)
4221  return error("Invalid record");
4222  } else {
4223  // Read type/value pairs for varargs params.
4224  while (OpNum != Record.size()) {
4225  Value *Op;
4226  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4227  return error("Invalid record");
4228  Ops.push_back(Op);
4229  }
4230  }
4231 
4232  I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4233  OperandBundles);
4234  OperandBundles.clear();
4235  InstructionList.push_back(I);
4236  cast<InvokeInst>(I)->setCallingConv(
4237  static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4238  cast<InvokeInst>(I)->setAttributes(PAL);
4239  break;
4240  }
4241  case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4242  unsigned Idx = 0;
4243  Value *Val = nullptr;
4244  if (getValueTypePair(Record, Idx, NextValueNo, Val))
4245  return error("Invalid record");
4246  I = ResumeInst::Create(Val);
4247  InstructionList.push_back(I);
4248  break;
4249  }
4251  // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4252  unsigned OpNum = 0;
4253  AttributeList PAL = getAttributes(Record[OpNum++]);
4254  unsigned CCInfo = Record[OpNum++];
4255 
4256  BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4257  unsigned NumIndirectDests = Record[OpNum++];
4258  SmallVector<BasicBlock *, 16> IndirectDests;
4259  for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4260  IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4261 
4262  FunctionType *FTy = nullptr;
4263  if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4264  !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4265  return error("Explicit call type is not a function type");
4266 
4267  Value *Callee;
4268  if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4269  return error("Invalid record");
4270 
4271  PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4272  if (!OpTy)
4273  return error("Callee is not a pointer type");
4274  if (!FTy) {
4275  FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4276  if (!FTy)
4277  return error("Callee is not of pointer to function type");
4278  } else if (OpTy->getElementType() != FTy)
4279  return error("Explicit call type does not match pointee type of "
4280  "callee operand");
4281  if (Record.size() < FTy->getNumParams() + OpNum)
4282  return error("Insufficient operands to call");
4283 
4285  // Read the fixed params.
4286  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4287  if (FTy->getParamType(i)->isLabelTy())
4288  Args.push_back(getBasicBlock(Record[OpNum]));
4289  else
4290  Args.push_back(getValue(Record, OpNum, NextValueNo,
4291  FTy->getParamType(i)));
4292  if (!Args.back())
4293  return error("Invalid record");
4294  }
4295 
4296  // Read type/value pairs for varargs params.
4297  if (!FTy->isVarArg()) {
4298  if (OpNum != Record.size())
4299  return error("Invalid record");
4300  } else {
4301  while (OpNum != Record.size()) {
4302  Value *Op;
4303  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4304  return error("Invalid record");
4305  Args.push_back(Op);
4306  }
4307  }
4308 
4309  I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4310  OperandBundles);
4311  OperandBundles.clear();
4312  InstructionList.push_back(I);
4313  cast<CallBrInst>(I)->setCallingConv(
4314  static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4315  cast<CallBrInst>(I)->setAttributes(PAL);
4316  break;
4317  }
4318  case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4319  I = new UnreachableInst(Context);
4320  InstructionList.push_back(I);
4321  break;
4322  case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4323  if (Record.size() < 1 || ((Record.size()-1)&1))
4324  return error("Invalid record");
4325  Type *Ty = getTypeByID(Record[0]);
4326  if (!Ty)
4327  return error("Invalid record");
4328 
4329  PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4330  InstructionList.push_back(PN);
4331 
4332  for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4333  Value *V;
4334  // With the new function encoding, it is possible that operands have
4335  // negative IDs (for forward references). Use a signed VBR
4336  // representation to keep the encoding small.
4337  if (UseRelativeIDs)
4338  V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4339  else
4340  V = getValue(Record, 1+i, NextValueNo, Ty);
4341  BasicBlock *BB = getBasicBlock(Record[2+i]);
4342  if (!V || !BB)
4343  return error("Invalid record");
4344  PN->addIncoming(V, BB);
4345  }
4346  I = PN;
4347  break;
4348  }
4349 
4352  // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4353  unsigned Idx = 0;
4354  if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4355  if (Record.size() < 3)
4356  return error("Invalid record");
4357  } else {
4359  if (Record.size() < 4)
4360  return error("Invalid record");
4361  }
4362  Type *Ty = getTypeByID(Record[Idx++]);
4363  if (!Ty)
4364  return error("Invalid record");
4365  if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4366  Value *PersFn = nullptr;
4367  if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4368  return error("Invalid record");
4369 
4370  if (!F->hasPersonalityFn())
4371  F->setPersonalityFn(cast<Constant>(PersFn));
4372  else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4373  return error("Personality function mismatch");
4374  }
4375 
4376  bool IsCleanup = !!Record[Idx++];
4377  unsigned NumClauses = Record[Idx++];
4378  LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4379  LP->setCleanup(IsCleanup);
4380  for (unsigned J = 0; J != NumClauses; ++J) {
4382  LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4383  Value *Val;
4384 
4385  if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4386  delete LP;
4387  return error("Invalid record");
4388  }
4389 
4390  assert((CT != LandingPadInst::Catch ||
4391  !isa<ArrayType>(Val->getType())) &&
4392  "Catch clause has a invalid type!");
4393  assert((CT != LandingPadInst::Filter ||
4394  isa<ArrayType>(Val->getType())) &&
4395  "Filter clause has invalid type!");
4396  LP->addClause(cast<Constant>(Val));
4397  }
4398 
4399  I = LP;
4400  InstructionList.push_back(I);
4401  break;
4402  }
4403 
4404  case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4405  if (Record.size() != 4)
4406  return error("Invalid record");
4407  uint64_t AlignRecord = Record[3];
4408  const uint64_t InAllocaMask = uint64_t(1) << 5;
4409  const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4410  const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4411  const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4412  SwiftErrorMask;
4413  bool InAlloca = AlignRecord & InAllocaMask;
4414  bool SwiftError = AlignRecord & SwiftErrorMask;
4415  Type *Ty = getTypeByID(Record[0]);
4416  if ((AlignRecord & ExplicitTypeMask) == 0) {
4417  auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4418  if (!PTy)
4419  return error("Old-style alloca with a non-pointer type");
4420  Ty = PTy->getElementType();
4421  }
4422  Type *OpTy = getTypeByID(Record[1]);
4423  Value *Size = getFnValueByID(Record[2], OpTy);
4424  unsigned Align;
4425  if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4426  return Err;
4427  }
4428  if (!Ty || !Size)
4429  return error("Invalid record");
4430 
4431  // FIXME: Make this an optional field.
4432  const DataLayout &DL = TheModule->getDataLayout();
4433  unsigned AS = DL.getAllocaAddrSpace();
4434 
4435  AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4436  AI->setUsedWithInAlloca(InAlloca);
4437  AI->setSwiftError(SwiftError);
4438  I = AI;
4439  InstructionList.push_back(I);
4440  break;
4441  }
4442  case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4443  unsigned OpNum = 0;
4444  Value *Op;
4445  if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4446  (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4447  return error("Invalid record");
4448 
4449  Type *Ty = nullptr;
4450  if (OpNum + 3 == Record.size())
4451  Ty = getTypeByID(Record[OpNum++]);
4452  if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4453  return Err;
4454  if (!Ty)
4455  Ty = cast<PointerType>(Op->getType())->getElementType();
4456 
4457  unsigned Align;
4458  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4459  return Err;
4460  I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4461 
4462  InstructionList.push_back(I);
4463  break;
4464  }
4466  // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4467  unsigned OpNum = 0;
4468  Value *Op;
4469  if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4470  (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4471  return error("Invalid record");
4472 
4473  Type *Ty = nullptr;
4474  if (OpNum + 5 == Record.size())
4475  Ty = getTypeByID(Record[OpNum++]);
4476  if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4477  return Err;
4478  if (!Ty)
4479  Ty = cast<PointerType>(Op->getType())->getElementType();
4480 
4481  AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4482  if (Ordering == AtomicOrdering::NotAtomic ||
4483  Ordering == AtomicOrdering::Release ||
4484  Ordering == AtomicOrdering::AcquireRelease)
4485  return error("Invalid record");
4486  if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4487  return error("Invalid record");
4488  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4489 
4490  unsigned Align;
4491  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4492  return Err;
4493  I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4494 
4495  InstructionList.push_back(I);
4496  break;
4497  }
4499  case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4500  unsigned OpNum = 0;
4501  Value *Val, *Ptr;
4502  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4503  (BitCode == bitc::FUNC_CODE_INST_STORE
4504  ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4505  : popValue(Record, OpNum, NextValueNo,
4506  cast<PointerType>(Ptr->getType())->getElementType(),
4507  Val)) ||
4508  OpNum + 2 != Record.size())
4509  return error("Invalid record");
4510 
4511  if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4512  return Err;
4513  unsigned Align;
4514  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4515  return Err;
4516  I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4517  InstructionList.push_back(I);
4518  break;
4519  }
4522  // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4523  unsigned OpNum = 0;
4524  Value *Val, *Ptr;
4525  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4526  !isa<PointerType>(Ptr->getType()) ||
4528  ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4529  : popValue(Record, OpNum, NextValueNo,
4530  cast<PointerType>(Ptr->getType())->getElementType(),
4531  Val)) ||
4532  OpNum + 4 != Record.size())
4533  return error("Invalid record");
4534 
4535  if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4536  return Err;
4537  AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4538  if (Ordering == AtomicOrdering::NotAtomic ||
4539  Ordering == AtomicOrdering::Acquire ||
4540  Ordering == AtomicOrdering::AcquireRelease)
4541  return error("Invalid record");
4542  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4543  if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4544  return error("Invalid record");
4545 
4546  unsigned Align;
4547  if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4548  return Err;
4549  I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4550  InstructionList.push_back(I);
4551  break;
4552  }
4555  // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4556  // failureordering?, isweak?]
4557  unsigned OpNum = 0;
4558  Value *Ptr, *Cmp, *New;
4559  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4560  (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4561  ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4562  : popValue(Record, OpNum, NextValueNo,
4563  cast<PointerType>(Ptr->getType())->getElementType(),
4564  Cmp)) ||
4565  popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4566  Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4567  return error("Invalid record");
4568  AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4569  if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4570  SuccessOrdering == AtomicOrdering::Unordered)
4571  return error("Invalid record");
4572  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4573 
4574  if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4575  return Err;
4576  AtomicOrdering FailureOrdering;
4577  if (Record.size() < 7)
4578  FailureOrdering =
4580  else
4581  FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4582 
4583  I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4584  SSID);
4585  cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4586 
4587  if (Record.size() < 8) {
4588  // Before weak cmpxchgs existed, the instruction simply returned the
4589  // value loaded from memory, so bitcode files from that era will be
4590  // expecting the first component of a modern cmpxchg.
4591  CurBB->getInstList().push_back(I);
4592  I = ExtractValueInst::Create(I, 0);
4593  } else {
4594  cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4595  }
4596 
4597  InstructionList.push_back(I);
4598  break;
4599  }
4601  // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4602  unsigned OpNum = 0;
4603  Value *Ptr, *Val;
4604  if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4605  !isa<PointerType>(Ptr->getType()) ||
4606  popValue(Record, OpNum, NextValueNo,
4607  cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4608  OpNum+4 != Record.size())
4609  return error("Invalid record");
4611  if (Operation < AtomicRMWInst::FIRST_BINOP ||
4612  Operation > AtomicRMWInst::LAST_BINOP)
4613  return error("Invalid record");
4614  AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4615  if (Ordering == AtomicOrdering::NotAtomic ||
4616  Ordering == AtomicOrdering::Unordered)
4617  return error("Invalid record");
4618  SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4619  I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4620  cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4621  InstructionList.push_back(I);
4622  break;
4623  }
4624  case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4625  if (2 != Record.size())
4626  return error("Invalid record");
4627  AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4628  if (Ordering == AtomicOrdering::NotAtomic ||
4629  Ordering == AtomicOrdering::Unordered ||
4630  Ordering == AtomicOrdering::Monotonic)
4631  return error("Invalid record");
4632  SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4633  I = new FenceInst(Context, Ordering, SSID);
4634  InstructionList.push_back(I);
4635  break;
4636  }
4638  // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4639  if (Record.size() < 3)
4640  return error("Invalid record");
4641 
4642  unsigned OpNum = 0;
4643  AttributeList PAL = getAttributes(Record[OpNum++]);
4644  unsigned CCInfo = Record[OpNum++];
4645 
4646  FastMathFlags FMF;
4647  if ((CCInfo >> bitc::CALL_FMF) & 1) {
4648  FMF = getDecodedFastMathFlags(Record[OpNum++]);
4649  if (!FMF.any())
4650  return error("Fast math flags indicator set for call with no FMF");
4651  }
4652 
4653  FunctionType *FTy = nullptr;
4654  if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4655  !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4656  return error("Explicit call type is not a function type");
4657 
4658  Value *Callee;
4659  if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4660  return error("Invalid record");
4661 
4662  PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4663  if (!OpTy)
4664  return error("Callee is not a pointer type");
4665  if (!FTy) {
4666  FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4667  if (!FTy)
4668  return error("Callee is not of pointer to function type");
4669  } else if (OpTy->getElementType() != FTy)
4670  return error("Explicit call type does not match pointee type of "
4671  "callee operand");
4672  if (Record.size() < FTy->getNumParams() + OpNum)
4673  return error("Insufficient operands to call");
4674 
4676  // Read the fixed params.
4677  for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4678  if (FTy->getParamType(i)->isLabelTy())
4679  Args.push_back(getBasicBlock(Record[OpNum]));
4680  else
4681  Args.push_back(getValue(Record, OpNum, NextValueNo,
4682  FTy->getParamType(i)));
4683  if (!Args.back())
4684  return error("Invalid record");
4685  }
4686 
4687  // Read type/value pairs for varargs params.
4688  if (!FTy->isVarArg()) {
4689  if (OpNum != Record.size())
4690  return error("Invalid record");
4691  } else {
4692  while (OpNum != Record.size()) {
4693  Value *Op;
4694  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4695  return error("Invalid record");
4696  Args.push_back(Op);
4697  }
4698  }
4699 
4700  I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4701  OperandBundles.clear();
4702  InstructionList.push_back(I);
4703  cast<CallInst>(I)->setCallingConv(
4704  static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4706  if (CCInfo & 1 << bitc::CALL_TAIL)
4707  TCK = CallInst::TCK_Tail;
4708  if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4709  TCK = CallInst::TCK_MustTail;
4710  if (CCInfo & (1 << bitc::CALL_NOTAIL))
4711  TCK = CallInst::TCK_NoTail;
4712  cast<CallInst>(I)->setTailCallKind(TCK);
4713  cast<CallInst>(I)->setAttributes(PAL);
4714  if (FMF.any()) {
4715  if (!isa<FPMathOperator>(I))
4716  return error("Fast-math-flags specified for call without "
4717  "floating-point scalar or vector return type");
4718  I->setFastMathFlags(FMF);
4719  }
4720  break;
4721  }
4722  case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4723  if (Record.size() < 3)
4724  return error("Invalid record");
4725  Type *OpTy = getTypeByID(Record[0]);
4726  Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4727  Type *ResTy = getTypeByID(Record[2]);
4728  if (!OpTy || !Op || !ResTy)
4729  return error("Invalid record");
4730  I = new VAArgInst(Op, ResTy);
4731  InstructionList.push_back(I);
4732  break;
4733  }
4734 
4736  // A call or an invoke can be optionally prefixed with some variable
4737  // number of operand bundle blocks. These blocks are read into
4738  // OperandBundles and consumed at the next call or invoke instruction.
4739 
4740  if (Record.size() < 1 || Record[0] >= BundleTags.size())
4741  return error("Invalid record");
4742 
4743  std::vector<Value *> Inputs;
4744 
4745  unsigned OpNum = 1;
4746  while (OpNum != Record.size()) {
4747  Value *Op;
4748  if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4749  return error("Invalid record");
4750  Inputs.push_back(Op);
4751  }
4752 
4753  OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4754  continue;
4755  }
4756  }
4757 
4758  // Add instruction to end of current BB. If there is no current BB, reject
4759  // this file.
4760  if (!CurBB) {
4761  I->deleteValue();
4762  return error("Invalid instruction with no BB");
4763  }
4764  if (!OperandBundles.empty()) {
4765  I->deleteValue();
4766  return error("Operand bundles found with no consumer");
4767  }
4768  CurBB->getInstList().push_back(I);
4769 
4770  // If this was a terminator instruction, move to the next block.
4771  if (I->isTerminator()) {
4772  ++CurBBNo;
4773  CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4774  }
4775 
4776  // Non-void values get registered in the value table for future use.
4777  if (I && !I->getType()->isVoidTy())
4778  ValueList.assignValue(I, NextValueNo++);
4779  }
4780 
4781 OutOfRecordLoop:
4782 
4783  if (!OperandBundles.empty())
4784  return error("Operand bundles found with no consumer");
4785 
4786  // Check the function list for unresolved values.
4787  if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4788  if (!A->getParent()) {
4789  // We found at least one unresolved value. Nuke them all to avoid leaks.
4790  for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4791  if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4792  A->replaceAllUsesWith(UndefValue::get(A->getType()));
4793  delete A;
4794  }
4795  }
4796  return error("Never resolved value found in function");
4797  }
4798  }
4799 
4800  // Unexpected unresolved metadata about to be dropped.
4801  if (MDLoader->hasFwdRefs())
4802  return error("Invalid function metadata: outgoing forward refs");
4803 
4804  // Trim the value list down to the size it was before we parsed this function.
4805  ValueList.shrinkTo(ModuleValueListSize);
4806  MDLoader->shrinkTo(ModuleMDLoaderSize);
4807  std::vector<BasicBlock*>().swap(FunctionBBs);
4808  return Error::success();
4809 }
4810 
4811 /// Find the function body in the bitcode stream
4812 Error BitcodeReader::findFunctionInStream(
4813  Function *F,
4814  DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4815  while (DeferredFunctionInfoIterator->second == 0) {
4816  // This is the fallback handling for the old format bitcode that
4817  // didn't contain the function index in the VST, or when we have
4818  // an anonymous function which would not have a VST entry.
4819  // Assert that we have one of those two cases.
4820  assert(VSTOffset == 0 || !F->hasName());
4821  // Parse the next body in the stream and set its position in the
4822  // DeferredFunctionInfo map.
4823  if (Error Err = rememberAndSkipFunctionBodies())
4824  return Err;
4825  }
4826  return Error::success();
4827 }
4828 
4829 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4830  if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4831  return SyncScope::ID(Val);
4832  if (Val >= SSIDs.size())
4833  return SyncScope::System; // Map unknown synchronization scopes to system.
4834  return SSIDs[Val];
4835 }
4836 
4837 //===----------------------------------------------------------------------===//
4838 // GVMaterializer implementation
4839 //===----------------------------------------------------------------------===//
4840 
4841 Error BitcodeReader::materialize(GlobalValue *GV) {
4842  Function *F = dyn_cast<Function>(GV);
4843  // If it's not a function or is already material, ignore the request.
4844  if (!F || !F->isMaterializable())
4845  return Error::success();
4846 
4847  DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4848  assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4849  // If its position is recorded as 0, its body is somewhere in the stream
4850  // but we haven't seen it yet.
4851  if (DFII->second == 0)
4852  if (Error Err = findFunctionInStream(F, DFII))
4853  return Err;
4854 
4855  // Materialize metadata before parsing any function bodies.
4856  if (Error Err = materializeMetadata())
4857  return Err;
4858 
4859  // Move the bit stream to the saved position of the deferred function body.
4860  Stream.JumpToBit(DFII->second);
4861 
4862  if (Error Err = parseFunctionBody(F))
4863  return Err;
4864  F->setIsMaterializable(false);
4865 
4866  if (StripDebugInfo)
4867  stripDebugInfo(*F);
4868 
4869  // Upgrade any old intrinsic calls in the function.
4870  for (auto &I : UpgradedIntrinsics) {
4871  for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4872  UI != UE;) {
4873  User *U = *UI;
4874  ++UI;
4875  if (CallInst *CI = dyn_cast<CallInst>(U))
4876  UpgradeIntrinsicCall(CI, I.second);
4877  }
4878  }
4879 
4880  // Update calls to the remangled intrinsics
4881  for (auto &I : RemangledIntrinsics)
4882  for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4883  UI != UE;)
4884  // Don't expect any other users than call sites
4885  CallSite(*UI++).setCalledFunction(I.second);
4886 
4887  // Finish fn->subprogram upgrade for materialized functions.
4888  if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4889  F->setSubprogram(SP);
4890 
4891  // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4892  if (!MDLoader->isStrippingTBAA()) {
4893  for (auto &I : instructions(F)) {
4894  MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4895  if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4896  continue;
4897  MDLoader->setStripTBAA(true);
4898  stripTBAA(F->getParent());
4899  }
4900  }
4901 
4902  // Bring in any functions that this function forward-referenced via
4903  // blockaddresses.
4904  return materializeForwardReferencedFunctions();
4905 }
4906 
4907 Error BitcodeReader::materializeModule() {
4908  if (Error Err = materializeMetadata())
4909  return Err;
4910 
4911  // Promise to materialize all forward references.
4912  WillMaterializeAllForwardRefs = true;
4913 
4914  // Iterate over the module, deserializing any functions that are still on
4915  // disk.
4916  for (Function &F : *TheModule) {
4917  if (Error Err = materialize(&F))
4918  return Err;
4919  }
4920  // At this point, if there are any function bodies, parse the rest of
4921  // the bits in the module past the last function block we have recorded
4922  // through either lazy scanning or the VST.
4923  if (LastFunctionBlockBit || NextUnreadBit)
4924  if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4925  ? LastFunctionBlockBit
4926  : NextUnreadBit))
4927  return Err;
4928 
4929  // Check that all block address forward references got resolved (as we
4930  // promised above).
4931  if (!BasicBlockFwdRefs.empty())
4932  return error("Never resolved function from blockaddress");
4933 
4934  // Upgrade any intrinsic calls that slipped through (should not happen!) and
4935  // delete the old functions to clean up. We can't do this unless the entire
4936  // module is materialized because there could always be another function body
4937  // with calls to the old function.
4938  for (auto &I : UpgradedIntrinsics) {
4939  for (auto *U : I.first->users()) {
4940  if (CallInst *CI = dyn_cast<CallInst>(U))
4941  UpgradeIntrinsicCall(CI, I.second);
4942  }
4943  if (!I.first->use_empty())
4944  I.first->replaceAllUsesWith(I.second);
4945  I.first->eraseFromParent();
4946  }
4947  UpgradedIntrinsics.clear();
4948  // Do the same for remangled intrinsics
4949  for (auto &I : RemangledIntrinsics) {
4950  I.first->replaceAllUsesWith(I.second);
4951  I.first->eraseFromParent();
4952  }
4953  RemangledIntrinsics.clear();
4954 
4955  UpgradeDebugInfo(*TheModule);
4956 
4957  UpgradeModuleFlags(*TheModule);
4958 
4959  UpgradeRetainReleaseMarker(*TheModule);
4960 
4961  return Error::success();
4962 }
4963 
4964 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4965  return IdentifiedStructTypes;
4966 }
4967 
4968 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4969  BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4970  StringRef ModulePath, unsigned ModuleId)
4971  : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4972  ModulePath(ModulePath), ModuleId(ModuleId) {}
4973 
4974 void ModuleSummaryIndexBitcodeReader::addThisModule() {
4975  TheIndex.addModule(ModulePath, ModuleId);
4976 }
4977 
4979 ModuleSummaryIndexBitcodeReader::getThisModule() {
4980  return TheIndex.getModule(ModulePath);
4981 }
4982 
4983 std::pair<ValueInfo, GlobalValue::GUID>
4984 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4985  auto VGI = ValueIdToValueInfoMap[ValueId];
4986  assert(VGI.first);
4987  return VGI;
4988 }
4989 
4990 void ModuleSummaryIndexBitcodeReader::setValueGUID(
4991  uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4992  StringRef SourceFileName) {
4993  std::string GlobalId =
4994  GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4995  auto ValueGUID = GlobalValue::getGUID(GlobalId);
4996  auto OriginalNameID = ValueGUID;
4997  if (GlobalValue::isLocalLinkage(Linkage))
4998  OriginalNameID = GlobalValue::getGUID(ValueName);
4999  if (PrintSummaryGUIDs)
5000  dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5001  << ValueName << "\n";
5002 
5003  // UseStrtab is false for legacy summary formats and value names are
5004  // created on stack. In that case we save the name in a string saver in
5005  // the index so that the value name can be recorded.
5006  ValueIdToValueInfoMap[ValueID] = std::make_pair(
5007  TheIndex.getOrInsertValueInfo(
5008  ValueGUID,
5009  UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5010  OriginalNameID);
5011 }
5012 
5013 // Specialized value symbol table parser used when reading module index
5014 // blocks where we don't actually create global values. The parsed information
5015 // is saved in the bitcode reader for use when later parsing summaries.
5016 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5017  uint64_t Offset,
5018  DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5019  // With a strtab the VST is not required to parse the summary.
5020  if (UseStrtab)
5021  return Error::success();
5022 
5023  assert(Offset > 0 && "Expected non-zero VST offset");
5024  uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5025 
5027  return error("Invalid record");
5028 
5030 
5031  // Read all the records for this value table.
5033 
5034  while (true) {
5036 
5037  switch (Entry.Kind) {
5038  case BitstreamEntry::SubBlock: // Handled for us already.
5039  case BitstreamEntry::Error:
5040  return error("Malformed block");
5042  // Done parsing VST, jump back to wherever we came from.
5043  Stream.JumpToBit(CurrentBit);
5044  return Error::success();
5046  // The interesting case.
5047  break;
5048  }
5049 
5050  // Read a record.
5051  Record.clear();
5052  switch (Stream.readRecord(Entry.ID, Record)) {
5053  default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5054  break;
5055  case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5056  if (convertToString(Record, 1, ValueName))
5057  return error("Invalid record");
5058  unsigned ValueID = Record[0];
5059  assert(!SourceFileName.empty());
5060  auto VLI = ValueIdToLinkageMap.find(ValueID);
5061  assert(VLI != ValueIdToLinkageMap.end() &&
5062  "No linkage found for VST entry?");
5063  auto Linkage = VLI->second;
5064  setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5065  ValueName.clear();
5066  break;
5067  }
5068  case bitc::VST_CODE_FNENTRY: {
5069  // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5070  if (convertToString(Record, 2, ValueName))
5071  return error("Invalid record");
5072  unsigned ValueID = Record[0];
5073  assert(!SourceFileName.empty());
5074  auto VLI = ValueIdToLinkageMap.find(ValueID);
5075  assert(VLI != ValueIdToLinkageMap.end() &&
5076  "No linkage found for VST entry?");
5077  auto Linkage = VLI->second;
5078  setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5079  ValueName.clear();
5080  break;
5081  }
5083  // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5084  unsigned ValueID = Record[0];
5085  GlobalValue::GUID RefGUID = Record[1];
5086  // The "original name", which is the second value of the pair will be
5087  // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5088  ValueIdToValueInfoMap[ValueID] =
5089  std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5090  break;
5091  }
5092  }
5093  }
5094 }
5095 
5096 // Parse just the blocks needed for building the index out of the module.
5097 // At the end of this routine the module Index is populated with a map
5098 // from global value id to GlobalValueSummary objects.
5101  return error("Invalid record");
5102 
5105  unsigned ValueId = 0;
5106 
5107  // Read the index for this module.
5108  while (true) {
5109  BitstreamEntry Entry = Stream.advance();
5110 
5111  switch (Entry.Kind) {
5112  case BitstreamEntry::Error:
5113  return error("Malformed block");
5115  return Error::success();
5116 
5118  switch (Entry.ID) {
5119  default: // Skip unknown content.
5120  if (Stream.SkipBlock())
5121  return error("Invalid record");
5122  break;
5124  // Need to parse these to get abbrev ids (e.g. for VST)
5125  if (readBlockInfo())
5126  return error("Malformed block");
5127  break;
5129  // Should have been parsed earlier via VSTOffset, unless there
5130  // is no summary section.
5131  assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5132  !SeenGlobalValSummary) &&
5133  "Expected early VST parse via VSTOffset record");
5134  if (Stream.SkipBlock())
5135  return error("Invalid record");
5136  break;
5139  // Add the module if it is a per-module index (has a source file name).
5140  if (!SourceFileName.empty())
5141  addThisModule();
5142  assert(!SeenValueSymbolTable &&
5143  "Already read VST when parsing summary block?");
5144  // We might not have a VST if there were no values in the
5145  // summary. An empty summary block generated when we are
5146  // performing ThinLTO compiles so we don't later invoke
5147  // the regular LTO process on them.
5148  if (VSTOffset > 0) {
5149  if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5150  return Err;
5151  SeenValueSymbolTable = true;
5152  }
5153  SeenGlobalValSummary = true;
5154  if (Error Err = parseEntireSummary(Entry.ID))
5155  return Err;
5156  break;
5158  if (Error Err = parseModuleStringTable())
5159  return Err;
5160  break;
5161  }
5162  continue;
5163 
5164  case BitstreamEntry::Record: {
5165  Record.clear();
5166  auto BitCode = Stream.readRecord(Entry.ID, Record);
5167  switch (BitCode) {
5168  default:
5169  break; // Default behavior, ignore unknown content.
5171  if (Error Err = parseVersionRecord(Record).takeError())
5172  return Err;
5173  break;
5174  }
5175  /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5178  if (convertToString(Record, 0, ValueName))
5179  return error("Invalid record");
5180  SourceFileName = ValueName.c_str();
5181  break;
5182  }
5183  /// MODULE_CODE_HASH: [5*i32]
5184  case bitc::MODULE_CODE_HASH: {
5185  if (Record.size() != 5)
5186  return error("Invalid hash length " + Twine(Record.size()).str());
5187  auto &Hash = getThisModule()->second.second;
5188  int Pos = 0;
5189  for (auto &Val : Record) {
5190  assert(!(Val >> 32) && "Unexpected high bits set");
5191  Hash[Pos++] = Val;
5192  }
5193  break;
5194  }
5195  /// MODULE_CODE_VSTOFFSET: [offset]
5197  if (Record.size() < 1)
5198  return error("Invalid record");
5199  // Note that we subtract 1 here because the offset is relative to one
5200  // word before the start of the identification or module block, which
5201  // was historically always the start of the regular bitcode header.
5202  VSTOffset = Record[0] - 1;
5203  break;
5204  // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
5205  // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
5206  // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
5207  // v2: [strtab offset, strtab size, v1]
5210  case bitc::MODULE_CODE_ALIAS: {
5211  StringRef Name;
5212  ArrayRef<uint64_t> GVRecord;
5213  std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5214  if (GVRecord.size() <= 3)
5215  return error("Invalid record");
5216  uint64_t RawLinkage = GVRecord[3];
5217  GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5218  if (!UseStrtab) {
5219  ValueIdToLinkageMap[ValueId++] = Linkage;
5220  break;
5221  }
5222 
5223  setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5224  break;
5225  }
5226  }
5227  }
5228  continue;
5229  }
5230  }
5231 }
5232 
5233 std::vector<ValueInfo>
5234 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5235  std::vector<ValueInfo> Ret;
5236  Ret.reserve(Record.size());
5237  for (uint64_t RefValueId : Record)
5238  Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5239  return Ret;
5240 }
5241 
5242 std::vector<FunctionSummary::EdgeTy>
5243 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5244  bool IsOldProfileFormat,
5245  bool HasProfile, bool HasRelBF) {
5246  std::vector<FunctionSummary::EdgeTy> Ret;
5247  Ret.reserve(Record.size());
5248  for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5250  uint64_t RelBF = 0;
5251  ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5252  if (IsOldProfileFormat) {
5253  I += 1; // Skip old callsitecount field
5254  if (HasProfile)
5255  I += 1; // Skip old profilecount field
5256  } else if (HasProfile)
5257  Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5258  else if (HasRelBF)
5259  RelBF = Record[++I];
5260  Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5261  }
5262  return Ret;
5263 }
5264 
5265 static void
5268  uint64_t ArgNum = Record[Slot++];
5270  Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5271  Slot += ArgNum;
5272 
5273  B.TheKind =
5274  static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5275  B.Info = Record[Slot++];
5276  B.Byte = Record[Slot++];
5277  B.Bit = Record[Slot++];
5278 }
5279 
5281  StringRef Strtab, size_t &Slot,
5282  TypeIdSummary &TypeId) {
5283  uint64_t Id = Record[Slot++];
5284  WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5285 
5286  Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5287  Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5288  static_cast<size_t>(Record[Slot + 1])};
5289  Slot += 2;
5290 
5291  uint64_t ResByArgNum = Record[Slot++];
5292  for (uint64_t I = 0; I != ResByArgNum; ++I)
5293  parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5294 }
5295 
5297  StringRef Strtab,
5298  ModuleSummaryIndex &TheIndex) {
5299  size_t Slot = 0;
5300  TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5301  {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5302  Slot += 2;
5303 
5304  TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5305  TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5306  TypeId.TTRes.AlignLog2 = Record[Slot++];
5307  TypeId.TTRes.SizeM1 = Record[Slot++];
5308  TypeId.TTRes.BitMask = Record[Slot++];
5309  TypeId.TTRes.InlineBits = Record[Slot++];
5310 
5311  while (Slot < Record.size())
5312  parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5313 }
5314 
5315 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) {
5316  // Read-only refs are in the end of the refs list.
5317  for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo)
5318  Refs[RefNo].setReadOnly();
5319 }
5320 
5321 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5322 // objects in the index.
5323 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5324  if (Stream.EnterSubBlock(ID))
5325  return error("Invalid record");
5327 
5328  // Parse version
5329  {
5331  if (Entry.Kind != BitstreamEntry::Record)
5332  return error("Invalid Summary Block: record for version expected");
5333  if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5334  return error("Invalid Summary Block: version expected");
5335  }
5336  const uint64_t Version = Record[0];
5337  const bool IsOldProfileFormat = Version == 1;
5338  if (Version < 1 || Version > 6)
5339  return error("Invalid summary version " + Twine(Version) +
5340  ". Version should be in the range [1-6].");
5341  Record.clear();
5342 
5343  // Keep around the last seen summary to be used when we see an optional
5344  // "OriginalName" attachement.
5345  GlobalValueSummary *LastSeenSummary = nullptr;
5346  GlobalValue::GUID LastSeenGUID = 0;
5347 
5348  // We can expect to see any number of type ID information records before
5349  // each function summary records; these variables store the information
5350  // collected so far so that it can be used to create the summary object.
5351  std::vector<GlobalValue::GUID> PendingTypeTests;
5352  std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5353  PendingTypeCheckedLoadVCalls;
5354  std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5355  PendingTypeCheckedLoadConstVCalls;
5356 
5357  while (true) {
5359 
5360  switch (Entry.Kind) {
5361  case BitstreamEntry::SubBlock: // Handled for us already.
5362  case BitstreamEntry::Error:
5363  return error("Malformed block");
5365  return Error::success();
5367  // The interesting case.
5368  break;
5369  }
5370 
5371  // Read a record. The record format depends on whether this
5372  // is a per-module index or a combined index file. In the per-module
5373  // case the records contain the associated value's ID for correlation
5374  // with VST entries. In the combined index the correlation is done
5375  // via the bitcode offset of the summary records (which were saved
5376  // in the combined index VST entries). The records also contain
5377  // information used for ThinLTO renaming and importing.
5378  Record.clear();
5379  auto BitCode = Stream.readRecord(Entry.ID, Record);
5380  switch (BitCode) {
5381  default: // Default behavior: ignore.
5382  break;
5383  case bitc::FS_FLAGS: { // [flags]
5384  uint64_t Flags = Record[0];
5385  // Scan flags.
5386  assert(Flags <= 0x1f && "Unexpected bits in flag");
5387 
5388  // 1 bit: WithGlobalValueDeadStripping flag.
5389  // Set on combined index only.
5390  if (Flags & 0x1)
5391