23#include "llvm/IR/IntrinsicsAArch64.h"
34#define DEBUG_TYPE "aarch64tti"
40 "sve-prefer-fixed-over-scalable-if-equal",
cl::Hidden);
58 "Penalty of calling a function that requires a change to PSTATE.SM"));
62 cl::desc(
"Penalty of inlining a call that requires a change to PSTATE.SM"));
73 cl::desc(
"The cost of a histcnt instruction"));
77 cl::desc(
"The number of instructions to search for a redundant dmb"));
80class TailFoldingOption {
95 bool NeedsDefault =
true;
99 void setNeedsDefault(
bool V) { NeedsDefault =
V; }
114 assert((InitialBits == TailFoldingOpts::Disabled || !NeedsDefault) &&
115 "Initial bits should only include one of "
116 "(disabled|all|simple|default)");
117 Bits = NeedsDefault ? DefaultBits : InitialBits;
119 Bits &= ~DisableBits;
125 errs() <<
"invalid argument '" << Opt
126 <<
"' to -sve-tail-folding=; the option should be of the form\n"
127 " (disabled|all|default|simple)[+(reductions|recurrences"
128 "|reverse|noreductions|norecurrences|noreverse)]\n";
134 void operator=(
const std::string &Val) {
143 setNeedsDefault(
false);
148 unsigned StartIdx = 1;
149 if (TailFoldTypes[0] ==
"disabled")
150 setInitialBits(TailFoldingOpts::Disabled);
151 else if (TailFoldTypes[0] ==
"all")
152 setInitialBits(TailFoldingOpts::All);
153 else if (TailFoldTypes[0] ==
"default")
154 setNeedsDefault(
true);
155 else if (TailFoldTypes[0] ==
"simple")
156 setInitialBits(TailFoldingOpts::Simple);
159 setInitialBits(TailFoldingOpts::Disabled);
162 for (
unsigned I = StartIdx;
I < TailFoldTypes.
size();
I++) {
163 if (TailFoldTypes[
I] ==
"reductions")
164 setEnableBit(TailFoldingOpts::Reductions);
165 else if (TailFoldTypes[
I] ==
"recurrences")
166 setEnableBit(TailFoldingOpts::Recurrences);
167 else if (TailFoldTypes[
I] ==
"reverse")
168 setEnableBit(TailFoldingOpts::Reverse);
169 else if (TailFoldTypes[
I] ==
"noreductions")
170 setDisableBit(TailFoldingOpts::Reductions);
171 else if (TailFoldTypes[
I] ==
"norecurrences")
172 setDisableBit(TailFoldingOpts::Recurrences);
173 else if (TailFoldTypes[
I] ==
"noreverse")
174 setDisableBit(TailFoldingOpts::Reverse);
191 "Control the use of vectorisation using tail-folding for SVE where the"
192 " option is specified in the form (Initial)[+(Flag1|Flag2|...)]:"
193 "\ndisabled (Initial) No loop types will vectorize using "
195 "\ndefault (Initial) Uses the default tail-folding settings for "
197 "\nall (Initial) All legal loop types will vectorize using "
199 "\nsimple (Initial) Use tail-folding for simple loops (not "
200 "reductions or recurrences)"
201 "\nreductions Use tail-folding for loops containing reductions"
202 "\nnoreductions Inverse of above"
203 "\nrecurrences Use tail-folding for loops containing fixed order "
205 "\nnorecurrences Inverse of above"
206 "\nreverse Use tail-folding for loops requiring reversed "
208 "\nnoreverse Inverse of above"),
226 .
Case(
"__arm_sme_state",
true)
227 .
Case(
"__arm_tpidr2_save",
true)
228 .
Case(
"__arm_tpidr2_restore",
true)
229 .
Case(
"__arm_za_disable",
true)
243 if (isa<CallInst>(
I) && !
I.isDebugOrPseudoInst() &&
244 (cast<CallInst>(
I).isInlineAsm() || isa<IntrinsicInst>(
I) ||
255 StringRef FeatureStr =
F.getFnAttribute(AttributeStr).getValueAsString();
257 FeatureStr.
split(Features,
",");
262 return F.hasFnAttribute(
"fmv-features");
267 SMEAttrs CallerAttrs(*Caller), CalleeAttrs(*Callee);
279 if (CallerAttrs.requiresLazySave(CalleeAttrs) ||
280 CallerAttrs.requiresSMChange(CalleeAttrs) ||
281 CallerAttrs.requiresPreservingZT0(CalleeAttrs) ||
282 CallerAttrs.requiresPreservingAllZAState(CalleeAttrs)) {
305 auto FVTy = dyn_cast<FixedVectorType>(Ty);
307 FVTy->getScalarSizeInBits() * FVTy->getNumElements() > 128;
316 unsigned DefaultCallPenalty)
const {
339 if (
F == Call.getCaller())
345 return DefaultCallPenalty;
384 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
389 for (
unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
395 return std::max<InstructionCost>(1,
Cost);
410 unsigned ImmIdx = ~0U;
414 case Instruction::GetElementPtr:
419 case Instruction::Store:
422 case Instruction::Add:
423 case Instruction::Sub:
424 case Instruction::Mul:
425 case Instruction::UDiv:
426 case Instruction::SDiv:
427 case Instruction::URem:
428 case Instruction::SRem:
429 case Instruction::And:
430 case Instruction::Or:
431 case Instruction::Xor:
432 case Instruction::ICmp:
436 case Instruction::Shl:
437 case Instruction::LShr:
438 case Instruction::AShr:
442 case Instruction::Trunc:
443 case Instruction::ZExt:
444 case Instruction::SExt:
445 case Instruction::IntToPtr:
446 case Instruction::PtrToInt:
447 case Instruction::BitCast:
448 case Instruction::PHI:
449 case Instruction::Call:
450 case Instruction::Select:
451 case Instruction::Ret:
452 case Instruction::Load:
457 int NumConstants = (BitSize + 63) / 64;
481 if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
487 case Intrinsic::sadd_with_overflow:
488 case Intrinsic::uadd_with_overflow:
489 case Intrinsic::ssub_with_overflow:
490 case Intrinsic::usub_with_overflow:
491 case Intrinsic::smul_with_overflow:
492 case Intrinsic::umul_with_overflow:
494 int NumConstants = (BitSize + 63) / 64;
501 case Intrinsic::experimental_stackmap:
502 if ((
Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
505 case Intrinsic::experimental_patchpoint_void:
506 case Intrinsic::experimental_patchpoint:
507 if ((
Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
510 case Intrinsic::experimental_gc_statepoint:
511 if ((
Idx < 5) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
521 if (TyWidth == 32 || TyWidth == 64)
535 unsigned TotalHistCnts = 1;
544 if (
VectorType *VTy = dyn_cast<VectorType>(BucketPtrsTy)) {
545 unsigned EC = VTy->getElementCount().getKnownMinValue();
550 unsigned LegalEltSize = EltSize <= 32 ? 32 : 64;
552 if (EC == 2 || (LegalEltSize == 32 && EC == 4))
556 TotalHistCnts = EC / NaturalVectorWidth;
570 if (
auto *VTy = dyn_cast<ScalableVectorType>(
RetTy))
574 switch (ICA.
getID()) {
575 case Intrinsic::experimental_vector_histogram_add:
579 case Intrinsic::umin:
580 case Intrinsic::umax:
581 case Intrinsic::smin:
582 case Intrinsic::smax: {
583 static const auto ValidMinMaxTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
584 MVT::v8i16, MVT::v2i32, MVT::v4i32,
585 MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32,
589 if (LT.second == MVT::v2i64)
591 if (
any_of(ValidMinMaxTys, [<](
MVT M) {
return M == LT.second; }))
595 case Intrinsic::sadd_sat:
596 case Intrinsic::ssub_sat:
597 case Intrinsic::uadd_sat:
598 case Intrinsic::usub_sat: {
599 static const auto ValidSatTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
600 MVT::v8i16, MVT::v2i32, MVT::v4i32,
606 LT.second.getScalarSizeInBits() ==
RetTy->getScalarSizeInBits() ? 1 : 4;
607 if (
any_of(ValidSatTys, [<](
MVT M) {
return M == LT.second; }))
608 return LT.first * Instrs;
611 case Intrinsic::abs: {
612 static const auto ValidAbsTys = {MVT::v8i8, MVT::v16i8, MVT::v4i16,
613 MVT::v8i16, MVT::v2i32, MVT::v4i32,
616 if (
any_of(ValidAbsTys, [<](
MVT M) {
return M == LT.second; }))
620 case Intrinsic::bswap: {
621 static const auto ValidAbsTys = {MVT::v4i16, MVT::v8i16, MVT::v2i32,
622 MVT::v4i32, MVT::v2i64};
624 if (
any_of(ValidAbsTys, [<](
MVT M) {
return M == LT.second; }) &&
625 LT.second.getScalarSizeInBits() ==
RetTy->getScalarSizeInBits())
629 case Intrinsic::stepvector: {
638 Cost += AddCost * (LT.first - 1);
642 case Intrinsic::vector_extract:
643 case Intrinsic::vector_insert: {
656 bool IsExtract = ICA.
getID() == Intrinsic::vector_extract;
675 case Intrinsic::bitreverse: {
677 {Intrinsic::bitreverse, MVT::i32, 1},
678 {Intrinsic::bitreverse, MVT::i64, 1},
679 {Intrinsic::bitreverse, MVT::v8i8, 1},
680 {Intrinsic::bitreverse, MVT::v16i8, 1},
681 {Intrinsic::bitreverse, MVT::v4i16, 2},
682 {Intrinsic::bitreverse, MVT::v8i16, 2},
683 {Intrinsic::bitreverse, MVT::v2i32, 2},
684 {Intrinsic::bitreverse, MVT::v4i32, 2},
685 {Intrinsic::bitreverse, MVT::v1i64, 2},
686 {Intrinsic::bitreverse, MVT::v2i64, 2},
696 return LegalisationCost.first * Entry->Cost + 1;
698 return LegalisationCost.first * Entry->Cost;
702 case Intrinsic::ctpop: {
703 if (!ST->hasNEON()) {
724 RetTy->getScalarSizeInBits()
727 return LT.first * Entry->Cost + ExtraCost;
731 case Intrinsic::sadd_with_overflow:
732 case Intrinsic::uadd_with_overflow:
733 case Intrinsic::ssub_with_overflow:
734 case Intrinsic::usub_with_overflow:
735 case Intrinsic::smul_with_overflow:
736 case Intrinsic::umul_with_overflow: {
738 {Intrinsic::sadd_with_overflow, MVT::i8, 3},
739 {Intrinsic::uadd_with_overflow, MVT::i8, 3},
740 {Intrinsic::sadd_with_overflow, MVT::i16, 3},
741 {Intrinsic::uadd_with_overflow, MVT::i16, 3},
742 {Intrinsic::sadd_with_overflow, MVT::i32, 1},
743 {Intrinsic::uadd_with_overflow, MVT::i32, 1},
744 {Intrinsic::sadd_with_overflow, MVT::i64, 1},
745 {Intrinsic::uadd_with_overflow, MVT::i64, 1},
746 {Intrinsic::ssub_with_overflow, MVT::i8, 3},
747 {Intrinsic::usub_with_overflow, MVT::i8, 3},
748 {Intrinsic::ssub_with_overflow, MVT::i16, 3},
749 {Intrinsic::usub_with_overflow, MVT::i16, 3},
750 {Intrinsic::ssub_with_overflow, MVT::i32, 1},
751 {Intrinsic::usub_with_overflow, MVT::i32, 1},
752 {Intrinsic::ssub_with_overflow, MVT::i64, 1},
753 {Intrinsic::usub_with_overflow, MVT::i64, 1},
754 {Intrinsic::smul_with_overflow, MVT::i8, 5},
755 {Intrinsic::umul_with_overflow, MVT::i8, 4},
756 {Intrinsic::smul_with_overflow, MVT::i16, 5},
757 {Intrinsic::umul_with_overflow, MVT::i16, 4},
758 {Intrinsic::smul_with_overflow, MVT::i32, 2},
759 {Intrinsic::umul_with_overflow, MVT::i32, 2},
760 {Intrinsic::smul_with_overflow, MVT::i64, 3},
761 {Intrinsic::umul_with_overflow, MVT::i64, 3},
770 case Intrinsic::fptosi_sat:
771 case Intrinsic::fptoui_sat: {
774 bool IsSigned = ICA.
getID() == Intrinsic::fptosi_sat;
779 if ((LT.second == MVT::f32 || LT.second == MVT::f64 ||
780 LT.second == MVT::v2f32 || LT.second == MVT::v4f32 ||
781 LT.second == MVT::v2f64)) {
783 (LT.second == MVT::f64 && MTy == MVT::i32) ||
784 (LT.second == MVT::f32 && MTy == MVT::i64)))
793 if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16())
800 if ((LT.second == MVT::f16 && MTy == MVT::i32) ||
801 (LT.second == MVT::f16 && MTy == MVT::i64) ||
802 ((LT.second == MVT::v4f16 || LT.second == MVT::v8f16) &&
816 if ((LT.second.getScalarType() == MVT::f32 ||
817 LT.second.getScalarType() == MVT::f64 ||
818 LT.second.getScalarType() == MVT::f16) &&
822 if (LT.second.isVector())
826 LegalTy, {LegalTy, LegalTy});
829 LegalTy, {LegalTy, LegalTy});
831 return LT.first *
Cost +
832 ((LT.second.getScalarType() != MVT::f16 || ST->hasFullFP16()) ? 0
839 if (LT.second.isVector()) {
851 Type *CondTy =
RetTy->getWithNewBitWidth(1);
857 return LT.first *
Cost;
859 case Intrinsic::fshl:
860 case Intrinsic::fshr: {
873 {Intrinsic::fshl, MVT::v4i32, 3},
874 {Intrinsic::fshl, MVT::v2i64, 3}, {Intrinsic::fshl, MVT::v16i8, 4},
875 {Intrinsic::fshl, MVT::v8i16, 4}, {Intrinsic::fshl, MVT::v2i32, 3},
876 {Intrinsic::fshl, MVT::v8i8, 4}, {Intrinsic::fshl, MVT::v4i16, 4}};
882 return LegalisationCost.first * Entry->Cost;
886 if (!
RetTy->isIntegerTy())
891 bool HigherCost = (
RetTy->getScalarSizeInBits() != 32 &&
892 RetTy->getScalarSizeInBits() < 64) ||
893 (
RetTy->getScalarSizeInBits() % 64 != 0);
894 unsigned ExtraCost = HigherCost ? 1 : 0;
895 if (
RetTy->getScalarSizeInBits() == 32 ||
896 RetTy->getScalarSizeInBits() == 64)
903 return TyL.first + ExtraCost;
905 case Intrinsic::get_active_lane_mask: {
910 if (!getTLI()->shouldExpandGetActiveLaneMask(RetVT, OpVT) &&
921 return RetTy->getNumElements() * 2;
926 case Intrinsic::experimental_vector_match: {
927 auto *NeedleTy = cast<FixedVectorType>(ICA.
getArgTypes()[1]);
929 unsigned SearchSize = NeedleTy->getNumElements();
930 if (!getTLI()->shouldExpandVectorMatch(SearchVT, SearchSize)) {
937 if (isa<FixedVectorType>(
RetTy))
954 auto RequiredType =
II.getType();
956 auto *PN = dyn_cast<PHINode>(
II.getArgOperand(0));
957 assert(PN &&
"Expected Phi Node!");
960 if (!PN->hasOneUse())
963 for (
Value *IncValPhi : PN->incoming_values()) {
964 auto *Reinterpret = dyn_cast<IntrinsicInst>(IncValPhi);
966 Reinterpret->getIntrinsicID() !=
967 Intrinsic::aarch64_sve_convert_to_svbool ||
968 RequiredType != Reinterpret->getArgOperand(0)->getType())
977 for (
unsigned I = 0;
I < PN->getNumIncomingValues();
I++) {
978 auto *Reinterpret = cast<Instruction>(PN->getIncomingValue(
I));
979 NPN->
addIncoming(Reinterpret->getOperand(0), PN->getIncomingBlock(
I));
996static std::optional<Instruction *>
998 auto BinOp = dyn_cast<IntrinsicInst>(
II.getOperand(0));
1000 return std::nullopt;
1002 auto IntrinsicID = BinOp->getIntrinsicID();
1003 switch (IntrinsicID) {
1004 case Intrinsic::aarch64_sve_and_z:
1005 case Intrinsic::aarch64_sve_bic_z:
1006 case Intrinsic::aarch64_sve_eor_z:
1007 case Intrinsic::aarch64_sve_nand_z:
1008 case Intrinsic::aarch64_sve_nor_z:
1009 case Intrinsic::aarch64_sve_orn_z:
1010 case Intrinsic::aarch64_sve_orr_z:
1013 return std::nullopt;
1016 auto BinOpPred = BinOp->getOperand(0);
1017 auto BinOpOp1 = BinOp->getOperand(1);
1018 auto BinOpOp2 = BinOp->getOperand(2);
1020 auto PredIntr = dyn_cast<IntrinsicInst>(BinOpPred);
1022 PredIntr->getIntrinsicID() != Intrinsic::aarch64_sve_convert_to_svbool)
1023 return std::nullopt;
1025 auto PredOp = PredIntr->getOperand(0);
1026 auto PredOpTy = cast<VectorType>(PredOp->getType());
1027 if (PredOpTy !=
II.getType())
1028 return std::nullopt;
1032 Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp1});
1033 NarrowedBinOpArgs.
push_back(NarrowBinOpOp1);
1034 if (BinOpOp1 == BinOpOp2)
1035 NarrowedBinOpArgs.
push_back(NarrowBinOpOp1);
1038 Intrinsic::aarch64_sve_convert_from_svbool, {PredOpTy}, {BinOpOp2}));
1040 auto NarrowedBinOp =
1045static std::optional<Instruction *>
1048 if (isa<PHINode>(
II.getArgOperand(0)))
1052 return BinOpCombine;
1055 if (isa<TargetExtType>(
II.getArgOperand(0)->getType()) ||
1056 isa<TargetExtType>(
II.getType()))
1057 return std::nullopt;
1060 Value *Cursor =
II.getOperand(0), *EarliestReplacement =
nullptr;
1062 const auto *IVTy = cast<VectorType>(
II.getType());
1068 const auto *CursorVTy = cast<VectorType>(Cursor->
getType());
1069 if (CursorVTy->getElementCount().getKnownMinValue() <
1070 IVTy->getElementCount().getKnownMinValue())
1074 if (Cursor->
getType() == IVTy)
1075 EarliestReplacement = Cursor;
1077 auto *IntrinsicCursor = dyn_cast<IntrinsicInst>(Cursor);
1080 if (!IntrinsicCursor || !(IntrinsicCursor->getIntrinsicID() ==
1081 Intrinsic::aarch64_sve_convert_to_svbool ||
1082 IntrinsicCursor->getIntrinsicID() ==
1083 Intrinsic::aarch64_sve_convert_from_svbool))
1086 CandidatesForRemoval.
insert(CandidatesForRemoval.
begin(), IntrinsicCursor);
1087 Cursor = IntrinsicCursor->getOperand(0);
1092 if (!EarliestReplacement)
1093 return std::nullopt;
1100 Value *UncastedPred;
1101 if (
match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_convert_from_svbool>(
1102 m_Intrinsic<Intrinsic::aarch64_sve_convert_to_svbool>(
1106 if (cast<ScalableVectorType>(Pred->
getType())->getMinNumElements() <=
1107 cast<ScalableVectorType>(UncastedPred->
getType())->getMinNumElements())
1108 Pred = UncastedPred;
1110 return match(Pred, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
1111 m_ConstantInt<AArch64SVEPredPattern::all>()));
1116static std::optional<Instruction *>
1118 bool hasInactiveVector) {
1119 int PredOperand = hasInactiveVector ? 1 : 0;
1120 int ReplaceOperand = hasInactiveVector ? 0 : 1;
1125 return std::nullopt;
1130static std::optional<Instruction *>
1133 !isa<llvm::UndefValue>(
II.getOperand(0)) &&
1134 !isa<llvm::PoisonValue>(
II.getOperand(0))) {
1142static std::optional<Instruction *>
1148 return std::nullopt;
1153static std::optional<Instruction *>
1158 if (
RetTy->isStructTy()) {
1159 auto StructT = cast<StructType>(
RetTy);
1160 auto VecT = StructT->getElementType(0);
1162 for (
unsigned i = 0; i < StructT->getNumElements(); i++) {
1163 ZerVec.
push_back(VecT->isFPOrFPVectorTy() ? ConstantFP::get(VecT, 0.0)
1164 : ConstantInt::get(VecT, 0));
1169 : ConstantInt::get(
II.getType(), 0);
1174 return std::nullopt;
1180 auto *OpPredicate =
II.getOperand(0);
1193 return std::nullopt;
1196 return std::nullopt;
1198 const auto PTruePattern =
1199 cast<ConstantInt>(Pg->
getOperand(0))->getZExtValue();
1200 if (PTruePattern != AArch64SVEPredPattern::vl1)
1201 return std::nullopt;
1206 II.getArgOperand(0),
II.getArgOperand(2), ConstantInt::get(IdxTy, 0));
1207 Insert->insertBefore(
II.getIterator());
1208 Insert->takeName(&
II);
1216 auto *
RetTy = cast<ScalableVectorType>(
II.getType());
1218 II.getArgOperand(0));
1232 auto *Pg = dyn_cast<IntrinsicInst>(
II.getArgOperand(0));
1233 if (!Pg || Pg->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
1234 return std::nullopt;
1236 const auto PTruePattern =
1237 cast<ConstantInt>(Pg->getOperand(0))->getZExtValue();
1238 if (PTruePattern != AArch64SVEPredPattern::all)
1239 return std::nullopt;
1244 if (!SplatValue || !SplatValue->isZero())
1245 return std::nullopt;
1248 auto *DupQLane = dyn_cast<IntrinsicInst>(
II.getArgOperand(1));
1250 DupQLane->getIntrinsicID() != Intrinsic::aarch64_sve_dupq_lane)
1251 return std::nullopt;
1254 auto *DupQLaneIdx = dyn_cast<ConstantInt>(DupQLane->getArgOperand(1));
1255 if (!DupQLaneIdx || !DupQLaneIdx->isZero())
1256 return std::nullopt;
1258 auto *VecIns = dyn_cast<IntrinsicInst>(DupQLane->getArgOperand(0));
1259 if (!VecIns || VecIns->getIntrinsicID() != Intrinsic::vector_insert)
1260 return std::nullopt;
1264 if (!isa<UndefValue>(VecIns->getArgOperand(0)))
1265 return std::nullopt;
1267 if (!cast<ConstantInt>(VecIns->getArgOperand(2))->isZero())
1268 return std::nullopt;
1270 auto *ConstVec = dyn_cast<Constant>(VecIns->getArgOperand(1));
1272 return std::nullopt;
1274 auto *VecTy = dyn_cast<FixedVectorType>(ConstVec->getType());
1275 auto *OutTy = dyn_cast<ScalableVectorType>(
II.getType());
1276 if (!VecTy || !OutTy || VecTy->getNumElements() != OutTy->getMinNumElements())
1277 return std::nullopt;
1279 unsigned NumElts = VecTy->getNumElements();
1280 unsigned PredicateBits = 0;
1283 for (
unsigned I = 0;
I < NumElts; ++
I) {
1284 auto *Arg = dyn_cast<ConstantInt>(ConstVec->getAggregateElement(
I));
1286 return std::nullopt;
1288 PredicateBits |= 1 << (
I * (16 / NumElts));
1292 if (PredicateBits == 0) {
1294 PFalse->takeName(&
II);
1300 for (
unsigned I = 0;
I < 16; ++
I)
1301 if ((PredicateBits & (1 <<
I)) != 0)
1304 unsigned PredSize = Mask & -Mask;
1309 for (
unsigned I = 0;
I < 16;
I += PredSize)
1310 if ((PredicateBits & (1 <<
I)) == 0)
1311 return std::nullopt;
1316 {PredType}, {PTruePat});
1318 Intrinsic::aarch64_sve_convert_to_svbool, {PredType}, {PTrue});
1319 auto *ConvertFromSVBool =
1321 {
II.getType()}, {ConvertToSVBool});
1329 Value *Pg =
II.getArgOperand(0);
1330 Value *Vec =
II.getArgOperand(1);
1331 auto IntrinsicID =
II.getIntrinsicID();
1332 bool IsAfter = IntrinsicID == Intrinsic::aarch64_sve_lasta;
1343 auto *OldBinOp = cast<BinaryOperator>(Vec);
1344 auto OpC = OldBinOp->getOpcode();
1350 OpC, NewLHS, NewRHS, OldBinOp, OldBinOp->getName(),
II.getIterator());
1355 auto *
C = dyn_cast<Constant>(Pg);
1356 if (IsAfter &&
C &&
C->isNullValue()) {
1360 Extract->insertBefore(
II.getIterator());
1361 Extract->takeName(&
II);
1365 auto *IntrPG = dyn_cast<IntrinsicInst>(Pg);
1367 return std::nullopt;
1369 if (IntrPG->getIntrinsicID() != Intrinsic::aarch64_sve_ptrue)
1370 return std::nullopt;
1372 const auto PTruePattern =
1373 cast<ConstantInt>(IntrPG->getOperand(0))->getZExtValue();
1378 return std::nullopt;
1380 unsigned Idx = MinNumElts - 1;
1389 auto *PgVTy = cast<ScalableVectorType>(Pg->
getType());
1390 if (
Idx >= PgVTy->getMinNumElements())
1391 return std::nullopt;
1396 Extract->insertBefore(
II.getIterator());
1397 Extract->takeName(&
II);
1410 Value *Pg =
II.getArgOperand(0);
1412 Value *Vec =
II.getArgOperand(2);
1416 return std::nullopt;
1421 return std::nullopt;
1435 FPTy, cast<VectorType>(Vec->
getType())->getElementCount());
1438 II.getIntrinsicID(), {FPVec->getType()}, {Pg, FPFallBack, FPVec});
1451 {
II.getType()}, {AllPat});
1458static std::optional<Instruction *>
1460 const auto Pattern = cast<ConstantInt>(
II.getArgOperand(0))->getZExtValue();
1462 if (
Pattern == AArch64SVEPredPattern::all) {
1463 Constant *StepVal = ConstantInt::get(
II.getType(), NumElts);
1471 return MinNumElts && NumElts >= MinNumElts
1473 II, ConstantInt::get(
II.getType(), MinNumElts)))
1479 Value *PgVal =
II.getArgOperand(0);
1480 Value *OpVal =
II.getArgOperand(1);
1484 if (PgVal == OpVal &&
1485 (
II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_first ||
1486 II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_last)) {
1487 Value *Ops[] = {PgVal, OpVal};
1501 return std::nullopt;
1505 if (Pg->
getIntrinsicID() == Intrinsic::aarch64_sve_convert_to_svbool &&
1506 OpIID == Intrinsic::aarch64_sve_convert_to_svbool &&
1520 if ((Pg ==
Op) && (
II.getIntrinsicID() == Intrinsic::aarch64_sve_ptest_any) &&
1521 ((OpIID == Intrinsic::aarch64_sve_brka_z) ||
1522 (OpIID == Intrinsic::aarch64_sve_brkb_z) ||
1523 (OpIID == Intrinsic::aarch64_sve_brkpa_z) ||
1524 (OpIID == Intrinsic::aarch64_sve_brkpb_z) ||
1525 (OpIID == Intrinsic::aarch64_sve_rdffr_z) ||
1526 (OpIID == Intrinsic::aarch64_sve_and_z) ||
1527 (OpIID == Intrinsic::aarch64_sve_bic_z) ||
1528 (OpIID == Intrinsic::aarch64_sve_eor_z) ||
1529 (OpIID == Intrinsic::aarch64_sve_nand_z) ||
1530 (OpIID == Intrinsic::aarch64_sve_nor_z) ||
1531 (OpIID == Intrinsic::aarch64_sve_orn_z) ||
1532 (OpIID == Intrinsic::aarch64_sve_orr_z))) {
1542 return std::nullopt;
1545template <Intrinsic::ID MulOpc,
typename Intrinsic::ID FuseOpc>
1546static std::optional<Instruction *>
1548 bool MergeIntoAddendOp) {
1550 Value *MulOp0, *MulOp1, *AddendOp, *
Mul;
1551 if (MergeIntoAddendOp) {
1552 AddendOp =
II.getOperand(1);
1553 Mul =
II.getOperand(2);
1555 AddendOp =
II.getOperand(2);
1556 Mul =
II.getOperand(1);
1561 return std::nullopt;
1563 if (!
Mul->hasOneUse())
1564 return std::nullopt;
1567 if (
II.getType()->isFPOrFPVectorTy()) {
1571 if (FAddFlags != cast<CallInst>(
Mul)->getFastMathFlags())
1572 return std::nullopt;
1574 return std::nullopt;
1579 if (MergeIntoAddendOp)
1589static std::optional<Instruction *>
1591 Value *Pred =
II.getOperand(0);
1592 Value *PtrOp =
II.getOperand(1);
1593 Type *VecTy =
II.getType();
1601 Load->copyMetadata(
II);
1612static std::optional<Instruction *>
1614 Value *VecOp =
II.getOperand(0);
1615 Value *Pred =
II.getOperand(1);
1616 Value *PtrOp =
II.getOperand(2);
1620 Store->copyMetadata(
II);
1631 switch (Intrinsic) {
1632 case Intrinsic::aarch64_sve_fmul_u:
1633 return Instruction::BinaryOps::FMul;
1634 case Intrinsic::aarch64_sve_fadd_u:
1635 return Instruction::BinaryOps::FAdd;
1636 case Intrinsic::aarch64_sve_fsub_u:
1637 return Instruction::BinaryOps::FSub;
1639 return Instruction::BinaryOpsEnd;
1643static std::optional<Instruction *>
1646 if (
II.isStrictFP())
1647 return std::nullopt;
1649 auto *OpPredicate =
II.getOperand(0);
1651 if (BinOpCode == Instruction::BinaryOpsEnd ||
1652 !
match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
1653 m_ConstantInt<AArch64SVEPredPattern::all>())))
1654 return std::nullopt;
1656 BinOpCode,
II.getOperand(1),
II.getOperand(2),
II.getFastMathFlags());
1664 auto *OpPredicate =
II.getOperand(0);
1665 if (!
match(OpPredicate, m_Intrinsic<Intrinsic::aarch64_sve_ptrue>(
1666 m_ConstantInt<AArch64SVEPredPattern::all>())))
1667 return std::nullopt;
1669 auto *
Mod =
II.getModule();
1671 II.setCalledFunction(NewDecl);
1678static std::optional<Instruction *>
1695 Intrinsic::aarch64_sve_mla>(
1699 Intrinsic::aarch64_sve_mad>(
1702 return std::nullopt;
1705static std::optional<Instruction *>
1712 Intrinsic::aarch64_sve_fmla>(IC,
II,
1717 Intrinsic::aarch64_sve_fmad>(IC,
II,
1722 Intrinsic::aarch64_sve_fmla>(IC,
II,
1725 return std::nullopt;
1728static std::optional<Instruction *>
1732 Intrinsic::aarch64_sve_fmla>(IC,
II,
1737 Intrinsic::aarch64_sve_fmad>(IC,
II,
1742 Intrinsic::aarch64_sve_fmla_u>(
1748static std::optional<Instruction *>
1755 Intrinsic::aarch64_sve_fmls>(IC,
II,
1760 Intrinsic::aarch64_sve_fnmsb>(
1765 Intrinsic::aarch64_sve_fmls>(IC,
II,
1768 return std::nullopt;
1771static std::optional<Instruction *>
1775 Intrinsic::aarch64_sve_fmls>(IC,
II,
1780 Intrinsic::aarch64_sve_fnmsb>(
1785 Intrinsic::aarch64_sve_fmls_u>(
1797 Intrinsic::aarch64_sve_mls>(
1800 return std::nullopt;
1806 auto *OpPredicate =
II.getOperand(0);
1807 auto *OpMultiplicand =
II.getOperand(1);
1808 auto *OpMultiplier =
II.getOperand(2);
1811 auto IsUnitSplat = [](
auto *
I) {
1820 auto IsUnitDup = [](
auto *
I) {
1821 auto *IntrI = dyn_cast<IntrinsicInst>(
I);
1822 if (!IntrI || IntrI->getIntrinsicID() != Intrinsic::aarch64_sve_dup)
1825 auto *SplatValue = IntrI->getOperand(2);
1829 if (IsUnitSplat(OpMultiplier)) {
1831 OpMultiplicand->takeName(&
II);
1833 }
else if (IsUnitDup(OpMultiplier)) {
1835 auto *DupInst = cast<IntrinsicInst>(OpMultiplier);
1836 auto *DupPg = DupInst->getOperand(1);
1839 if (OpPredicate == DupPg) {
1840 OpMultiplicand->takeName(&
II);
1850 Value *UnpackArg =
II.getArgOperand(0);
1851 auto *
RetTy = cast<ScalableVectorType>(
II.getType());
1852 bool IsSigned =
II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpkhi ||
1853 II.getIntrinsicID() == Intrinsic::aarch64_sve_sunpklo;
1866 return std::nullopt;
1870 auto *OpVal =
II.getOperand(0);
1871 auto *OpIndices =
II.getOperand(1);
1876 auto *SplatValue = dyn_cast_or_null<ConstantInt>(
getSplatValue(OpIndices));
1878 SplatValue->getValue().uge(VTy->getElementCount().getKnownMinValue()))
1879 return std::nullopt;
1895 constexpr Intrinsic::ID FromSVB = Intrinsic::aarch64_sve_convert_from_svbool;
1896 constexpr Intrinsic::ID ToSVB = Intrinsic::aarch64_sve_convert_to_svbool;
1900 if ((
match(
II.getArgOperand(0),
1901 m_Intrinsic<FromSVB>(m_Intrinsic<ToSVB>(
m_Value(
A)))) &&
1903 m_Intrinsic<FromSVB>(m_Intrinsic<ToSVB>(
m_Value(
B))))) ||
1906 auto *TyA = cast<ScalableVectorType>(
A->getType());
1907 if (TyA ==
B->getType() &&
1918 return std::nullopt;
1926 if (
match(
II.getArgOperand(0),
1928 match(
II.getArgOperand(1), m_Intrinsic<Intrinsic::aarch64_sve_uzp2>(
1931 II, (
II.getIntrinsicID() == Intrinsic::aarch64_sve_zip1 ?
A :
B));
1933 return std::nullopt;
1936static std::optional<Instruction *>
1938 Value *Mask =
II.getOperand(0);
1939 Value *BasePtr =
II.getOperand(1);
1940 Value *Index =
II.getOperand(2);
1952 if (
match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
1955 BasePtr->getPointerAlignment(
II.getDataLayout());
1958 BasePtr, IndexBase);
1965 return std::nullopt;
1968static std::optional<Instruction *>
1970 Value *Val =
II.getOperand(0);
1971 Value *Mask =
II.getOperand(1);
1972 Value *BasePtr =
II.getOperand(2);
1973 Value *Index =
II.getOperand(3);
1980 if (
match(Index, m_Intrinsic<Intrinsic::aarch64_sve_index>(
1983 BasePtr->getPointerAlignment(
II.getDataLayout());
1986 BasePtr, IndexBase);
1992 return std::nullopt;
1998 Value *Pred =
II.getOperand(0);
1999 Value *Vec =
II.getOperand(1);
2000 Value *DivVec =
II.getOperand(2);
2003 ConstantInt *SplatConstantInt = dyn_cast_or_null<ConstantInt>(SplatValue);
2004 if (!SplatConstantInt)
2005 return std::nullopt;
2009 if (DivisorValue == -1)
2010 return std::nullopt;
2011 if (DivisorValue == 1)
2017 Intrinsic::aarch64_sve_asrd, {
II.getType()}, {Pred, Vec, DivisorLog2});
2024 Intrinsic::aarch64_sve_asrd, {
II.getType()}, {Pred, Vec, DivisorLog2});
2026 Intrinsic::aarch64_sve_neg, {ASRD->getType()}, {ASRD, Pred, ASRD});
2030 return std::nullopt;
2034 size_t VecSize = Vec.
size();
2039 size_t HalfVecSize = VecSize / 2;
2043 if (*
LHS !=
nullptr && *
RHS !=
nullptr) {
2051 if (*
LHS ==
nullptr && *
RHS !=
nullptr)
2066 m_Intrinsic<Intrinsic::vector_insert>(
2068 !isa<FixedVectorType>(CurrentInsertElt->
getType()))
2069 return std::nullopt;
2070 auto IIScalableTy = cast<ScalableVectorType>(
II.getType());
2074 while (
auto InsertElt = dyn_cast<InsertElementInst>(CurrentInsertElt)) {
2075 auto Idx = cast<ConstantInt>(InsertElt->getOperand(2));
2076 Elts[
Idx->getValue().getZExtValue()] = InsertElt->getOperand(1);
2077 CurrentInsertElt = InsertElt->getOperand(0);
2081 isa<PoisonValue>(CurrentInsertElt) && isa<PoisonValue>(
Default);
2083 return std::nullopt;
2087 for (
size_t I = 0;
I < Elts.
size();
I++) {
2088 if (Elts[
I] ==
nullptr)
2093 if (InsertEltChain ==
nullptr)
2094 return std::nullopt;
2100 unsigned PatternWidth = IIScalableTy->getScalarSizeInBits() * Elts.
size();
2101 unsigned PatternElementCount = IIScalableTy->getScalarSizeInBits() *
2102 IIScalableTy->getMinNumElements() /
2107 auto *WideShuffleMaskTy =
2118 auto NarrowBitcast =
2131 return std::nullopt;
2136 Value *Pred =
II.getOperand(0);
2137 Value *Vec =
II.getOperand(1);
2138 Value *Shift =
II.getOperand(2);
2141 Value *AbsPred, *MergedValue;
2142 if (!
match(Vec, m_Intrinsic<Intrinsic::aarch64_sve_sqabs>(
2144 !
match(Vec, m_Intrinsic<Intrinsic::aarch64_sve_abs>(
2147 return std::nullopt;
2155 return std::nullopt;
2160 return std::nullopt;
2163 {
II.getType()}, {Pred, Vec, Shift});
2170 Value *Vec =
II.getOperand(0);
2175 return std::nullopt;
2181 auto *NI =
II.getNextNonDebugInstruction();
2184 return !
I->mayReadOrWriteMemory() && !
I->mayHaveSideEffects();
2186 while (LookaheadThreshold-- && CanSkipOver(NI)) {
2187 auto *NIBB = NI->getParent();
2188 NI = NI->getNextNonDebugInstruction();
2190 if (
auto *SuccBB = NIBB->getUniqueSuccessor())
2191 NI = SuccBB->getFirstNonPHIOrDbgOrLifetime();
2196 auto *NextII = dyn_cast_or_null<IntrinsicInst>(NI);
2197 if (NextII &&
II.isIdenticalTo(NextII))
2200 return std::nullopt;
2203std::optional<Instruction *>
2210 case Intrinsic::aarch64_dmb:
2212 case Intrinsic::aarch64_sve_fcvt_bf16f32_v2:
2213 case Intrinsic::aarch64_sve_fcvt_f16f32:
2214 case Intrinsic::aarch64_sve_fcvt_f16f64:
2215 case Intrinsic::aarch64_sve_fcvt_f32f16:
2216 case Intrinsic::aarch64_sve_fcvt_f32f64:
2217 case Intrinsic::aarch64_sve_fcvt_f64f16:
2218 case Intrinsic::aarch64_sve_fcvt_f64f32:
2219 case Intrinsic::aarch64_sve_fcvtlt_f32f16:
2220 case Intrinsic::aarch64_sve_fcvtlt_f64f32:
2221 case Intrinsic::aarch64_sve_fcvtx_f32f64:
2222 case Intrinsic::aarch64_sve_fcvtzs:
2223 case Intrinsic::aarch64_sve_fcvtzs_i32f16:
2224 case Intrinsic::aarch64_sve_fcvtzs_i32f64:
2225 case Intrinsic::aarch64_sve_fcvtzs_i64f16:
2226 case Intrinsic::aarch64_sve_fcvtzs_i64f32:
2227 case Intrinsic::aarch64_sve_fcvtzu:
2228 case Intrinsic::aarch64_sve_fcvtzu_i32f16:
2229 case Intrinsic::aarch64_sve_fcvtzu_i32f64:
2230 case Intrinsic::aarch64_sve_fcvtzu_i64f16:
2231 case Intrinsic::aarch64_sve_fcvtzu_i64f32:
2232 case Intrinsic::aarch64_sve_scvtf:
2233 case Intrinsic::aarch64_sve_scvtf_f16i32:
2234 case Intrinsic::aarch64_sve_scvtf_f16i64:
2235 case Intrinsic::aarch64_sve_scvtf_f32i64:
2236 case Intrinsic::aarch64_sve_scvtf_f64i32:
2237 case Intrinsic::aarch64_sve_ucvtf:
2238 case Intrinsic::aarch64_sve_ucvtf_f16i32:
2239 case Intrinsic::aarch64_sve_ucvtf_f16i64:
2240 case Intrinsic::aarch64_sve_ucvtf_f32i64:
2241 case Intrinsic::aarch64_sve_ucvtf_f64i32:
2243 case Intrinsic::aarch64_sve_fcvtnt_bf16f32_v2:
2244 case Intrinsic::aarch64_sve_fcvtnt_f16f32:
2245 case Intrinsic::aarch64_sve_fcvtnt_f32f64:
2246 case Intrinsic::aarch64_sve_fcvtxnt_f32f64:
2248 case Intrinsic::aarch64_sve_st1_scatter:
2249 case Intrinsic::aarch64_sve_st1_scatter_scalar_offset:
2250 case Intrinsic::aarch64_sve_st1_scatter_sxtw:
2251 case Intrinsic::aarch64_sve_st1_scatter_sxtw_index:
2252 case Intrinsic::aarch64_sve_st1_scatter_uxtw:
2253 case Intrinsic::aarch64_sve_st1_scatter_uxtw_index:
2254 case Intrinsic::aarch64_sve_st1dq:
2255 case Intrinsic::aarch64_sve_st1q_scatter_index:
2256 case Intrinsic::aarch64_sve_st1q_scatter_scalar_offset:
2257 case Intrinsic::aarch64_sve_st1q_scatter_vector_offset:
2258 case Intrinsic::aarch64_sve_st1wq:
2259 case Intrinsic::aarch64_sve_stnt1:
2260 case Intrinsic::aarch64_sve_stnt1_scatter:
2261 case Intrinsic::aarch64_sve_stnt1_scatter_index:
2262 case Intrinsic::aarch64_sve_stnt1_scatter_scalar_offset:
2263 case Intrinsic::aarch64_sve_stnt1_scatter_uxtw:
2265 case Intrinsic::aarch64_sve_st2:
2266 case Intrinsic::aarch64_sve_st2q:
2268 case Intrinsic::aarch64_sve_st3:
2269 case Intrinsic::aarch64_sve_st3q:
2271 case Intrinsic::aarch64_sve_st4:
2272 case Intrinsic::aarch64_sve_st4q:
2274 case Intrinsic::aarch64_sve_addqv:
2275 case Intrinsic::aarch64_sve_and_z:
2276 case Intrinsic::aarch64_sve_bic_z:
2277 case Intrinsic::aarch64_sve_brka_z:
2278 case Intrinsic::aarch64_sve_brkb_z:
2279 case Intrinsic::aarch64_sve_brkn_z:
2280 case Intrinsic::aarch64_sve_brkpa_z:
2281 case Intrinsic::aarch64_sve_brkpb_z:
2282 case Intrinsic::aarch64_sve_cntp:
2283 case Intrinsic::aarch64_sve_compact:
2284 case Intrinsic::aarch64_sve_eor_z:
2285 case Intrinsic::aarch64_sve_eorv:
2286 case Intrinsic::aarch64_sve_eorqv:
2287 case Intrinsic::aarch64_sve_nand_z:
2288 case Intrinsic::aarch64_sve_nor_z:
2289 case Intrinsic::aarch64_sve_orn_z:
2290 case Intrinsic::aarch64_sve_orr_z:
2291 case Intrinsic::aarch64_sve_orv:
2292 case Intrinsic::aarch64_sve_orqv:
2293 case Intrinsic::aarch64_sve_pnext:
2294 case Intrinsic::aarch64_sve_rdffr_z:
2295 case Intrinsic::aarch64_sve_saddv:
2296 case Intrinsic::aarch64_sve_uaddv:
2297 case Intrinsic::aarch64_sve_umaxv:
2298 case Intrinsic::aarch64_sve_umaxqv:
2299 case Intrinsic::aarch64_sve_cmpeq:
2300 case Intrinsic::aarch64_sve_cmpeq_wide:
2301 case Intrinsic::aarch64_sve_cmpge:
2302 case Intrinsic::aarch64_sve_cmpge_wide:
2303 case Intrinsic::aarch64_sve_cmpgt:
2304 case Intrinsic::aarch64_sve_cmpgt_wide:
2305 case Intrinsic::aarch64_sve_cmphi:
2306 case Intrinsic::aarch64_sve_cmphi_wide:
2307 case Intrinsic::aarch64_sve_cmphs:
2308 case Intrinsic::aarch64_sve_cmphs_wide:
2309 case Intrinsic::aarch64_sve_cmple_wide:
2310 case Intrinsic::aarch64_sve_cmplo_wide:
2311 case Intrinsic::aarch64_sve_cmpls_wide:
2312 case Intrinsic::aarch64_sve_cmplt_wide:
2313 case Intrinsic::aarch64_sve_facge:
2314 case Intrinsic::aarch64_sve_facgt:
2315 case Intrinsic::aarch64_sve_fcmpeq:
2316 case Intrinsic::aarch64_sve_fcmpge:
2317 case Intrinsic::aarch64_sve_fcmpgt:
2318 case Intrinsic::aarch64_sve_fcmpne:
2319 case Intrinsic::aarch64_sve_fcmpuo:
2320 case Intrinsic::aarch64_sve_ld1_gather:
2321 case Intrinsic::aarch64_sve_ld1_gather_scalar_offset:
2322 case Intrinsic::aarch64_sve_ld1_gather_sxtw:
2323 case Intrinsic::aarch64_sve_ld1_gather_sxtw_index:
2324 case Intrinsic::aarch64_sve_ld1_gather_uxtw:
2325 case Intrinsic::aarch64_sve_ld1_gather_uxtw_index:
2326 case Intrinsic::aarch64_sve_ld1q_gather_index:
2327 case Intrinsic::aarch64_sve_ld1q_gather_scalar_offset:
2328 case Intrinsic::aarch64_sve_ld1q_gather_vector_offset:
2329 case Intrinsic::aarch64_sve_ld1ro:
2330 case Intrinsic::aarch64_sve_ld1rq:
2331 case Intrinsic::aarch64_sve_ld1udq:
2332 case Intrinsic::aarch64_sve_ld1uwq:
2333 case Intrinsic::aarch64_sve_ld2_sret:
2334 case Intrinsic::aarch64_sve_ld2q_sret:
2335 case Intrinsic::aarch64_sve_ld3_sret:
2336 case Intrinsic::aarch64_sve_ld3q_sret:
2337 case Intrinsic::aarch64_sve_ld4_sret:
2338 case Intrinsic::aarch64_sve_ld4q_sret:
2339 case Intrinsic::aarch64_sve_ldff1:
2340 case Intrinsic::aarch64_sve_ldff1_gather:
2341 case Intrinsic::aarch64_sve_ldff1_gather_index:
2342 case Intrinsic::aarch64_sve_ldff1_gather_scalar_offset:
2343 case Intrinsic::aarch64_sve_ldff1_gather_sxtw:
2344 case Intrinsic::aarch64_sve_ldff1_gather_sxtw_index:
2345 case Intrinsic::aarch64_sve_ldff1_gather_uxtw:
2346 case Intrinsic::aarch64_sve_ldff1_gather_uxtw_index:
2347 case Intrinsic::aarch64_sve_ldnf1:
2348 case Intrinsic::aarch64_sve_ldnt1:
2349 case Intrinsic::aarch64_sve_ldnt1_gather:
2350 case Intrinsic::aarch64_sve_ldnt1_gather_index:
2351 case Intrinsic::aarch64_sve_ldnt1_gather_scalar_offset:
2352 case Intrinsic::aarch64_sve_ldnt1_gather_uxtw:
2354 case Intrinsic::aarch64_sve_prf:
2355 case Intrinsic::aarch64_sve_prfb_gather_index:
2356 case Intrinsic::aarch64_sve_prfb_gather_scalar_offset:
2357 case Intrinsic::aarch64_sve_prfb_gather_sxtw_index:
2358 case Intrinsic::aarch64_sve_prfb_gather_uxtw_index:
2359 case Intrinsic::aarch64_sve_prfd_gather_index:
2360 case Intrinsic::aarch64_sve_prfd_gather_scalar_offset:
2361 case Intrinsic::aarch64_sve_prfd_gather_sxtw_index:
2362 case Intrinsic::aarch64_sve_prfd_gather_uxtw_index:
2363 case Intrinsic::aarch64_sve_prfh_gather_index:
2364 case Intrinsic::aarch64_sve_prfh_gather_scalar_offset:
2365 case Intrinsic::aarch64_sve_prfh_gather_sxtw_index:
2366 case Intrinsic::aarch64_sve_prfh_gather_uxtw_index:
2367 case Intrinsic::aarch64_sve_prfw_gather_index:
2368 case Intrinsic::aarch64_sve_prfw_gather_scalar_offset:
2369 case Intrinsic::aarch64_sve_prfw_gather_sxtw_index:
2370 case Intrinsic::aarch64_sve_prfw_gather_uxtw_index:
2372 case Intrinsic::aarch64_neon_fmaxnm:
2373 case Intrinsic::aarch64_neon_fminnm:
2375 case Intrinsic::aarch64_sve_convert_from_svbool:
2377 case Intrinsic::aarch64_sve_dup:
2379 case Intrinsic::aarch64_sve_dup_x:
2381 case Intrinsic::aarch64_sve_cmpne:
2382 case Intrinsic::aarch64_sve_cmpne_wide:
2384 case Intrinsic::aarch64_sve_rdffr:
2386 case Intrinsic::aarch64_sve_lasta:
2387 case Intrinsic::aarch64_sve_lastb:
2389 case Intrinsic::aarch64_sve_clasta_n:
2390 case Intrinsic::aarch64_sve_clastb_n:
2392 case Intrinsic::aarch64_sve_cntd:
2394 case Intrinsic::aarch64_sve_cntw:
2396 case Intrinsic::aarch64_sve_cnth:
2398 case Intrinsic::aarch64_sve_cntb:
2400 case Intrinsic::aarch64_sve_ptest_any:
2401 case Intrinsic::aarch64_sve_ptest_first:
2402 case Intrinsic::aarch64_sve_ptest_last:
2404 case Intrinsic::aarch64_sve_fabd:
2406 case Intrinsic::aarch64_sve_fadd:
2408 case Intrinsic::aarch64_sve_fadd_u:
2410 case Intrinsic::aarch64_sve_fdiv:
2412 case Intrinsic::aarch64_sve_fmax:
2414 case Intrinsic::aarch64_sve_fmaxnm:
2416 case Intrinsic::aarch64_sve_fmin:
2418 case Intrinsic::aarch64_sve_fminnm:
2420 case Intrinsic::aarch64_sve_fmla:
2422 case Intrinsic::aarch64_sve_fmls:
2424 case Intrinsic::aarch64_sve_fmul:
2429 case Intrinsic::aarch64_sve_fmul_u:
2431 case Intrinsic::aarch64_sve_fmulx:
2433 case Intrinsic::aarch64_sve_fnmla:
2435 case Intrinsic::aarch64_sve_fnmls:
2437 case Intrinsic::aarch64_sve_fsub:
2439 case Intrinsic::aarch64_sve_fsub_u:
2441 case Intrinsic::aarch64_sve_add:
2443 case Intrinsic::aarch64_sve_add_u:
2445 Intrinsic::aarch64_sve_mla_u>(
2447 case Intrinsic::aarch64_sve_mla:
2449 case Intrinsic::aarch64_sve_mls:
2451 case Intrinsic::aarch64_sve_mul:
2456 case Intrinsic::aarch64_sve_mul_u:
2458 case Intrinsic::aarch64_sve_sabd:
2460 case Intrinsic::aarch64_sve_smax:
2462 case Intrinsic::aarch64_sve_smin:
2464 case Intrinsic::aarch64_sve_smulh:
2466 case Intrinsic::aarch64_sve_sub:
2468 case Intrinsic::aarch64_sve_sub_u:
2470 Intrinsic::aarch64_sve_mls_u>(
2472 case Intrinsic::aarch64_sve_uabd:
2474 case Intrinsic::aarch64_sve_umax:
2476 case Intrinsic::aarch64_sve_umin:
2478 case Intrinsic::aarch64_sve_umulh:
2480 case Intrinsic::aarch64_sve_asr:
2482 case Intrinsic::aarch64_sve_lsl:
2484 case Intrinsic::aarch64_sve_lsr:
2486 case Intrinsic::aarch64_sve_and:
2488 case Intrinsic::aarch64_sve_bic:
2490 case Intrinsic::aarch64_sve_eor:
2492 case Intrinsic::aarch64_sve_orr:
2494 case Intrinsic::aarch64_sve_sqsub:
2496 case Intrinsic::aarch64_sve_uqsub:
2498 case Intrinsic::aarch64_sve_tbl:
2500 case Intrinsic::aarch64_sve_uunpkhi:
2501 case Intrinsic::aarch64_sve_uunpklo:
2502 case Intrinsic::aarch64_sve_sunpkhi:
2503 case Intrinsic::aarch64_sve_sunpklo:
2505 case Intrinsic::aarch64_sve_uzp1:
2507 case Intrinsic::aarch64_sve_zip1:
2508 case Intrinsic::aarch64_sve_zip2:
2510 case Intrinsic::aarch64_sve_ld1_gather_index:
2512 case Intrinsic::aarch64_sve_st1_scatter_index:
2514 case Intrinsic::aarch64_sve_ld1:
2516 case Intrinsic::aarch64_sve_st1:
2518 case Intrinsic::aarch64_sve_sdiv:
2520 case Intrinsic::aarch64_sve_sel:
2522 case Intrinsic::aarch64_sve_srshl:
2524 case Intrinsic::aarch64_sve_dupq_lane:
2526 case Intrinsic::aarch64_sve_insr:
2530 return std::nullopt;
2537 SimplifyAndSetOp)
const {
2538 switch (
II.getIntrinsicID()) {
2541 case Intrinsic::aarch64_neon_fcvtxn:
2542 case Intrinsic::aarch64_neon_rshrn:
2543 case Intrinsic::aarch64_neon_sqrshrn:
2544 case Intrinsic::aarch64_neon_sqrshrun:
2545 case Intrinsic::aarch64_neon_sqshrn:
2546 case Intrinsic::aarch64_neon_sqshrun:
2547 case Intrinsic::aarch64_neon_sqxtn:
2548 case Intrinsic::aarch64_neon_sqxtun:
2549 case Intrinsic::aarch64_neon_uqrshrn:
2550 case Intrinsic::aarch64_neon_uqshrn:
2551 case Intrinsic::aarch64_neon_uqxtn:
2552 SimplifyAndSetOp(&
II, 0, OrigDemandedElts, UndefElts);
2556 return std::nullopt;
2588bool AArch64TTIImpl::isWideningInstruction(
Type *DstTy,
unsigned Opcode,
2590 Type *SrcOverrideTy) {
2595 cast<VectorType>(DstTy)->getElementCount());
2605 (DstEltSize != 16 && DstEltSize != 32 && DstEltSize != 64))
2615 Type *SrcTy = SrcOverrideTy;
2617 case Instruction::Add:
2618 case Instruction::Sub:
2620 if (isa<SExtInst>(Args[1]) || isa<ZExtInst>(Args[1])) {
2627 case Instruction::Mul: {
2629 if ((isa<SExtInst>(Args[0]) && isa<SExtInst>(Args[1])) ||
2630 (isa<ZExtInst>(Args[0]) && isa<ZExtInst>(Args[1]))) {
2634 }
else if (isa<ZExtInst>(Args[0]) || isa<ZExtInst>(Args[1])) {
2663 assert(SrcTy &&
"Expected some SrcTy");
2665 unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
2671 DstTyL.first * DstTyL.second.getVectorMinNumElements();
2673 SrcTyL.first * SrcTyL.second.getVectorMinNumElements();
2677 return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstEltSize;
2690 (Src->isScalableTy() && !ST->hasSVE2()))
2699 dyn_cast_or_null<Instruction>(
Add->getUniqueUndroppableUser());
2700 if (AddUser && AddUser->getOpcode() == Instruction::Add)
2703 auto *Shr = dyn_cast_or_null<Instruction>(
Add->getUniqueUndroppableUser());
2704 if (!Shr || Shr->getOpcode() != Instruction::LShr)
2707 auto *Trunc = dyn_cast_or_null<Instruction>(Shr->getUniqueUndroppableUser());
2708 if (!Trunc || Trunc->getOpcode() != Instruction::Trunc ||
2709 Src->getScalarSizeInBits() !=
2710 cast<CastInst>(Trunc)->getDestTy()->getScalarSizeInBits())
2734 assert(ISD &&
"Invalid opcode");
2737 if (
I &&
I->hasOneUser()) {
2738 auto *SingleUser = cast<Instruction>(*
I->user_begin());
2740 if (isWideningInstruction(Dst, SingleUser->getOpcode(),
Operands, Src)) {
2744 if (SingleUser->getOpcode() == Instruction::Add) {
2745 if (
I == SingleUser->getOperand(1) ||
2746 (isa<CastInst>(SingleUser->getOperand(1)) &&
2747 cast<CastInst>(SingleUser->getOperand(1))->getOpcode() == Opcode))
2754 if ((isa<ZExtInst>(
I) || isa<SExtInst>(
I)) &&
2762 return Cost == 0 ? 0 : 1;
2786 return AdjustCost(Entry->Cost);
3120 EVT WiderTy = SrcTy.
bitsGT(DstTy) ? SrcTy : DstTy;
3124 std::pair<InstructionCost, MVT> LT =
3126 unsigned NumElements =
3138 return AdjustCost(Entry->Cost);
3165 if (ST->hasFullFP16())
3168 return AdjustCost(Entry->Cost);
3184 Opcode, LegalTy, Src, CCH,
CostKind,
I);
3187 return Part1 + Part2;
3207 assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
3215 assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) &&
"Invalid type");
3221 CostKind, Index,
nullptr,
nullptr);
3231 if (!VecLT.second.isVector() || !TLI->
isTypeLegal(DstVT))
3237 if (DstVT.getFixedSizeInBits() < SrcVT.getFixedSizeInBits())
3247 case Instruction::SExt:
3252 case Instruction::ZExt:
3253 if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
3266 return Opcode == Instruction::PHI ? 0 : 1;
3273 unsigned Opcode,
Type *Val,
unsigned Index,
bool HasRealUse,
3275 ArrayRef<std::tuple<Value *, User *, int>> ScalarUserAndIdx) {
3283 if (!LT.second.isVector())
3288 if (LT.second.isFixedLengthVector()) {
3289 unsigned Width = LT.second.getVectorNumElements();
3290 Index = Index % Width;
3306 if (
I && dyn_cast<LoadInst>(
I->getOperand(1)))
3336 auto ExtractCanFuseWithFmul = [&]() {
3343 auto IsAllowedScalarTy = [&](
const Type *
T) {
3344 return T->isFloatTy() ||
T->isDoubleTy() ||
3345 (
T->isHalfTy() && ST->hasFullFP16());
3349 auto IsUserFMulScalarTy = [](
const Value *EEUser) {
3351 const auto *BO = dyn_cast<BinaryOperator>(EEUser);
3352 return BO && BO->getOpcode() == BinaryOperator::FMul &&
3353 !BO->getType()->isVectorTy();
3358 auto IsExtractLaneEquivalentToZero = [&](
unsigned Idx,
unsigned EltSz) {
3362 return Idx == 0 || (RegWidth != 0 && (
Idx * EltSz) % RegWidth == 0);
3367 if (!isa<FixedVectorType>(Val) || !IsAllowedScalarTy(Val->
getScalarType()))
3372 for (
auto *U :
Scalar->users()) {
3373 if (!IsUserFMulScalarTy(U))
3377 UserToExtractIdx[
U];
3379 if (UserToExtractIdx.
empty())
3381 for (
auto &[S, U, L] : ScalarUserAndIdx) {
3382 for (
auto *U : S->users()) {
3383 if (UserToExtractIdx.
find(U) != UserToExtractIdx.
end()) {
3384 auto *
FMul = cast<BinaryOperator>(U);
3385 auto *Op0 =
FMul->getOperand(0);
3386 auto *Op1 =
FMul->getOperand(1);
3387 if ((Op0 == S && Op1 == S) || Op0 != S || Op1 != S) {
3388 UserToExtractIdx[
U] =
L;
3394 for (
auto &[U, L] : UserToExtractIdx) {
3400 const auto *EE = cast<ExtractElementInst>(
I);
3402 const auto *IdxOp = dyn_cast<ConstantInt>(EE->getIndexOperand());
3406 return !EE->users().empty() &&
all_of(EE->users(), [&](
const User *U) {
3407 if (!IsUserFMulScalarTy(U))
3412 const auto *BO = cast<BinaryOperator>(U);
3413 const auto *OtherEE = dyn_cast<ExtractElementInst>(
3414 BO->getOperand(0) == EE ? BO->getOperand(1) : BO->getOperand(0));
3416 const auto *IdxOp = dyn_cast<ConstantInt>(OtherEE->getIndexOperand());
3419 return IsExtractLaneEquivalentToZero(
3420 cast<ConstantInt>(OtherEE->getIndexOperand())
3423 OtherEE->getType()->getScalarSizeInBits());
3431 if (Opcode == Instruction::ExtractElement && (
I || Scalar) &&
3432 ExtractCanFuseWithFmul())
3436 return ST->getVectorInsertExtractBaseCost();
3441 unsigned Index,
Value *Op0,
3444 Opcode == Instruction::InsertElement && Op0 && !isa<UndefValue>(Op0);
3445 return getVectorInstrCostHelper(Opcode, Val, Index, HasRealUse);
3451 ArrayRef<std::tuple<Value *, User *, int>> ScalarUserAndIdx) {
3452 return getVectorInstrCostHelper(Opcode, Val, Index,
false,
nullptr, Scalar,
3460 return getVectorInstrCostHelper(
I.getOpcode(), Val, Index,
3467 if (isa<ScalableVectorType>(Ty))
3472 return DemandedElts.
popcount() * (Insert + Extract) *
3486 if (
auto *VTy = dyn_cast<ScalableVectorType>(Ty))
3493 Op2Info, Args, CxtI);
3535 return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
3542 if (!VT.isVector() && VT.getSizeInBits() > 64)
3546 Opcode, Ty,
CostKind, Op1Info, Op2Info);
3551 if (isa<FixedVectorType>(Ty) && cast<FixedVectorType>(Ty)
3552 ->getPrimitiveSizeInBits()
3553 .getFixedValue() < 128) {
3564 if (
nullptr != Entry)
3569 if (LT.second.getScalarType() == MVT::i8)
3571 else if (LT.second.getScalarType() == MVT::i16)
3581 if (
auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
3584 return (4 + DivCost) * VTy->getNumElements();
3604 if (LT.second == MVT::v2i64 && ST->hasSVE())
3619 if (LT.second != MVT::v2i64 || isWideningInstruction(Ty, Opcode, Args))
3621 return cast<VectorType>(Ty)->getElementCount().getKnownMinValue() *
3642 (Ty->
isHalfTy() && ST->hasFullFP16())) &&
3655 return 2 * LT.first;
3664 return 2 * LT.first;
3686 int MaxMergeDistance = 64;
3690 return NumVectorInstToHideOverhead;
3704 Op1Info, Op2Info,
I);
3709 if (isa<FixedVectorType>(ValTy) && ISD ==
ISD::SELECT) {
3711 const int AmortizationCost = 20;
3719 VecPred = CurrentPred;
3727 static const auto ValidMinMaxTys = {
3728 MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32,
3729 MVT::v4i32, MVT::v2i64, MVT::v2f32, MVT::v4f32, MVT::v2f64};
3730 static const auto ValidFP16MinMaxTys = {MVT::v4f16, MVT::v8f16};
3733 if (
any_of(ValidMinMaxTys, [<](
MVT M) {
return M == LT.second; }) ||
3734 (ST->hasFullFP16() &&
3735 any_of(ValidFP16MinMaxTys, [<](
MVT M) {
return M == LT.second; })))
3740 VectorSelectTbl[] = {
3749 {
ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
3750 {
ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
3751 {
ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
3764 if (isa<FixedVectorType>(ValTy) && ISD ==
ISD::SETCC) {
3767 if (LT.second == MVT::v4f16 && !ST->hasFullFP16())
3768 return LT.first * 4;
3784 Op1Info, Op2Info,
I);
3790 if (ST->requiresStrictAlign()) {
3795 Options.AllowOverlappingLoads =
true;
3801 Options.LoadSizes = {8, 4, 2, 1};
3802 Options.AllowedTailExpansions = {3, 5, 6};
3807 return ST->hasSVE();
3818 if (!LT.first.isValid())
3822 auto *VT = cast<VectorType>(Src);
3823 if (VT->getElementType()->isIntegerTy(1))
3840 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
3841 "Should be called on only load or stores.");
3843 case Instruction::Load:
3846 return ST->getGatherOverhead();
3848 case Instruction::Store:
3851 return ST->getScatterOverhead();
3859 unsigned Opcode,
Type *DataTy,
const Value *
Ptr,
bool VariableMask,
3864 auto *VT = cast<VectorType>(DataTy);
3866 if (!LT.first.isValid())
3870 if (!LT.second.isVector() ||
3872 VT->getElementType()->isIntegerTy(1))
3882 ElementCount LegalVF = LT.second.getVectorElementCount();
3885 {TTI::OK_AnyValue, TTI::OP_None},
I);
3903 if (VT == MVT::Other)
3908 if (!LT.first.isValid())
3916 if (
auto *VTy = dyn_cast<ScalableVectorType>(Ty))
3918 (VTy->getElementType()->isIntegerTy(1) &&
3919 !VTy->getElementCount().isKnownMultipleOf(
3930 if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
3931 LT.second.is128BitVector() && (!Alignment || *Alignment <
Align(16))) {
3937 const int AmortizationCost = 6;
3939 return LT.first * 2 * AmortizationCost;
3950 if (VT == MVT::v4i8)
3953 return cast<FixedVectorType>(Ty)->getNumElements() * 2;
3957 if (!
isPowerOf2_32(EltSize) || EltSize < 8 || EltSize > 64 ||
3959 *Alignment !=
Align(1))
3973 while (!TypeWorklist.
empty()) {
3995 bool UseMaskForCond,
bool UseMaskForGaps) {
3996 assert(Factor >= 2 &&
"Invalid interleave factor");
3997 auto *VecVTy = cast<VectorType>(VecTy);
4004 if (!VecTy->
isScalableTy() && (UseMaskForCond || UseMaskForGaps))
4007 if (!UseMaskForGaps && Factor <= TLI->getMaxSupportedInterleaveFactor()) {
4008 unsigned MinElts = VecVTy->getElementCount().getKnownMinValue();
4011 VecVTy->getElementCount().divideCoefficientBy(Factor));
4017 if (MinElts % Factor == 0 &&
4024 UseMaskForCond, UseMaskForGaps);
4031 for (
auto *
I : Tys) {
4032 if (!
I->isVectorTy())
4034 if (
I->getScalarSizeInBits() * cast<FixedVectorType>(
I)->getNumElements() ==
4053 enum { MaxStridedLoads = 7 };
4055 int StridedLoads = 0;
4058 for (
const auto BB : L->blocks()) {
4059 for (
auto &
I : *BB) {
4060 LoadInst *LMemI = dyn_cast<LoadInst>(&
I);
4065 if (L->isLoopInvariant(PtrValue))
4069 const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
4070 if (!LSCEVAddRec || !LSCEVAddRec->
isAffine())
4079 if (StridedLoads > MaxStridedLoads / 2)
4080 return StridedLoads;
4083 return StridedLoads;
4086 int StridedLoads = countStridedLoads(L, SE);
4088 <<
" strided loads\n");
4110 if (!L->isInnermost() || !L->getExitBlock() || L->getNumBlocks() > 8)
4114 if (isa<SCEVConstant>(BTC) || isa<SCEVCouldNotCompute>(BTC) ||
4122 for (
auto *BB : L->getBlocks()) {
4123 for (
auto &
I : *BB) {
4124 if (!isa<IntrinsicInst>(&
I) && isa<CallBase>(&
I))
4138 if (Header == L->getLoopLatch()) {
4144 for (
auto *BB : L->blocks()) {
4145 for (
auto &
I : *BB) {
4152 if (isa<LoadInst>(&
I))
4161 unsigned MaxInstsPerLine = 16;
4163 unsigned BestUC = 1;
4164 unsigned SizeWithBestUC = BestUC *
Size;
4166 unsigned SizeWithUC = UC *
Size;
4167 if (SizeWithUC > 48)
4169 if ((SizeWithUC % MaxInstsPerLine) == 0 ||
4170 (SizeWithBestUC % MaxInstsPerLine) < (SizeWithUC % MaxInstsPerLine)) {
4172 SizeWithBestUC = BestUC *
Size;
4178 return LoadedValues.
contains(SI->getOperand(0));
4189 auto *Term = dyn_cast<BranchInst>(Header->getTerminator());
4190 auto *Latch = L->getLoopLatch();
4192 if (!Term || !Term->isConditional() || Preds.
size() == 1 ||
4199 if (isa<PHINode>(
I) || L->isLoopInvariant(
I) ||
Depth > 8)
4202 if (isa<LoadInst>(
I))
4206 auto *I = dyn_cast<Instruction>(V);
4207 return I && DependsOnLoopLoad(I, Depth + 1);
4214 DependsOnLoopLoad(
I, 0)) {
4230 if (L->getLoopDepth() > 1)
4238 case AArch64Subtarget::AppleA14:
4239 case AArch64Subtarget::AppleA15:
4240 case AArch64Subtarget::AppleA16:
4241 case AArch64Subtarget::AppleM4:
4244 case AArch64Subtarget::Falkor:
4255 for (
auto *BB : L->getBlocks()) {
4256 for (
auto &
I : *BB) {
4258 if (
I.getType()->isVectorTy())
4261 if (isa<CallInst>(
I) || isa<InvokeInst>(
I)) {
4276 !ST->getSchedModel().isOutOfOrder()) {
4293 Type *ExpectedType) {
4297 case Intrinsic::aarch64_neon_st2:
4298 case Intrinsic::aarch64_neon_st3:
4299 case Intrinsic::aarch64_neon_st4: {
4301 StructType *ST = dyn_cast<StructType>(ExpectedType);
4304 unsigned NumElts = Inst->
arg_size() - 1;
4305 if (ST->getNumElements() != NumElts)
4307 for (
unsigned i = 0, e = NumElts; i != e; ++i) {
4313 for (
unsigned i = 0, e = NumElts; i != e; ++i) {
4319 case Intrinsic::aarch64_neon_ld2:
4320 case Intrinsic::aarch64_neon_ld3:
4321 case Intrinsic::aarch64_neon_ld4:
4322 if (Inst->
getType() == ExpectedType)
4333 case Intrinsic::aarch64_neon_ld2:
4334 case Intrinsic::aarch64_neon_ld3:
4335 case Intrinsic::aarch64_neon_ld4:
4336 Info.ReadMem =
true;
4337 Info.WriteMem =
false;
4340 case Intrinsic::aarch64_neon_st2:
4341 case Intrinsic::aarch64_neon_st3:
4342 case Intrinsic::aarch64_neon_st4:
4343 Info.ReadMem =
false;
4344 Info.WriteMem =
true;
4352 case Intrinsic::aarch64_neon_ld2:
4353 case Intrinsic::aarch64_neon_st2:
4354 Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
4356 case Intrinsic::aarch64_neon_ld3:
4357 case Intrinsic::aarch64_neon_st3:
4358 Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
4360 case Intrinsic::aarch64_neon_ld4:
4361 case Intrinsic::aarch64_neon_st4:
4362 Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
4374 const Instruction &
I,
bool &AllowPromotionWithoutCommonHeader) {
4375 bool Considerable =
false;
4376 AllowPromotionWithoutCommonHeader =
false;
4377 if (!isa<SExtInst>(&
I))
4379 Type *ConsideredSExtType =
4381 if (
I.getType() != ConsideredSExtType)
4385 for (
const User *U :
I.users()) {
4387 Considerable =
true;
4391 if (GEPInst->getNumOperands() > 2) {
4392 AllowPromotionWithoutCommonHeader =
true;
4397 return Considerable;
4438 if (
auto *VTy = dyn_cast<ScalableVectorType>(Ty))
4444 if (LT.second.getScalarType() == MVT::f16 && !ST->hasFullFP16())
4454 return LegalizationCost + 2;
4464 LegalizationCost *= LT.first - 1;
4468 assert(ISD &&
"Invalid opcode");
4476 return LegalizationCost + 2;
4484 std::optional<FastMathFlags> FMF,
4490 if (
auto *VTy = dyn_cast<ScalableVectorType>(ValTy))
4495 if (
auto *FixedVTy = dyn_cast<FixedVectorType>(ValTy)) {
4500 return BaseCost + FixedVTy->getNumElements();
4503 if (Opcode != Instruction::FAdd)
4506 auto *VTy = cast<ScalableVectorType>(ValTy);
4513 if (isa<ScalableVectorType>(ValTy))
4517 MVT MTy = LT.second;
4519 assert(ISD &&
"Invalid opcode");
4565 MTy.
isVector() && (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
4566 (EltTy->isHalfTy() && ST->hasFullFP16()))) {
4578 return (LT.first - 1) +
Log2_32(NElts);
4583 return (LT.first - 1) + Entry->Cost;
4591 auto *ValVTy = cast<FixedVectorType>(ValTy);
4595 if (LT.first != 1) {
4601 ExtraCost *= LT.first - 1;
4604 auto Cost = ValVTy->getElementType()->isIntegerTy(1) ? 2 : Entry->Cost;
4605 return Cost + ExtraCost;
4639 EVT PromotedVT = LT.second.getScalarType() == MVT::i1
4654 if (LT.second.getScalarType() == MVT::i1) {
4663 assert(Entry &&
"Illegal Type for Splice");
4664 LegalizationCost += Entry->Cost;
4665 return LegalizationCost * LT.first;
4669 unsigned Opcode,
Type *InputTypeA,
Type *InputTypeB,
Type *AccumType,
4672 std::optional<unsigned> BinOp)
const {
4676 if (Opcode != Instruction::Add)
4679 if (InputTypeA != InputTypeB)
4690 if (InputEVT == MVT::i8) {
4695 if (AccumEVT == MVT::i32)
4697 else if (AccumEVT != MVT::i64)
4701 if (AccumEVT == MVT::i64)
4703 else if (AccumEVT != MVT::i32)
4707 }
else if (InputEVT == MVT::i16) {
4718 (OpAExtend != OpBExtend && !ST->hasMatMulInt8() &&
4722 if (!BinOp || *BinOp != Instruction::Mul)
4736 if (!Mask.empty() && isa<FixedVectorType>(Tp) && LT.second.isVector() &&
4738 Mask.size() > LT.second.getVectorNumElements() && !Index && !SubTp) {
4744 if (Args.size() >= 1 && isa<LoadInst>(Args[0]) &&
4747 return std::max<InstructionCost>(1, LT.first / 4);
4760 unsigned TpNumElts = Mask.size();
4761 unsigned LTNumElts = LT.second.getVectorNumElements();
4762 unsigned NumVecs = (TpNumElts + LTNumElts - 1) / LTNumElts;
4766 for (
unsigned N = 0;
N < NumVecs;
N++) {
4770 unsigned Source1, Source2;
4771 unsigned NumSources = 0;
4772 for (
unsigned E = 0; E < LTNumElts; E++) {
4773 int MaskElt = (
N * LTNumElts + E < TpNumElts) ? Mask[
N * LTNumElts + E]
4782 unsigned Source = MaskElt / LTNumElts;
4783 if (NumSources == 0) {
4786 }
else if (NumSources == 1 && Source != Source1) {
4789 }
else if (NumSources >= 2 && Source != Source1 && Source != Source2) {
4795 if (Source == Source1)
4797 else if (Source == Source2)
4798 NMask.
push_back(MaskElt % LTNumElts + LTNumElts);
4805 if (NumSources <= 2)
4808 NTp, NMask,
CostKind, 0,
nullptr, Args, CxtI);
4820 if (IsExtractSubvector && LT.second.isFixedLengthVector()) {
4821 if (LT.second.is128BitVector() &&
4822 cast<FixedVectorType>(SubTp)->getNumElements() ==
4823 LT.second.getVectorNumElements() / 2) {
4826 if (Index == (
int)LT.second.getVectorNumElements() / 2)
4840 bool IsLoad = !Args.empty() && isa<LoadInst>(Args[0]);
4841 if (IsLoad && LT.second.isVector() &&
4843 LT.second.getVectorElementCount()))
4851 all_of(Mask, [](
int E) {
return E < 8; }))
4855 if (!Mask.empty() && LT.second.isFixedLengthVector() &&
4858 return M.value() < 0 || M.value() == (
int)M.index();
4865 if (LT.second.isFixedLengthVector() &&
4866 LT.second.getVectorNumElements() == Mask.size() &&
4868 (
isZIPMask(Mask, LT.second.getVectorNumElements(), Unused) ||
4869 isUZPMask(Mask, LT.second.getVectorNumElements(), Unused) ||
4872 [&Mask](
int M) {
return M < 0 || M == Mask[0]; })))
4995 return LT.first * Entry->Cost;
5004 LT.second.getSizeInBits() <= 128 && SubTp) {
5006 if (SubLT.second.isVector()) {
5007 int NumElts = LT.second.getVectorNumElements();
5008 int NumSubElts = SubLT.second.getVectorNumElements();
5009 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
5015 if (IsExtractSubvector)
5028 if (isa<LoadInst>(&
I) || isa<StoreInst>(&
I)) {
5044 return ST->useFixedOverScalableIfEqualCost();
5082 unsigned NumInsns = 0;
5084 NumInsns += BB->sizeWithoutDebug();
5094 int64_t Scale,
unsigned AddrSpace)
const {
5121 if (
I->getOpcode() == Instruction::Or &&
5122 isa<BranchInst>(
I->getNextNode()) &&
5123 cast<BranchInst>(
I->getNextNode())->isUnconditional())
5126 if (
I->getOpcode() == Instruction::Add ||
5127 I->getOpcode() == Instruction::Sub)
5150 if (
auto *Shuf = dyn_cast<ShuffleVectorInst>(V))
5151 return all_equal(Shuf->getShuffleMask());
5158 bool AllowSplat =
false) {
5163 auto areTypesHalfed = [](
Value *FullV,
Value *HalfV) {
5164 auto *FullTy = FullV->
getType();
5165 auto *HalfTy = HalfV->getType();
5167 2 * HalfTy->getPrimitiveSizeInBits().getFixedValue();
5170 auto extractHalf = [](
Value *FullV,
Value *HalfV) {
5171 auto *FullVT = cast<FixedVectorType>(FullV->
getType());
5172 auto *HalfVT = cast<FixedVectorType>(HalfV->getType());
5173 return FullVT->getNumElements() == 2 * HalfVT->getNumElements();
5177 Value *S1Op1 =
nullptr, *S2Op1 =
nullptr;
5191 if ((S1Op1 && (!areTypesHalfed(S1Op1, Op1) || !extractHalf(S1Op1, Op1))) ||
5192 (S2Op1 && (!areTypesHalfed(S2Op1, Op2) || !extractHalf(S2Op1, Op2))))
5199 int NumElements = cast<FixedVectorType>(Op1->
getType())->getNumElements() * 2;
5206 if ((M1Start != 0 && M1Start != (NumElements / 2)) ||
5207 (M2Start != 0 && M2Start != (NumElements / 2)))
5209 if (S1Op1 && S2Op1 && M1Start != M2Start)
5219 return Ext->getType()->getScalarSizeInBits() ==
5220 2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
5225 !areExtDoubled(cast<Instruction>(Ext1)) ||
5226 !areExtDoubled(cast<Instruction>(Ext2)))
5234 Value *VectorOperand =
nullptr;
5239 isa<FixedVectorType>(VectorOperand->
getType()) &&
5240 cast<FixedVectorType>(VectorOperand->
getType())->getNumElements() == 2;
5250 auto *
GEP = dyn_cast<GetElementPtrInst>(Ptrs);
5251 if (!
GEP ||
GEP->getNumOperands() != 2)
5255 Value *Offsets =
GEP->getOperand(1);
5258 if (
Base->getType()->isVectorTy() || !Offsets->getType()->isVectorTy())
5262 if (isa<SExtInst>(Offsets) || isa<ZExtInst>(Offsets)) {
5263 auto *OffsetsInst = cast<Instruction>(Offsets);
5264 if (OffsetsInst->getType()->getScalarSizeInBits() > 32 &&
5265 OffsetsInst->getOperand(0)->getType()->getScalarSizeInBits() <= 32)
5281 Ops.
push_back(&cast<Instruction>(
Op)->getOperandUse(0));
5286 Value *ZExtOp = cast<Instruction>(
Op)->getOperand(0);
5287 Ops.
push_back(&cast<Instruction>(ZExtOp)->getOperandUse(0));
5288 Ops.
push_back(&cast<Instruction>(
Op)->getOperandUse(0));
5300 switch (
II->getIntrinsicID()) {
5301 case Intrinsic::aarch64_neon_smull:
5302 case Intrinsic::aarch64_neon_umull:
5311 case Intrinsic::fma:
5312 case Intrinsic::fmuladd:
5313 if (isa<VectorType>(
I->getType()) &&
5314 cast<VectorType>(
I->getType())->getElementType()->isHalfTy() &&
5318 case Intrinsic::aarch64_neon_sqdmull:
5319 case Intrinsic::aarch64_neon_sqdmulh:
5320 case Intrinsic::aarch64_neon_sqrdmulh:
5326 return !Ops.
empty();
5327 case Intrinsic::aarch64_neon_fmlal:
5328 case Intrinsic::aarch64_neon_fmlal2:
5329 case Intrinsic::aarch64_neon_fmlsl:
5330 case Intrinsic::aarch64_neon_fmlsl2:
5336 return !Ops.
empty();
5337 case Intrinsic::aarch64_sve_ptest_first:
5338 case Intrinsic::aarch64_sve_ptest_last:
5339 if (
auto *IIOp = dyn_cast<IntrinsicInst>(
II->getOperand(0)))
5340 if (IIOp->getIntrinsicID() == Intrinsic::aarch64_sve_ptrue)
5342 return !Ops.
empty();
5343 case Intrinsic::aarch64_sme_write_horiz:
5344 case Intrinsic::aarch64_sme_write_vert:
5345 case Intrinsic::aarch64_sme_writeq_horiz:
5346 case Intrinsic::aarch64_sme_writeq_vert: {
5347 auto *
Idx = dyn_cast<Instruction>(
II->getOperand(1));
5348 if (!
Idx ||
Idx->getOpcode() != Instruction::Add)
5353 case Intrinsic::aarch64_sme_read_horiz:
5354 case Intrinsic::aarch64_sme_read_vert:
5355 case Intrinsic::aarch64_sme_readq_horiz:
5356 case Intrinsic::aarch64_sme_readq_vert:
5357 case Intrinsic::aarch64_sme_ld1b_vert:
5358 case Intrinsic::aarch64_sme_ld1h_vert:
5359 case Intrinsic::aarch64_sme_ld1w_vert:
5360 case Intrinsic::aarch64_sme_ld1d_vert:
5361 case Intrinsic::aarch64_sme_ld1q_vert:
5362 case Intrinsic::aarch64_sme_st1b_vert:
5363 case Intrinsic::aarch64_sme_st1h_vert:
5364 case Intrinsic::aarch64_sme_st1w_vert:
5365 case Intrinsic::aarch64_sme_st1d_vert:
5366 case Intrinsic::aarch64_sme_st1q_vert:
5367 case Intrinsic::aarch64_sme_ld1b_horiz:
5368 case Intrinsic::aarch64_sme_ld1h_horiz:
5369 case Intrinsic::aarch64_sme_ld1w_horiz:
5370 case Intrinsic::aarch64_sme_ld1d_horiz:
5371 case Intrinsic::aarch64_sme_ld1q_horiz:
5372 case Intrinsic::aarch64_sme_st1b_horiz:
5373 case Intrinsic::aarch64_sme_st1h_horiz:
5374 case Intrinsic::aarch64_sme_st1w_horiz:
5375 case Intrinsic::aarch64_sme_st1d_horiz:
5376 case Intrinsic::aarch64_sme_st1q_horiz: {
5377 auto *
Idx = dyn_cast<Instruction>(
II->getOperand(3));
5378 if (!
Idx ||
Idx->getOpcode() != Instruction::Add)
5383 case Intrinsic::aarch64_neon_pmull:
5389 case Intrinsic::aarch64_neon_pmull64:
5391 II->getArgOperand(1)))
5396 case Intrinsic::masked_gather:
5401 case Intrinsic::masked_scatter:
5411 auto ShouldSinkCondition = [](
Value *
Cond) ->
bool {
5412 auto *
II = dyn_cast<IntrinsicInst>(
Cond);
5413 return II &&
II->getIntrinsicID() == Intrinsic::vector_reduce_or &&
5414 isa<ScalableVectorType>(
II->getOperand(0)->getType());
5417 switch (
I->getOpcode()) {
5418 case Instruction::GetElementPtr:
5419 case Instruction::Add:
5420 case Instruction::Sub:
5422 for (
unsigned Op = 0;
Op <
I->getNumOperands(); ++
Op) {
5429 case Instruction::Select: {
5430 if (!ShouldSinkCondition(
I->getOperand(0)))
5436 case Instruction::Br: {
5437 if (cast<BranchInst>(
I)->isUnconditional())
5440 if (!ShouldSinkCondition(cast<BranchInst>(
I)->getCondition()))
5450 if (!
I->getType()->isVectorTy())
5453 switch (
I->getOpcode()) {
5454 case Instruction::Sub:
5455 case Instruction::Add: {
5461 auto Ext1 = cast<Instruction>(
I->getOperand(0));
5462 auto Ext2 = cast<Instruction>(
I->getOperand(1));
5473 case Instruction::Or: {
5476 if (ST->hasNEON()) {
5486 ? cast<Instruction>(
I->getOperand(1))
5487 : cast<Instruction>(
I->getOperand(0));
5490 if (
I->getParent() != MainAnd->
getParent() ||
5495 if (
I->getParent() != IA->getParent() ||
5496 I->getParent() != IB->getParent())
5511 case Instruction::Mul: {
5512 auto ShouldSinkSplatForIndexedVariant = [](
Value *V) {
5513 auto *Ty = cast<VectorType>(V->getType());
5515 if (Ty->isScalableTy())
5519 return Ty->getScalarSizeInBits() == 16 || Ty->getScalarSizeInBits() == 32;
5522 int NumZExts = 0, NumSExts = 0;
5523 for (
auto &
Op :
I->operands()) {
5525 if (
any_of(Ops, [&](
Use *U) {
return U->get() ==
Op; }))
5529 auto *Ext = cast<Instruction>(
Op);
5530 auto *ExtOp = Ext->getOperand(0);
5531 if (
isSplatShuffle(ExtOp) && ShouldSinkSplatForIndexedVariant(ExtOp))
5535 if (isa<SExtInst>(Ext))
5566 Instruction *OperandInstr = dyn_cast<Instruction>(Insert->getOperand(1));
5571 dyn_cast<ConstantInt>(Insert->getOperand(2));
5573 if (!ElementConstant || !ElementConstant->
isZero())
5576 unsigned Opcode = OperandInstr->
getOpcode();
5577 if (Opcode == Instruction::SExt)
5579 else if (Opcode == Instruction::ZExt)
5584 unsigned Bitwidth =
I->getType()->getScalarSizeInBits();
5595 Ops.
push_back(&Insert->getOperandUse(1));
5601 if (!Ops.
empty() && (NumSExts == 2 || NumZExts == 2))
5605 if (!ShouldSinkSplatForIndexedVariant(
I))
5614 return !Ops.
empty();
5616 case Instruction::FMul: {
5618 if (
I->getType()->isScalableTy())
5621 if (cast<VectorType>(
I->getType())->getElementType()->isHalfTy() &&
5630 return !Ops.
empty();
static bool isAllActivePredicate(SelectionDAG &DAG, SDValue N)
SmallVector< AArch64_IMM::ImmInsnModel, 4 > Insn
AMDGPU Register Bank Select
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
This file provides a helper that implements much of the TTI interface in terms of the target-independ...
static Error reportError(StringRef Message)
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
Analysis containing CSE Info
static cl::opt< TargetTransformInfo::TargetCostKind > CostKind("cost-kind", cl::desc("Target cost kind"), cl::init(TargetTransformInfo::TCK_RecipThroughput), cl::values(clEnumValN(TargetTransformInfo::TCK_RecipThroughput, "throughput", "Reciprocal throughput"), clEnumValN(TargetTransformInfo::TCK_Latency, "latency", "Instruction latency"), clEnumValN(TargetTransformInfo::TCK_CodeSize, "code-size", "Code size"), clEnumValN(TargetTransformInfo::TCK_SizeAndLatency, "size-latency", "Code size and latency")))
Cost tables and simple lookup functions.
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
This file provides the interface for the instcombine pass implementation.
This file defines the LoopVectorizationLegality class.
mir Rename Register Operands
static const Function * getCalledFunction(const Value *V)
uint64_t IntrinsicInst * II
const SmallVectorImpl< MachineOperand > & Cond
static uint64_t getBits(uint64_t Val, int Start, int End)
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static SymbolRef::Type getType(const Symbol *Sym)
This file describes how to lower LLVM code to machine code.
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
bool isNeonAvailable() const
Returns true if the target has NEON and the function at runtime is known to have NEON enabled (e....
unsigned getVectorInsertExtractBaseCost() const
ARMProcFamilyEnum getProcFamily() const
Returns ARM processor family.
unsigned getMaxInterleaveFactor() const
bool isSVEorStreamingSVEAvailable() const
Returns true if the target has access to either the full range of SVE instructions,...
TailFoldingOpts getSVETailFoldingDefaultOpts() const
bool useSVEForFixedLengthVectors() const
unsigned getEpilogueVectorizationMinVF() const
unsigned getMinSVEVectorSizeInBits() const
bool isSVEAvailable() const
Returns true if the target has SVE and can use the full range of SVE instructions,...
InstructionCost getSpliceCost(VectorType *Tp, int Index)
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind, Instruction *Inst=nullptr)
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, StackOffset BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) const
Return the cost of the scaling factor used in the addressing mode represented by AM for this target,...
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind)
bool shouldTreatInstructionLikeSelect(const Instruction *I)
InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr)
bool prefersVectorizedAddressing() const
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind)
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind)
InstructionCost getPartialReductionCost(unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType, ElementCount VF, TTI::PartialReductionExtendKind OpAExtend, TTI::PartialReductionExtendKind OpBExtend, std::optional< unsigned > BinOp) const
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index)
bool isProfitableToSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const
Check if sinking I's operands to I's basic block is profitable, because the operands can be folded in...
unsigned getInlineCallPenalty(const Function *F, const CallBase &Call, unsigned DefaultCallPenalty) const
bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, ElementCount VF) const
unsigned getEpilogueVectorizationMinVF() const
Value * getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType)
bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const
bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader)
See if I should be considered for address type promotion.
InstructionCost getArithmeticReductionCostSVE(unsigned Opcode, VectorType *ValTy, TTI::TargetCostKind CostKind)
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false)
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr)
uint64_t getFeatureMask(const Function &F) const
std::optional< Instruction * > instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const
bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const
bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, const TargetTransformInfo::LSRCost &C2)
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr)
bool isElementTypeLegalForScalableVector(Type *Ty) const
InstructionCost getCostOfKeepingLiveOverCall(ArrayRef< Type * > Tys)
bool preferFixedOverScalableIfEqualCost() const
bool areInlineCompatible(const Function *Caller, const Function *Callee) const
bool enableScalableVectorization() const
bool useNeonVector(const Type *Ty) const
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index, Value *Op0, Value *Op1)
TTI::PopcntSupportKind getPopcntSupport(unsigned TyWidth)
bool areTypesABICompatible(const Function *Caller, const Function *Callee, const ArrayRef< Type * > &Types) const
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
bool isMultiversionedFunction(const Function &F) const
unsigned getMaxNumElements(ElementCount VF) const
Try to return an estimate cost factor that can be used as a multiplier when scalarizing an operation ...
InstructionCost getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, ArrayRef< Value * > VL={})
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr)
bool preferPredicateOverEpilogue(TailFoldingInfo *TFI)
bool isLegalMaskedGatherScatter(Type *DataType) const
unsigned getMaxInterleaveFactor(ElementCount VF)
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr)
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP)
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
InstructionCost getIntImmCost(int64_t Val)
Calculate the cost of materializing a 64-bit value.
std::optional< Value * > simplifyDemandedVectorEltsIntrinsic(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function< void(Instruction *, unsigned, APInt, APInt &)> SimplifyAndSetOp) const
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE)
bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info)
TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind)
bool isExtPartOfAvgExpr(const Instruction *ExtUser, Type *Dst, Type *Src)
InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind)
EVT getPromotedVTForPredicate(EVT VT) const
unsigned getNumInterleavedAccesses(VectorType *VecTy, const DataLayout &DL, bool UseScalable) const
Returns the number of interleaved accesses that will be generated when lowering accesses of the given...
bool isLegalInterleavedAccessType(VectorType *VecTy, const DataLayout &DL, bool &UseScalable) const
Returns true if VecTy is a legal interleaved access type.
Class for arbitrary precision integers.
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
unsigned popcount() const
Count the number of bits set.
unsigned countLeadingOnes() const
void negate()
Negate this APInt in place.
APInt sextOrTrunc(unsigned width) const
Sign extend or truncate to width.
unsigned logBase2() const
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
int64_t getSExtValue() const
Get sign extended value.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
LLVM Basic Block Representation.
bool isTypeLegal(Type *Ty)
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind)
Get intrinsic cost based on arguments.
InstructionCost getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef< unsigned > Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond=false, bool UseMaskForGaps=false)
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP, OptimizationRemarkEmitter *ORE)
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *DataTy, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind)
TTI::ShuffleKind improveShuffleKindFromMask(TTI::ShuffleKind Kind, ArrayRef< int > Mask, VectorType *Ty, int &Index, VectorType *&SubTy) const
InstructionCost getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, TTI::TargetCostKind CostKind)
Try to calculate op costs for min/max reduction operations.
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Op2Info={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr)
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo={TTI::OK_AnyValue, TTI::OP_None}, const Instruction *I=nullptr)
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, ArrayRef< int > Mask, TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr)
bool areInlineCompatible(const Function *Caller, const Function *Callee) const
void getPeelingPreferences(Loop *L, ScalarEvolution &SE, TTI::PeelingPreferences &PP)
InstructionCost getCallInstrCost(Function *F, Type *RetTy, ArrayRef< Type * > Tys, TTI::TargetCostKind CostKind)
Compute a cost of the given call instruction.
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, std::optional< FastMathFlags > FMF, TTI::TargetCostKind CostKind)
std::pair< InstructionCost, MVT > getTypeLegalizationCost(Type *Ty) const
Estimate the cost of type-legalization and the legalized type.
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH, TTI::TargetCostKind CostKind, const Instruction *I=nullptr)
InstructionCost getScalarizationOverhead(VectorType *InTy, const APInt &DemandedElts, bool Insert, bool Extract, TTI::TargetCostKind CostKind, ArrayRef< Value * > VL={})
Estimate the overhead of scalarizing an instruction.
InstructionCost getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueInfo Opd1Info={TTI::OK_AnyValue, TTI::OP_None}, TTI::OperandValueInfo Opd2Info={TTI::OK_AnyValue, TTI::OP_None}, ArrayRef< const Value * > Args={}, const Instruction *CxtI=nullptr)
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I=nullptr, int64_t ScalableOffset=0)
static BinaryOperator * CreateWithCopiedFlags(BinaryOps Opc, Value *V1, Value *V2, Value *CopyO, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Value * getArgOperand(unsigned i) const
unsigned arg_size() const
This class represents a function call, abstracting a target machine's calling convention.
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
@ FCMP_OEQ
0 0 0 1 True if ordered and equal
@ FCMP_OLT
0 1 0 0 True if ordered and less than
@ FCMP_OGT
0 0 1 0 True if ordered and greater than
@ FCMP_OGE
0 0 1 1 True if ordered and greater than or equal
@ FCMP_OLE
0 1 0 1 True if ordered and less than or equal
@ FCMP_UNE
1 1 1 0 True if unordered or not equal
@ FCMP_UNO
1 0 0 0 True if unordered: isnan(X) | isnan(Y)
bool isIntPredicate() const
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
static ConstantAggregateZero * get(Type *Ty)
This is the shared class of boolean and integer constants.
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
const APInt & getValue() const
Return the constant as an APInt value reference.
static Constant * get(StructType *T, ArrayRef< Constant * > V)
This is an important base class in LLVM.
static Constant * getNullValue(Type *Ty)
Constructor to create a '0' constant of arbitrary type.
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
iterator find(const_arg_type_t< KeyT > Val)
static constexpr ElementCount getScalable(ScalarTy MinVal)
static constexpr ElementCount getFixed(ScalarTy MinVal)
This provides a helper for copying FMF from an instruction or setting specified flags.
Convenience struct for specifying and reasoning about fast-math flags.
bool allowContract() const
static FixedVectorType * get(Type *ElementType, unsigned NumElts)
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
bool isEquality() const
Return true if this predicate is either EQ or NE.
Value * CreateVScale(Constant *Scaling, const Twine &Name="")
Create a call to llvm.vscale, multiplied by Scaling.
Value * CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx, const Twine &Name="")
Value * CreateInsertValue(Value *Agg, Value *Val, ArrayRef< unsigned > Idxs, const Twine &Name="")
CallInst * CreateInsertVector(Type *DstType, Value *SrcVec, Value *SubVec, Value *Idx, const Twine &Name="")
Create a call to the vector.insert intrinsic.
Value * CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name="")
IntegerType * getIntNTy(unsigned N)
Fetch the type representing an N-bit integer.
Type * getDoubleTy()
Fetch the type representing a 64-bit floating point value.
Value * CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name="")
Return a vector value that contains.
CallInst * CreateMaskedLoad(Type *Ty, Value *Ptr, Align Alignment, Value *Mask, Value *PassThru=nullptr, const Twine &Name="")
Create a call to Masked Load intrinsic.
Value * CreateSelect(Value *C, Value *True, Value *False, const Twine &Name="", Instruction *MDFrom=nullptr)
IntegerType * getInt32Ty()
Fetch the type representing a 32-bit integer.
Type * getHalfTy()
Fetch the type representing a 16-bit floating point value.
IntegerType * getInt64Ty()
Fetch the type representing a 64-bit integer.
Value * CreateGEP(Type *Ty, Value *Ptr, ArrayRef< Value * > IdxList, const Twine &Name="", GEPNoWrapFlags NW=GEPNoWrapFlags::none())
ConstantInt * getInt64(uint64_t C)
Get a constant 64-bit value.
CallInst * CreateIntrinsic(Intrinsic::ID ID, ArrayRef< Type * > Types, ArrayRef< Value * > Args, FMFSource FMFSource={}, const Twine &Name="")
Create a call to intrinsic ID with Args, mangled using Types.
Value * CreateBitOrPointerCast(Value *V, Type *DestTy, const Twine &Name="")
PHINode * CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name="")
Value * CreateBinOpFMF(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, FMFSource FMFSource, const Twine &Name="", MDNode *FPMathTag=nullptr)
Value * CreateBitCast(Value *V, Type *DestTy, const Twine &Name="")
LoadInst * CreateLoad(Type *Ty, Value *Ptr, const char *Name)
Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of converting the string to 'bool...
Value * CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name="")
StoreInst * CreateStore(Value *Val, Value *Ptr, bool isVolatile=false)
CallInst * CreateMaskedStore(Value *Val, Value *Ptr, Align Alignment, Value *Mask)
Create a call to Masked Store intrinsic.
Type * getFloatTy()
Fetch the type representing a 32-bit floating point value.
Value * CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name="")
void SetInsertPoint(BasicBlock *TheBB)
This specifies that created instructions should be appended to the end of the specified block.
This provides a uniform API for creating instructions and inserting them into a basic block: either a...
This instruction inserts a single (scalar) element into a VectorType value.
static InsertElementInst * Create(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
The core instruction combiner logic.
virtual Instruction * eraseInstFromFunction(Instruction &I)=0
Combiner aware instruction erasure.
Instruction * replaceInstUsesWith(Instruction &I, Value *V)
A combiner-aware RAUW-like routine.
Instruction * replaceOperand(Instruction &I, unsigned OpNum, Value *V)
Replace operand of instruction and add old operand to the worklist.
static InstructionCost getInvalid(CostType Val=0)
std::optional< CostType > getValue() const
This function is intended to be used as sparingly as possible, since the class provides the full rang...
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
void copyMetadata(const Instruction &SrcInst, ArrayRef< unsigned > WL=ArrayRef< unsigned >())
Copy metadata from SrcInst to this instruction.
Class to represent integer types.
bool hasGroups() const
Returns true if we have any interleave groups.
const SmallVectorImpl< Type * > & getArgTypes() const
Type * getReturnType() const
const SmallVectorImpl< const Value * > & getArgs() const
Intrinsic::ID getID() const
A wrapper class for inspecting calls to intrinsic functions.
Intrinsic::ID getIntrinsicID() const
Return the intrinsic ID of this intrinsic.
This is an important class for using LLVM in a threaded context.
An instruction for reading from memory.
Value * getPointerOperand()
iterator_range< block_iterator > blocks() const
RecurrenceSet & getFixedOrderRecurrences()
Return the fixed-order recurrences found in the loop.
PredicatedScalarEvolution * getPredicatedScalarEvolution() const
const ReductionList & getReductionVars() const
Returns the reduction variables found in the loop.
Represents a single loop in the control flow graph.
uint64_t getScalarSizeInBits() const
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
An interface layer with SCEV used to manage how we see SCEV expressions for values in the context of ...
The RecurrenceDescriptor is used to identify recurrences variables in a loop.
Type * getRecurrenceType() const
Returns the type of the recurrence.
RecurKind getRecurrenceKind() const
This node represents a polynomial recurrence on the trip count of the specified loop.
bool isAffine() const
Return true if this represents an expression A + B*x where A and B are loop invariant values.
This class represents an analyzed expression in the program.
SMEAttrs is a utility class to parse the SME ACLE attributes on functions.
bool requiresSMChange(const SMEAttrs &Callee) const
void set(unsigned M, bool Enable=true)
bool hasStreamingBody() const
static ScalableVectorType * get(Type *ElementType, unsigned MinNumElts)
static ScalableVectorType * getDoubleElementsVectorType(ScalableVectorType *VTy)
The main scalar evolution driver.
const SCEV * getBackedgeTakenCount(const Loop *L, ExitCountKind Kind=Exact)
If the specified loop has a predictable backedge-taken count, return it, otherwise return a SCEVCould...
const SCEV * getSCEV(Value *V)
Return a SCEV expression for the full generality of the specified expression.
unsigned getSmallConstantMaxTripCount(const Loop *L, SmallVectorImpl< const SCEVPredicate * > *Predicates=nullptr)
Returns the upper bound of the loop trip count as a normal unsigned value.
bool isLoopInvariant(const SCEV *S, const Loop *L)
Return true if the value of the given SCEV is unchanging in the specified loop.
This instruction constructs a fixed permutation of two input vectors.
static bool isDeInterleaveMaskOfFactor(ArrayRef< int > Mask, unsigned Factor, unsigned &Index)
Check if the mask is a DE-interleave mask of the given factor Factor like: <Index,...
static bool isExtractSubvectorMask(ArrayRef< int > Mask, int NumSrcElts, int &Index)
Return true if this shuffle mask is an extract subvector mask.
static bool isInterleaveMask(ArrayRef< int > Mask, unsigned Factor, unsigned NumInputElts, SmallVectorImpl< unsigned > &StartIndexes)
Return true if the mask interleaves one or more input vectors together.
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
bool contains(ConstPtrType Ptr) const
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
iterator insert(iterator I, T &&Elt)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
StackOffset holds a fixed and a scalable offset in bytes.
static StackOffset getScalable(int64_t Scalable)
static StackOffset getFixed(int64_t Fixed)
An instruction for storing to memory.
StringRef - Represent a constant reference to a string, i.e.
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
A switch()-like statement whose cases are string literals.
StringSwitch & Case(StringLiteral S, T Value)
Class to represent struct types.
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
unsigned getMaxExpandSizeMemcmp(bool OptSize) const
Get maximum # of load operations permitted for memcmp.
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
static constexpr TypeSize getFixed(ScalarTy ExactSize)
static constexpr TypeSize getScalable(ScalarTy MinimumSize)
The instances of the Type class are immutable: once they are created, they are never changed.
bool isVectorTy() const
True if this is an instance of VectorType.
bool isPointerTy() const
True if this is an instance of PointerType.
static IntegerType * getInt1Ty(LLVMContext &C)
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
bool isBFloatTy() const
Return true if this is 'bfloat', a 16-bit bfloat type.
static IntegerType * getIntNTy(LLVMContext &C, unsigned N)
bool isFP128Ty() const
Return true if this is 'fp128'.
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
bool isScalableTy(SmallPtrSetImpl< const Type * > &Visited) const
Return true if this is a type whose size is a known multiple of vscale.
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
bool isPtrOrPtrVectorTy() const
Return true if this is a pointer type or a vector of pointer types.
static IntegerType * getInt32Ty(LLVMContext &C)
static IntegerType * getInt64Ty(LLVMContext &C)
static Type * getFloatTy(LLVMContext &C)
bool isIntegerTy() const
True if this is an instance of IntegerType.
TypeSize getPrimitiveSizeInBits() const LLVM_READONLY
Return the basic size of this type if it is a primitive type.
Type * getScalarType() const
If this is a vector type, return the element type, otherwise return 'this'.
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
A Use represents the edge between a Value definition and its users.
const Use & getOperandUse(unsigned i) const
Value * getOperand(unsigned i) const
LLVM Value Representation.
Type * getType() const
All values are typed, get the type of this value.
user_iterator user_begin()
bool hasOneUse() const
Return true if there is exactly one use of this value.
Align getPointerAlignment(const DataLayout &DL) const
Returns an alignment of the pointer value.
void takeName(Value *V)
Transfer the name from V to this value.
Base class of all SIMD vector types.
ElementCount getElementCount() const
Return an ElementCount instance to represent the (possibly scalable) number of elements in the vector...
static VectorType * get(Type *ElementType, ElementCount EC)
This static method is the primary way to construct an VectorType.
Type * getElementType() const
int getNumOccurrences() const
constexpr ScalarTy getFixedValue() const
constexpr bool isScalable() const
Returns whether the quantity is scaled by a runtime quantity (vscale).
constexpr bool isFixed() const
Returns true if the quantity is not scaled by vscale.
constexpr ScalarTy getKnownMinValue() const
Returns the minimum value this quantity can represent.
const ParentTy * getParent() const
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
static bool isLogicalImmediate(uint64_t imm, unsigned regSize)
isLogicalImmediate - Return true if the immediate is valid for a logical immediate instruction of the...
void expandMOVImm(uint64_t Imm, unsigned BitSize, SmallVectorImpl< ImmInsnModel > &Insn)
Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more real move-immediate instructions to...
uint64_t getFMVPriority(ArrayRef< StringRef > Features)
static constexpr unsigned SVEBitsPerBlock
@ C
The default llvm calling convention, compatible with C.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ ADD
Simple integer binary arithmetic operators.
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ FADD
Simple binary floating point operators.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ SIGN_EXTEND
Conversion operators.
@ FNEG
Perform various unary floating-point operations inspired by libm.
@ SELECT
Select(COND, TRUEVAL, FALSEVAL).
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
Function * getOrInsertDeclaration(Module *M, ID id, ArrayRef< Type * > Tys={})
Look up the Function declaration of the intrinsic id in the Module M.
BinaryOp_match< LHS, RHS, Instruction::And > m_And(const LHS &L, const RHS &R)
class_match< BinaryOperator > m_BinOp()
Match an arbitrary binary operation and ignore it.
BinaryOp_match< LHS, RHS, Instruction::And, true > m_c_And(const LHS &L, const RHS &R)
Matches an And with LHS and RHS in either order.
specific_intval< false > m_SpecificInt(const APInt &V)
Match a specific integer value or vector with all elements equal to the value.
BinaryOp_match< LHS, RHS, Instruction::FMul > m_FMul(const LHS &L, const RHS &R)
bool match(Val *V, const Pattern &P)
bind_ty< Instruction > m_Instruction(Instruction *&I)
Match an instruction, capturing it if we match.
specificval_ty m_Specific(const Value *V)
Match if we have a specific specified value.
TwoOps_match< Val_t, Idx_t, Instruction::ExtractElement > m_ExtractElt(const Val_t &Val, const Idx_t &Idx)
Matches ExtractElementInst.
cst_pred_ty< is_nonnegative > m_NonNegative()
Match an integer or vector of non-negative values.
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
cst_pred_ty< is_one > m_One()
Match an integer 1 or a vector with all elements equal to 1.
ThreeOps_match< Cond, LHS, RHS, Instruction::Select > m_Select(const Cond &C, const LHS &L, const RHS &R)
Matches SelectInst.
BinaryOp_match< LHS, RHS, Instruction::Mul > m_Mul(const LHS &L, const RHS &R)
cst_pred_ty< is_zero_int > m_ZeroInt()
Match an integer 0 or a vector with all elements equal to 0.
OneUse_match< T > m_OneUse(const T &SubPattern)
TwoOps_match< V1_t, V2_t, Instruction::ShuffleVector > m_Shuffle(const V1_t &v1, const V2_t &v2)
Matches ShuffleVectorInst independently of mask value.
OneOps_match< OpTy, Instruction::Load > m_Load(const OpTy &Op)
Matches LoadInst.
CastInst_match< OpTy, ZExtInst > m_ZExt(const OpTy &Op)
Matches ZExt.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
brc_match< Cond_t, bind_ty< BasicBlock >, bind_ty< BasicBlock > > m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F)
specific_fpval m_FPOne()
Match a float 1.0 or vector with all elements equal to 1.0.
BinaryOp_match< LHS, RHS, Instruction::Add, true > m_c_Add(const LHS &L, const RHS &R)
Matches a Add with LHS and RHS in either order.
VScaleVal_match m_VScale()
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
CmpClass_match< LHS, RHS, ICmpInst > m_ICmp(CmpPredicate &Pred, const LHS &L, const RHS &R)
match_combine_or< CastInst_match< OpTy, ZExtInst >, CastInst_match< OpTy, SExtInst > > m_ZExtOrSExt(const OpTy &Op)
BinaryOp_match< LHS, RHS, Instruction::Shl > m_Shl(const LHS &L, const RHS &R)
auto m_Undef()
Match an arbitrary undef constant.
BinaryOp_match< cst_pred_ty< is_all_ones >, ValTy, Instruction::Xor, true > m_Not(const ValTy &V)
Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
CastInst_match< OpTy, SExtInst > m_SExt(const OpTy &Op)
Matches SExt.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
BinaryOp_match< LHS, RHS, Instruction::Or, true > m_c_Or(const LHS &L, const RHS &R)
Matches an Or with LHS and RHS in either order.
initializer< Ty > init(const Ty &Val)
LocationClass< Ty > location(Ty &L)
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
const CostTblEntryT< CostType > * CostTableLookup(ArrayRef< CostTblEntryT< CostType > > Tbl, int ISD, MVT Ty)
Find in cost table.
TailFoldingOpts
An enum to describe what types of loops we should attempt to tail-fold: Disabled: None Reductions: Lo...
auto enumerate(FirstRange &&First, RestRanges &&...Rest)
Given two or more input ranges, returns a new range whose values are tuples (A, B,...
std::optional< const MDOperand * > findStringMetadataForLoop(const Loop *TheLoop, StringRef Name)
Find string metadata for loop.
const Value * getLoadStorePointerOperand(const Value *V)
A helper function that returns the pointer operand of a load or store instruction.
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Value * getSplatValue(const Value *V)
Get splat value if the input is a splat vector or return nullptr.
bool MaskedValueIsZero(const Value *V, const APInt &Mask, const SimplifyQuery &SQ, unsigned Depth=0)
Return true if 'V & Mask' is known to be zero.
unsigned M1(unsigned Val)
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
bool isSplatValue(const Value *V, int Index=-1, unsigned Depth=0)
Return true if each element of the vector value V is poisoned or equal to every other non-poisoned el...
unsigned getPerfectShuffleCost(llvm::ArrayRef< int > M)
unsigned Log2_32(uint32_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
bool none_of(R &&Range, UnaryPredicate P)
Provide wrappers to std::none_of which take ranges instead of having to pass begin/end explicitly.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
std::optional< int64_t > getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, const Loop *Lp, const DenseMap< Value *, const SCEV * > &StridesMap=DenseMap< Value *, const SCEV * >(), bool Assume=false, bool ShouldCheckWrap=true)
If the pointer has a constant stride return it in units of the access type size.
bool isUZPMask(ArrayRef< int > M, unsigned NumElts, unsigned &WhichResultOut)
Return true for uzp1 or uzp2 masks of the form: <0, 2, 4, 6, 8, 10, 12, 14> or <1,...
constexpr int PoisonMaskElem
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Mod
The access may modify the value stored in memory.
bool isZIPMask(ArrayRef< int > M, unsigned NumElts, unsigned &WhichResultOut)
Return true for zip1 or zip2 masks of the form: <0, 8, 1, 9, 2, 10, 3, 11> or <4, 12,...
@ UMin
Unsigned integer min implemented in terms of select(cmp()).
@ FAnyOf
Any_of reduction with select(fcmp(),x,y) where one of (x,y) is loop invariant, and both x and y are i...
@ Or
Bitwise or logical OR of integers.
@ Mul
Product of integers.
@ Xor
Bitwise or logical XOR of integers.
@ FMax
FP max implemented in terms of select(cmp()).
@ FMulAdd
Sum of float products with llvm.fmuladd(a * b + sum).
@ SMax
Signed integer max implemented in terms of select(cmp()).
@ And
Bitwise or logical AND of integers.
@ SMin
Signed integer min implemented in terms of select(cmp()).
@ FMin
FP min implemented in terms of select(cmp()).
@ IAnyOf
Any_of reduction with select(icmp(),x,y) where one of (x,y) is loop invariant, and both x and y are i...
@ UMax
Unsigned integer max implemented in terms of select(cmp()).
void computeKnownBits(const Value *V, KnownBits &Known, const DataLayout &DL, unsigned Depth=0, AssumptionCache *AC=nullptr, const Instruction *CxtI=nullptr, const DominatorTree *DT=nullptr, bool UseInstrInfo=true)
Determine which bits of V are known to be either zero or one and return them in the KnownZero/KnownOn...
DWARFExpression::Operation Op
unsigned getNumElementsFromSVEPredPattern(unsigned Pattern)
Return the number of active elements for VL1 to VL256 predicate pattern, zero for all other patterns.
auto predecessors(const MachineBasicBlock *BB)
Type * getLoadStoreType(const Value *I)
A helper function that returns the type of a load or store instruction.
bool all_equal(std::initializer_list< T > Values)
Returns true if all Values in the initializer lists are equal or the list.
Type * toVectorTy(Type *Scalar, ElementCount EC)
A helper function for converting Scalar types to vector types.
@ Default
The result values are uniform if and only if all operands are uniform.
const TypeConversionCostTblEntryT< CostType > * ConvertCostTableLookup(ArrayRef< TypeConversionCostTblEntryT< CostType > > Tbl, int ISD, MVT Dst, MVT Src)
Find in type conversion cost table.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
This struct is a compact representation of a valid (non-zero power of two) alignment.
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
bool bitsGT(EVT VT) const
Return true if this has more bits than VT.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
uint64_t getScalarSizeInBits() const
static EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
bool isFixedLengthVector() const
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
bool isScalableVector() const
Return true if this is a vector type where the runtime length is machine dependent.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Information about a load/store intrinsic defined by the target.
InterleavedAccessInfo * IAI
LoopVectorizationLegality * LVL
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
Type Conversion Cost Table.