LLVM 22.0.0git
AsmPrinter.cpp
Go to the documentation of this file.
1//===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the AsmPrinter class.
10//
11//===----------------------------------------------------------------------===//
12
14#include "CodeViewDebug.h"
15#include "DwarfDebug.h"
16#include "DwarfException.h"
17#include "PseudoProbePrinter.h"
18#include "WasmException.h"
19#include "WinCFGuard.h"
20#include "WinException.h"
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/APInt.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/Statistic.h"
30#include "llvm/ADT/StringRef.h"
32#include "llvm/ADT/Twine.h"
66#include "llvm/Config/config.h"
67#include "llvm/IR/BasicBlock.h"
68#include "llvm/IR/Comdat.h"
69#include "llvm/IR/Constant.h"
70#include "llvm/IR/Constants.h"
71#include "llvm/IR/DataLayout.h"
75#include "llvm/IR/Function.h"
76#include "llvm/IR/GCStrategy.h"
77#include "llvm/IR/GlobalAlias.h"
78#include "llvm/IR/GlobalIFunc.h"
80#include "llvm/IR/GlobalValue.h"
82#include "llvm/IR/Instruction.h"
85#include "llvm/IR/Mangler.h"
86#include "llvm/IR/Metadata.h"
87#include "llvm/IR/Module.h"
88#include "llvm/IR/Operator.h"
89#include "llvm/IR/PseudoProbe.h"
90#include "llvm/IR/Type.h"
91#include "llvm/IR/Value.h"
92#include "llvm/IR/ValueHandle.h"
93#include "llvm/MC/MCAsmInfo.h"
94#include "llvm/MC/MCContext.h"
96#include "llvm/MC/MCExpr.h"
97#include "llvm/MC/MCInst.h"
98#include "llvm/MC/MCSchedule.h"
99#include "llvm/MC/MCSection.h"
101#include "llvm/MC/MCSectionELF.h"
104#include "llvm/MC/MCStreamer.h"
106#include "llvm/MC/MCSymbol.h"
107#include "llvm/MC/MCSymbolELF.h"
109#include "llvm/MC/MCValue.h"
110#include "llvm/MC/SectionKind.h"
111#include "llvm/Object/ELFTypes.h"
112#include "llvm/Pass.h"
114#include "llvm/Support/Casting.h"
119#include "llvm/Support/Format.h"
121#include "llvm/Support/Path.h"
122#include "llvm/Support/VCSRevision.h"
129#include <algorithm>
130#include <cassert>
131#include <cinttypes>
132#include <cstdint>
133#include <iterator>
134#include <memory>
135#include <optional>
136#include <string>
137#include <utility>
138#include <vector>
139
140using namespace llvm;
141
142#define DEBUG_TYPE "asm-printer"
143
144// This is a replication of fields of object::PGOAnalysisMap::Features. It
145// should match the order of the fields so that
146// `object::PGOAnalysisMap::Features::decode(PgoAnalysisMapFeatures.getBits())`
147// succeeds.
157 "pgo-analysis-map", cl::Hidden, cl::CommaSeparated,
159 clEnumValN(PGOMapFeaturesEnum::None, "none", "Disable all options"),
161 "Function Entry Count"),
163 "Basic Block Frequency"),
164 clEnumValN(PGOMapFeaturesEnum::BrProb, "br-prob", "Branch Probability"),
165 clEnumValN(PGOMapFeaturesEnum::All, "all", "Enable all options")),
166 cl::desc(
167 "Enable extended information within the SHT_LLVM_BB_ADDR_MAP that is "
168 "extracted from PGO related analysis."));
169
171 "pgo-analysis-map-emit-bb-sections-cfg",
172 cl::desc("Enable the post-link cfg information from the basic block "
173 "sections profile in the PGO analysis map"),
174 cl::Hidden, cl::init(false));
175
177 "basic-block-address-map-skip-bb-entries",
178 cl::desc("Skip emitting basic block entries in the SHT_LLVM_BB_ADDR_MAP "
179 "section. It's used to save binary size when BB entries are "
180 "unnecessary for some PGOAnalysisMap features."),
181 cl::Hidden, cl::init(false));
182
184 "emit-jump-table-sizes-section",
185 cl::desc("Emit a section containing jump table addresses and sizes"),
186 cl::Hidden, cl::init(false));
187
188// This isn't turned on by default, since several of the scheduling models are
189// not completely accurate, and we don't want to be misleading.
191 "asm-print-latency",
192 cl::desc("Print instruction latencies as verbose asm comments"), cl::Hidden,
193 cl::init(false));
194
196
197STATISTIC(EmittedInsts, "Number of machine instrs printed");
198
199char AsmPrinter::ID = 0;
200
201namespace {
202class AddrLabelMapCallbackPtr final : CallbackVH {
203 AddrLabelMap *Map = nullptr;
204
205public:
206 AddrLabelMapCallbackPtr() = default;
207 AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {}
208
209 void setPtr(BasicBlock *BB) {
211 }
212
213 void setMap(AddrLabelMap *map) { Map = map; }
214
215 void deleted() override;
216 void allUsesReplacedWith(Value *V2) override;
217};
218} // namespace
219
220namespace callgraph {
229} // namespace callgraph
230
232 MCContext &Context;
233 struct AddrLabelSymEntry {
234 /// The symbols for the label.
236
237 Function *Fn; // The containing function of the BasicBlock.
238 unsigned Index; // The index in BBCallbacks for the BasicBlock.
239 };
240
241 DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols;
242
243 /// Callbacks for the BasicBlock's that we have entries for. We use this so
244 /// we get notified if a block is deleted or RAUWd.
245 std::vector<AddrLabelMapCallbackPtr> BBCallbacks;
246
247 /// This is a per-function list of symbols whose corresponding BasicBlock got
248 /// deleted. These symbols need to be emitted at some point in the file, so
249 /// AsmPrinter emits them after the function body.
250 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>
251 DeletedAddrLabelsNeedingEmission;
252
253public:
254 AddrLabelMap(MCContext &context) : Context(context) {}
255
257 assert(DeletedAddrLabelsNeedingEmission.empty() &&
258 "Some labels for deleted blocks never got emitted");
259 }
260
262
264 std::vector<MCSymbol *> &Result);
265
268};
269
271 assert(BB->hasAddressTaken() &&
272 "Shouldn't get label for block without address taken");
273 AddrLabelSymEntry &Entry = AddrLabelSymbols[BB];
274
275 // If we already had an entry for this block, just return it.
276 if (!Entry.Symbols.empty()) {
277 assert(BB->getParent() == Entry.Fn && "Parent changed");
278 return Entry.Symbols;
279 }
280
281 // Otherwise, this is a new entry, create a new symbol for it and add an
282 // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd.
283 BBCallbacks.emplace_back(BB);
284 BBCallbacks.back().setMap(this);
285 Entry.Index = BBCallbacks.size() - 1;
286 Entry.Fn = BB->getParent();
287 MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol()
288 : Context.createTempSymbol();
289 Entry.Symbols.push_back(Sym);
290 return Entry.Symbols;
291}
292
293/// If we have any deleted symbols for F, return them.
295 Function *F, std::vector<MCSymbol *> &Result) {
296 DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I =
297 DeletedAddrLabelsNeedingEmission.find(F);
298
299 // If there are no entries for the function, just return.
300 if (I == DeletedAddrLabelsNeedingEmission.end())
301 return;
302
303 // Otherwise, take the list.
304 std::swap(Result, I->second);
305 DeletedAddrLabelsNeedingEmission.erase(I);
306}
307
308//===- Address of Block Management ----------------------------------------===//
309
312 // Lazily create AddrLabelSymbols.
313 if (!AddrLabelSymbols)
314 AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext);
315 return AddrLabelSymbols->getAddrLabelSymbolToEmit(
316 const_cast<BasicBlock *>(BB));
317}
318
320 const Function *F, std::vector<MCSymbol *> &Result) {
321 // If no blocks have had their addresses taken, we're done.
322 if (!AddrLabelSymbols)
323 return;
324 return AddrLabelSymbols->takeDeletedSymbolsForFunction(
325 const_cast<Function *>(F), Result);
326}
327
329 // If the block got deleted, there is no need for the symbol. If the symbol
330 // was already emitted, we can just forget about it, otherwise we need to
331 // queue it up for later emission when the function is output.
332 AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]);
333 AddrLabelSymbols.erase(BB);
334 assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?");
335 BBCallbacks[Entry.Index] = nullptr; // Clear the callback.
336
337#if !LLVM_MEMORY_SANITIZER_BUILD
338 // BasicBlock is destroyed already, so this access is UB detectable by msan.
339 assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) &&
340 "Block/parent mismatch");
341#endif
342
343 for (MCSymbol *Sym : Entry.Symbols) {
344 if (Sym->isDefined())
345 return;
346
347 // If the block is not yet defined, we need to emit it at the end of the
348 // function. Add the symbol to the DeletedAddrLabelsNeedingEmission list
349 // for the containing Function. Since the block is being deleted, its
350 // parent may already be removed, we have to get the function from 'Entry'.
351 DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym);
352 }
353}
354
356 // Get the entry for the RAUW'd block and remove it from our map.
357 AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]);
358 AddrLabelSymbols.erase(Old);
359 assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?");
360
361 AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New];
362
363 // If New is not address taken, just move our symbol over to it.
364 if (NewEntry.Symbols.empty()) {
365 BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback.
366 NewEntry = std::move(OldEntry); // Set New's entry.
367 return;
368 }
369
370 BBCallbacks[OldEntry.Index] = nullptr; // Update the callback.
371
372 // Otherwise, we need to add the old symbols to the new block's set.
373 llvm::append_range(NewEntry.Symbols, OldEntry.Symbols);
374}
375
376void AddrLabelMapCallbackPtr::deleted() {
377 Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr()));
378}
379
380void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) {
381 Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2));
382}
383
384/// getGVAlignment - Return the alignment to use for the specified global
385/// value. This rounds up to the preferred alignment if possible and legal.
387 Align InAlign) {
388 Align Alignment;
389 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
390 Alignment = DL.getPreferredAlign(GVar);
391
392 // If InAlign is specified, round it to it.
393 if (InAlign > Alignment)
394 Alignment = InAlign;
395
396 // If the GV has a specified alignment, take it into account.
397 MaybeAlign GVAlign;
398 if (auto *GVar = dyn_cast<GlobalVariable>(GV))
399 GVAlign = GVar->getAlign();
400 else if (auto *F = dyn_cast<Function>(GV))
401 GVAlign = F->getAlign();
402 if (!GVAlign)
403 return Alignment;
404
405 assert(GVAlign && "GVAlign must be set");
406
407 // If the GVAlign is larger than NumBits, or if we are required to obey
408 // NumBits because the GV has an assigned section, obey it.
409 if (*GVAlign > Alignment || GV->hasSection())
410 Alignment = *GVAlign;
411 return Alignment;
412}
413
414AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer,
415 char &ID)
416 : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
417 OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)),
418 SM(*this) {
419 VerboseAsm = OutStreamer->isVerboseAsm();
420 DwarfUsesRelocationsAcrossSections =
421 MAI->doesDwarfUseRelocationsAcrossSections();
422}
423
425 assert(!DD && Handlers.size() == NumUserHandlers &&
426 "Debug/EH info didn't get finalized");
427}
428
430 return TM.isPositionIndependent();
431}
432
433/// getFunctionNumber - Return a unique ID for the current function.
435 return MF->getFunctionNumber();
436}
437
439 return *TM.getObjFileLowering();
440}
441
443 assert(MMI && "MMI could not be nullptr!");
444 return MMI->getModule()->getDataLayout();
445}
446
447// Do not use the cached DataLayout because some client use it without a Module
448// (dsymutil, llvm-dwarfdump).
450 return TM.getPointerSize(0); // FIXME: Default address space
451}
452
454 assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
455 return MF->getSubtarget<MCSubtargetInfo>();
456}
457
461
463 if (DD) {
464 assert(OutStreamer->hasRawTextSupport() &&
465 "Expected assembly output mode.");
466 // This is NVPTX specific and it's unclear why.
467 // PR51079: If we have code without debug information we need to give up.
468 DISubprogram *MFSP = MF.getFunction().getSubprogram();
469 if (!MFSP)
470 return;
471 (void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
472 }
473}
474
475/// getCurrentSection() - Return the current section we are emitting to.
477 return OutStreamer->getCurrentSectionOnly();
478}
479
491
494 MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
495 HasSplitStack = false;
496 HasNoSplitStack = false;
497 DbgInfoAvailable = !M.debug_compile_units().empty();
498 const Triple &Target = TM.getTargetTriple();
499
500 AddrLabelSymbols = nullptr;
501
502 // Initialize TargetLoweringObjectFile.
503 TM.getObjFileLowering()->Initialize(OutContext, TM);
504
505 TM.getObjFileLowering()->getModuleMetadata(M);
506
507 // On AIX, we delay emitting any section information until
508 // after emitting the .file pseudo-op. This allows additional
509 // information (such as the embedded command line) to be associated
510 // with all sections in the object file rather than a single section.
511 if (!Target.isOSBinFormatXCOFF())
512 OutStreamer->initSections(false, *TM.getMCSubtargetInfo());
513
514 // Emit the version-min deployment target directive if needed.
515 //
516 // FIXME: If we end up with a collection of these sorts of Darwin-specific
517 // or ELF-specific things, it may make sense to have a platform helper class
518 // that will work with the target helper class. For now keep it here, as the
519 // alternative is duplicated code in each of the target asm printers that
520 // use the directive, where it would need the same conditionalization
521 // anyway.
522 if (Target.isOSBinFormatMachO() && Target.isOSDarwin()) {
523 Triple TVT(M.getDarwinTargetVariantTriple());
524 OutStreamer->emitVersionForTarget(
525 Target, M.getSDKVersion(),
526 M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT,
527 M.getDarwinTargetVariantSDKVersion());
528 }
529
530 // Allow the target to emit any magic that it wants at the start of the file.
532
533 // Very minimal debug info. It is ignored if we emit actual debug info. If we
534 // don't, this at least helps the user find where a global came from.
535 if (MAI->hasSingleParameterDotFile()) {
536 // .file "foo.c"
537 if (MAI->isAIX()) {
538 const char VerStr[] =
539#ifdef PACKAGE_VENDOR
540 PACKAGE_VENDOR " "
541#endif
542 PACKAGE_NAME " version " PACKAGE_VERSION
543#ifdef LLVM_REVISION
544 " (" LLVM_REVISION ")"
545#endif
546 ;
547 // TODO: Add timestamp and description.
548 OutStreamer->emitFileDirective(M.getSourceFileName(), VerStr, "", "");
549 } else {
550 OutStreamer->emitFileDirective(
551 llvm::sys::path::filename(M.getSourceFileName()));
552 }
553 }
554
555 // On AIX, emit bytes for llvm.commandline metadata after .file so that the
556 // C_INFO symbol is preserved if any csect is kept by the linker.
557 if (Target.isOSBinFormatXCOFF()) {
558 emitModuleCommandLines(M);
559 // Now we can generate section information.
560 OutStreamer->switchSection(
561 OutContext.getObjectFileInfo()->getTextSection());
562
563 // To work around an AIX assembler and/or linker bug, generate
564 // a rename for the default text-section symbol name. This call has
565 // no effect when generating object code directly.
566 MCSection *TextSection =
567 OutStreamer->getContext().getObjectFileInfo()->getTextSection();
568 MCSymbolXCOFF *XSym =
569 static_cast<MCSectionXCOFF *>(TextSection)->getQualNameSymbol();
570 if (XSym->hasRename())
571 OutStreamer->emitXCOFFRenameDirective(XSym, XSym->getSymbolTableName());
572 }
573
575 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
576 for (const auto &I : *MI)
577 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I))
578 MP->beginAssembly(M, *MI, *this);
579
580 // Emit module-level inline asm if it exists.
581 if (!M.getModuleInlineAsm().empty()) {
582 OutStreamer->AddComment("Start of file scope inline assembly");
583 OutStreamer->addBlankLine();
584 emitInlineAsm(
585 M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(),
586 TM.Options.MCOptions, nullptr,
587 InlineAsm::AsmDialect(TM.getMCAsmInfo()->getAssemblerDialect()));
588 OutStreamer->AddComment("End of file scope inline assembly");
589 OutStreamer->addBlankLine();
590 }
591
592 if (MAI->doesSupportDebugInformation()) {
593 bool EmitCodeView = M.getCodeViewFlag();
594 // On Windows targets, emit minimal CodeView compiler info even when debug
595 // info is disabled.
596 if ((Target.isOSWindows() && M.getNamedMetadata("llvm.dbg.cu")) ||
597 (Target.isUEFI() && EmitCodeView))
598 Handlers.push_back(std::make_unique<CodeViewDebug>(this));
599 if (!EmitCodeView || M.getDwarfVersion()) {
600 if (hasDebugInfo()) {
601 DD = new DwarfDebug(this);
602 Handlers.push_back(std::unique_ptr<DwarfDebug>(DD));
603 }
604 }
605 }
606
607 if (M.getNamedMetadata(PseudoProbeDescMetadataName))
608 PP = std::make_unique<PseudoProbeHandler>(this);
609
610 switch (MAI->getExceptionHandlingType()) {
612 // We may want to emit CFI for debug.
613 [[fallthrough]];
617 for (auto &F : M.getFunctionList()) {
619 ModuleCFISection = getFunctionCFISectionType(F);
620 // If any function needsUnwindTableEntry(), it needs .eh_frame and hence
621 // the module needs .eh_frame. If we have found that case, we are done.
622 if (ModuleCFISection == CFISection::EH)
623 break;
624 }
625 assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI ||
626 usesCFIWithoutEH() || ModuleCFISection != CFISection::EH);
627 break;
628 default:
629 break;
630 }
631
632 EHStreamer *ES = nullptr;
633 switch (MAI->getExceptionHandlingType()) {
635 if (!usesCFIWithoutEH())
636 break;
637 [[fallthrough]];
641 ES = new DwarfCFIException(this);
642 break;
644 ES = new ARMException(this);
645 break;
647 switch (MAI->getWinEHEncodingType()) {
648 default: llvm_unreachable("unsupported unwinding information encoding");
650 break;
653 ES = new WinException(this);
654 break;
655 }
656 break;
658 ES = new WasmException(this);
659 break;
661 ES = new AIXException(this);
662 break;
663 }
664 if (ES)
665 Handlers.push_back(std::unique_ptr<EHStreamer>(ES));
666
667 // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
668 if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
669 EHHandlers.push_back(std::make_unique<WinCFGuard>(this));
670
671 for (auto &Handler : Handlers)
672 Handler->beginModule(&M);
673 for (auto &Handler : EHHandlers)
674 Handler->beginModule(&M);
675
676 return false;
677}
678
679static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
681 return false;
682
683 return GV->canBeOmittedFromSymbolTable();
684}
685
686void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
688 switch (Linkage) {
694 if (MAI->isMachO()) {
695 // .globl _foo
696 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
697
698 if (!canBeHidden(GV, *MAI))
699 // .weak_definition _foo
700 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
701 else
702 OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
703 } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
704 // .globl _foo
705 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
706 //NOTE: linkonce is handled by the section the symbol was assigned to.
707 } else {
708 // .weak _foo
709 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
710 }
711 return;
713 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
714 return;
717 return;
721 llvm_unreachable("Should never emit this");
722 }
723 llvm_unreachable("Unknown linkage type!");
724}
725
727 const GlobalValue *GV) const {
728 TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
729}
730
732 return TM.getSymbol(GV);
733}
734
736 // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
737 // exact definion (intersection of GlobalValue::hasExactDefinition() and
738 // !isInterposable()). These linkages include: external, appending, internal,
739 // private. It may be profitable to use a local alias for external. The
740 // assembler would otherwise be conservative and assume a global default
741 // visibility symbol can be interposable, even if the code generator already
742 // assumed it.
743 if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
744 const Module &M = *GV.getParent();
745 if (TM.getRelocationModel() != Reloc::Static &&
746 M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
747 return getSymbolWithGlobalValueBase(&GV, "$local");
748 }
749 return TM.getSymbol(&GV);
750}
751
752/// EmitGlobalVariable - Emit the specified global variable to the .s file.
754 bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
755 assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
756 "No emulated TLS variables in the common section");
757
758 // Never emit TLS variable xyz in emulated TLS model.
759 // The initialization value is in __emutls_t.xyz instead of xyz.
760 if (IsEmuTLSVar)
761 return;
762
763 if (GV->hasInitializer()) {
764 // Check to see if this is a special global used by LLVM, if so, emit it.
765 if (emitSpecialLLVMGlobal(GV))
766 return;
767
768 // Skip the emission of global equivalents. The symbol can be emitted later
769 // on by emitGlobalGOTEquivs in case it turns out to be needed.
770 if (GlobalGOTEquivs.count(getSymbol(GV)))
771 return;
772
773 if (isVerbose()) {
774 // When printing the control variable __emutls_v.*,
775 // we don't need to print the original TLS variable name.
776 GV->printAsOperand(OutStreamer->getCommentOS(),
777 /*PrintType=*/false, GV->getParent());
778 OutStreamer->getCommentOS() << '\n';
779 }
780 }
781
782 MCSymbol *GVSym = getSymbol(GV);
783 MCSymbol *EmittedSym = GVSym;
784
785 // getOrCreateEmuTLSControlSym only creates the symbol with name and default
786 // attributes.
787 // GV's or GVSym's attributes will be used for the EmittedSym.
788 emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
789
790 if (GV->isTagged()) {
791 Triple T = TM.getTargetTriple();
792
793 if (T.getArch() != Triple::aarch64 || !T.isAndroid())
794 OutContext.reportError(SMLoc(),
795 "tagged symbols (-fsanitize=memtag-globals) are "
796 "only supported on AArch64 Android");
797 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_Memtag);
798 }
799
800 if (!GV->hasInitializer()) // External globals require no extra code.
801 return;
802
803 GVSym->redefineIfPossible();
804 if (GVSym->isDefined() || GVSym->isVariable())
805 OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
806 "' is already defined");
807
808 if (MAI->hasDotTypeDotSizeDirective())
809 OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
810
812
813 const DataLayout &DL = GV->getDataLayout();
814 uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
815
816 // If the alignment is specified, we *must* obey it. Overaligning a global
817 // with a specified alignment is a prompt way to break globals emitted to
818 // sections and expected to be contiguous (e.g. ObjC metadata).
819 const Align Alignment = getGVAlignment(GV, DL);
820
821 for (auto &Handler : Handlers)
822 Handler->setSymbolSize(GVSym, Size);
823
824 // Handle common symbols
825 if (GVKind.isCommon()) {
826 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
827 // .comm _foo, 42, 4
828 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment);
829 return;
830 }
831
832 // Determine to which section this global should be emitted.
833 MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
834
835 // If we have a bss global going to a section that supports the
836 // zerofill directive, do so here.
837 if (GVKind.isBSS() && MAI->isMachO() && TheSection->isBssSection()) {
838 if (Size == 0)
839 Size = 1; // zerofill of 0 bytes is undefined.
840 emitLinkage(GV, GVSym);
841 // .zerofill __DATA, __bss, _foo, 400, 5
842 OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment);
843 return;
844 }
845
846 // If this is a BSS local symbol and we are emitting in the BSS
847 // section use .lcomm/.comm directive.
848 if (GVKind.isBSSLocal() &&
849 getObjFileLowering().getBSSSection() == TheSection) {
850 if (Size == 0)
851 Size = 1; // .comm Foo, 0 is undefined, avoid it.
852
853 // Use .lcomm only if it supports user-specified alignment.
854 // Otherwise, while it would still be correct to use .lcomm in some
855 // cases (e.g. when Align == 1), the external assembler might enfore
856 // some -unknown- default alignment behavior, which could cause
857 // spurious differences between external and integrated assembler.
858 // Prefer to simply fall back to .local / .comm in this case.
859 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
860 // .lcomm _foo, 42
861 OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment);
862 return;
863 }
864
865 // .local _foo
866 OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
867 // .comm _foo, 42, 4
868 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment);
869 return;
870 }
871
872 // Handle thread local data for mach-o which requires us to output an
873 // additional structure of data and mangle the original symbol so that we
874 // can reference it later.
875 //
876 // TODO: This should become an "emit thread local global" method on TLOF.
877 // All of this macho specific stuff should be sunk down into TLOFMachO and
878 // stuff like "TLSExtraDataSection" should no longer be part of the parent
879 // TLOF class. This will also make it more obvious that stuff like
880 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
881 // specific code.
882 if (GVKind.isThreadLocal() && MAI->isMachO()) {
883 // Emit the .tbss symbol
884 MCSymbol *MangSym =
885 OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
886
887 if (GVKind.isThreadBSS()) {
888 TheSection = getObjFileLowering().getTLSBSSSection();
889 OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment);
890 } else if (GVKind.isThreadData()) {
891 OutStreamer->switchSection(TheSection);
892
893 emitAlignment(Alignment, GV);
894 OutStreamer->emitLabel(MangSym);
895
897 GV->getInitializer());
898 }
899
900 OutStreamer->addBlankLine();
901
902 // Emit the variable struct for the runtime.
904
905 OutStreamer->switchSection(TLVSect);
906 // Emit the linkage here.
907 emitLinkage(GV, GVSym);
908 OutStreamer->emitLabel(GVSym);
909
910 // Three pointers in size:
911 // - __tlv_bootstrap - used to make sure support exists
912 // - spare pointer, used when mapped by the runtime
913 // - pointer to mangled symbol above with initializer
914 unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
915 OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
916 PtrSize);
917 OutStreamer->emitIntValue(0, PtrSize);
918 OutStreamer->emitSymbolValue(MangSym, PtrSize);
919
920 OutStreamer->addBlankLine();
921 return;
922 }
923
924 MCSymbol *EmittedInitSym = GVSym;
925
926 OutStreamer->switchSection(TheSection);
927
928 emitLinkage(GV, EmittedInitSym);
929 emitAlignment(Alignment, GV);
930
931 OutStreamer->emitLabel(EmittedInitSym);
932 MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
933 if (LocalAlias != EmittedInitSym)
934 OutStreamer->emitLabel(LocalAlias);
935
937
938 if (MAI->hasDotTypeDotSizeDirective())
939 // .size foo, 42
940 OutStreamer->emitELFSize(EmittedInitSym,
942
943 OutStreamer->addBlankLine();
944}
945
946/// Emit the directive and value for debug thread local expression
947///
948/// \p Value - The value to emit.
949/// \p Size - The size of the integer (in bytes) to emit.
950void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
951 OutStreamer->emitValue(Value, Size);
952}
953
954void AsmPrinter::emitFunctionHeaderComment() {}
955
956void AsmPrinter::emitFunctionPrefix(ArrayRef<const Constant *> Prefix) {
957 const Function &F = MF->getFunction();
959 for (auto &C : Prefix)
960 emitGlobalConstant(F.getDataLayout(), C);
961 return;
962 }
963 // Preserving prefix-like data on platforms which use subsections-via-symbols
964 // is a bit tricky. Here we introduce a symbol for the prefix-like data
965 // and use the .alt_entry attribute to mark the function's real entry point
966 // as an alternative entry point to the symbol that precedes the function..
967 OutStreamer->emitLabel(OutContext.createLinkerPrivateTempSymbol());
968
969 for (auto &C : Prefix) {
970 emitGlobalConstant(F.getDataLayout(), C);
971 }
972
973 // Emit an .alt_entry directive for the actual function symbol.
974 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
975}
976
977/// EmitFunctionHeader - This method emits the header for the current
978/// function.
979void AsmPrinter::emitFunctionHeader() {
980 const Function &F = MF->getFunction();
981
982 if (isVerbose())
983 OutStreamer->getCommentOS()
984 << "-- Begin function "
985 << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
986
987 // Print out constants referenced by the function
989
990 // Print the 'header' of function.
991 // If basic block sections are desired, explicitly request a unique section
992 // for this function's entry block.
993 if (MF->front().isBeginSection())
994 MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM));
995 else
996 MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
997 OutStreamer->switchSection(MF->getSection());
998
999 if (MAI->isAIX())
1001 else
1002 emitVisibility(CurrentFnSym, F.getVisibility());
1003
1005 if (MAI->hasFunctionAlignment())
1006 emitAlignment(MF->getAlignment(), &F);
1007
1008 if (MAI->hasDotTypeDotSizeDirective())
1009 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
1010
1011 if (F.hasFnAttribute(Attribute::Cold))
1012 OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
1013
1014 // Emit the prefix data.
1015 if (F.hasPrefixData())
1016 emitFunctionPrefix({F.getPrefixData()});
1017
1018 // Emit KCFI type information before patchable-function-prefix nops.
1020
1021 // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
1022 // place prefix data before NOPs.
1023 unsigned PatchableFunctionPrefix = 0;
1024 unsigned PatchableFunctionEntry = 0;
1025 (void)F.getFnAttribute("patchable-function-prefix")
1026 .getValueAsString()
1027 .getAsInteger(10, PatchableFunctionPrefix);
1028 (void)F.getFnAttribute("patchable-function-entry")
1029 .getValueAsString()
1030 .getAsInteger(10, PatchableFunctionEntry);
1031 if (PatchableFunctionPrefix) {
1033 OutContext.createLinkerPrivateTempSymbol();
1035 emitNops(PatchableFunctionPrefix);
1036 } else if (PatchableFunctionEntry) {
1037 // May be reassigned when emitting the body, to reference the label after
1038 // the initial BTI (AArch64) or endbr32/endbr64 (x86).
1040 }
1041
1042 // Emit the function prologue data for the indirect call sanitizer.
1043 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_func_sanitize)) {
1044 assert(MD->getNumOperands() == 2);
1045
1046 auto *PrologueSig = mdconst::extract<Constant>(MD->getOperand(0));
1047 auto *TypeHash = mdconst::extract<Constant>(MD->getOperand(1));
1048 emitFunctionPrefix({PrologueSig, TypeHash});
1049 }
1050
1051 if (isVerbose()) {
1052 F.printAsOperand(OutStreamer->getCommentOS(),
1053 /*PrintType=*/false, F.getParent());
1054 emitFunctionHeaderComment();
1055 OutStreamer->getCommentOS() << '\n';
1056 }
1057
1058 // Emit the function descriptor. This is a virtual function to allow targets
1059 // to emit their specific function descriptor. Right now it is only used by
1060 // the AIX target. The PowerPC 64-bit V1 ELF target also uses function
1061 // descriptors and should be converted to use this hook as well.
1062 if (MAI->isAIX())
1064
1065 // Emit the CurrentFnSym. This is a virtual function to allow targets to do
1066 // their wild and crazy things as required.
1068
1069 // If the function had address-taken blocks that got deleted, then we have
1070 // references to the dangling symbols. Emit them at the start of the function
1071 // so that we don't get references to undefined symbols.
1072 std::vector<MCSymbol*> DeadBlockSyms;
1073 takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
1074 for (MCSymbol *DeadBlockSym : DeadBlockSyms) {
1075 OutStreamer->AddComment("Address taken block that was later removed");
1076 OutStreamer->emitLabel(DeadBlockSym);
1077 }
1078
1079 if (CurrentFnBegin) {
1080 if (MAI->useAssignmentForEHBegin()) {
1081 MCSymbol *CurPos = OutContext.createTempSymbol();
1082 OutStreamer->emitLabel(CurPos);
1083 OutStreamer->emitAssignment(CurrentFnBegin,
1085 } else {
1086 OutStreamer->emitLabel(CurrentFnBegin);
1087 }
1088 }
1089
1090 // Emit pre-function debug and/or EH information.
1091 for (auto &Handler : Handlers) {
1092 Handler->beginFunction(MF);
1093 Handler->beginBasicBlockSection(MF->front());
1094 }
1095 for (auto &Handler : EHHandlers) {
1096 Handler->beginFunction(MF);
1097 Handler->beginBasicBlockSection(MF->front());
1098 }
1099
1100 // Emit the prologue data.
1101 if (F.hasPrologueData())
1102 emitGlobalConstant(F.getDataLayout(), F.getPrologueData());
1103}
1104
1105/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
1106/// function. This can be overridden by targets as required to do custom stuff.
1108 CurrentFnSym->redefineIfPossible();
1109 OutStreamer->emitLabel(CurrentFnSym);
1110
1111 if (TM.getTargetTriple().isOSBinFormatELF()) {
1112 MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
1113 if (Sym != CurrentFnSym) {
1114 CurrentFnBeginLocal = Sym;
1115 OutStreamer->emitLabel(Sym);
1116 OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction);
1117 }
1118 }
1119}
1120
1121/// emitComments - Pretty-print comments for instructions.
1122static void emitComments(const MachineInstr &MI, const MCSubtargetInfo *STI,
1123 raw_ostream &CommentOS) {
1124 const MachineFunction *MF = MI.getMF();
1126
1127 // Check for spills and reloads
1128
1129 // We assume a single instruction only has a spill or reload, not
1130 // both.
1131 std::optional<LocationSize> Size;
1132 if ((Size = MI.getRestoreSize(TII))) {
1133 CommentOS << Size->getValue() << "-byte Reload\n";
1134 } else if ((Size = MI.getFoldedRestoreSize(TII))) {
1135 if (!Size->hasValue())
1136 CommentOS << "Unknown-size Folded Reload\n";
1137 else if (Size->getValue())
1138 CommentOS << Size->getValue() << "-byte Folded Reload\n";
1139 } else if ((Size = MI.getSpillSize(TII))) {
1140 CommentOS << Size->getValue() << "-byte Spill\n";
1141 } else if ((Size = MI.getFoldedSpillSize(TII))) {
1142 if (!Size->hasValue())
1143 CommentOS << "Unknown-size Folded Spill\n";
1144 else if (Size->getValue())
1145 CommentOS << Size->getValue() << "-byte Folded Spill\n";
1146 }
1147
1148 // Check for spill-induced copies
1149 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
1150 CommentOS << " Reload Reuse\n";
1151
1152 if (PrintLatency) {
1154 const MCSchedModel &SCModel = STI->getSchedModel();
1157 *STI, *TII, MI);
1158 // Report only interesting latencies.
1159 if (1 < Latency)
1160 CommentOS << " Latency: " << Latency << "\n";
1161 }
1162}
1163
1164/// emitImplicitDef - This method emits the specified machine instruction
1165/// that is an implicit def.
1167 Register RegNo = MI->getOperand(0).getReg();
1168
1169 SmallString<128> Str;
1170 raw_svector_ostream OS(Str);
1171 OS << "implicit-def: "
1172 << printReg(RegNo, MF->getSubtarget().getRegisterInfo());
1173
1174 OutStreamer->AddComment(OS.str());
1175 OutStreamer->addBlankLine();
1176}
1177
1178static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
1179 std::string Str;
1180 raw_string_ostream OS(Str);
1181 OS << "kill:";
1182 for (const MachineOperand &Op : MI->operands()) {
1183 assert(Op.isReg() && "KILL instruction must have only register operands");
1184 OS << ' ' << (Op.isDef() ? "def " : "killed ")
1185 << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
1186 }
1187 AP.OutStreamer->AddComment(Str);
1188 AP.OutStreamer->addBlankLine();
1189}
1190
1191static void emitFakeUse(const MachineInstr *MI, AsmPrinter &AP) {
1192 std::string Str;
1193 raw_string_ostream OS(Str);
1194 OS << "fake_use:";
1195 for (const MachineOperand &Op : MI->operands()) {
1196 // In some circumstances we can end up with fake uses of constants; skip
1197 // these.
1198 if (!Op.isReg())
1199 continue;
1200 OS << ' ' << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
1201 }
1202 AP.OutStreamer->AddComment(OS.str());
1203 AP.OutStreamer->addBlankLine();
1204}
1205
1206/// emitDebugValueComment - This method handles the target-independent form
1207/// of DBG_VALUE, returning true if it was able to do so. A false return
1208/// means the target will need to handle MI in EmitInstruction.
1210 // This code handles only the 4-operand target-independent form.
1211 if (MI->isNonListDebugValue() && MI->getNumOperands() != 4)
1212 return false;
1213
1214 SmallString<128> Str;
1215 raw_svector_ostream OS(Str);
1216 OS << "DEBUG_VALUE: ";
1217
1218 const DILocalVariable *V = MI->getDebugVariable();
1219 if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
1220 StringRef Name = SP->getName();
1221 if (!Name.empty())
1222 OS << Name << ":";
1223 }
1224 OS << V->getName();
1225 OS << " <- ";
1226
1227 const DIExpression *Expr = MI->getDebugExpression();
1228 // First convert this to a non-variadic expression if possible, to simplify
1229 // the output.
1230 if (auto NonVariadicExpr = DIExpression::convertToNonVariadicExpression(Expr))
1231 Expr = *NonVariadicExpr;
1232 // Then, output the possibly-simplified expression.
1233 if (Expr->getNumElements()) {
1234 OS << '[';
1235 ListSeparator LS;
1236 for (auto &Op : Expr->expr_ops()) {
1237 OS << LS << dwarf::OperationEncodingString(Op.getOp());
1238 for (unsigned I = 0; I < Op.getNumArgs(); ++I)
1239 OS << ' ' << Op.getArg(I);
1240 }
1241 OS << "] ";
1242 }
1243
1244 // Register or immediate value. Register 0 means undef.
1245 for (const MachineOperand &Op : MI->debug_operands()) {
1246 if (&Op != MI->debug_operands().begin())
1247 OS << ", ";
1248 switch (Op.getType()) {
1250 APFloat APF = APFloat(Op.getFPImm()->getValueAPF());
1251 Type *ImmTy = Op.getFPImm()->getType();
1252 if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() ||
1253 ImmTy->isDoubleTy()) {
1254 OS << APF.convertToDouble();
1255 } else {
1256 // There is no good way to print long double. Convert a copy to
1257 // double. Ah well, it's only a comment.
1258 bool ignored;
1260 &ignored);
1261 OS << "(long double) " << APF.convertToDouble();
1262 }
1263 break;
1264 }
1266 OS << Op.getImm();
1267 break;
1268 }
1270 Op.getCImm()->getValue().print(OS, false /*isSigned*/);
1271 break;
1272 }
1274 OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
1275 break;
1276 }
1279 Register Reg;
1280 std::optional<StackOffset> Offset;
1281 if (Op.isReg()) {
1282 Reg = Op.getReg();
1283 } else {
1284 const TargetFrameLowering *TFI =
1286 Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg);
1287 }
1288 if (!Reg) {
1289 // Suppress offset, it is not meaningful here.
1290 OS << "undef";
1291 break;
1292 }
1293 // The second operand is only an offset if it's an immediate.
1294 if (MI->isIndirectDebugValue())
1295 Offset = StackOffset::getFixed(MI->getDebugOffset().getImm());
1296 if (Offset)
1297 OS << '[';
1298 OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
1299 if (Offset)
1300 OS << '+' << Offset->getFixed() << ']';
1301 break;
1302 }
1303 default:
1304 llvm_unreachable("Unknown operand type");
1305 }
1306 }
1307
1308 // NOTE: Want this comment at start of line, don't emit with AddComment.
1309 AP.OutStreamer->emitRawComment(Str);
1310 return true;
1311}
1312
1313/// This method handles the target-independent form of DBG_LABEL, returning
1314/// true if it was able to do so. A false return means the target will need
1315/// to handle MI in EmitInstruction.
1317 if (MI->getNumOperands() != 1)
1318 return false;
1319
1320 SmallString<128> Str;
1321 raw_svector_ostream OS(Str);
1322 OS << "DEBUG_LABEL: ";
1323
1324 const DILabel *V = MI->getDebugLabel();
1325 if (auto *SP = dyn_cast<DISubprogram>(
1326 V->getScope()->getNonLexicalBlockFileScope())) {
1327 StringRef Name = SP->getName();
1328 if (!Name.empty())
1329 OS << Name << ":";
1330 }
1331 OS << V->getName();
1332
1333 // NOTE: Want this comment at start of line, don't emit with AddComment.
1334 AP.OutStreamer->emitRawComment(OS.str());
1335 return true;
1336}
1337
1340 // Ignore functions that won't get emitted.
1341 if (F.isDeclarationForLinker())
1342 return CFISection::None;
1343
1344 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
1345 F.needsUnwindTableEntry())
1346 return CFISection::EH;
1347
1348 if (MAI->usesCFIWithoutEH() && F.hasUWTable())
1349 return CFISection::EH;
1350
1351 if (hasDebugInfo() || TM.Options.ForceDwarfFrameSection)
1352 return CFISection::Debug;
1353
1354 return CFISection::None;
1355}
1356
1361
1363 return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
1364}
1365
1367 return MAI->usesCFIWithoutEH() && ModuleCFISection != CFISection::None;
1368}
1369
1371 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1372 if (!usesCFIWithoutEH() &&
1373 ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1374 ExceptionHandlingType != ExceptionHandling::ARM)
1375 return;
1376
1378 return;
1379
1380 // If there is no "real" instruction following this CFI instruction, skip
1381 // emitting it; it would be beyond the end of the function's FDE range.
1382 auto *MBB = MI.getParent();
1383 auto I = std::next(MI.getIterator());
1384 while (I != MBB->end() && I->isTransient())
1385 ++I;
1386 if (I == MBB->instr_end() &&
1387 MBB->getReverseIterator() == MBB->getParent()->rbegin())
1388 return;
1389
1390 const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
1391 unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
1392 const MCCFIInstruction &CFI = Instrs[CFIIndex];
1393 emitCFIInstruction(CFI);
1394}
1395
1397 // The operands are the MCSymbol and the frame offset of the allocation.
1398 MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
1399 int FrameOffset = MI.getOperand(1).getImm();
1400
1401 // Emit a symbol assignment.
1402 OutStreamer->emitAssignment(FrameAllocSym,
1403 MCConstantExpr::create(FrameOffset, OutContext));
1404}
1405
1406/// Returns the BB metadata to be emitted in the SHT_LLVM_BB_ADDR_MAP section
1407/// for a given basic block. This can be used to capture more precise profile
1408/// information.
1410 const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
1412 MBB.isReturnBlock(), !MBB.empty() && TII->isTailCall(MBB.back()),
1413 MBB.isEHPad(), const_cast<MachineBasicBlock &>(MBB).canFallThrough(),
1414 !MBB.empty() && MBB.rbegin()->isIndirectBranch()}
1415 .encode();
1416}
1417
1419getBBAddrMapFeature(const MachineFunction &MF, int NumMBBSectionRanges,
1420 bool HasCalls, const CFGProfile *FuncCFGProfile) {
1421 // Ensure that the user has not passed in additional options while also
1422 // specifying all or none.
1425 popcount(PgoAnalysisMapFeatures.getBits()) != 1) {
1427 "-pgo-anaylsis-map can accept only all or none with no additional "
1428 "values.");
1429 }
1430
1431 bool NoFeatures = PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::None);
1433 bool FuncEntryCountEnabled =
1434 AllFeatures || (!NoFeatures && PgoAnalysisMapFeatures.isSet(
1436 bool BBFreqEnabled =
1437 AllFeatures ||
1438 (!NoFeatures && PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::BBFreq));
1439 bool BrProbEnabled =
1440 AllFeatures ||
1441 (!NoFeatures && PgoAnalysisMapFeatures.isSet(PGOMapFeaturesEnum::BrProb));
1442 bool PostLinkCfgEnabled = FuncCFGProfile && PgoAnalysisMapEmitBBSectionsCfg;
1443
1444 if ((BBFreqEnabled || BrProbEnabled) && BBAddrMapSkipEmitBBEntries) {
1446 "BB entries info is required for BBFreq and BrProb features");
1447 }
1448 return {FuncEntryCountEnabled, BBFreqEnabled, BrProbEnabled,
1449 MF.hasBBSections() && NumMBBSectionRanges > 1,
1450 // Use static_cast to avoid breakage of tests on windows.
1451 static_cast<bool>(BBAddrMapSkipEmitBBEntries), HasCalls,
1452 static_cast<bool>(EmitBBHash), PostLinkCfgEnabled};
1453}
1454
1456 MCSection *BBAddrMapSection =
1457 getObjFileLowering().getBBAddrMapSection(*MF.getSection());
1458 assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
1459 bool HasCalls = !CurrentFnCallsiteEndSymbols.empty();
1460
1461 const BasicBlockSectionsProfileReader *BBSPR = nullptr;
1462 if (auto *BBSPRPass =
1464 BBSPR = &BBSPRPass->getBBSPR();
1465 const CFGProfile *FuncCFGProfile = nullptr;
1466 if (BBSPR)
1467 FuncCFGProfile = BBSPR->getFunctionCFGProfile(MF.getFunction().getName());
1468
1469 const MCSymbol *FunctionSymbol = getFunctionBegin();
1470
1471 OutStreamer->pushSection();
1472 OutStreamer->switchSection(BBAddrMapSection);
1473 OutStreamer->AddComment("version");
1474 uint8_t BBAddrMapVersion = OutStreamer->getContext().getBBAddrMapVersion();
1475 OutStreamer->emitInt8(BBAddrMapVersion);
1476 OutStreamer->AddComment("feature");
1477 auto Features = getBBAddrMapFeature(MF, MBBSectionRanges.size(), HasCalls,
1478 FuncCFGProfile);
1479 OutStreamer->emitInt16(Features.encode());
1480 // Emit BB Information for each basic block in the function.
1481 if (Features.MultiBBRange) {
1482 OutStreamer->AddComment("number of basic block ranges");
1483 OutStreamer->emitULEB128IntValue(MBBSectionRanges.size());
1484 }
1485 // Number of blocks in each MBB section.
1486 MapVector<MBBSectionID, unsigned> MBBSectionNumBlocks;
1487 const MCSymbol *PrevMBBEndSymbol = nullptr;
1488 if (!Features.MultiBBRange) {
1489 OutStreamer->AddComment("function address");
1490 OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
1491 OutStreamer->AddComment("number of basic blocks");
1492 OutStreamer->emitULEB128IntValue(MF.size());
1493 PrevMBBEndSymbol = FunctionSymbol;
1494 } else {
1495 unsigned BBCount = 0;
1496 for (const MachineBasicBlock &MBB : MF) {
1497 BBCount++;
1498 if (MBB.isEndSection()) {
1499 // Store each section's basic block count when it ends.
1500 MBBSectionNumBlocks[MBB.getSectionID()] = BBCount;
1501 // Reset the count for the next section.
1502 BBCount = 0;
1503 }
1504 }
1505 }
1506 // Emit the BB entry for each basic block in the function.
1507 for (const MachineBasicBlock &MBB : MF) {
1508 const MCSymbol *MBBSymbol =
1509 MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
1510 bool IsBeginSection =
1511 Features.MultiBBRange && (MBB.isBeginSection() || MBB.isEntryBlock());
1512 if (IsBeginSection) {
1513 OutStreamer->AddComment("base address");
1514 OutStreamer->emitSymbolValue(MBBSymbol, getPointerSize());
1515 OutStreamer->AddComment("number of basic blocks");
1516 OutStreamer->emitULEB128IntValue(MBBSectionNumBlocks[MBB.getSectionID()]);
1517 PrevMBBEndSymbol = MBBSymbol;
1518 }
1519
1520 auto MBHI =
1521 Features.BBHash ? &getAnalysis<MachineBlockHashInfo>() : nullptr;
1522
1523 if (!Features.OmitBBEntries) {
1524 OutStreamer->AddComment("BB id");
1525 // Emit the BB ID for this basic block.
1526 // We only emit BaseID since CloneID is unset for
1527 // -basic-block-adress-map.
1528 // TODO: Emit the full BBID when labels and sections can be mixed
1529 // together.
1530 OutStreamer->emitULEB128IntValue(MBB.getBBID()->BaseID);
1531 // Emit the basic block offset relative to the end of the previous block.
1532 // This is zero unless the block is padded due to alignment.
1533 emitLabelDifferenceAsULEB128(MBBSymbol, PrevMBBEndSymbol);
1534 const MCSymbol *CurrentLabel = MBBSymbol;
1535 if (HasCalls) {
1536 auto CallsiteEndSymbols = CurrentFnCallsiteEndSymbols.lookup(&MBB);
1537 OutStreamer->AddComment("number of callsites");
1538 OutStreamer->emitULEB128IntValue(CallsiteEndSymbols.size());
1539 for (const MCSymbol *CallsiteEndSymbol : CallsiteEndSymbols) {
1540 // Emit the callsite offset.
1541 emitLabelDifferenceAsULEB128(CallsiteEndSymbol, CurrentLabel);
1542 CurrentLabel = CallsiteEndSymbol;
1543 }
1544 }
1545 // Emit the offset to the end of the block, which can be used to compute
1546 // the total block size.
1547 emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), CurrentLabel);
1548 // Emit the Metadata.
1549 OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
1550 // Emit the Hash.
1551 if (MBHI) {
1552 OutStreamer->emitInt64(MBHI->getMBBHash(MBB));
1553 }
1554 }
1555 PrevMBBEndSymbol = MBB.getEndSymbol();
1556 }
1557
1558 if (Features.hasPGOAnalysis()) {
1559 assert(BBAddrMapVersion >= 2 &&
1560 "PGOAnalysisMap only supports version 2 or later");
1561
1562 if (Features.FuncEntryCount) {
1563 OutStreamer->AddComment("function entry count");
1564 auto MaybeEntryCount = MF.getFunction().getEntryCount();
1565 OutStreamer->emitULEB128IntValue(
1566 MaybeEntryCount ? MaybeEntryCount->getCount() : 0);
1567 }
1568 const MachineBlockFrequencyInfo *MBFI =
1569 Features.BBFreq
1571 : nullptr;
1572 const MachineBranchProbabilityInfo *MBPI =
1573 Features.BrProb
1575 : nullptr;
1576
1577 if (Features.BBFreq || Features.BrProb) {
1578 for (const MachineBasicBlock &MBB : MF) {
1579 if (Features.BBFreq) {
1580 OutStreamer->AddComment("basic block frequency");
1581 OutStreamer->emitULEB128IntValue(
1582 MBFI->getBlockFreq(&MBB).getFrequency());
1583 if (Features.PostLinkCfg) {
1584 OutStreamer->AddComment("basic block frequency (propeller)");
1585 OutStreamer->emitULEB128IntValue(
1586 FuncCFGProfile->getBlockCount(*MBB.getBBID()));
1587 }
1588 }
1589 if (Features.BrProb) {
1590 unsigned SuccCount = MBB.succ_size();
1591 OutStreamer->AddComment("basic block successor count");
1592 OutStreamer->emitULEB128IntValue(SuccCount);
1593 for (const MachineBasicBlock *SuccMBB : MBB.successors()) {
1594 OutStreamer->AddComment("successor BB ID");
1595 OutStreamer->emitULEB128IntValue(SuccMBB->getBBID()->BaseID);
1596 OutStreamer->AddComment("successor branch probability");
1597 OutStreamer->emitULEB128IntValue(
1598 MBPI->getEdgeProbability(&MBB, SuccMBB).getNumerator());
1599 if (Features.PostLinkCfg) {
1600 OutStreamer->AddComment("successor branch frequency (propeller)");
1601 OutStreamer->emitULEB128IntValue(FuncCFGProfile->getEdgeCount(
1602 *MBB.getBBID(), *SuccMBB->getBBID()));
1603 }
1604 }
1605 }
1606 }
1607 }
1608 }
1609
1610 OutStreamer->popSection();
1611}
1612
1614 const MCSymbol *Symbol) {
1615 MCSection *Section =
1616 getObjFileLowering().getKCFITrapSection(*MF.getSection());
1617 if (!Section)
1618 return;
1619
1620 OutStreamer->pushSection();
1621 OutStreamer->switchSection(Section);
1622
1623 MCSymbol *Loc = OutContext.createLinkerPrivateTempSymbol();
1624 OutStreamer->emitLabel(Loc);
1625 OutStreamer->emitAbsoluteSymbolDiff(Symbol, Loc, 4);
1626
1627 OutStreamer->popSection();
1628}
1629
1631 const Function &F = MF.getFunction();
1632 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_kcfi_type))
1633 emitGlobalConstant(F.getDataLayout(),
1634 mdconst::extract<ConstantInt>(MD->getOperand(0)));
1635}
1636
1638 if (PP) {
1639 auto GUID = MI.getOperand(0).getImm();
1640 auto Index = MI.getOperand(1).getImm();
1641 auto Type = MI.getOperand(2).getImm();
1642 auto Attr = MI.getOperand(3).getImm();
1643 DILocation *DebugLoc = MI.getDebugLoc();
1644 PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
1645 }
1646}
1647
1649 if (!MF.getTarget().Options.EmitStackSizeSection)
1650 return;
1651
1652 MCSection *StackSizeSection =
1654 if (!StackSizeSection)
1655 return;
1656
1657 const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1658 // Don't emit functions with dynamic stack allocations.
1659 if (FrameInfo.hasVarSizedObjects())
1660 return;
1661
1662 OutStreamer->pushSection();
1663 OutStreamer->switchSection(StackSizeSection);
1664
1665 const MCSymbol *FunctionSymbol = getFunctionBegin();
1666 uint64_t StackSize =
1667 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize();
1668 OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
1669 OutStreamer->emitULEB128IntValue(StackSize);
1670
1671 OutStreamer->popSection();
1672}
1673
1675 const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput;
1676
1677 // OutputFilename empty implies -fstack-usage is not passed.
1678 if (OutputFilename.empty())
1679 return;
1680
1681 const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
1682 uint64_t StackSize =
1683 FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize();
1684
1685 if (StackUsageStream == nullptr) {
1686 std::error_code EC;
1687 StackUsageStream =
1688 std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text);
1689 if (EC) {
1690 errs() << "Could not open file: " << EC.message();
1691 return;
1692 }
1693 }
1694
1695 if (const DISubprogram *DSP = MF.getFunction().getSubprogram())
1696 *StackUsageStream << DSP->getFilename() << ':' << DSP->getLine();
1697 else
1698 *StackUsageStream << MF.getFunction().getParent()->getName();
1699
1700 *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t';
1701 if (FrameInfo.hasVarSizedObjects())
1702 *StackUsageStream << "dynamic\n";
1703 else
1704 *StackUsageStream << "static\n";
1705}
1706
1707/// Extracts a generalized numeric type identifier of a Function's type from
1708/// type metadata. Returns null if metadata cannot be found.
1711 F.getMetadata(LLVMContext::MD_type, Types);
1712 for (const auto &Type : Types) {
1713 if (Type->hasGeneralizedMDString()) {
1714 MDString *MDGeneralizedTypeId = cast<MDString>(Type->getOperand(1));
1715 uint64_t TypeIdVal = llvm::MD5Hash(MDGeneralizedTypeId->getString());
1716 IntegerType *Int64Ty = Type::getInt64Ty(F.getContext());
1717 return ConstantInt::get(Int64Ty, TypeIdVal);
1718 }
1719 }
1720 return nullptr;
1721}
1722
1723/// Emits .llvm.callgraph section.
1725 FunctionCallGraphInfo &FuncCGInfo) {
1726 if (!MF.getTarget().Options.EmitCallGraphSection)
1727 return;
1728
1729 // Switch to the call graph section for the function
1730 MCSection *FuncCGSection =
1732 assert(FuncCGSection && "null callgraph section");
1733 OutStreamer->pushSection();
1734 OutStreamer->switchSection(FuncCGSection);
1735
1736 const Function &F = MF.getFunction();
1737 // If this function has external linkage or has its address taken and
1738 // it is not a callback, then anything could call it.
1739 bool IsIndirectTarget =
1740 !F.hasLocalLinkage() || F.hasAddressTaken(nullptr,
1741 /*IgnoreCallbackUses=*/true,
1742 /*IgnoreAssumeLikeCalls=*/true,
1743 /*IgnoreLLVMUsed=*/false);
1744
1745 const auto &DirectCallees = FuncCGInfo.DirectCallees;
1746 const auto &IndirectCalleeTypeIDs = FuncCGInfo.IndirectCalleeTypeIDs;
1747
1748 using namespace callgraph;
1749 Flags CGFlags = Flags::None;
1750 if (IsIndirectTarget)
1751 CGFlags |= Flags::IsIndirectTarget;
1752 if (DirectCallees.size() > 0)
1753 CGFlags |= Flags::HasDirectCallees;
1754 if (IndirectCalleeTypeIDs.size() > 0)
1755 CGFlags |= Flags::HasIndirectCallees;
1756
1757 // Emit function's call graph information.
1758 // 1) CallGraphSectionFormatVersion
1759 // 2) Flags
1760 // a. LSB bit 0 is set to 1 if the function is a potential indirect
1761 // target.
1762 // b. LSB bit 1 is set to 1 if there are direct callees.
1763 // c. LSB bit 2 is set to 1 if there are indirect callees.
1764 // d. Rest of the 5 bits in Flags are reserved for any future use.
1765 // 3) Function entry PC.
1766 // 4) FunctionTypeID if the function is indirect target and its type id
1767 // is known, otherwise it is set to 0.
1768 // 5) Number of unique direct callees, if at least one exists.
1769 // 6) For each unique direct callee, the callee's PC.
1770 // 7) Number of unique indirect target type IDs, if at least one exists.
1771 // 8) Each unique indirect target type id.
1772 OutStreamer->emitInt8(CallGraphSectionFormatVersion::V_0);
1773 OutStreamer->emitInt8(static_cast<uint8_t>(CGFlags));
1774 OutStreamer->emitSymbolValue(getSymbol(&F), TM.getProgramPointerSize());
1775 const auto *TypeId = extractNumericCGTypeId(F);
1776 if (IsIndirectTarget && TypeId)
1777 OutStreamer->emitInt64(TypeId->getZExtValue());
1778 else
1779 OutStreamer->emitInt64(0);
1780
1781 if (DirectCallees.size() > 0) {
1782 OutStreamer->emitULEB128IntValue(DirectCallees.size());
1783 for (const auto &CalleeSymbol : DirectCallees)
1784 OutStreamer->emitSymbolValue(CalleeSymbol, TM.getProgramPointerSize());
1785 FuncCGInfo.DirectCallees.clear();
1786 }
1787 if (IndirectCalleeTypeIDs.size() > 0) {
1788 OutStreamer->emitULEB128IntValue(IndirectCalleeTypeIDs.size());
1789 for (const auto &CalleeTypeId : IndirectCalleeTypeIDs)
1790 OutStreamer->emitInt64(CalleeTypeId);
1791 FuncCGInfo.IndirectCalleeTypeIDs.clear();
1792 }
1793 // End of emitting call graph section contents.
1794 OutStreamer->popSection();
1795}
1796
1798 const MDNode &MD) {
1799 MCSymbol *S = MF.getContext().createTempSymbol("pcsection");
1800 OutStreamer->emitLabel(S);
1801 PCSectionsSymbols[&MD].emplace_back(S);
1802}
1803
1805 const Function &F = MF.getFunction();
1806 if (PCSectionsSymbols.empty() && !F.hasMetadata(LLVMContext::MD_pcsections))
1807 return;
1808
1809 const CodeModel::Model CM = MF.getTarget().getCodeModel();
1810 const unsigned RelativeRelocSize =
1812 : 4;
1813
1814 // Switch to PCSection, short-circuiting the common case where the current
1815 // section is still valid (assume most MD_pcsections contain just 1 section).
1816 auto SwitchSection = [&, Prev = StringRef()](const StringRef &Sec) mutable {
1817 if (Sec == Prev)
1818 return;
1819 MCSection *S = getObjFileLowering().getPCSection(Sec, MF.getSection());
1820 assert(S && "PC section is not initialized");
1821 OutStreamer->switchSection(S);
1822 Prev = Sec;
1823 };
1824 // Emit symbols into sections and data as specified in the pcsections MDNode.
1825 auto EmitForMD = [&](const MDNode &MD, ArrayRef<const MCSymbol *> Syms,
1826 bool Deltas) {
1827 // Expect the first operand to be a section name. After that, a tuple of
1828 // constants may appear, which will simply be emitted into the current
1829 // section (the user of MD_pcsections decides the format of encoded data).
1830 assert(isa<MDString>(MD.getOperand(0)) && "first operand not a string");
1831 bool ConstULEB128 = false;
1832 for (const MDOperand &MDO : MD.operands()) {
1833 if (auto *S = dyn_cast<MDString>(MDO)) {
1834 // Found string, start of new section!
1835 // Find options for this section "<section>!<opts>" - supported options:
1836 // C = Compress constant integers of size 2-8 bytes as ULEB128.
1837 const StringRef SecWithOpt = S->getString();
1838 const size_t OptStart = SecWithOpt.find('!'); // likely npos
1839 const StringRef Sec = SecWithOpt.substr(0, OptStart);
1840 const StringRef Opts = SecWithOpt.substr(OptStart); // likely empty
1841 ConstULEB128 = Opts.contains('C');
1842#ifndef NDEBUG
1843 for (char O : Opts)
1844 assert((O == '!' || O == 'C') && "Invalid !pcsections options");
1845#endif
1846 SwitchSection(Sec);
1847 const MCSymbol *Prev = Syms.front();
1848 for (const MCSymbol *Sym : Syms) {
1849 if (Sym == Prev || !Deltas) {
1850 // Use the entry itself as the base of the relative offset.
1851 MCSymbol *Base = MF.getContext().createTempSymbol("pcsection_base");
1852 OutStreamer->emitLabel(Base);
1853 // Emit relative relocation `addr - base`, which avoids a dynamic
1854 // relocation in the final binary. User will get the address with
1855 // `base + addr`.
1856 emitLabelDifference(Sym, Base, RelativeRelocSize);
1857 } else {
1858 // Emit delta between symbol and previous symbol.
1859 if (ConstULEB128)
1861 else
1862 emitLabelDifference(Sym, Prev, 4);
1863 }
1864 Prev = Sym;
1865 }
1866 } else {
1867 // Emit auxiliary data after PC.
1868 assert(isa<MDNode>(MDO) && "expecting either string or tuple");
1869 const auto *AuxMDs = cast<MDNode>(MDO);
1870 for (const MDOperand &AuxMDO : AuxMDs->operands()) {
1871 assert(isa<ConstantAsMetadata>(AuxMDO) && "expecting a constant");
1872 const Constant *C = cast<ConstantAsMetadata>(AuxMDO)->getValue();
1873 const DataLayout &DL = F.getDataLayout();
1874 const uint64_t Size = DL.getTypeStoreSize(C->getType());
1875
1876 if (auto *CI = dyn_cast<ConstantInt>(C);
1877 CI && ConstULEB128 && Size > 1 && Size <= 8) {
1878 emitULEB128(CI->getZExtValue());
1879 } else {
1881 }
1882 }
1883 }
1884 }
1885 };
1886
1887 OutStreamer->pushSection();
1888 // Emit PCs for function start and function size.
1889 if (const MDNode *MD = F.getMetadata(LLVMContext::MD_pcsections))
1890 EmitForMD(*MD, {getFunctionBegin(), getFunctionEnd()}, true);
1891 // Emit PCs for instructions collected.
1892 for (const auto &MS : PCSectionsSymbols)
1893 EmitForMD(*MS.first, MS.second, false);
1894 OutStreamer->popSection();
1895 PCSectionsSymbols.clear();
1896}
1897
1898/// Returns true if function begin and end labels should be emitted.
1899static bool needFuncLabels(const MachineFunction &MF, const AsmPrinter &Asm) {
1900 if (Asm.hasDebugInfo() || !MF.getLandingPads().empty() ||
1901 MF.hasEHFunclets() ||
1902 MF.getFunction().hasMetadata(LLVMContext::MD_pcsections))
1903 return true;
1904
1905 // We might emit an EH table that uses function begin and end labels even if
1906 // we don't have any landingpads.
1907 if (!MF.getFunction().hasPersonalityFn())
1908 return false;
1909 return !isNoOpWithoutInvoke(
1911}
1912
1913// Return the mnemonic of a MachineInstr if available, or the MachineInstr
1914// opcode name otherwise.
1916 const TargetInstrInfo *TII =
1917 MI.getParent()->getParent()->getSubtarget().getInstrInfo();
1918 MCInst MCI;
1919 MCI.setOpcode(MI.getOpcode());
1920 if (StringRef Name = Streamer.getMnemonic(MCI); !Name.empty())
1921 return Name;
1922 StringRef Name = TII->getName(MI.getOpcode());
1923 assert(!Name.empty() && "Missing mnemonic and name for opcode");
1924 return Name;
1925}
1926
1928 FunctionCallGraphInfo &FuncCGInfo,
1929 const MachineFunction::CallSiteInfoMap &CallSitesInfoMap,
1930 const MachineInstr &MI) {
1931 assert(MI.isCall() && "This method is meant for call instructions only.");
1932 const MachineOperand &CalleeOperand = MI.getOperand(0);
1933 if (CalleeOperand.isGlobal() || CalleeOperand.isSymbol()) {
1934 // Handle direct calls.
1935 MCSymbol *CalleeSymbol = nullptr;
1936 switch (CalleeOperand.getType()) {
1938 CalleeSymbol = getSymbol(CalleeOperand.getGlobal());
1939 break;
1941 CalleeSymbol = GetExternalSymbolSymbol(CalleeOperand.getSymbolName());
1942 break;
1943 default:
1945 "Expected to only handle direct call instructions here.");
1946 }
1947 FuncCGInfo.DirectCallees.insert(CalleeSymbol);
1948 return; // Early exit after handling the direct call instruction.
1949 }
1950 const auto &CallSiteInfo = CallSitesInfoMap.find(&MI);
1951 if (CallSiteInfo == CallSitesInfoMap.end())
1952 return;
1953 // Handle indirect callsite info.
1954 // Only indirect calls have type identifiers set.
1955 for (ConstantInt *CalleeTypeId : CallSiteInfo->second.CalleeTypeIds) {
1956 uint64_t CalleeTypeIdVal = CalleeTypeId->getZExtValue();
1957 FuncCGInfo.IndirectCalleeTypeIDs.insert(CalleeTypeIdVal);
1958 }
1959}
1960
1961/// EmitFunctionBody - This method emits the body and trailer for a
1962/// function.
1964 emitFunctionHeader();
1965
1966 // Emit target-specific gunk before the function body.
1968
1969 if (isVerbose()) {
1970 // Get MachineDominatorTree or compute it on the fly if it's unavailable
1972 MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr;
1973 if (!MDT) {
1974 OwnedMDT = std::make_unique<MachineDominatorTree>();
1975 OwnedMDT->recalculate(*MF);
1976 MDT = OwnedMDT.get();
1977 }
1978
1979 // Get MachineLoopInfo or compute it on the fly if it's unavailable
1981 MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr;
1982 if (!MLI) {
1983 OwnedMLI = std::make_unique<MachineLoopInfo>();
1984 OwnedMLI->analyze(*MDT);
1985 MLI = OwnedMLI.get();
1986 }
1987 }
1988
1989 // Print out code for the function.
1990 bool HasAnyRealCode = false;
1991 int NumInstsInFunction = 0;
1992 bool IsEHa = MMI->getModule()->getModuleFlag("eh-asynch");
1993
1994 const MCSubtargetInfo *STI = nullptr;
1995 if (this->MF)
1996 STI = &getSubtargetInfo();
1997 else
1998 STI = TM.getMCSubtargetInfo();
1999
2000 bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
2001 // Create a slot for the entry basic block section so that the section
2002 // order is preserved when iterating over MBBSectionRanges.
2003 if (!MF->empty())
2004 MBBSectionRanges[MF->front().getSectionID()] =
2006
2007 FunctionCallGraphInfo FuncCGInfo;
2008 const auto &CallSitesInfoMap = MF->getCallSitesInfo();
2009 for (auto &MBB : *MF) {
2010 // Print a label for the basic block.
2012 DenseMap<StringRef, unsigned> MnemonicCounts;
2013 for (auto &MI : MBB) {
2014 // Print the assembly for the instruction.
2015 if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
2016 !MI.isDebugInstr()) {
2017 HasAnyRealCode = true;
2018 }
2019
2020 // If there is a pre-instruction symbol, emit a label for it here.
2021 if (MCSymbol *S = MI.getPreInstrSymbol())
2022 OutStreamer->emitLabel(S);
2023
2024 if (MDNode *MD = MI.getPCSections())
2025 emitPCSectionsLabel(*MF, *MD);
2026
2027 for (auto &Handler : Handlers)
2028 Handler->beginInstruction(&MI);
2029
2030 if (isVerbose())
2031 emitComments(MI, STI, OutStreamer->getCommentOS());
2032
2033 switch (MI.getOpcode()) {
2034 case TargetOpcode::CFI_INSTRUCTION:
2036 break;
2037 case TargetOpcode::LOCAL_ESCAPE:
2039 break;
2040 case TargetOpcode::ANNOTATION_LABEL:
2041 case TargetOpcode::GC_LABEL:
2042 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
2043 break;
2044 case TargetOpcode::EH_LABEL:
2045 OutStreamer->AddComment("EH_LABEL");
2046 OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
2047 // For AsynchEH, insert a Nop if followed by a trap inst
2048 // Or the exception won't be caught.
2049 // (see MCConstantExpr::create(1,..) in WinException.cpp)
2050 // Ignore SDiv/UDiv because a DIV with Const-0 divisor
2051 // must have being turned into an UndefValue.
2052 // Div with variable opnds won't be the first instruction in
2053 // an EH region as it must be led by at least a Load
2054 {
2055 auto MI2 = std::next(MI.getIterator());
2056 if (IsEHa && MI2 != MBB.end() &&
2057 (MI2->mayLoadOrStore() || MI2->mayRaiseFPException()))
2058 emitNops(1);
2059 }
2060 break;
2061 case TargetOpcode::INLINEASM:
2062 case TargetOpcode::INLINEASM_BR:
2063 emitInlineAsm(&MI);
2064 break;
2065 case TargetOpcode::DBG_VALUE:
2066 case TargetOpcode::DBG_VALUE_LIST:
2067 if (isVerbose()) {
2068 if (!emitDebugValueComment(&MI, *this))
2070 }
2071 break;
2072 case TargetOpcode::DBG_INSTR_REF:
2073 // This instruction reference will have been resolved to a machine
2074 // location, and a nearby DBG_VALUE created. We can safely ignore
2075 // the instruction reference.
2076 break;
2077 case TargetOpcode::DBG_PHI:
2078 // This instruction is only used to label a program point, it's purely
2079 // meta information.
2080 break;
2081 case TargetOpcode::DBG_LABEL:
2082 if (isVerbose()) {
2083 if (!emitDebugLabelComment(&MI, *this))
2085 }
2086 break;
2087 case TargetOpcode::IMPLICIT_DEF:
2088 if (isVerbose()) emitImplicitDef(&MI);
2089 break;
2090 case TargetOpcode::KILL:
2091 if (isVerbose()) emitKill(&MI, *this);
2092 break;
2093 case TargetOpcode::FAKE_USE:
2094 if (isVerbose())
2095 emitFakeUse(&MI, *this);
2096 break;
2097 case TargetOpcode::PSEUDO_PROBE:
2099 break;
2100 case TargetOpcode::ARITH_FENCE:
2101 if (isVerbose())
2102 OutStreamer->emitRawComment("ARITH_FENCE");
2103 break;
2104 case TargetOpcode::MEMBARRIER:
2105 OutStreamer->emitRawComment("MEMBARRIER");
2106 break;
2107 case TargetOpcode::JUMP_TABLE_DEBUG_INFO:
2108 // This instruction is only used to note jump table debug info, it's
2109 // purely meta information.
2110 break;
2111 case TargetOpcode::INIT_UNDEF:
2112 // This is only used to influence register allocation behavior, no
2113 // actual initialization is needed.
2114 break;
2115 case TargetOpcode::RELOC_NONE: {
2116 // Generate a temporary label for the current PC.
2117 MCSymbol *Sym = OutContext.createTempSymbol("reloc_none");
2118 OutStreamer->emitLabel(Sym);
2119 const MCExpr *Dot = MCSymbolRefExpr::create(Sym, OutContext);
2121 OutContext.getOrCreateSymbol(MI.getOperand(0).getSymbolName()),
2122 OutContext);
2123 OutStreamer->emitRelocDirective(*Dot, "BFD_RELOC_NONE", Value, SMLoc());
2124 break;
2125 }
2126 default:
2128
2129 auto CountInstruction = [&](const MachineInstr &MI) {
2130 // Skip Meta instructions inside bundles.
2131 if (MI.isMetaInstruction())
2132 return;
2133 ++NumInstsInFunction;
2134 if (CanDoExtraAnalysis) {
2136 ++MnemonicCounts[Name];
2137 }
2138 };
2139 if (!MI.isBundle()) {
2140 CountInstruction(MI);
2141 break;
2142 }
2143 // Separately count all the instructions in a bundle.
2144 for (auto It = std::next(MI.getIterator());
2145 It != MBB.end() && It->isInsideBundle(); ++It) {
2146 CountInstruction(*It);
2147 }
2148 break;
2149 }
2150
2151 if (MI.isCall() && MF->getTarget().Options.BBAddrMap)
2153
2154 if (TM.Options.EmitCallGraphSection && MI.isCall())
2155 handleCallsiteForCallgraph(FuncCGInfo, CallSitesInfoMap, MI);
2156
2157 // If there is a post-instruction symbol, emit a label for it here.
2158 if (MCSymbol *S = MI.getPostInstrSymbol())
2159 OutStreamer->emitLabel(S);
2160
2161 for (auto &Handler : Handlers)
2162 Handler->endInstruction();
2163 }
2164
2165 // We must emit temporary symbol for the end of this basic block, if either
2166 // we have BBLabels enabled or if this basic blocks marks the end of a
2167 // section.
2168 if (MF->getTarget().Options.BBAddrMap ||
2169 (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection()))
2170 OutStreamer->emitLabel(MBB.getEndSymbol());
2171
2172 if (MBB.isEndSection()) {
2173 // The size directive for the section containing the entry block is
2174 // handled separately by the function section.
2175 if (!MBB.sameSection(&MF->front())) {
2176 if (MAI->hasDotTypeDotSizeDirective()) {
2177 // Emit the size directive for the basic block section.
2178 const MCExpr *SizeExp = MCBinaryExpr::createSub(
2179 MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
2180 MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
2181 OutContext);
2182 OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
2183 }
2184 assert(!MBBSectionRanges.contains(MBB.getSectionID()) &&
2185 "Overwrite section range");
2186 MBBSectionRanges[MBB.getSectionID()] =
2187 MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
2188 }
2189 }
2191
2192 if (CanDoExtraAnalysis) {
2193 // Skip empty blocks.
2194 if (MBB.empty())
2195 continue;
2196
2198 MBB.begin()->getDebugLoc(), &MBB);
2199
2200 // Generate instruction mix remark. First, sort counts in descending order
2201 // by count and name.
2203 for (auto &KV : MnemonicCounts)
2204 MnemonicVec.emplace_back(KV.first, KV.second);
2205
2206 sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
2207 const std::pair<StringRef, unsigned> &B) {
2208 if (A.second > B.second)
2209 return true;
2210 if (A.second == B.second)
2211 return StringRef(A.first) < StringRef(B.first);
2212 return false;
2213 });
2214 R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
2215 for (auto &KV : MnemonicVec) {
2216 auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str();
2217 R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
2218 }
2219 ORE->emit(R);
2220 }
2221 }
2222
2223 EmittedInsts += NumInstsInFunction;
2224 MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
2225 MF->getFunction().getSubprogram(),
2226 &MF->front());
2227 R << ore::NV("NumInstructions", NumInstsInFunction)
2228 << " instructions in function";
2229 ORE->emit(R);
2230
2231 // If the function is empty and the object file uses .subsections_via_symbols,
2232 // then we need to emit *something* to the function body to prevent the
2233 // labels from collapsing together. Just emit a noop.
2234 // Similarly, don't emit empty functions on Windows either. It can lead to
2235 // duplicate entries (two functions with the same RVA) in the Guard CF Table
2236 // after linking, causing the kernel not to load the binary:
2237 // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
2238 // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
2239 const Triple &TT = TM.getTargetTriple();
2240 if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
2241 (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
2242 MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop();
2243
2244 // Targets can opt-out of emitting the noop here by leaving the opcode
2245 // unspecified.
2246 if (Noop.getOpcode()) {
2247 OutStreamer->AddComment("avoids zero-length function");
2248 emitNops(1);
2249 }
2250 }
2251
2252 // Switch to the original section in case basic block sections was used.
2253 OutStreamer->switchSection(MF->getSection());
2254
2255 const Function &F = MF->getFunction();
2256 for (const auto &BB : F) {
2257 if (!BB.hasAddressTaken())
2258 continue;
2259 MCSymbol *Sym = GetBlockAddressSymbol(&BB);
2260 if (Sym->isDefined())
2261 continue;
2262 OutStreamer->AddComment("Address of block that was removed by CodeGen");
2263 OutStreamer->emitLabel(Sym);
2264 }
2265
2266 // Emit target-specific gunk after the function body.
2268
2269 // Even though wasm supports .type and .size in general, function symbols
2270 // are automatically sized.
2271 bool EmitFunctionSize = MAI->hasDotTypeDotSizeDirective() && !TT.isWasm();
2272
2273 // SPIR-V supports label instructions only inside a block, not after the
2274 // function body.
2275 if (TT.getObjectFormat() != Triple::SPIRV &&
2276 (EmitFunctionSize || needFuncLabels(*MF, *this))) {
2277 // Create a symbol for the end of function.
2278 CurrentFnEnd = createTempSymbol("func_end");
2279 OutStreamer->emitLabel(CurrentFnEnd);
2280 }
2281
2282 // If the target wants a .size directive for the size of the function, emit
2283 // it.
2284 if (EmitFunctionSize) {
2285 // We can get the size as difference between the function label and the
2286 // temp label.
2287 const MCExpr *SizeExp = MCBinaryExpr::createSub(
2288 MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
2290 OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
2292 OutStreamer->emitELFSize(CurrentFnBeginLocal, SizeExp);
2293 }
2294
2295 // Call endBasicBlockSection on the last block now, if it wasn't already
2296 // called.
2297 if (!MF->back().isEndSection()) {
2298 for (auto &Handler : Handlers)
2299 Handler->endBasicBlockSection(MF->back());
2300 for (auto &Handler : EHHandlers)
2301 Handler->endBasicBlockSection(MF->back());
2302 }
2303 for (auto &Handler : Handlers)
2304 Handler->markFunctionEnd();
2305 for (auto &Handler : EHHandlers)
2306 Handler->markFunctionEnd();
2307 // Update the end label of the entry block's section.
2308 MBBSectionRanges[MF->front().getSectionID()].EndLabel = CurrentFnEnd;
2309
2310 // Print out jump tables referenced by the function.
2312
2313 // Emit post-function debug and/or EH information.
2314 for (auto &Handler : Handlers)
2315 Handler->endFunction(MF);
2316 for (auto &Handler : EHHandlers)
2317 Handler->endFunction(MF);
2318
2319 // Emit section containing BB address offsets and their metadata, when
2320 // BB labels are requested for this function. Skip empty functions.
2321 if (HasAnyRealCode) {
2322 if (MF->getTarget().Options.BBAddrMap)
2324 else if (PgoAnalysisMapFeatures.getBits() != 0)
2325 MF->getContext().reportWarning(
2326 SMLoc(), "pgo-analysis-map is enabled for function " + MF->getName() +
2327 " but it does not have labels");
2328 }
2329
2330 // Emit sections containing instruction and function PCs.
2332
2333 // Emit section containing stack size metadata.
2335
2336 // Emit section containing call graph metadata.
2337 emitCallGraphSection(*MF, FuncCGInfo);
2338
2339 // Emit .su file containing function stack size information.
2341
2343
2344 if (isVerbose())
2345 OutStreamer->getCommentOS() << "-- End function\n";
2346
2347 OutStreamer->addBlankLine();
2348}
2349
2350/// Compute the number of Global Variables that uses a Constant.
2351static unsigned getNumGlobalVariableUses(const Constant *C,
2352 bool &HasNonGlobalUsers) {
2353 if (!C) {
2354 HasNonGlobalUsers = true;
2355 return 0;
2356 }
2357
2359 return 1;
2360
2361 unsigned NumUses = 0;
2362 for (const auto *CU : C->users())
2363 NumUses +=
2364 getNumGlobalVariableUses(dyn_cast<Constant>(CU), HasNonGlobalUsers);
2365
2366 return NumUses;
2367}
2368
2369/// Only consider global GOT equivalents if at least one user is a
2370/// cstexpr inside an initializer of another global variables. Also, don't
2371/// handle cstexpr inside instructions. During global variable emission,
2372/// candidates are skipped and are emitted later in case at least one cstexpr
2373/// isn't replaced by a PC relative GOT entry access.
2375 unsigned &NumGOTEquivUsers,
2376 bool &HasNonGlobalUsers) {
2377 // Global GOT equivalents are unnamed private globals with a constant
2378 // pointer initializer to another global symbol. They must point to a
2379 // GlobalVariable or Function, i.e., as GlobalValue.
2380 if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
2381 !GV->isConstant() || !GV->isDiscardableIfUnused() ||
2383 return false;
2384
2385 // To be a got equivalent, at least one of its users need to be a constant
2386 // expression used by another global variable.
2387 for (const auto *U : GV->users())
2388 NumGOTEquivUsers +=
2389 getNumGlobalVariableUses(dyn_cast<Constant>(U), HasNonGlobalUsers);
2390
2391 return NumGOTEquivUsers > 0;
2392}
2393
2394/// Unnamed constant global variables solely contaning a pointer to
2395/// another globals variable is equivalent to a GOT table entry; it contains the
2396/// the address of another symbol. Optimize it and replace accesses to these
2397/// "GOT equivalents" by using the GOT entry for the final global instead.
2398/// Compute GOT equivalent candidates among all global variables to avoid
2399/// emitting them if possible later on, after it use is replaced by a GOT entry
2400/// access.
2402 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
2403 return;
2404
2405 for (const auto &G : M.globals()) {
2406 unsigned NumGOTEquivUsers = 0;
2407 bool HasNonGlobalUsers = false;
2408 if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers, HasNonGlobalUsers))
2409 continue;
2410 // If non-global variables use it, we still need to emit it.
2411 // Add 1 here, then emit it in `emitGlobalGOTEquivs`.
2412 if (HasNonGlobalUsers)
2413 NumGOTEquivUsers += 1;
2414 const MCSymbol *GOTEquivSym = getSymbol(&G);
2415 GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
2416 }
2417}
2418
2419/// Constant expressions using GOT equivalent globals may not be eligible
2420/// for PC relative GOT entry conversion, in such cases we need to emit such
2421/// globals we previously omitted in EmitGlobalVariable.
2423 if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
2424 return;
2425
2427 for (auto &I : GlobalGOTEquivs) {
2428 const GlobalVariable *GV = I.second.first;
2429 unsigned Cnt = I.second.second;
2430 if (Cnt)
2431 FailedCandidates.push_back(GV);
2432 }
2433 GlobalGOTEquivs.clear();
2434
2435 for (const auto *GV : FailedCandidates)
2437}
2438
2440 MCSymbol *Name = getSymbol(&GA);
2441 bool IsFunction = GA.getValueType()->isFunctionTy();
2442 // Treat bitcasts of functions as functions also. This is important at least
2443 // on WebAssembly where object and function addresses can't alias each other.
2444 if (!IsFunction)
2445 IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts());
2446
2447 // AIX's assembly directive `.set` is not usable for aliasing purpose,
2448 // so AIX has to use the extra-label-at-definition strategy. At this
2449 // point, all the extra label is emitted, we just have to emit linkage for
2450 // those labels.
2451 if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
2452 // Linkage for alias of global variable has been emitted.
2454 return;
2455
2456 emitLinkage(&GA, Name);
2457 // If it's a function, also emit linkage for aliases of function entry
2458 // point.
2459 if (IsFunction)
2460 emitLinkage(&GA,
2461 getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM));
2462 return;
2463 }
2464
2465 if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective())
2466 OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
2467 else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage())
2468 OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
2469 else
2470 assert(GA.hasLocalLinkage() && "Invalid alias linkage");
2471
2472 // Set the symbol type to function if the alias has a function type.
2473 // This affects codegen when the aliasee is not a function.
2474 if (IsFunction) {
2475 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
2476 if (TM.getTargetTriple().isOSBinFormatCOFF()) {
2477 OutStreamer->beginCOFFSymbolDef(Name);
2478 OutStreamer->emitCOFFSymbolStorageClass(
2483 OutStreamer->endCOFFSymbolDef();
2484 }
2485 }
2486
2487 emitVisibility(Name, GA.getVisibility());
2488
2489 const MCExpr *Expr = lowerConstant(GA.getAliasee());
2490
2491 if (MAI->isMachO() && isa<MCBinaryExpr>(Expr))
2492 OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
2493
2494 // Emit the directives as assignments aka .set:
2495 OutStreamer->emitAssignment(Name, Expr);
2496 MCSymbol *LocalAlias = getSymbolPreferLocal(GA);
2497 if (LocalAlias != Name)
2498 OutStreamer->emitAssignment(LocalAlias, Expr);
2499
2500 // If the aliasee does not correspond to a symbol in the output, i.e. the
2501 // alias is not of an object or the aliased object is private, then set the
2502 // size of the alias symbol from the type of the alias. We don't do this in
2503 // other situations as the alias and aliasee having differing types but same
2504 // size may be intentional.
2505 const GlobalObject *BaseObject = GA.getAliaseeObject();
2506 if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() &&
2507 (!BaseObject || BaseObject->hasPrivateLinkage())) {
2508 const DataLayout &DL = M.getDataLayout();
2509 uint64_t Size = DL.getTypeAllocSize(GA.getValueType());
2510 OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
2511 }
2512}
2513
2514void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) {
2516 "IFunc is not supported on AIX.");
2517
2518 auto EmitLinkage = [&](MCSymbol *Sym) {
2520 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
2521 else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage())
2522 OutStreamer->emitSymbolAttribute(Sym, MCSA_WeakReference);
2523 else
2524 assert(GI.hasLocalLinkage() && "Invalid ifunc linkage");
2525 };
2526
2528 MCSymbol *Name = getSymbol(&GI);
2529 EmitLinkage(Name);
2530 OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
2531 emitVisibility(Name, GI.getVisibility());
2532
2533 // Emit the directives as assignments aka .set:
2534 const MCExpr *Expr = lowerConstant(GI.getResolver());
2535 OutStreamer->emitAssignment(Name, Expr);
2536 MCSymbol *LocalAlias = getSymbolPreferLocal(GI);
2537 if (LocalAlias != Name)
2538 OutStreamer->emitAssignment(LocalAlias, Expr);
2539
2540 return;
2541 }
2542
2543 if (!TM.getTargetTriple().isOSBinFormatMachO() || !getIFuncMCSubtargetInfo())
2544 reportFatalUsageError("IFuncs are not supported on this platform");
2545
2546 // On Darwin platforms, emit a manually-constructed .symbol_resolver that
2547 // implements the symbol resolution duties of the IFunc.
2548 //
2549 // Normally, this would be handled by linker magic, but unfortunately there
2550 // are a few limitations in ld64 and ld-prime's implementation of
2551 // .symbol_resolver that mean we can't always use them:
2552 //
2553 // * resolvers cannot be the target of an alias
2554 // * resolvers cannot have private linkage
2555 // * resolvers cannot have linkonce linkage
2556 // * resolvers cannot appear in executables
2557 // * resolvers cannot appear in bundles
2558 //
2559 // This works around that by emitting a close approximation of what the
2560 // linker would have done.
2561
2562 MCSymbol *LazyPointer =
2563 GetExternalSymbolSymbol(GI.getName() + ".lazy_pointer");
2564 MCSymbol *StubHelper = GetExternalSymbolSymbol(GI.getName() + ".stub_helper");
2565
2566 OutStreamer->switchSection(OutContext.getObjectFileInfo()->getDataSection());
2567
2568 const DataLayout &DL = M.getDataLayout();
2569 emitAlignment(Align(DL.getPointerSize()));
2570 OutStreamer->emitLabel(LazyPointer);
2571 emitVisibility(LazyPointer, GI.getVisibility());
2572 OutStreamer->emitValue(MCSymbolRefExpr::create(StubHelper, OutContext), 8);
2573
2574 OutStreamer->switchSection(OutContext.getObjectFileInfo()->getTextSection());
2575
2576 const TargetSubtargetInfo *STI =
2577 TM.getSubtargetImpl(*GI.getResolverFunction());
2578 const TargetLowering *TLI = STI->getTargetLowering();
2579 Align TextAlign(TLI->getMinFunctionAlignment());
2580
2581 MCSymbol *Stub = getSymbol(&GI);
2582 EmitLinkage(Stub);
2583 OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo());
2584 OutStreamer->emitLabel(Stub);
2585 emitVisibility(Stub, GI.getVisibility());
2586 emitMachOIFuncStubBody(M, GI, LazyPointer);
2587
2588 OutStreamer->emitCodeAlignment(TextAlign, getIFuncMCSubtargetInfo());
2589 OutStreamer->emitLabel(StubHelper);
2590 emitVisibility(StubHelper, GI.getVisibility());
2591 emitMachOIFuncStubHelperBody(M, GI, LazyPointer);
2592}
2593
2595 if (!RS.needsSection())
2596 return;
2597 if (!RS.getFilename())
2598 return;
2599
2600 MCSection *RemarksSection =
2601 OutContext.getObjectFileInfo()->getRemarksSection();
2602 if (!RemarksSection) {
2603 OutContext.reportWarning(SMLoc(), "Current object file format does not "
2604 "support remarks sections. Use the yaml "
2605 "remark format instead.");
2606 return;
2607 }
2608
2609 SmallString<128> Filename = *RS.getFilename();
2610 sys::fs::make_absolute(Filename);
2611 assert(!Filename.empty() && "The filename can't be empty.");
2612
2613 std::string Buf;
2614 raw_string_ostream OS(Buf);
2615
2616 remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
2617 std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
2618 RemarkSerializer.metaSerializer(OS, Filename);
2619 MetaSerializer->emit();
2620
2621 // Switch to the remarks section.
2622 OutStreamer->switchSection(RemarksSection);
2623 OutStreamer->emitBinaryData(Buf);
2624}
2625
2627 const Constant *Initializer = G.getInitializer();
2628 return G.getParent()->getDataLayout().getTypeAllocSize(
2629 Initializer->getType());
2630}
2631
2633 // We used to do this in clang, but there are optimization passes that turn
2634 // non-constant globals into constants. So now, clang only tells us whether
2635 // it would *like* a global to be tagged, but we still make the decision here.
2636 //
2637 // For now, don't instrument constant data, as it'll be in .rodata anyway. It
2638 // may be worth instrumenting these in future to stop them from being used as
2639 // gadgets.
2640 if (G.getName().starts_with("llvm.") || G.isThreadLocal() || G.isConstant())
2641 return false;
2642
2643 // Globals can be placed implicitly or explicitly in sections. There's two
2644 // different types of globals that meet this criteria that cause problems:
2645 // 1. Function pointers that are going into various init arrays (either
2646 // explicitly through `__attribute__((section(<foo>)))` or implicitly
2647 // through `__attribute__((constructor)))`, such as ".(pre)init(_array)",
2648 // ".fini(_array)", ".ctors", and ".dtors". These function pointers end up
2649 // overaligned and overpadded, making iterating over them problematic, and
2650 // each function pointer is individually tagged (so the iteration over
2651 // them causes SIGSEGV/MTE[AS]ERR).
2652 // 2. Global variables put into an explicit section, where the section's name
2653 // is a valid C-style identifier. The linker emits a `__start_<name>` and
2654 // `__stop_<name>` symbol for the section, so that you can iterate over
2655 // globals within this section. Unfortunately, again, these globals would
2656 // be tagged and so iteration causes SIGSEGV/MTE[AS]ERR.
2657 //
2658 // To mitigate both these cases, and because specifying a section is rare
2659 // outside of these two cases, disable MTE protection for globals in any
2660 // section.
2661 if (G.hasSection())
2662 return false;
2663
2664 return globalSize(G) > 0;
2665}
2666
2668 uint64_t SizeInBytes = globalSize(*G);
2669
2670 uint64_t NewSize = alignTo(SizeInBytes, 16);
2671 if (SizeInBytes != NewSize) {
2672 // Pad the initializer out to the next multiple of 16 bytes.
2673 llvm::SmallVector<uint8_t> Init(NewSize - SizeInBytes, 0);
2674 Constant *Padding = ConstantDataArray::get(M.getContext(), Init);
2675 Constant *Initializer = G->getInitializer();
2676 Initializer = ConstantStruct::getAnon({Initializer, Padding});
2677 auto *NewGV = new GlobalVariable(
2678 M, Initializer->getType(), G->isConstant(), G->getLinkage(),
2679 Initializer, "", G, G->getThreadLocalMode(), G->getAddressSpace());
2680 NewGV->copyAttributesFrom(G);
2681 NewGV->setComdat(G->getComdat());
2682 NewGV->copyMetadata(G, 0);
2683
2684 NewGV->takeName(G);
2685 G->replaceAllUsesWith(NewGV);
2686 G->eraseFromParent();
2687 G = NewGV;
2688 }
2689
2690 if (G->getAlign().valueOrOne() < 16)
2691 G->setAlignment(Align(16));
2692
2693 // Ensure that tagged globals don't get merged by ICF - as they should have
2694 // different tags at runtime.
2695 G->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2696}
2697
2699 auto Meta = G.getSanitizerMetadata();
2700 Meta.Memtag = false;
2701 G.setSanitizerMetadata(Meta);
2702}
2703
2705 // Set the MachineFunction to nullptr so that we can catch attempted
2706 // accesses to MF specific features at the module level and so that
2707 // we can conditionalize accesses based on whether or not it is nullptr.
2708 MF = nullptr;
2709 const Triple &Target = TM.getTargetTriple();
2710
2711 std::vector<GlobalVariable *> GlobalsToTag;
2712 for (GlobalVariable &G : M.globals()) {
2713 if (G.isDeclaration() || !G.isTagged())
2714 continue;
2715 if (!shouldTagGlobal(G)) {
2716 assert(G.hasSanitizerMetadata()); // because isTagged.
2718 assert(!G.isTagged());
2719 continue;
2720 }
2721 GlobalsToTag.push_back(&G);
2722 }
2723 for (GlobalVariable *G : GlobalsToTag)
2725
2726 // Gather all GOT equivalent globals in the module. We really need two
2727 // passes over the globals: one to compute and another to avoid its emission
2728 // in EmitGlobalVariable, otherwise we would not be able to handle cases
2729 // where the got equivalent shows up before its use.
2731
2732 // Emit global variables.
2733 for (const auto &G : M.globals())
2735
2736 // Emit remaining GOT equivalent globals.
2738
2740
2741 // Emit linkage(XCOFF) and visibility info for declarations
2742 for (const Function &F : M) {
2743 if (!F.isDeclarationForLinker())
2744 continue;
2745
2746 MCSymbol *Name = getSymbol(&F);
2747 // Function getSymbol gives us the function descriptor symbol for XCOFF.
2748
2749 if (!Target.isOSBinFormatXCOFF()) {
2750 GlobalValue::VisibilityTypes V = F.getVisibility();
2752 continue;
2753
2754 emitVisibility(Name, V, false);
2755 continue;
2756 }
2757
2758 if (F.isIntrinsic())
2759 continue;
2760
2761 // Handle the XCOFF case.
2762 // Variable `Name` is the function descriptor symbol (see above). Get the
2763 // function entry point symbol.
2764 MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
2765 // Emit linkage for the function entry point.
2766 emitLinkage(&F, FnEntryPointSym);
2767
2768 // If a function's address is taken, which means it may be called via a
2769 // function pointer, we need the function descriptor for it.
2770 if (F.hasAddressTaken())
2771 emitLinkage(&F, Name);
2772 }
2773
2774 // Emit the remarks section contents.
2775 // FIXME: Figure out when is the safest time to emit this section. It should
2776 // not come after debug info.
2777 if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
2778 emitRemarksSection(*RS);
2779
2781
2782 if (Target.isOSBinFormatELF()) {
2783 MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
2784
2785 // Output stubs for external and common global variables.
2787 if (!Stubs.empty()) {
2788 OutStreamer->switchSection(TLOF.getDataSection());
2789 const DataLayout &DL = M.getDataLayout();
2790
2791 emitAlignment(Align(DL.getPointerSize()));
2792 for (const auto &Stub : Stubs) {
2793 OutStreamer->emitLabel(Stub.first);
2794 OutStreamer->emitSymbolValue(Stub.second.getPointer(),
2795 DL.getPointerSize());
2796 }
2797 }
2798 }
2799
2800 if (Target.isOSBinFormatCOFF()) {
2801 MachineModuleInfoCOFF &MMICOFF =
2802 MMI->getObjFileInfo<MachineModuleInfoCOFF>();
2803
2804 // Output stubs for external and common global variables.
2806 if (!Stubs.empty()) {
2807 const DataLayout &DL = M.getDataLayout();
2808
2809 for (const auto &Stub : Stubs) {
2811 SectionName += Stub.first->getName();
2812 OutStreamer->switchSection(OutContext.getCOFFSection(
2816 Stub.first->getName(), COFF::IMAGE_COMDAT_SELECT_ANY));
2817 emitAlignment(Align(DL.getPointerSize()));
2818 OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
2819 OutStreamer->emitLabel(Stub.first);
2820 OutStreamer->emitSymbolValue(Stub.second.getPointer(),
2821 DL.getPointerSize());
2822 }
2823 }
2824 }
2825
2826 // This needs to happen before emitting debug information since that can end
2827 // arbitrary sections.
2828 if (auto *TS = OutStreamer->getTargetStreamer())
2829 TS->emitConstantPools();
2830
2831 // Emit Stack maps before any debug info. Mach-O requires that no data or
2832 // text sections come after debug info has been emitted. This matters for
2833 // stack maps as they are arbitrary data, and may even have a custom format
2834 // through user plugins.
2835 emitStackMaps();
2836
2837 // Print aliases in topological order, that is, for each alias a = b,
2838 // b must be printed before a.
2839 // This is because on some targets (e.g. PowerPC) linker expects aliases in
2840 // such an order to generate correct TOC information.
2843 for (const auto &Alias : M.aliases()) {
2844 if (Alias.hasAvailableExternallyLinkage())
2845 continue;
2846 for (const GlobalAlias *Cur = &Alias; Cur;
2847 Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
2848 if (!AliasVisited.insert(Cur).second)
2849 break;
2850 AliasStack.push_back(Cur);
2851 }
2852 for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
2853 emitGlobalAlias(M, *AncestorAlias);
2854 AliasStack.clear();
2855 }
2856
2857 // IFuncs must come before deubginfo in case the backend decides to emit them
2858 // as actual functions, since on Mach-O targets, we cannot create regular
2859 // sections after DWARF.
2860 for (const auto &IFunc : M.ifuncs())
2861 emitGlobalIFunc(M, IFunc);
2862
2863 // Finalize debug and EH information.
2864 for (auto &Handler : Handlers)
2865 Handler->endModule();
2866 for (auto &Handler : EHHandlers)
2867 Handler->endModule();
2868
2869 // This deletes all the ephemeral handlers that AsmPrinter added, while
2870 // keeping all the user-added handlers alive until the AsmPrinter is
2871 // destroyed.
2872 EHHandlers.clear();
2873 Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
2874 DD = nullptr;
2875
2876 // If the target wants to know about weak references, print them all.
2877 if (MAI->getWeakRefDirective()) {
2878 // FIXME: This is not lazy, it would be nice to only print weak references
2879 // to stuff that is actually used. Note that doing so would require targets
2880 // to notice uses in operands (due to constant exprs etc). This should
2881 // happen with the MC stuff eventually.
2882
2883 // Print out module-level global objects here.
2884 for (const auto &GO : M.global_objects()) {
2885 if (!GO.hasExternalWeakLinkage())
2886 continue;
2887 OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
2888 }
2890 auto SymbolName = "swift_async_extendedFramePointerFlags";
2891 auto Global = M.getGlobalVariable(SymbolName);
2892 if (!Global) {
2893 auto PtrTy = PointerType::getUnqual(M.getContext());
2894 Global = new GlobalVariable(M, PtrTy, false,
2896 SymbolName);
2897 OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference);
2898 }
2899 }
2900 }
2901
2903 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
2904 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
2905 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(**--I))
2906 MP->finishAssembly(M, *MI, *this);
2907
2908 // Emit llvm.ident metadata in an '.ident' directive.
2909 emitModuleIdents(M);
2910
2911 // Emit bytes for llvm.commandline metadata.
2912 // The command line metadata is emitted earlier on XCOFF.
2913 if (!Target.isOSBinFormatXCOFF())
2914 emitModuleCommandLines(M);
2915
2916 // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
2917 // split-stack is used.
2918 if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) {
2919 OutStreamer->switchSection(OutContext.getELFSection(".note.GNU-split-stack",
2920 ELF::SHT_PROGBITS, 0));
2921 if (HasNoSplitStack)
2922 OutStreamer->switchSection(OutContext.getELFSection(
2923 ".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
2924 }
2925
2926 // If we don't have any trampolines, then we don't require stack memory
2927 // to be executable. Some targets have a directive to declare this.
2928 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
2929 bool HasTrampolineUses =
2930 InitTrampolineIntrinsic && !InitTrampolineIntrinsic->use_empty();
2931 MCSection *S = MAI->getStackSection(OutContext, /*Exec=*/HasTrampolineUses);
2932 if (S)
2933 OutStreamer->switchSection(S);
2934
2935 if (TM.Options.EmitAddrsig) {
2936 // Emit address-significance attributes for all globals.
2937 OutStreamer->emitAddrsig();
2938 for (const GlobalValue &GV : M.global_values()) {
2939 if (!GV.use_empty() && !GV.isThreadLocal() &&
2940 !GV.hasDLLImportStorageClass() &&
2941 !GV.getName().starts_with("llvm.") &&
2942 !GV.hasAtLeastLocalUnnamedAddr())
2943 OutStreamer->emitAddrsigSym(getSymbol(&GV));
2944 }
2945 }
2946
2947 // Emit symbol partition specifications (ELF only).
2948 if (Target.isOSBinFormatELF()) {
2949 unsigned UniqueID = 0;
2950 for (const GlobalValue &GV : M.global_values()) {
2951 if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
2952 GV.getVisibility() != GlobalValue::DefaultVisibility)
2953 continue;
2954
2955 OutStreamer->switchSection(
2956 OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
2957 "", false, ++UniqueID, nullptr));
2958 OutStreamer->emitBytes(GV.getPartition());
2959 OutStreamer->emitZeros(1);
2960 OutStreamer->emitValue(
2962 MAI->getCodePointerSize());
2963 }
2964 }
2965
2966 // Allow the target to emit any magic that it wants at the end of the file,
2967 // after everything else has gone out.
2969
2970 MMI = nullptr;
2971 AddrLabelSymbols = nullptr;
2972
2973 OutStreamer->finish();
2974 OutStreamer->reset();
2975 OwnedMLI.reset();
2976 OwnedMDT.reset();
2977
2978 return false;
2979}
2980
2982 auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionID());
2983 if (Res.second)
2984 Res.first->second = createTempSymbol("exception");
2985 return Res.first->second;
2986}
2987
2989 MCContext &Ctx = MF->getContext();
2990 MCSymbol *Sym = Ctx.createTempSymbol("BB" + Twine(MF->getFunctionNumber()) +
2991 "_" + Twine(MBB.getNumber()) + "_CS");
2992 CurrentFnCallsiteEndSymbols[&MBB].push_back(Sym);
2993 return Sym;
2994}
2995
2997 this->MF = &MF;
2998 const Function &F = MF.getFunction();
2999
3000 // Record that there are split-stack functions, so we will emit a special
3001 // section to tell the linker.
3002 if (MF.shouldSplitStack()) {
3003 HasSplitStack = true;
3004
3005 if (!MF.getFrameInfo().needsSplitStackProlog())
3006 HasNoSplitStack = true;
3007 } else
3008 HasNoSplitStack = true;
3009
3010 // Get the function symbol.
3011 if (!MAI->isAIX()) {
3012 CurrentFnSym = getSymbol(&MF.getFunction());
3013 } else {
3014 assert(TM.getTargetTriple().isOSAIX() &&
3015 "Only AIX uses the function descriptor hooks.");
3016 // AIX is unique here in that the name of the symbol emitted for the
3017 // function body does not have the same name as the source function's
3018 // C-linkage name.
3019 assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
3020 " initalized first.");
3021
3022 // Get the function entry point symbol.
3024 }
3025
3027 CurrentFnBegin = nullptr;
3028 CurrentFnBeginLocal = nullptr;
3029 CurrentSectionBeginSym = nullptr;
3031 MBBSectionRanges.clear();
3032 MBBSectionExceptionSyms.clear();
3033 bool NeedsLocalForSize = MAI->needsLocalForSize();
3034 if (F.hasFnAttribute("patchable-function-entry") ||
3035 F.hasFnAttribute("function-instrument") ||
3036 F.hasFnAttribute("xray-instruction-threshold") ||
3037 needFuncLabels(MF, *this) || NeedsLocalForSize ||
3038 MF.getTarget().Options.EmitStackSizeSection ||
3039 MF.getTarget().Options.EmitCallGraphSection ||
3040 MF.getTarget().Options.BBAddrMap) {
3041 CurrentFnBegin = createTempSymbol("func_begin");
3042 if (NeedsLocalForSize)
3044 }
3045
3047}
3048
3049namespace {
3050
3051// Keep track the alignment, constpool entries per Section.
3052 struct SectionCPs {
3053 MCSection *S;
3054 Align Alignment;
3056
3057 SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
3058 };
3059
3060} // end anonymous namespace
3061
3063 if (TM.Options.EnableStaticDataPartitioning && C && SDPI && PSI)
3064 return SDPI->getConstantSectionPrefix(C, PSI);
3065
3066 return "";
3067}
3068
3069/// EmitConstantPool - Print to the current output stream assembly
3070/// representations of the constants in the constant pool MCP. This is
3071/// used to print out constants which have been "spilled to memory" by
3072/// the code generator.
3074 const MachineConstantPool *MCP = MF->getConstantPool();
3075 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
3076 if (CP.empty()) return;
3077
3078 // Calculate sections for constant pool entries. We collect entries to go into
3079 // the same section together to reduce amount of section switch statements.
3080 SmallVector<SectionCPs, 4> CPSections;
3081 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
3082 const MachineConstantPoolEntry &CPE = CP[i];
3083 Align Alignment = CPE.getAlign();
3084
3086
3087 const Constant *C = nullptr;
3088 if (!CPE.isMachineConstantPoolEntry())
3089 C = CPE.Val.ConstVal;
3090
3092 getDataLayout(), Kind, C, Alignment, getConstantSectionSuffix(C));
3093
3094 // The number of sections are small, just do a linear search from the
3095 // last section to the first.
3096 bool Found = false;
3097 unsigned SecIdx = CPSections.size();
3098 while (SecIdx != 0) {
3099 if (CPSections[--SecIdx].S == S) {
3100 Found = true;
3101 break;
3102 }
3103 }
3104 if (!Found) {
3105 SecIdx = CPSections.size();
3106 CPSections.push_back(SectionCPs(S, Alignment));
3107 }
3108
3109 if (Alignment > CPSections[SecIdx].Alignment)
3110 CPSections[SecIdx].Alignment = Alignment;
3111 CPSections[SecIdx].CPEs.push_back(i);
3112 }
3113
3114 // Now print stuff into the calculated sections.
3115 const MCSection *CurSection = nullptr;
3116 unsigned Offset = 0;
3117 for (const SectionCPs &CPSection : CPSections) {
3118 for (unsigned CPI : CPSection.CPEs) {
3119 MCSymbol *Sym = GetCPISymbol(CPI);
3120 if (!Sym->isUndefined())
3121 continue;
3122
3123 if (CurSection != CPSection.S) {
3124 OutStreamer->switchSection(CPSection.S);
3125 emitAlignment(Align(CPSection.Alignment));
3126 CurSection = CPSection.S;
3127 Offset = 0;
3128 }
3129
3130 MachineConstantPoolEntry CPE = CP[CPI];
3131
3132 // Emit inter-object padding for alignment.
3133 unsigned NewOffset = alignTo(Offset, CPE.getAlign());
3134 OutStreamer->emitZeros(NewOffset - Offset);
3135
3136 Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
3137
3138 OutStreamer->emitLabel(Sym);
3141 else
3143 }
3144 }
3145}
3146
3147// Print assembly representations of the jump tables used by the current
3148// function.
3150 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
3151 if (!MJTI) return;
3152
3153 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
3154 if (JT.empty()) return;
3155
3156 if (!TM.Options.EnableStaticDataPartitioning) {
3157 emitJumpTableImpl(*MJTI, llvm::to_vector(llvm::seq<unsigned>(JT.size())));
3158 return;
3159 }
3160
3161 SmallVector<unsigned> HotJumpTableIndices, ColdJumpTableIndices;
3162 // When static data partitioning is enabled, collect jump table entries that
3163 // go into the same section together to reduce the amount of section switch
3164 // statements.
3165 for (unsigned JTI = 0, JTSize = JT.size(); JTI < JTSize; ++JTI) {
3166 if (JT[JTI].Hotness == MachineFunctionDataHotness::Cold) {
3167 ColdJumpTableIndices.push_back(JTI);
3168 } else {
3169 HotJumpTableIndices.push_back(JTI);
3170 }
3171 }
3172
3173 emitJumpTableImpl(*MJTI, HotJumpTableIndices);
3174 emitJumpTableImpl(*MJTI, ColdJumpTableIndices);
3175}
3176
3177void AsmPrinter::emitJumpTableImpl(const MachineJumpTableInfo &MJTI,
3178 ArrayRef<unsigned> JumpTableIndices) {
3180 JumpTableIndices.empty())
3181 return;
3182
3184 const Function &F = MF->getFunction();
3185 const std::vector<MachineJumpTableEntry> &JT = MJTI.getJumpTables();
3186 MCSection *JumpTableSection = nullptr;
3187
3188 const bool UseLabelDifference =
3191 // Pick the directive to use to print the jump table entries, and switch to
3192 // the appropriate section.
3193 const bool JTInDiffSection =
3194 !TLOF.shouldPutJumpTableInFunctionSection(UseLabelDifference, F);
3195 if (JTInDiffSection) {
3197 JumpTableSection =
3198 TLOF.getSectionForJumpTable(F, TM, &JT[JumpTableIndices.front()]);
3199 } else {
3200 JumpTableSection = TLOF.getSectionForJumpTable(F, TM);
3201 }
3202 OutStreamer->switchSection(JumpTableSection);
3203 }
3204
3205 const DataLayout &DL = MF->getDataLayout();
3207
3208 // Jump tables in code sections are marked with a data_region directive
3209 // where that's supported.
3210 if (!JTInDiffSection)
3211 OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
3212
3213 for (const unsigned JumpTableIndex : JumpTableIndices) {
3214 ArrayRef<MachineBasicBlock *> JTBBs = JT[JumpTableIndex].MBBs;
3215
3216 // If this jump table was deleted, ignore it.
3217 if (JTBBs.empty())
3218 continue;
3219
3220 // For the EK_LabelDifference32 entry, if using .set avoids a relocation,
3221 /// emit a .set directive for each unique entry.
3223 MAI->doesSetDirectiveSuppressReloc()) {
3224 SmallPtrSet<const MachineBasicBlock *, 16> EmittedSets;
3225 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
3226 const MCExpr *Base =
3227 TLI->getPICJumpTableRelocBaseExpr(MF, JumpTableIndex, OutContext);
3228 for (const MachineBasicBlock *MBB : JTBBs) {
3229 if (!EmittedSets.insert(MBB).second)
3230 continue;
3231
3232 // .set LJTSet, LBB32-base
3233 const MCExpr *LHS =
3235 OutStreamer->emitAssignment(
3236 GetJTSetSymbol(JumpTableIndex, MBB->getNumber()),
3238 }
3239 }
3240
3241 // On some targets (e.g. Darwin) we want to emit two consecutive labels
3242 // before each jump table. The first label is never referenced, but tells
3243 // the assembler and linker the extents of the jump table object. The
3244 // second label is actually referenced by the code.
3245 if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
3246 // FIXME: This doesn't have to have any specific name, just any randomly
3247 // named and numbered local label started with 'l' would work. Simplify
3248 // GetJTISymbol.
3249 OutStreamer->emitLabel(GetJTISymbol(JumpTableIndex, true));
3250
3251 MCSymbol *JTISymbol = GetJTISymbol(JumpTableIndex);
3252 OutStreamer->emitLabel(JTISymbol);
3253
3254 // Defer MCAssembler based constant folding due to a performance issue. The
3255 // label differences will be evaluated at write time.
3256 for (const MachineBasicBlock *MBB : JTBBs)
3257 emitJumpTableEntry(MJTI, MBB, JumpTableIndex);
3258 }
3259
3261 emitJumpTableSizesSection(MJTI, MF->getFunction());
3262
3263 if (!JTInDiffSection)
3264 OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
3265}
3266
3267void AsmPrinter::emitJumpTableSizesSection(const MachineJumpTableInfo &MJTI,
3268 const Function &F) const {
3269 const std::vector<MachineJumpTableEntry> &JT = MJTI.getJumpTables();
3270
3271 if (JT.empty())
3272 return;
3273
3274 StringRef GroupName = F.hasComdat() ? F.getComdat()->getName() : "";
3275 MCSection *JumpTableSizesSection = nullptr;
3276 StringRef sectionName = ".llvm_jump_table_sizes";
3277
3278 bool isElf = TM.getTargetTriple().isOSBinFormatELF();
3279 bool isCoff = TM.getTargetTriple().isOSBinFormatCOFF();
3280
3281 if (!isCoff && !isElf)
3282 return;
3283
3284 if (isElf) {
3285 auto *LinkedToSym = static_cast<MCSymbolELF *>(CurrentFnSym);
3286 int Flags = F.hasComdat() ? static_cast<int>(ELF::SHF_GROUP) : 0;
3287
3288 JumpTableSizesSection = OutContext.getELFSection(
3289 sectionName, ELF::SHT_LLVM_JT_SIZES, Flags, 0, GroupName, F.hasComdat(),
3290 MCSection::NonUniqueID, LinkedToSym);
3291 } else if (isCoff) {
3292 if (F.hasComdat()) {
3293 JumpTableSizesSection = OutContext.getCOFFSection(
3294 sectionName,
3297 F.getComdat()->getName(), COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE);
3298 } else {
3299 JumpTableSizesSection = OutContext.getCOFFSection(
3303 }
3304 }
3305
3306 OutStreamer->switchSection(JumpTableSizesSection);
3307
3308 for (unsigned JTI = 0, E = JT.size(); JTI != E; ++JTI) {
3309 const std::vector<MachineBasicBlock *> &JTBBs = JT[JTI].MBBs;
3310 OutStreamer->emitSymbolValue(GetJTISymbol(JTI), TM.getProgramPointerSize());
3311 OutStreamer->emitIntValue(JTBBs.size(), TM.getProgramPointerSize());
3312 }
3313}
3314
3315/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
3316/// current stream.
3318 const MachineBasicBlock *MBB,
3319 unsigned UID) const {
3320 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
3321 const MCExpr *Value = nullptr;
3322 switch (MJTI.getEntryKind()) {
3324 llvm_unreachable("Cannot emit EK_Inline jump table entry");
3327 llvm_unreachable("MIPS specific");
3329 Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
3330 &MJTI, MBB, UID, OutContext);
3331 break;
3333 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
3334 // .word LBB123
3336 break;
3337
3340 // Each entry is the address of the block minus the address of the jump
3341 // table. This is used for PIC jump tables where gprel32 is not supported.
3342 // e.g.:
3343 // .word LBB123 - LJTI1_2
3344 // If the .set directive avoids relocations, this is emitted as:
3345 // .set L4_5_set_123, LBB123 - LJTI1_2
3346 // .word L4_5_set_123
3348 MAI->doesSetDirectiveSuppressReloc()) {
3349 Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
3350 OutContext);
3351 break;
3352 }
3354 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
3357 break;
3358 }
3359 }
3360
3361 assert(Value && "Unknown entry kind!");
3362
3363 unsigned EntrySize = MJTI.getEntrySize(getDataLayout());
3364 OutStreamer->emitValue(Value, EntrySize);
3365}
3366
3367/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
3368/// special global used by LLVM. If so, emit it and return true, otherwise
3369/// do nothing and return false.
3371 if (GV->getName() == "llvm.used") {
3372 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
3373 emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
3374 return true;
3375 }
3376
3377 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
3378 if (GV->getSection() == "llvm.metadata" ||
3380 return true;
3381
3382 if (GV->getName() == "llvm.arm64ec.symbolmap") {
3383 // For ARM64EC, print the table that maps between symbols and the
3384 // corresponding thunks to translate between x64 and AArch64 code.
3385 // This table is generated by AArch64Arm64ECCallLowering.
3386 OutStreamer->switchSection(
3387 OutContext.getCOFFSection(".hybmp$x", COFF::IMAGE_SCN_LNK_INFO));
3388 auto *Arr = cast<ConstantArray>(GV->getInitializer());
3389 for (auto &U : Arr->operands()) {
3390 auto *C = cast<Constant>(U);
3391 auto *Src = cast<GlobalValue>(C->getOperand(0)->stripPointerCasts());
3392 auto *Dst = cast<GlobalValue>(C->getOperand(1)->stripPointerCasts());
3393 int Kind = cast<ConstantInt>(C->getOperand(2))->getZExtValue();
3394
3395 if (Src->hasDLLImportStorageClass()) {
3396 // For now, we assume dllimport functions aren't directly called.
3397 // (We might change this later to match MSVC.)
3398 OutStreamer->emitCOFFSymbolIndex(
3399 OutContext.getOrCreateSymbol("__imp_" + Src->getName()));
3400 OutStreamer->emitCOFFSymbolIndex(getSymbol(Dst));
3401 OutStreamer->emitInt32(Kind);
3402 } else {
3403 // FIXME: For non-dllimport functions, MSVC emits the same entry
3404 // twice, for reasons I don't understand. I have to assume the linker
3405 // ignores the redundant entry; there aren't any reasonable semantics
3406 // to attach to it.
3407 OutStreamer->emitCOFFSymbolIndex(getSymbol(Src));
3408 OutStreamer->emitCOFFSymbolIndex(getSymbol(Dst));
3409 OutStreamer->emitInt32(Kind);
3410 }
3411 }
3412 return true;
3413 }
3414
3415 if (!GV->hasAppendingLinkage()) return false;
3416
3417 assert(GV->hasInitializer() && "Not a special LLVM global!");
3418
3419 if (GV->getName() == "llvm.global_ctors") {
3421 /* isCtor */ true);
3422
3423 return true;
3424 }
3425
3426 if (GV->getName() == "llvm.global_dtors") {
3428 /* isCtor */ false);
3429
3430 return true;
3431 }
3432
3433 GV->getContext().emitError(
3434 "unknown special variable with appending linkage: " +
3435 GV->getNameOrAsOperand());
3436 return true;
3437}
3438
3439/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
3440/// global in the specified llvm.used list.
3441void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
3442 // Should be an array of 'i8*'.
3443 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
3444 const GlobalValue *GV =
3446 if (GV)
3447 OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
3448 }
3449}
3450
3452 const Constant *List,
3453 SmallVector<Structor, 8> &Structors) {
3454 // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is
3455 // the init priority.
3457 return;
3458
3459 // Gather the structors in a form that's convenient for sorting by priority.
3460 for (Value *O : cast<ConstantArray>(List)->operands()) {
3461 auto *CS = cast<ConstantStruct>(O);
3462 if (CS->getOperand(1)->isNullValue())
3463 break; // Found a null terminator, skip the rest.
3464 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
3465 if (!Priority)
3466 continue; // Malformed.
3467 Structors.push_back(Structor());
3468 Structor &S = Structors.back();
3469 S.Priority = Priority->getLimitedValue(65535);
3470 S.Func = CS->getOperand(1);
3471 if (!CS->getOperand(2)->isNullValue()) {
3472 if (TM.getTargetTriple().isOSAIX()) {
3473 CS->getContext().emitError(
3474 "associated data of XXStructor list is not yet supported on AIX");
3475 }
3476
3477 S.ComdatKey =
3478 dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
3479 }
3480 }
3481
3482 // Emit the function pointers in the target-specific order
3483 llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
3484 return L.Priority < R.Priority;
3485 });
3486}
3487
3488/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
3489/// priority.
3491 bool IsCtor) {
3492 SmallVector<Structor, 8> Structors;
3493 preprocessXXStructorList(DL, List, Structors);
3494 if (Structors.empty())
3495 return;
3496
3497 // Emit the structors in reverse order if we are using the .ctor/.dtor
3498 // initialization scheme.
3499 if (!TM.Options.UseInitArray)
3500 std::reverse(Structors.begin(), Structors.end());
3501
3502 const Align Align = DL.getPointerPrefAlignment(DL.getProgramAddressSpace());
3503 for (Structor &S : Structors) {
3505 const MCSymbol *KeySym = nullptr;
3506 if (GlobalValue *GV = S.ComdatKey) {
3507 if (GV->isDeclarationForLinker())
3508 // If the associated variable is not defined in this module
3509 // (it might be available_externally, or have been an
3510 // available_externally definition that was dropped by the
3511 // EliminateAvailableExternally pass), some other TU
3512 // will provide its dynamic initializer.
3513 continue;
3514
3515 KeySym = getSymbol(GV);
3516 }
3517
3518 MCSection *OutputSection =
3519 (IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
3520 : Obj.getStaticDtorSection(S.Priority, KeySym));
3521 OutStreamer->switchSection(OutputSection);
3522 if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
3524 emitXXStructor(DL, S.Func);
3525 }
3526}
3527
3528void AsmPrinter::emitModuleIdents(Module &M) {
3529 if (!MAI->hasIdentDirective())
3530 return;
3531
3532 if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
3533 for (const MDNode *N : NMD->operands()) {
3534 assert(N->getNumOperands() == 1 &&
3535 "llvm.ident metadata entry can have only one operand");
3536 const MDString *S = cast<MDString>(N->getOperand(0));
3537 OutStreamer->emitIdent(S->getString());
3538 }
3539 }
3540}
3541
3542void AsmPrinter::emitModuleCommandLines(Module &M) {
3543 MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
3544 if (!CommandLine)
3545 return;
3546
3547 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
3548 if (!NMD || !NMD->getNumOperands())
3549 return;
3550
3551 OutStreamer->pushSection();
3552 OutStreamer->switchSection(CommandLine);
3553 OutStreamer->emitZeros(1);
3554 for (const MDNode *N : NMD->operands()) {
3555 assert(N->getNumOperands() == 1 &&
3556 "llvm.commandline metadata entry can have only one operand");
3557 const MDString *S = cast<MDString>(N->getOperand(0));
3558 OutStreamer->emitBytes(S->getString());
3559 OutStreamer->emitZeros(1);
3560 }
3561 OutStreamer->popSection();
3562}
3563
3564//===--------------------------------------------------------------------===//
3565// Emission and print routines
3566//
3567
3568/// Emit a byte directive and value.
3569///
3570void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
3571
3572/// Emit a short directive and value.
3573void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
3574
3575/// Emit a long directive and value.
3576void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
3577
3578/// EmitSLEB128 - emit the specified signed leb128 value.
3579void AsmPrinter::emitSLEB128(int64_t Value, const char *Desc) const {
3580 if (isVerbose() && Desc)
3581 OutStreamer->AddComment(Desc);
3582
3583 OutStreamer->emitSLEB128IntValue(Value);
3584}
3585
3587 unsigned PadTo) const {
3588 if (isVerbose() && Desc)
3589 OutStreamer->AddComment(Desc);
3590
3591 OutStreamer->emitULEB128IntValue(Value, PadTo);
3592}
3593
3594/// Emit a long long directive and value.
3596 OutStreamer->emitInt64(Value);
3597}
3598
3599/// Emit something like ".long Hi-Lo" where the size in bytes of the directive
3600/// is specified by Size and Hi/Lo specify the labels. This implicitly uses
3601/// .set if it avoids relocations.
3603 unsigned Size) const {
3604 OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
3605}
3606
3607/// Emit something like ".uleb128 Hi-Lo".
3609 const MCSymbol *Lo) const {
3610 OutStreamer->emitAbsoluteSymbolDiffAsULEB128(Hi, Lo);
3611}
3612
3613/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
3614/// where the size in bytes of the directive is specified by Size and Label
3615/// specifies the label. This implicitly uses .set if it is available.
3617 unsigned Size,
3618 bool IsSectionRelative) const {
3619 if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
3620 OutStreamer->emitCOFFSecRel32(Label, Offset);
3621 if (Size > 4)
3622 OutStreamer->emitZeros(Size - 4);
3623 return;
3624 }
3625
3626 // Emit Label+Offset (or just Label if Offset is zero)
3627 const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
3628 if (Offset)
3631
3632 OutStreamer->emitValue(Expr, Size);
3633}
3634
3635//===----------------------------------------------------------------------===//
3636
3637// EmitAlignment - Emit an alignment directive to the specified power of
3638// two boundary. If a global value is specified, and if that global has
3639// an explicit alignment requested, it will override the alignment request
3640// if required for correctness.
3642 unsigned MaxBytesToEmit) const {
3643 if (GV)
3644 Alignment = getGVAlignment(GV, GV->getDataLayout(), Alignment);
3645
3646 if (Alignment == Align(1))
3647 return; // 1-byte aligned: no need to emit alignment.
3648
3649 if (getCurrentSection()->isText()) {
3650 const MCSubtargetInfo *STI = nullptr;
3651 if (this->MF)
3652 STI = &getSubtargetInfo();
3653 else
3654 STI = TM.getMCSubtargetInfo();
3655 OutStreamer->emitCodeAlignment(Alignment, STI, MaxBytesToEmit);
3656 } else
3657 OutStreamer->emitValueToAlignment(Alignment, 0, 1, MaxBytesToEmit);
3658}
3659
3660//===----------------------------------------------------------------------===//
3661// Constant emission.
3662//===----------------------------------------------------------------------===//
3663
3665 const Constant *BaseCV,
3666 uint64_t Offset) {
3667 MCContext &Ctx = OutContext;
3668
3669 if (CV->isNullValue() || isa<UndefValue>(CV))
3670 return MCConstantExpr::create(0, Ctx);
3671
3672 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
3673 return MCConstantExpr::create(CI->getZExtValue(), Ctx);
3674
3675 if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(CV))
3676 return lowerConstantPtrAuth(*CPA);
3677
3678 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
3679 return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
3680
3681 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
3682 return lowerBlockAddressConstant(*BA);
3683
3684 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
3686 getSymbol(Equiv->getGlobalValue()), nullptr, 0, std::nullopt, TM);
3687
3688 if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV))
3689 return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx);
3690
3691 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
3692 if (!CE) {
3693 llvm_unreachable("Unknown constant value to lower!");
3694 }
3695
3696 // The constant expression opcodes are limited to those that are necessary
3697 // to represent relocations on supported targets. Expressions involving only
3698 // constant addresses are constant folded instead.
3699 switch (CE->getOpcode()) {
3700 default:
3701 break; // Error
3702 case Instruction::AddrSpaceCast: {
3703 const Constant *Op = CE->getOperand(0);
3704 unsigned DstAS = CE->getType()->getPointerAddressSpace();
3705 unsigned SrcAS = Op->getType()->getPointerAddressSpace();
3706 if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
3707 return lowerConstant(Op);
3708
3709 break; // Error
3710 }
3711 case Instruction::GetElementPtr: {
3712 // Generate a symbolic expression for the byte address
3713 APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
3714 cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
3715
3716 const MCExpr *Base = lowerConstant(CE->getOperand(0));
3717 if (!OffsetAI)
3718 return Base;
3719
3720 int64_t Offset = OffsetAI.getSExtValue();
3722 Ctx);
3723 }
3724
3725 case Instruction::Trunc:
3726 // We emit the value and depend on the assembler to truncate the generated
3727 // expression properly. This is important for differences between
3728 // blockaddress labels. Since the two labels are in the same function, it
3729 // is reasonable to treat their delta as a 32-bit value.
3730 [[fallthrough]];
3731 case Instruction::BitCast:
3732 return lowerConstant(CE->getOperand(0), BaseCV, Offset);
3733
3734 case Instruction::IntToPtr: {
3735 const DataLayout &DL = getDataLayout();
3736
3737 // Handle casts to pointers by changing them into casts to the appropriate
3738 // integer type. This promotes constant folding and simplifies this code.
3739 Constant *Op = CE->getOperand(0);
3740 Op = ConstantFoldIntegerCast(Op, DL.getIntPtrType(CV->getType()),
3741 /*IsSigned*/ false, DL);
3742 if (Op)
3743 return lowerConstant(Op);
3744
3745 break; // Error
3746 }
3747
3748 case Instruction::PtrToAddr:
3749 case Instruction::PtrToInt: {
3750 const DataLayout &DL = getDataLayout();
3751
3752 // Support only foldable casts to/from pointers that can be eliminated by
3753 // changing the pointer to the appropriately sized integer type.
3754 Constant *Op = CE->getOperand(0);
3755 Type *Ty = CE->getType();
3756
3757 const MCExpr *OpExpr = lowerConstant(Op);
3758
3759 // We can emit the pointer value into this slot if the slot is an
3760 // integer slot equal to the size of the pointer.
3761 //
3762 // If the pointer is larger than the resultant integer, then
3763 // as with Trunc just depend on the assembler to truncate it.
3764 if (DL.getTypeAllocSize(Ty).getFixedValue() <=
3765 DL.getTypeAllocSize(Op->getType()).getFixedValue())
3766 return OpExpr;
3767
3768 break; // Error
3769 }
3770
3771 case Instruction::Sub: {
3772 GlobalValue *LHSGV, *RHSGV;
3773 APInt LHSOffset, RHSOffset;
3774 DSOLocalEquivalent *DSOEquiv;
3775 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
3776 getDataLayout(), &DSOEquiv) &&
3777 IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
3778 getDataLayout())) {
3779 auto *LHSSym = getSymbol(LHSGV);
3780 auto *RHSSym = getSymbol(RHSGV);
3781 int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
3782 std::optional<int64_t> PCRelativeOffset;
3783 if (getObjFileLowering().hasPLTPCRelative() && RHSGV == BaseCV)
3784 PCRelativeOffset = Offset;
3785
3786 // Try the generic symbol difference first.
3788 LHSGV, RHSGV, Addend, PCRelativeOffset, TM);
3789
3790 // (ELF-specific) If the generic symbol difference does not apply, and
3791 // LHS is a dso_local_equivalent of a function, reference the PLT entry
3792 // instead. Note: A default visibility symbol is by default preemptible
3793 // during linking, and should not be referenced with PC-relative
3794 // relocations. Therefore, use a PLT relocation even if the function is
3795 // dso_local.
3796 if (DSOEquiv && TM.getTargetTriple().isOSBinFormatELF())
3798 LHSSym, RHSSym, Addend, PCRelativeOffset, TM);
3799
3800 // Otherwise, return LHS-RHS+Addend.
3801 if (!Res) {
3802 Res =
3804 MCSymbolRefExpr::create(RHSSym, Ctx), Ctx);
3805 if (Addend != 0)
3807 Res, MCConstantExpr::create(Addend, Ctx), Ctx);
3808 }
3809 return Res;
3810 }
3811
3812 const MCExpr *LHS = lowerConstant(CE->getOperand(0));
3813 const MCExpr *RHS = lowerConstant(CE->getOperand(1));
3814 return MCBinaryExpr::createSub(LHS, RHS, Ctx);
3815 break;
3816 }
3817
3818 case Instruction::Add: {
3819 const MCExpr *LHS = lowerConstant(CE->getOperand(0));
3820 const MCExpr *RHS = lowerConstant(CE->getOperand(1));
3821 return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
3822 }
3823 }
3824
3825 // If the code isn't optimized, there may be outstanding folding
3826 // opportunities. Attempt to fold the expression using DataLayout as a
3827 // last resort before giving up.
3829 if (C != CE)
3830 return lowerConstant(C);
3831
3832 // Otherwise report the problem to the user.
3833 std::string S;
3834 raw_string_ostream OS(S);
3835 OS << "unsupported expression in static initializer: ";
3836 CE->printAsOperand(OS, /*PrintType=*/false,
3837 !MF ? nullptr : MF->getFunction().getParent());
3838 CE->getContext().emitError(S);
3839 return MCConstantExpr::create(0, Ctx);
3840}
3841
3842static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
3843 AsmPrinter &AP,
3844 const Constant *BaseCV = nullptr,
3845 uint64_t Offset = 0,
3846 AsmPrinter::AliasMapTy *AliasList = nullptr);
3847
3848static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
3849static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
3850
3851/// isRepeatedByteSequence - Determine whether the given value is
3852/// composed of a repeated sequence of identical bytes and return the
3853/// byte value. If it is not a repeated sequence, return -1.
3855 StringRef Data = V->getRawDataValues();
3856 assert(!Data.empty() && "Empty aggregates should be CAZ node");
3857 char C = Data[0];
3858 for (unsigned i = 1, e = Data.size(); i != e; ++i)
3859 if (Data[i] != C) return -1;
3860 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
3861}
3862
3863/// isRepeatedByteSequence - Determine whether the given value is
3864/// composed of a repeated sequence of identical bytes and return the
3865/// byte value. If it is not a repeated sequence, return -1.
3866static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
3867 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
3868 uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
3869 assert(Size % 8 == 0);
3870
3871 // Extend the element to take zero padding into account.
3872 APInt Value = CI->getValue().zext(Size);
3873 if (!Value.isSplat(8))
3874 return -1;
3875
3876 return Value.zextOrTrunc(8).getZExtValue();
3877 }
3878 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
3879 // Make sure all array elements are sequences of the same repeated
3880 // byte.
3881 assert(CA->getNumOperands() != 0 && "Should be a CAZ");
3882 Constant *Op0 = CA->getOperand(0);
3883 int Byte = isRepeatedByteSequence(Op0, DL);
3884 if (Byte == -1)
3885 return -1;
3886
3887 // All array elements must be equal.
3888 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
3889 if (CA->getOperand(i) != Op0)
3890 return -1;
3891 return Byte;
3892 }
3893
3895 return isRepeatedByteSequence(CDS);
3896
3897 return -1;
3898}
3899
3901 AsmPrinter::AliasMapTy *AliasList) {
3902 if (AliasList) {
3903 auto AliasIt = AliasList->find(Offset);
3904 if (AliasIt != AliasList->end()) {
3905 for (const GlobalAlias *GA : AliasIt->second)
3906 AP.OutStreamer->emitLabel(AP.getSymbol(GA));
3907 AliasList->erase(Offset);
3908 }
3909 }
3910}
3911
3913 const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP,
3914 AsmPrinter::AliasMapTy *AliasList) {
3915 // See if we can aggregate this into a .fill, if so, emit it as such.
3916 int Value = isRepeatedByteSequence(CDS, DL);
3917 if (Value != -1) {
3918 uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
3919 // Don't emit a 1-byte object as a .fill.
3920 if (Bytes > 1)
3921 return AP.OutStreamer->emitFill(Bytes, Value);
3922 }
3923
3924 // If this can be emitted with .ascii/.asciz, emit it as such.
3925 if (CDS->isString())
3926 return AP.OutStreamer->emitBytes(CDS->getAsString());
3927
3928 // Otherwise, emit the values in successive locations.
3929 uint64_t ElementByteSize = CDS->getElementByteSize();
3930 if (isa<IntegerType>(CDS->getElementType())) {
3931 for (uint64_t I = 0, E = CDS->getNumElements(); I != E; ++I) {
3932 emitGlobalAliasInline(AP, ElementByteSize * I, AliasList);
3933 if (AP.isVerbose())
3934 AP.OutStreamer->getCommentOS()
3935 << format("0x%" PRIx64 "\n", CDS->getElementAsInteger(I));
3936 AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(I),
3937 ElementByteSize);
3938 }
3939 } else {
3940 Type *ET = CDS->getElementType();
3941 for (uint64_t I = 0, E = CDS->getNumElements(); I != E; ++I) {
3942 emitGlobalAliasInline(AP, ElementByteSize * I, AliasList);
3944 }
3945 }
3946
3947 unsigned Size = DL.getTypeAllocSize(CDS->getType());
3948 unsigned EmittedSize =
3949 DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
3950 assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
3951 if (unsigned Padding = Size - EmittedSize)
3952 AP.OutStreamer->emitZeros(Padding);
3953}
3954
3956 const ConstantArray *CA, AsmPrinter &AP,
3957 const Constant *BaseCV, uint64_t Offset,
3958 AsmPrinter::AliasMapTy *AliasList) {
3959 // See if we can aggregate some values. Make sure it can be
3960 // represented as a series of bytes of the constant value.
3961 int Value = isRepeatedByteSequence(CA, DL);
3962
3963 if (Value != -1) {
3964 uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
3965 AP.OutStreamer->emitFill(Bytes, Value);
3966 } else {
3967 for (unsigned I = 0, E = CA->getNumOperands(); I != E; ++I) {
3968 emitGlobalConstantImpl(DL, CA->getOperand(I), AP, BaseCV, Offset,
3969 AliasList);
3970 Offset += DL.getTypeAllocSize(CA->getOperand(I)->getType());
3971 }
3972 }
3973}
3974
3975static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP);
3976
3977static void emitGlobalConstantVector(const DataLayout &DL, const Constant *CV,
3978 AsmPrinter &AP,
3979 AsmPrinter::AliasMapTy *AliasList) {
3980 auto *VTy = cast<FixedVectorType>(CV->getType());
3981 Type *ElementType = VTy->getElementType();
3982 uint64_t ElementSizeInBits = DL.getTypeSizeInBits(ElementType);
3983 uint64_t ElementAllocSizeInBits = DL.getTypeAllocSizeInBits(ElementType);
3984 uint64_t EmittedSize;
3985 if (ElementSizeInBits != ElementAllocSizeInBits) {
3986 // If the allocation size of an element is different from the size in bits,
3987 // printing each element separately will insert incorrect padding.
3988 //
3989 // The general algorithm here is complicated; instead of writing it out
3990 // here, just use the existing code in ConstantFolding.
3991 Type *IntT =
3992 IntegerType::get(CV->getContext(), DL.getTypeSizeInBits(CV->getType()));
3994 ConstantExpr::getBitCast(const_cast<Constant *>(CV), IntT), DL));
3995 if (!CI) {
3997 "Cannot lower vector global with unusual element type");
3998 }
3999 emitGlobalAliasInline(AP, 0, AliasList);
4001 EmittedSize = DL.getTypeStoreSize(CV->getType());
4002 } else {
4003 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
4004 emitGlobalAliasInline(AP, DL.getTypeAllocSize(CV->getType()) * I, AliasList);
4006 }
4007 EmittedSize = DL.getTypeAllocSize(ElementType) * VTy->getNumElements();
4008 }
4009
4010 unsigned Size = DL.getTypeAllocSize(CV->getType());
4011 if (unsigned Padding = Size - EmittedSize)
4012 AP.OutStreamer->emitZeros(Padding);
4013}
4014
4016 const ConstantStruct *CS, AsmPrinter &AP,
4017 const Constant *BaseCV, uint64_t Offset,
4018 AsmPrinter::AliasMapTy *AliasList) {
4019 // Print the fields in successive locations. Pad to align if needed!
4020 uint64_t Size = DL.getTypeAllocSize(CS->getType());
4021 const StructLayout *Layout = DL.getStructLayout(CS->getType());
4022 uint64_t SizeSoFar = 0;
4023 for (unsigned I = 0, E = CS->getNumOperands(); I != E; ++I) {
4024 const Constant *Field = CS->getOperand(I);
4025
4026 // Print the actual field value.
4027 emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar,
4028 AliasList);
4029
4030 // Check if padding is needed and insert one or more 0s.
4031 uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
4032 uint64_t PadSize = ((I == E - 1 ? Size : Layout->getElementOffset(I + 1)) -
4033 Layout->getElementOffset(I)) -
4034 FieldSize;
4035 SizeSoFar += FieldSize + PadSize;
4036
4037 // Insert padding - this may include padding to increase the size of the
4038 // current field up to the ABI size (if the struct is not packed) as well
4039 // as padding to ensure that the next field starts at the right offset.
4040 AP.OutStreamer->emitZeros(PadSize);
4041 }
4042 assert(SizeSoFar == Layout->getSizeInBytes() &&
4043 "Layout of constant struct may be incorrect!");
4044}
4045
4046static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
4047 assert(ET && "Unknown float type");
4048 APInt API = APF.bitcastToAPInt();
4049
4050 // First print a comment with what we think the original floating-point value
4051 // should have been.
4052 if (AP.isVerbose()) {
4053 SmallString<8> StrVal;
4054 APF.toString(StrVal);
4055 ET->print(AP.OutStreamer->getCommentOS());
4056 AP.OutStreamer->getCommentOS() << ' ' << StrVal << '\n';
4057 }
4058
4059 // Now iterate through the APInt chunks, emitting them in endian-correct
4060 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
4061 // floats).
4062 unsigned NumBytes = API.getBitWidth() / 8;
4063 unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
4064 const uint64_t *p = API.getRawData();
4065
4066 // PPC's long double has odd notions of endianness compared to how LLVM
4067 // handles it: p[0] goes first for *big* endian on PPC.
4068 if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
4069 int Chunk = API.getNumWords() - 1;
4070
4071 if (TrailingBytes)
4072 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
4073
4074 for (; Chunk >= 0; --Chunk)
4075 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
4076 } else {
4077 unsigned Chunk;
4078 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
4079 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
4080
4081 if (TrailingBytes)
4082 AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
4083 }
4084
4085 // Emit the tail padding for the long double.
4086 const DataLayout &DL = AP.getDataLayout();
4087 AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
4088}
4089
4090static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
4091 emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
4092}
4093
4095 const DataLayout &DL = AP.getDataLayout();
4096 unsigned BitWidth = CI->getBitWidth();
4097
4098 // Copy the value as we may massage the layout for constants whose bit width
4099 // is not a multiple of 64-bits.
4100 APInt Realigned(CI->getValue());
4101 uint64_t ExtraBits = 0;
4102 unsigned ExtraBitsSize = BitWidth & 63;
4103
4104 if (ExtraBitsSize) {
4105 // The bit width of the data is not a multiple of 64-bits.
4106 // The extra bits are expected to be at the end of the chunk of the memory.
4107 // Little endian:
4108 // * Nothing to be done, just record the extra bits to emit.
4109 // Big endian:
4110 // * Record the extra bits to emit.
4111 // * Realign the raw data to emit the chunks of 64-bits.
4112 if (DL.isBigEndian()) {
4113 // Basically the structure of the raw data is a chunk of 64-bits cells:
4114 // 0 1 BitWidth / 64
4115 // [chunk1][chunk2] ... [chunkN].
4116 // The most significant chunk is chunkN and it should be emitted first.
4117 // However, due to the alignment issue chunkN contains useless bits.
4118 // Realign the chunks so that they contain only useful information:
4119 // ExtraBits 0 1 (BitWidth / 64) - 1
4120 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
4121 ExtraBitsSize = alignTo(ExtraBitsSize, 8);
4122 ExtraBits = Realigned.getRawData()[0] &
4123 (((uint64_t)-1) >> (64 - ExtraBitsSize));
4124 if (BitWidth >= 64)
4125 Realigned.lshrInPlace(ExtraBitsSize);
4126 } else
4127 ExtraBits = Realigned.getRawData()[BitWidth / 64];
4128 }
4129
4130 // We don't expect assemblers to support integer data directives
4131 // for more than 64 bits, so we emit the data in at most 64-bit
4132 // quantities at a time.
4133 const uint64_t *RawData = Realigned.getRawData();
4134 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
4135 uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
4136 AP.OutStreamer->emitIntValue(Val, 8);
4137 }
4138
4139 if (ExtraBitsSize) {
4140 // Emit the extra bits after the 64-bits chunks.
4141
4142 // Emit a directive that fills the expected size.
4144 Size -= (BitWidth / 64) * 8;
4145 assert(Size && Size * 8 >= ExtraBitsSize &&
4146 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
4147 == ExtraBits && "Directive too small for extra bits.");
4148 AP.OutStreamer->emitIntValue(ExtraBits, Size);
4149 }
4150}
4151
4152/// Transform a not absolute MCExpr containing a reference to a GOT
4153/// equivalent global, by a target specific GOT pc relative access to the
4154/// final symbol.
4156 const Constant *BaseCst,
4157 uint64_t Offset) {
4158 // The global @foo below illustrates a global that uses a got equivalent.
4159 //
4160 // @bar = global i32 42
4161 // @gotequiv = private unnamed_addr constant i32* @bar
4162 // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
4163 // i64 ptrtoint (i32* @foo to i64))
4164 // to i32)
4165 //
4166 // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
4167 // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
4168 // form:
4169 //
4170 // foo = cstexpr, where
4171 // cstexpr := <gotequiv> - "." + <cst>
4172 // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
4173 //
4174 // After canonicalization by evaluateAsRelocatable `ME` turns into:
4175 //
4176 // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
4177 // gotpcrelcst := <offset from @foo base> + <cst>
4178 MCValue MV;
4179 if (!(*ME)->evaluateAsRelocatable(MV, nullptr) || MV.isAbsolute())
4180 return;
4181 const MCSymbol *GOTEquivSym = MV.getAddSym();
4182 if (!GOTEquivSym)
4183 return;
4184
4185 // Check that GOT equivalent symbol is cached.
4186 if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
4187 return;
4188
4189 const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
4190 if (!BaseGV)
4191 return;
4192
4193 // Check for a valid base symbol
4194 const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
4195 const MCSymbol *SymB = MV.getSubSym();
4196
4197 if (!SymB || BaseSym != SymB)
4198 return;
4199
4200 // Make sure to match:
4201 //
4202 // gotpcrelcst := <offset from @foo base> + <cst>
4203 //
4204 int64_t GOTPCRelCst = Offset + MV.getConstant();
4205 if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
4206 return;
4207
4208 // Emit the GOT PC relative to replace the got equivalent global, i.e.:
4209 //
4210 // bar:
4211 // .long 42
4212 // gotequiv:
4213 // .quad bar
4214 // foo:
4215 // .long gotequiv - "." + <cst>
4216 //
4217 // is replaced by the target specific equivalent to:
4218 //
4219 // bar:
4220 // .long 42
4221 // foo:
4222 // .long bar@GOTPCREL+<gotpcrelcst>
4223 AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
4224 const GlobalVariable *GV = Result.first;
4225 int NumUses = (int)Result.second;
4226 const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
4227 const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
4229 FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
4230
4231 // Update GOT equivalent usage information
4232 --NumUses;
4233 if (NumUses >= 0)
4234 AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
4235}
4236
4237static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
4238 AsmPrinter &AP, const Constant *BaseCV,
4240 AsmPrinter::AliasMapTy *AliasList) {
4241 assert((!AliasList || AP.TM.getTargetTriple().isOSBinFormatXCOFF()) &&
4242 "AliasList only expected for XCOFF");
4243 emitGlobalAliasInline(AP, Offset, AliasList);
4244 uint64_t Size = DL.getTypeAllocSize(CV->getType());
4245
4246 // Globals with sub-elements such as combinations of arrays and structs
4247 // are handled recursively by emitGlobalConstantImpl. Keep track of the
4248 // constant symbol base and the current position with BaseCV and Offset.
4249 if (!BaseCV && CV->hasOneUse())
4250 BaseCV = dyn_cast<Constant>(CV->user_back());
4251
4253 StructType *structType;
4254 if (AliasList && (structType = llvm::dyn_cast<StructType>(CV->getType()))) {
4255 unsigned numElements = {structType->getNumElements()};
4256 if (numElements != 0) {
4257 // Handle cases of aliases to direct struct elements
4258 const StructLayout *Layout = DL.getStructLayout(structType);
4259 uint64_t SizeSoFar = 0;
4260 for (unsigned int i = 0; i < numElements - 1; ++i) {
4261 uint64_t GapToNext = Layout->getElementOffset(i + 1) - SizeSoFar;
4262 AP.OutStreamer->emitZeros(GapToNext);
4263 SizeSoFar += GapToNext;
4264 emitGlobalAliasInline(AP, Offset + SizeSoFar, AliasList);
4265 }
4266 AP.OutStreamer->emitZeros(Size - SizeSoFar);
4267 return;
4268 }
4269 }
4270 return AP.OutStreamer->emitZeros(Size);
4271 }
4272
4273 if (isa<UndefValue>(CV))
4274 return AP.OutStreamer->emitZeros(Size);
4275
4276 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
4277 if (isa<VectorType>(CV->getType()))
4278 return emitGlobalConstantVector(DL, CV, AP, AliasList);
4279
4280 const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
4281 if (StoreSize <= 8) {
4282 if (AP.isVerbose())
4283 AP.OutStreamer->getCommentOS()
4284 << format("0x%" PRIx64 "\n", CI->getZExtValue());
4285 AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
4286 } else {
4288 }
4289
4290 // Emit tail padding if needed
4291 if (Size != StoreSize)
4292 AP.OutStreamer->emitZeros(Size - StoreSize);
4293
4294 return;
4295 }
4296
4297 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
4298 if (isa<VectorType>(CV->getType()))
4299 return emitGlobalConstantVector(DL, CV, AP, AliasList);
4300 else
4301 return emitGlobalConstantFP(CFP, AP);
4302 }
4303
4304 if (isa<ConstantPointerNull>(CV)) {
4305 AP.OutStreamer->emitIntValue(0, Size);
4306 return;
4307 }
4308
4310 return emitGlobalConstantDataSequential(DL, CDS, AP, AliasList);
4311
4312 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
4313 return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset, AliasList);
4314
4315 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
4316 return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset, AliasList);
4317
4318 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
4319 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
4320 // vectors).
4321 if (CE->getOpcode() == Instruction::BitCast)
4322 return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
4323
4324 if (Size > 8) {
4325 // If the constant expression's size is greater than 64-bits, then we have
4326 // to emit the value in chunks. Try to constant fold the value and emit it
4327 // that way.
4328 Constant *New = ConstantFoldConstant(CE, DL);
4329 if (New != CE)
4330 return emitGlobalConstantImpl(DL, New, AP);
4331 }
4332 }
4333
4334 if (isa<ConstantVector>(CV))
4335 return emitGlobalConstantVector(DL, CV, AP, AliasList);
4336
4337 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
4338 // thread the streamer with EmitValue.
4339 const MCExpr *ME = AP.lowerConstant(CV, BaseCV, Offset);
4340
4341 // Since lowerConstant already folded and got rid of all IR pointer and
4342 // integer casts, detect GOT equivalent accesses by looking into the MCExpr
4343 // directly.
4345 handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
4346
4347 AP.OutStreamer->emitValue(ME, Size);
4348}
4349
4350/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
4352 AliasMapTy *AliasList) {
4353 uint64_t Size = DL.getTypeAllocSize(CV->getType());
4354 if (Size)
4355 emitGlobalConstantImpl(DL, CV, *this, nullptr, 0, AliasList);
4356 else if (MAI->hasSubsectionsViaSymbols()) {
4357 // If the global has zero size, emit a single byte so that two labels don't
4358 // look like they are at the same location.
4359 OutStreamer->emitIntValue(0, 1);
4360 }
4361 if (!AliasList)
4362 return;
4363 // TODO: These remaining aliases are not emitted in the correct location. Need
4364 // to handle the case where the alias offset doesn't refer to any sub-element.
4365 for (auto &AliasPair : *AliasList) {
4366 for (const GlobalAlias *GA : AliasPair.second)
4367 OutStreamer->emitLabel(getSymbol(GA));
4368 }
4369}
4370
4372 // Target doesn't support this yet!
4373 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
4374}
4375
4377 if (Offset > 0)
4378 OS << '+' << Offset;
4379 else if (Offset < 0)
4380 OS << Offset;
4381}
4382
4383void AsmPrinter::emitNops(unsigned N) {
4384 MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop();
4385 for (; N; --N)
4387}
4388
4389//===----------------------------------------------------------------------===//
4390// Symbol Lowering Routines.
4391//===----------------------------------------------------------------------===//
4392
4394 return OutContext.createTempSymbol(Name, true);
4395}
4396
4398 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(
4399 BA->getBasicBlock());
4400}
4401
4403 return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB);
4404}
4405
4409
4410/// GetCPISymbol - Return the symbol for the specified constant pool entry.
4411MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
4412 if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment() ||
4413 getSubtargetInfo().getTargetTriple().isUEFI()) {
4414 const MachineConstantPoolEntry &CPE =
4415 MF->getConstantPool()->getConstants()[CPID];
4416 if (!CPE.isMachineConstantPoolEntry()) {
4417 const DataLayout &DL = MF->getDataLayout();
4418 SectionKind Kind = CPE.getSectionKind(&DL);
4419 const Constant *C = CPE.Val.ConstVal;
4420 Align Alignment = CPE.Alignment;
4421 auto *S =
4422 getObjFileLowering().getSectionForConstant(DL, Kind, C, Alignment);
4423 if (S && TM.getTargetTriple().isOSBinFormatCOFF()) {
4424 if (MCSymbol *Sym =
4425 static_cast<const MCSectionCOFF *>(S)->getCOMDATSymbol()) {
4426 if (Sym->isUndefined())
4427 OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
4428 return Sym;
4429 }
4430 }
4431 }
4432 }
4433
4434 const DataLayout &DL = getDataLayout();
4435 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
4436 "CPI" + Twine(getFunctionNumber()) + "_" +
4437 Twine(CPID));
4438}
4439
4440/// GetJTISymbol - Return the symbol for the specified jump table entry.
4441MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
4442 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
4443}
4444
4445/// GetJTSetSymbol - Return the symbol for the specified jump table .set
4446/// FIXME: privatize to AsmPrinter.
4447MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
4448 const DataLayout &DL = getDataLayout();
4449 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
4450 Twine(getFunctionNumber()) + "_" +
4451 Twine(UID) + "_set_" + Twine(MBBID));
4452}
4453
4458
4459/// Return the MCSymbol for the specified ExternalSymbol.
4461 SmallString<60> NameStr;
4463 return OutContext.getOrCreateSymbol(NameStr);
4464}
4465
4466/// PrintParentLoopComment - Print comments about parent loops of this one.
4468 unsigned FunctionNumber) {
4469 if (!Loop) return;
4470 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
4471 OS.indent(Loop->getLoopDepth()*2)
4472 << "Parent Loop BB" << FunctionNumber << "_"
4473 << Loop->getHeader()->getNumber()
4474 << " Depth=" << Loop->getLoopDepth() << '\n';
4475}
4476
4477/// PrintChildLoopComment - Print comments about child loops within
4478/// the loop for this basic block, with nesting.
4480 unsigned FunctionNumber) {
4481 // Add child loop information
4482 for (const MachineLoop *CL : *Loop) {
4483 OS.indent(CL->getLoopDepth()*2)
4484 << "Child Loop BB" << FunctionNumber << "_"
4485 << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
4486 << '\n';
4487 PrintChildLoopComment(OS, CL, FunctionNumber);
4488 }
4489}
4490
4491/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
4493 const MachineLoopInfo *LI,
4494 const AsmPrinter &AP) {
4495 // Add loop depth information
4496 const MachineLoop *Loop = LI->getLoopFor(&MBB);
4497 if (!Loop) return;
4498
4499 MachineBasicBlock *Header = Loop->getHeader();
4500 assert(Header && "No header for loop");
4501
4502 // If this block is not a loop header, just print out what is the loop header
4503 // and return.
4504 if (Header != &MBB) {
4505 AP.OutStreamer->AddComment(" in Loop: Header=BB" +
4506 Twine(AP.getFunctionNumber())+"_" +
4508 " Depth="+Twine(Loop->getLoopDepth()));
4509 return;
4510 }
4511
4512 // Otherwise, it is a loop header. Print out information about child and
4513 // parent loops.
4514 raw_ostream &OS = AP.OutStreamer->getCommentOS();
4515
4517
4518 OS << "=>";
4519 OS.indent(Loop->getLoopDepth()*2-2);
4520
4521 OS << "This ";
4522 if (Loop->isInnermost())
4523 OS << "Inner ";
4524 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
4525
4527}
4528
4529/// emitBasicBlockStart - This method prints the label for the specified
4530/// MachineBasicBlock, an alignment (if present) and a comment describing
4531/// it if appropriate.
4533 // End the previous funclet and start a new one.
4534 if (MBB.isEHFuncletEntry()) {
4535 for (auto &Handler : Handlers) {
4536 Handler->endFunclet();
4537 Handler->beginFunclet(MBB);
4538 }
4539 for (auto &Handler : EHHandlers) {
4540 Handler->endFunclet();
4541 Handler->beginFunclet(MBB);
4542 }
4543 }
4544
4545 // Switch to a new section if this basic block must begin a section. The
4546 // entry block is always placed in the function section and is handled
4547 // separately.
4548 if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
4549 OutStreamer->switchSection(
4550 getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
4551 MBB, TM));
4552 CurrentSectionBeginSym = MBB.getSymbol();
4553 }
4554
4555 for (auto &Handler : Handlers)
4556 Handler->beginCodeAlignment(MBB);
4557
4558 // Emit an alignment directive for this block, if needed.
4559 const Align Alignment = MBB.getAlignment();
4560 if (Alignment != Align(1))
4561 emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment());
4562
4563 // If the block has its address taken, emit any labels that were used to
4564 // reference the block. It is possible that there is more than one label
4565 // here, because multiple LLVM BB's may have been RAUW'd to this block after
4566 // the references were generated.
4567 if (MBB.isIRBlockAddressTaken()) {
4568 if (isVerbose())
4569 OutStreamer->AddComment("Block address taken");
4570
4571 BasicBlock *BB = MBB.getAddressTakenIRBlock();
4572 assert(BB && BB->hasAddressTaken() && "Missing BB");
4573 for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB))
4574 OutStreamer->emitLabel(Sym);
4575 } else if (isVerbose() && MBB.isMachineBlockAddressTaken()) {
4576 OutStreamer->AddComment("Block address taken");
4577 } else if (isVerbose() && MBB.isInlineAsmBrIndirectTarget()) {
4578 OutStreamer->AddComment("Inline asm indirect target");
4579 }
4580
4581 // Print some verbose block comments.
4582 if (isVerbose()) {
4583 if (const BasicBlock *BB = MBB.getBasicBlock()) {
4584 if (BB->hasName()) {
4585 BB->printAsOperand(OutStreamer->getCommentOS(),
4586 /*PrintType=*/false, BB->getModule());
4587 OutStreamer->getCommentOS() << '\n';
4588 }
4589 }
4590
4591 assert(MLI != nullptr && "MachineLoopInfo should has been computed");
4593 }
4594
4595 // Print the main label for the block.
4596 if (shouldEmitLabelForBasicBlock(MBB)) {
4597 if (isVerbose() && MBB.hasLabelMustBeEmitted())
4598 OutStreamer->AddComment("Label of block must be emitted");
4599 OutStreamer->emitLabel(MBB.getSymbol());
4600 } else {
4601 if (isVerbose()) {
4602 // NOTE: Want this comment at start of line, don't emit with AddComment.
4603 OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
4604 false);
4605 }
4606 }
4607
4608 if (MBB.isEHContTarget() &&
4609 MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) {
4610 OutStreamer->emitLabel(MBB.getEHContSymbol());
4611 }
4612
4613 // With BB sections, each basic block must handle CFI information on its own
4614 // if it begins a section (Entry block call is handled separately, next to
4615 // beginFunction).
4616 if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
4617 for (auto &Handler : Handlers)
4618 Handler->beginBasicBlockSection(MBB);
4619 for (auto &Handler : EHHandlers)
4620 Handler->beginBasicBlockSection(MBB);
4621 }
4622}
4623
4625 // Check if CFI information needs to be updated for this MBB with basic block
4626 // sections.
4627 if (MBB.isEndSection()) {
4628 for (auto &Handler : Handlers)
4629 Handler->endBasicBlockSection(MBB);
4630 for (auto &Handler : EHHandlers)
4631 Handler->endBasicBlockSection(MBB);
4632 }
4633}
4634
4635void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
4636 bool IsDefinition) const {
4638
4639 switch (Visibility) {
4640 default: break;
4642 if (IsDefinition)
4643 Attr = MAI->getHiddenVisibilityAttr();
4644 else
4645 Attr = MAI->getHiddenDeclarationVisibilityAttr();
4646 break;
4648 Attr = MAI->getProtectedVisibilityAttr();
4649 break;
4650 }
4651
4652 if (Attr != MCSA_Invalid)
4653 OutStreamer->emitSymbolAttribute(Sym, Attr);
4654}
4655
4656bool AsmPrinter::shouldEmitLabelForBasicBlock(
4657 const MachineBasicBlock &MBB) const {
4658 // With `-fbasic-block-sections=`, a label is needed for every non-entry block
4659 // in the labels mode (option `=labels`) and every section beginning in the
4660 // sections mode (`=all` and `=list=`).
4661 if ((MF->getTarget().Options.BBAddrMap || MBB.isBeginSection()) &&
4662 !MBB.isEntryBlock())
4663 return true;
4664 // A label is needed for any block with at least one predecessor (when that
4665 // predecessor is not the fallthrough predecessor, or if it is an EH funclet
4666 // entry, or if a label is forced).
4667 return !MBB.pred_empty() &&
4668 (!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
4669 MBB.hasLabelMustBeEmitted());
4670}
4671
4672/// isBlockOnlyReachableByFallthough - Return true if the basic block has
4673/// exactly one predecessor and the control transfer mechanism between
4674/// the predecessor and this block is a fall-through.
4677 // If this is a landing pad, it isn't a fall through. If it has no preds,
4678 // then nothing falls through to it.
4679 if (MBB->isEHPad() || MBB->pred_empty())
4680 return false;
4681
4682 // If there isn't exactly one predecessor, it can't be a fall through.
4683 if (MBB->pred_size() > 1)
4684 return false;
4685
4686 // The predecessor has to be immediately before this block.
4687 MachineBasicBlock *Pred = *MBB->pred_begin();
4688 if (!Pred->isLayoutSuccessor(MBB))
4689 return false;
4690
4691 // If the block is completely empty, then it definitely does fall through.
4692 if (Pred->empty())
4693 return true;
4694
4695 // Check the terminators in the previous blocks
4696 for (const auto &MI : Pred->terminators()) {
4697 // If it is not a simple branch, we are in a table somewhere.
4698 if (!MI.isBranch() || MI.isIndirectBranch())
4699 return false;
4700
4701 // If we are the operands of one of the branches, this is not a fall
4702 // through. Note that targets with delay slots will usually bundle
4703 // terminators with the delay slot instruction.
4704 for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
4705 if (OP->isJTI())
4706 return false;
4707 if (OP->isMBB() && OP->getMBB() == MBB)
4708 return false;
4709 }
4710 }
4711
4712 return true;
4713}
4714
4715GCMetadataPrinter *AsmPrinter::getOrCreateGCPrinter(GCStrategy &S) {
4716 if (!S.usesMetadata())
4717 return nullptr;
4718
4719 auto [GCPI, Inserted] = GCMetadataPrinters.try_emplace(&S);
4720 if (!Inserted)
4721 return GCPI->second.get();
4722
4723 auto Name = S.getName();
4724
4725 for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
4727 if (Name == GCMetaPrinter.getName()) {
4728 std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
4729 GMP->S = &S;
4730 GCPI->second = std::move(GMP);
4731 return GCPI->second.get();
4732 }
4733
4734 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
4735}
4736
4739 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
4740 bool NeedsDefault = false;
4741 if (MI->begin() == MI->end())
4742 // No GC strategy, use the default format.
4743 NeedsDefault = true;
4744 else
4745 for (const auto &I : *MI) {
4746 if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I))
4747 if (MP->emitStackMaps(SM, *this))
4748 continue;
4749 // The strategy doesn't have printer or doesn't emit custom stack maps.
4750 // Use the default format.
4751 NeedsDefault = true;
4752 }
4753
4754 if (NeedsDefault)
4755 SM.serializeToStackMapSection();
4756}
4757
4759 std::unique_ptr<AsmPrinterHandler> Handler) {
4760 Handlers.insert(Handlers.begin(), std::move(Handler));
4762}
4763
4764/// Pin vtables to this file.
4766
4768
4769// In the binary's "xray_instr_map" section, an array of these function entries
4770// describes each instrumentation point. When XRay patches your code, the index
4771// into this table will be given to your handler as a patch point identifier.
4773 auto Kind8 = static_cast<uint8_t>(Kind);
4774 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
4775 Out->emitBinaryData(
4776 StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
4777 Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
4778 auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
4779 assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
4780 Out->emitZeros(Padding);
4781}
4782
4784 if (Sleds.empty())
4785 return;
4786
4787 auto PrevSection = OutStreamer->getCurrentSectionOnly();
4788 const Function &F = MF->getFunction();
4789 MCSection *InstMap = nullptr;
4790 MCSection *FnSledIndex = nullptr;
4791 const Triple &TT = TM.getTargetTriple();
4792 // Use PC-relative addresses on all targets.
4793 if (TT.isOSBinFormatELF()) {
4794 auto LinkedToSym = static_cast<const MCSymbolELF *>(CurrentFnSym);
4795 auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
4796 StringRef GroupName;
4797 if (F.hasComdat()) {
4798 Flags |= ELF::SHF_GROUP;
4799 GroupName = F.getComdat()->getName();
4800 }
4801 InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
4802 Flags, 0, GroupName, F.hasComdat(),
4803 MCSection::NonUniqueID, LinkedToSym);
4804
4805 if (TM.Options.XRayFunctionIndex)
4806 FnSledIndex = OutContext.getELFSection(
4807 "xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, GroupName, F.hasComdat(),
4808 MCSection::NonUniqueID, LinkedToSym);
4809 } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
4810 InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map",
4813 if (TM.Options.XRayFunctionIndex)
4814 FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx",
4817 } else {
4818 llvm_unreachable("Unsupported target");
4819 }
4820
4821 auto WordSizeBytes = MAI->getCodePointerSize();
4822
4823 // Now we switch to the instrumentation map section. Because this is done
4824 // per-function, we are able to create an index entry that will represent the
4825 // range of sleds associated with a function.
4826 auto &Ctx = OutContext;
4827 MCSymbol *SledsStart =
4828 OutContext.createLinkerPrivateSymbol("xray_sleds_start");
4829 OutStreamer->switchSection(InstMap);
4830 OutStreamer->emitLabel(SledsStart);
4831 for (const auto &Sled : Sleds) {
4832 MCSymbol *Dot = Ctx.createTempSymbol();
4833 OutStreamer->emitLabel(Dot);
4834 OutStreamer->emitValueImpl(
4836 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
4837 WordSizeBytes);
4838 OutStreamer->emitValueImpl(
4842 MCConstantExpr::create(WordSizeBytes, Ctx),
4843 Ctx),
4844 Ctx),
4845 WordSizeBytes);
4846 Sled.emit(WordSizeBytes, OutStreamer.get());
4847 }
4848 MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
4849 OutStreamer->emitLabel(SledsEnd);
4850
4851 // We then emit a single entry in the index per function. We use the symbols
4852 // that bound the instrumentation map as the range for a specific function.
4853 // Each entry contains 2 words and needs to be word-aligned.
4854 if (FnSledIndex) {
4855 OutStreamer->switchSection(FnSledIndex);
4856 OutStreamer->emitValueToAlignment(Align(WordSizeBytes));
4857 // For Mach-O, use an "l" symbol as the atom of this subsection. The label
4858 // difference uses a SUBTRACTOR external relocation which references the
4859 // symbol.
4860 MCSymbol *Dot = Ctx.createLinkerPrivateSymbol("xray_fn_idx");
4861 OutStreamer->emitLabel(Dot);
4862 OutStreamer->emitValueImpl(
4864 MCSymbolRefExpr::create(Dot, Ctx), Ctx),
4865 WordSizeBytes);
4866 OutStreamer->emitValueImpl(MCConstantExpr::create(Sleds.size(), Ctx),
4867 WordSizeBytes);
4868 OutStreamer->switchSection(PrevSection);
4869 }
4870 Sleds.clear();
4871}
4872
4874 SledKind Kind, uint8_t Version) {
4875 const Function &F = MI.getMF()->getFunction();
4876 auto Attr = F.getFnAttribute("function-instrument");
4877 bool LogArgs = F.hasFnAttribute("xray-log-args");
4878 bool AlwaysInstrument =
4879 Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
4880 if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
4882 Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
4883 AlwaysInstrument, &F, Version});
4884}
4885
4887 const Function &F = MF->getFunction();
4888 unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
4889 (void)F.getFnAttribute("patchable-function-prefix")
4890 .getValueAsString()
4891 .getAsInteger(10, PatchableFunctionPrefix);
4892 (void)F.getFnAttribute("patchable-function-entry")
4893 .getValueAsString()
4894 .getAsInteger(10, PatchableFunctionEntry);
4895 if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
4896 return;
4897 const unsigned PointerSize = getPointerSize();
4898 if (TM.getTargetTriple().isOSBinFormatELF()) {
4899 auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
4900 const MCSymbolELF *LinkedToSym = nullptr;
4901 StringRef GroupName, SectionName;
4902
4903 if (F.hasFnAttribute("patchable-function-entry-section"))
4904 SectionName = F.getFnAttribute("patchable-function-entry-section")
4905 .getValueAsString();
4906 if (SectionName.empty())
4907 SectionName = "__patchable_function_entries";
4908
4909 // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
4910 // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
4911 if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
4912 Flags |= ELF::SHF_LINK_ORDER;
4913 if (F.hasComdat()) {
4914 Flags |= ELF::SHF_GROUP;
4915 GroupName = F.getComdat()->getName();
4916 }
4917 LinkedToSym = static_cast<const MCSymbolELF *>(CurrentFnSym);
4918 }
4919 OutStreamer->switchSection(OutContext.getELFSection(
4920 SectionName, ELF::SHT_PROGBITS, Flags, 0, GroupName, F.hasComdat(),
4921 MCSection::NonUniqueID, LinkedToSym));
4922 emitAlignment(Align(PointerSize));
4923 OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
4924 }
4925}
4926
4928 return OutStreamer->getContext().getDwarfVersion();
4929}
4930
4932 OutStreamer->getContext().setDwarfVersion(Version);
4933}
4934
4936 return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
4937}
4938
4941 OutStreamer->getContext().getDwarfFormat());
4942}
4943
4945 return {getDwarfVersion(), uint8_t(MAI->getCodePointerSize()),
4946 OutStreamer->getContext().getDwarfFormat(),
4948}
4949
4952 OutStreamer->getContext().getDwarfFormat());
4953}
4954
4955std::tuple<const MCSymbol *, uint64_t, const MCSymbol *,
4958 const MCSymbol *BranchLabel) const {
4959 const auto TLI = MF->getSubtarget().getTargetLowering();
4960 const auto BaseExpr =
4961 TLI->getPICJumpTableRelocBaseExpr(MF, JTI, MMI->getContext());
4962 const auto Base = &cast<MCSymbolRefExpr>(BaseExpr)->getSymbol();
4963
4964 // By default, for the architectures that support CodeView,
4965 // EK_LabelDifference32 is implemented as an Int32 from the base address.
4966 return std::make_tuple(Base, 0, BranchLabel,
4968}
4969
4971 const Triple &TT = TM.getTargetTriple();
4972 assert(TT.isOSBinFormatCOFF());
4973
4974 bool IsTargetArm64EC = TT.isWindowsArm64EC();
4976 SmallVector<MCSymbol *> FuncOverrideDefaultSymbols;
4977 bool SwitchedToDirectiveSection = false;
4978 for (const Function &F : M.functions()) {
4979 if (F.hasFnAttribute("loader-replaceable")) {
4980 if (!SwitchedToDirectiveSection) {
4981 OutStreamer->switchSection(
4982 OutContext.getObjectFileInfo()->getDrectveSection());
4983 SwitchedToDirectiveSection = true;
4984 }
4985
4986 StringRef Name = F.getName();
4987
4988 // For hybrid-patchable targets, strip the prefix so that we can mark
4989 // the real function as replaceable.
4990 if (IsTargetArm64EC && Name.ends_with(HybridPatchableTargetSuffix)) {
4991 Name = Name.drop_back(HybridPatchableTargetSuffix.size());
4992 }
4993
4994 MCSymbol *FuncOverrideSymbol =
4995 MMI->getContext().getOrCreateSymbol(Name + "_$fo$");
4996 OutStreamer->beginCOFFSymbolDef(FuncOverrideSymbol);
4997 OutStreamer->emitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_EXTERNAL);
4998 OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL);
4999 OutStreamer->endCOFFSymbolDef();
5000
5001 MCSymbol *FuncOverrideDefaultSymbol =
5002 MMI->getContext().getOrCreateSymbol(Name + "_$fo_default$");
5003 OutStreamer->beginCOFFSymbolDef(FuncOverrideDefaultSymbol);
5004 OutStreamer->emitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_EXTERNAL);
5005 OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL);
5006 OutStreamer->endCOFFSymbolDef();
5007 FuncOverrideDefaultSymbols.push_back(FuncOverrideDefaultSymbol);
5008
5009 OutStreamer->emitBytes((Twine(" /ALTERNATENAME:") +
5010 FuncOverrideSymbol->getName() + "=" +
5011 FuncOverrideDefaultSymbol->getName())
5012 .toStringRef(Buf));
5013 Buf.clear();
5014 }
5015 }
5016
5017 if (SwitchedToDirectiveSection)
5018 OutStreamer->popSection();
5019
5020 if (FuncOverrideDefaultSymbols.empty())
5021 return;
5022
5023 // MSVC emits the symbols for the default variables pointing at the start of
5024 // the .data section, but doesn't actually allocate any space for them. LLVM
5025 // can't do this, so have all of the variables pointing at a single byte
5026 // instead.
5027 OutStreamer->switchSection(OutContext.getObjectFileInfo()->getDataSection());
5028 for (MCSymbol *Symbol : FuncOverrideDefaultSymbols) {
5029 OutStreamer->emitLabel(Symbol);
5030 }
5031 OutStreamer->emitZeros(1);
5032 OutStreamer->popSection();
5033}
5034
5036 const Triple &TT = TM.getTargetTriple();
5037 assert(TT.isOSBinFormatCOFF());
5038
5039 // Emit an absolute @feat.00 symbol.
5040 MCSymbol *S = MMI->getContext().getOrCreateSymbol(StringRef("@feat.00"));
5041 OutStreamer->beginCOFFSymbolDef(S);
5042 OutStreamer->emitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_STATIC);
5043 OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL);
5044 OutStreamer->endCOFFSymbolDef();
5045 int64_t Feat00Value = 0;
5046
5047 if (TT.getArch() == Triple::x86) {
5048 // According to the PE-COFF spec, the LSB of this value marks the object
5049 // for "registered SEH". This means that all SEH handler entry points
5050 // must be registered in .sxdata. Use of any unregistered handlers will
5051 // cause the process to terminate immediately. LLVM does not know how to
5052 // register any SEH handlers, so its object files should be safe.
5053 Feat00Value |= COFF::Feat00Flags::SafeSEH;
5054 }
5055
5056 if (M.getModuleFlag("cfguard")) {
5057 // Object is CFG-aware.
5058 Feat00Value |= COFF::Feat00Flags::GuardCF;
5059 }
5060
5061 if (M.getModuleFlag("ehcontguard")) {
5062 // Object also has EHCont.
5063 Feat00Value |= COFF::Feat00Flags::GuardEHCont;
5064 }
5065
5066 if (M.getModuleFlag("ms-kernel")) {
5067 // Object is compiled with /kernel.
5068 Feat00Value |= COFF::Feat00Flags::Kernel;
5069 }
5070
5071 OutStreamer->emitSymbolAttribute(S, MCSA_Global);
5072 OutStreamer->emitAssignment(
5073 S, MCConstantExpr::create(Feat00Value, MMI->getContext()));
5074}
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
This file declares a class to represent arbitrary precision floating point values and provide a varie...
This file implements a class to represent arbitrary precision integral constant values and operations...
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static cl::opt< bool > PgoAnalysisMapEmitBBSectionsCfg("pgo-analysis-map-emit-bb-sections-cfg", cl::desc("Enable the post-link cfg information from the basic block " "sections profile in the PGO analysis map"), cl::Hidden, cl::init(false))
static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP)
emitDebugValueComment - This method handles the target-independent form of DBG_VALUE,...
static uint32_t getBBAddrMapMetadata(const MachineBasicBlock &MBB)
Returns the BB metadata to be emitted in the SHT_LLVM_BB_ADDR_MAP section for a given basic block.
cl::opt< bool > EmitBBHash
static cl::opt< bool > BBAddrMapSkipEmitBBEntries("basic-block-address-map-skip-bb-entries", cl::desc("Skip emitting basic block entries in the SHT_LLVM_BB_ADDR_MAP " "section. It's used to save binary size when BB entries are " "unnecessary for some PGOAnalysisMap features."), cl::Hidden, cl::init(false))
static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP)
static void emitFakeUse(const MachineInstr *MI, AsmPrinter &AP)
static bool isGOTEquivalentCandidate(const GlobalVariable *GV, unsigned &NumGOTEquivUsers, bool &HasNonGlobalUsers)
Only consider global GOT equivalents if at least one user is a cstexpr inside an initializer of anoth...
static void tagGlobalDefinition(Module &M, GlobalVariable *G)
static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, const MachineLoopInfo *LI, const AsmPrinter &AP)
emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, const Constant *BaseCst, uint64_t Offset)
Transform a not absolute MCExpr containing a reference to a GOT equivalent global,...
static llvm::object::BBAddrMap::Features getBBAddrMapFeature(const MachineFunction &MF, int NumMBBSectionRanges, bool HasCalls, const CFGProfile *FuncCFGProfile)
static int isRepeatedByteSequence(const ConstantDataSequential *V)
isRepeatedByteSequence - Determine whether the given value is composed of a repeated sequence of iden...
static void emitGlobalAliasInline(AsmPrinter &AP, uint64_t Offset, AsmPrinter::AliasMapTy *AliasList)
static bool needFuncLabels(const MachineFunction &MF, const AsmPrinter &Asm)
Returns true if function begin and end labels should be emitted.
static unsigned getNumGlobalVariableUses(const Constant *C, bool &HasNonGlobalUsers)
Compute the number of Global Variables that uses a Constant.
static cl::bits< PGOMapFeaturesEnum > PgoAnalysisMapFeatures("pgo-analysis-map", cl::Hidden, cl::CommaSeparated, cl::values(clEnumValN(PGOMapFeaturesEnum::None, "none", "Disable all options"), clEnumValN(PGOMapFeaturesEnum::FuncEntryCount, "func-entry-count", "Function Entry Count"), clEnumValN(PGOMapFeaturesEnum::BBFreq, "bb-freq", "Basic Block Frequency"), clEnumValN(PGOMapFeaturesEnum::BrProb, "br-prob", "Branch Probability"), clEnumValN(PGOMapFeaturesEnum::All, "all", "Enable all options")), cl::desc("Enable extended information within the SHT_LLVM_BB_ADDR_MAP that is " "extracted from PGO related analysis."))
static void removeMemtagFromGlobal(GlobalVariable &G)
static uint64_t globalSize(const llvm::GlobalVariable &G)
static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, unsigned FunctionNumber)
PrintChildLoopComment - Print comments about child loops within the loop for this basic block,...
static StringRef getMIMnemonic(const MachineInstr &MI, MCStreamer &Streamer)
PGOMapFeaturesEnum
static void emitComments(const MachineInstr &MI, const MCSubtargetInfo *STI, raw_ostream &CommentOS)
emitComments - Pretty-print comments for instructions.
static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, unsigned FunctionNumber)
PrintParentLoopComment - Print comments about parent loops of this one.
static void emitGlobalConstantStruct(const DataLayout &DL, const ConstantStruct *CS, AsmPrinter &AP, const Constant *BaseCV, uint64_t Offset, AsmPrinter::AliasMapTy *AliasList)
static void emitGlobalConstantDataSequential(const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP, AsmPrinter::AliasMapTy *AliasList)
static void emitKill(const MachineInstr *MI, AsmPrinter &AP)
static bool shouldTagGlobal(const llvm::GlobalVariable &G)
static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, AsmPrinter &AP, const Constant *BaseCV=nullptr, uint64_t Offset=0, AsmPrinter::AliasMapTy *AliasList=nullptr)
static ConstantInt * extractNumericCGTypeId(const Function &F)
Extracts a generalized numeric type identifier of a Function's type from type metadata.
static cl::opt< bool > PrintLatency("asm-print-latency", cl::desc("Print instruction latencies as verbose asm comments"), cl::Hidden, cl::init(false))
static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP)
This method handles the target-independent form of DBG_LABEL, returning true if it was able to do so.
static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI)
static void emitGlobalConstantVector(const DataLayout &DL, const Constant *CV, AsmPrinter &AP, AsmPrinter::AliasMapTy *AliasList)
static cl::opt< bool > EmitJumpTableSizesSection("emit-jump-table-sizes-section", cl::desc("Emit a section containing jump table addresses and sizes"), cl::Hidden, cl::init(false))
static void emitGlobalConstantArray(const DataLayout &DL, const ConstantArray *CA, AsmPrinter &AP, const Constant *BaseCV, uint64_t Offset, AsmPrinter::AliasMapTy *AliasList)
static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP)
#define LLVM_MARK_AS_BITMASK_ENUM(LargestValue)
LLVM_MARK_AS_BITMASK_ENUM lets you opt in an individual enum type so you can perform bitwise operatio...
Definition BitmaskEnum.h:42
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
#define clEnumValN(ENUMVAL, FLAGNAME, DESC)
This file contains the declarations for the subclasses of Constant, which represent the different fla...
This file defines the DenseMap class.
This file contains constants used for implementing Dwarf debug support.
#define DEBUG_TYPE
This file contains the declaration of the GlobalIFunc class, which represents a single indirect funct...
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
Module.h This file contains the declarations for the Module class.
===- LazyMachineBlockFrequencyInfo.h - Lazy Block Frequency -*- C++ -*–===//
const FeatureInfo AllFeatures[]
#define F(x, y, z)
Definition MD5.cpp:54
#define I(x, y, z)
Definition MD5.cpp:57
#define G(x, y, z)
Definition MD5.cpp:55
This file declares the MachineConstantPool class which is an abstract constant pool to keep track of ...
===- MachineOptimizationRemarkEmitter.h - Opt Diagnostics -*- C++ -*-—===//
Register Reg
static cl::opt< std::string > OutputFilename("o", cl::desc("Output filename"), cl::value_desc("filename"), cl::init("-"))
This file provides utility analysis objects describing memory locations.
This file contains the declarations for metadata subclasses.
#define T
OptimizedStructLayoutField Field
This file contains some templates that are useful if you are working with the STL at all.
#define OP(OPC)
Definition Instruction.h:46
This file defines the SmallPtrSet class.
This file defines the SmallString class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition Statistic.h:171
This file contains some functions that are useful when dealing with strings.
This file describes how to lower LLVM code to machine code.
Defines the virtual file system interface vfs::FileSystem.
Value * LHS
static const fltSemantics & IEEEdouble()
Definition APFloat.h:297
static constexpr roundingMode rmNearestTiesToEven
Definition APFloat.h:344
LLVM_ABI opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, bool *losesInfo)
Definition APFloat.cpp:6053
LLVM_ABI double convertToDouble() const
Converts this APFloat to host double value.
Definition APFloat.cpp:6112
void toString(SmallVectorImpl< char > &Str, unsigned FormatPrecision=0, unsigned FormatMaxPadding=3, bool TruncateZero=true) const
Definition APFloat.h:1460
APInt bitcastToAPInt() const
Definition APFloat.h:1335
Class for arbitrary precision integers.
Definition APInt.h:78
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition APInt.h:1489
unsigned getNumWords() const
Get the number of words.
Definition APInt.h:1496
const uint64_t * getRawData() const
This function returns a pointer to the internal storage of the APInt.
Definition APInt.h:570
int64_t getSExtValue() const
Get sign extended value.
Definition APInt.h:1563
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
Definition APInt.h:859
AddrLabelMap(MCContext &context)
void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New)
void takeDeletedSymbolsForFunction(Function *F, std::vector< MCSymbol * > &Result)
If we have any deleted symbols for F, return them.
void UpdateForDeletedBlock(BasicBlock *BB)
ArrayRef< MCSymbol * > getAddrLabelSymbolToEmit(BasicBlock *BB)
Represent the analysis usage information of a pass.
AnalysisUsage & addUsedIfAvailable()
Add the specified Pass class to the set of analyses used by this pass.
AnalysisUsage & addRequired()
void setPreservesAll()
Set by analyses that do not transform their input at all.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition ArrayRef.h:40
const T & front() const
front - Get the first element.
Definition ArrayRef.h:145
bool empty() const
empty - Check if the array is empty.
Definition ArrayRef.h:137
virtual ~AsmPrinterHandler()
Pin vtables to this file.
virtual void markFunctionEnd()
This class is intended to be used as a driving class for all asm writers.
Definition AsmPrinter.h:91
virtual void emitInstruction(const MachineInstr *)
Targets should implement this to emit instructions.
Definition AsmPrinter.h:619
const TargetLoweringObjectFile & getObjFileLowering() const
Return information about object file lowering.
MCSymbol * getSymbolWithGlobalValueBase(const GlobalValue *GV, StringRef Suffix) const
Return the MCSymbol for a private symbol with global value name as its base, with the specified suffi...
MCSymbol * getSymbol(const GlobalValue *GV) const
void emitULEB128(uint64_t Value, const char *Desc=nullptr, unsigned PadTo=0) const
Emit the specified unsigned leb128 value.
SmallVector< XRayFunctionEntry, 4 > Sleds
Definition AsmPrinter.h:414
MapVector< MBBSectionID, MBBSectionRange > MBBSectionRanges
Definition AsmPrinter.h:158
bool isDwarf64() const
void emitNops(unsigned N)
Emit N NOP instructions.
MCSymbol * CurrentFnBegin
Definition AsmPrinter.h:220
MachineLoopInfo * MLI
This is a pointer to the current MachineLoopInfo.
Definition AsmPrinter.h:118
virtual void emitDebugValue(const MCExpr *Value, unsigned Size) const
Emit the directive and value for debug thread local expression.
void EmitToStreamer(MCStreamer &S, const MCInst &Inst)
virtual void emitConstantPool()
Print to the current output stream assembly representations of the constants in the constant pool MCP...
virtual void emitGlobalVariable(const GlobalVariable *GV)
Emit the specified global variable to the .s file.
virtual const MCExpr * lowerConstantPtrAuth(const ConstantPtrAuth &CPA)
Definition AsmPrinter.h:640
unsigned int getUnitLengthFieldByteSize() const
Returns 4 for DWARF32 and 12 for DWARF64.
void emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, unsigned Size, bool IsSectionRelative=false) const
Emit something like ".long Label+Offset" where the size in bytes of the directive is specified by Siz...
~AsmPrinter() override
TargetMachine & TM
Target machine description.
Definition AsmPrinter.h:94
void emitXRayTable()
Emit a table with all XRay instrumentation points.
virtual void emitGlobalAlias(const Module &M, const GlobalAlias &GA)
DenseMap< const MachineBasicBlock *, SmallVector< MCSymbol *, 1 > > CurrentFnCallsiteEndSymbols
Vector of symbols marking the end of the callsites in the current function, keyed by their containing...
Definition AsmPrinter.h:144
virtual void emitBasicBlockEnd(const MachineBasicBlock &MBB)
Targets can override this to emit stuff at the end of a basic block.
virtual void emitJumpTableEntry(const MachineJumpTableInfo &MJTI, const MachineBasicBlock *MBB, unsigned uid) const
EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the current stream.
MCSymbol * CurrentFnDescSym
The symbol for the current function descriptor on AIX.
Definition AsmPrinter.h:132
MCSymbol * CurrentFnBeginLocal
For dso_local functions, the current $local alias for the function.
Definition AsmPrinter.h:223
MapVector< const MCSymbol *, GOTEquivUsePair > GlobalGOTEquivs
Definition AsmPrinter.h:163
virtual MCSymbol * GetCPISymbol(unsigned CPID) const
Return the symbol for the specified constant pool entry.
void emitGlobalGOTEquivs()
Constant expressions using GOT equivalent globals may not be eligible for PC relative GOT entry conve...
MCSymbol * getFunctionBegin() const
Definition AsmPrinter.h:304
void emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, unsigned Size) const
Emit something like ".long Hi-Lo" where the size in bytes of the directive is specified by Size and H...
void emitKCFITrapEntry(const MachineFunction &MF, const MCSymbol *Symbol)
virtual void emitMachOIFuncStubHelperBody(Module &M, const GlobalIFunc &GI, MCSymbol *LazyPointer)
Definition AsmPrinter.h:671
MCSymbol * getMBBExceptionSym(const MachineBasicBlock &MBB)
MCSymbol * getAddrLabelSymbol(const BasicBlock *BB)
Return the symbol to be used for the specified basic block when its address is taken.
Definition AsmPrinter.h:314
const MCAsmInfo * MAI
Target Asm Printer information.
Definition AsmPrinter.h:97
SmallVector< std::unique_ptr< AsmPrinterHandler >, 2 > Handlers
Definition AsmPrinter.h:233
bool emitSpecialLLVMGlobal(const GlobalVariable *GV)
Check to see if the specified global is a special global used by LLVM.
MachineFunction * MF
The current machine function.
Definition AsmPrinter.h:109
virtual void emitJumpTableInfo()
Print assembly representations of the jump tables used by the current function to the current output ...
void computeGlobalGOTEquivs(Module &M)
Unnamed constant global variables solely contaning a pointer to another globals variable act like a g...
static Align getGVAlignment(const GlobalObject *GV, const DataLayout &DL, Align InAlign=Align(1))
Return the alignment for the specified GV.
MCSymbol * createCallsiteEndSymbol(const MachineBasicBlock &MBB)
Creates a new symbol to be used for the end of a callsite at the specified basic block.
virtual const MCExpr * lowerConstant(const Constant *CV, const Constant *BaseCV=nullptr, uint64_t Offset=0)
Lower the specified LLVM Constant to an MCExpr.
void emitCallGraphSection(const MachineFunction &MF, FunctionCallGraphInfo &FuncCGInfo)
Emits .llvm.callgraph section.
void emitInt8(int Value) const
Emit a byte directive and value.
CFISection getFunctionCFISectionType(const Function &F) const
Get the CFISection type for a function.
virtual void SetupMachineFunction(MachineFunction &MF)
This should be called when a new MachineFunction is being processed from runOnMachineFunction.
void emitFunctionBody()
This method emits the body and trailer for a function.
virtual bool isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const
Return true if the basic block has exactly one predecessor and the control transfer mechanism between...
void emitBBAddrMapSection(const MachineFunction &MF)
void emitPCSections(const MachineFunction &MF)
Emits the PC sections collected from instructions.
MachineDominatorTree * MDT
This is a pointer to the current MachineDominatorTree.
Definition AsmPrinter.h:115
virtual void emitStartOfAsmFile(Module &)
This virtual method can be overridden by targets that want to emit something at the start of their fi...
Definition AsmPrinter.h:595
MCSymbol * GetJTISymbol(unsigned JTID, bool isLinkerPrivate=false) const
Return the symbol for the specified jump table entry.
virtual void emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV)
void emitStackMaps()
Emit the stack maps.
bool hasDebugInfo() const
Returns true if valid debug info is present.
Definition AsmPrinter.h:494
virtual void emitFunctionBodyStart()
Targets can override this to emit stuff before the first basic block in the function.
Definition AsmPrinter.h:603
std::pair< const GlobalVariable *, unsigned > GOTEquivUsePair
Map global GOT equivalent MCSymbols to GlobalVariables and keep track of its number of uses by other ...
Definition AsmPrinter.h:162
void emitPatchableFunctionEntries()
void recordSled(MCSymbol *Sled, const MachineInstr &MI, SledKind Kind, uint8_t Version=0)
virtual void emitEndOfAsmFile(Module &)
This virtual method can be overridden by targets that want to emit something at the end of their file...
Definition AsmPrinter.h:599
bool doInitialization(Module &M) override
Set up the AsmPrinter when we are working on a new module.
MCSymbol * GetJTSetSymbol(unsigned UID, unsigned MBBID) const
Return the symbol for the specified jump table .set FIXME: privatize to AsmPrinter.
virtual void emitMachOIFuncStubBody(Module &M, const GlobalIFunc &GI, MCSymbol *LazyPointer)
Definition AsmPrinter.h:665
virtual void emitImplicitDef(const MachineInstr *MI) const
Targets can override this to customize the output of IMPLICIT_DEF instructions in verbose mode.
virtual void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const
This emits linkage information about GVSym based on GV, if this is supported by the target.
void getAnalysisUsage(AnalysisUsage &AU) const override
Record analysis usage.
unsigned getFunctionNumber() const
Return a unique ID for the current function.
MachineOptimizationRemarkEmitter * ORE
Optimization remark emitter.
Definition AsmPrinter.h:121
DenseMap< uint64_t, SmallVector< const GlobalAlias *, 1 > > AliasMapTy
Print a general LLVM constant to the .s file.
Definition AsmPrinter.h:562
virtual bool shouldEmitWeakSwiftAsyncExtendedFramePointerFlags() const
Definition AsmPrinter.h:987
AsmPrinter(TargetMachine &TM, std::unique_ptr< MCStreamer > Streamer, char &ID=AsmPrinter::ID)
void printOffset(int64_t Offset, raw_ostream &OS) const
This is just convenient handler for printing offsets.
void emitGlobalConstant(const DataLayout &DL, const Constant *CV, AliasMapTy *AliasList=nullptr)
EmitGlobalConstant - Print a general LLVM constant to the .s file.
void emitFrameAlloc(const MachineInstr &MI)
void emitStackSizeSection(const MachineFunction &MF)
MCSymbol * getSymbolPreferLocal(const GlobalValue &GV) const
Similar to getSymbol() but preferred for references.
MCSymbol * CurrentFnSym
The symbol for the current function.
Definition AsmPrinter.h:128
MachineModuleInfo * MMI
This is a pointer to the current MachineModuleInfo.
Definition AsmPrinter.h:112
void emitSLEB128(int64_t Value, const char *Desc=nullptr) const
Emit the specified signed leb128 value.
void emitAlignment(Align Alignment, const GlobalObject *GV=nullptr, unsigned MaxBytesToEmit=0) const
Emit an alignment directive to the specified power of two boundary.
MCContext & OutContext
This is the context for the output file that we are streaming.
Definition AsmPrinter.h:101
const StaticDataProfileInfo * SDPI
Provides the profile information for constants.
Definition AsmPrinter.h:147
void emitCFIInstruction(const MachineInstr &MI)
MCSymbol * createTempSymbol(const Twine &Name) const
bool doFinalization(Module &M) override
Shut down the asmprinter.
virtual const MCSubtargetInfo * getIFuncMCSubtargetInfo() const
getSubtargetInfo() cannot be used where this is needed because we don't have a MachineFunction when w...
Definition AsmPrinter.h:661
void emitStackUsage(const MachineFunction &MF)
virtual void emitKCFITypeId(const MachineFunction &MF)
bool isPositionIndependent() const
virtual void emitXXStructorList(const DataLayout &DL, const Constant *List, bool IsCtor)
This method emits llvm.global_ctors or llvm.global_dtors list.
void emitPCSectionsLabel(const MachineFunction &MF, const MDNode &MD)
Emits a label as reference for PC sections.
MCSymbol * CurrentPatchableFunctionEntrySym
The symbol for the entry in __patchable_function_entires.
Definition AsmPrinter.h:124
virtual void emitBasicBlockStart(const MachineBasicBlock &MBB)
Targets can override this to emit stuff at the start of a basic block.
void takeDeletedSymbolsForFunction(const Function *F, std::vector< MCSymbol * > &Result)
If the specified function has had any references to address-taken blocks generated,...
void emitVisibility(MCSymbol *Sym, unsigned Visibility, bool IsDefinition=true) const
This emits visibility information about symbol, if this is supported by the target.
void emitInt32(int Value) const
Emit a long directive and value.
std::unique_ptr< MCStreamer > OutStreamer
This is the MCStreamer object for the file we are generating.
Definition AsmPrinter.h:106
const ProfileSummaryInfo * PSI
The profile summary information.
Definition AsmPrinter.h:150
virtual void emitFunctionDescriptor()
Definition AsmPrinter.h:628
const MCSection * getCurrentSection() const
Return the current section we are emitting to.
unsigned int getDwarfOffsetByteSize() const
Returns 4 for DWARF32 and 8 for DWARF64.
size_t NumUserHandlers
Definition AsmPrinter.h:234
MCSymbol * CurrentFnSymForSize
The symbol used to represent the start of the current function for the purpose of calculating its siz...
Definition AsmPrinter.h:137
bool isVerbose() const
Return true if assembly output should contain comments.
Definition AsmPrinter.h:295
MCSymbol * getFunctionEnd() const
Definition AsmPrinter.h:305
virtual void emitXXStructor(const DataLayout &DL, const Constant *CV)
Targets can override this to change how global constants that are part of a C++ static/global constru...
Definition AsmPrinter.h:636
void preprocessXXStructorList(const DataLayout &DL, const Constant *List, SmallVector< Structor, 8 > &Structors)
This method gathers an array of Structors and then sorts them out by Priority.
void emitInt16(int Value) const
Emit a short directive and value.
void setDwarfVersion(uint16_t Version)
void getNameWithPrefix(SmallVectorImpl< char > &Name, const GlobalValue *GV) const
StringRef getConstantSectionSuffix(const Constant *C) const
Returns a section suffix (hot or unlikely) for the constant if profiles are available.
SmallVector< std::unique_ptr< AsmPrinterHandler >, 1 > EHHandlers
A handle to the EH info emitter (if present).
Definition AsmPrinter.h:228
void emitPseudoProbe(const MachineInstr &MI)
unsigned getPointerSize() const
Return the pointer size from the TargetMachine.
void emitRemarksSection(remarks::RemarkStreamer &RS)
MCSymbol * GetBlockAddressSymbol(const BlockAddress *BA) const
Return the MCSymbol used to satisfy BlockAddress uses of the specified basic block.
ArrayRef< MCSymbol * > getAddrLabelSymbolToEmit(const BasicBlock *BB)
Return the symbol to be used for the specified basic block when its address is taken.
virtual void emitFunctionBodyEnd()
Targets can override this to emit stuff after the last basic block in the function.
Definition AsmPrinter.h:607
const DataLayout & getDataLayout() const
Return information about data layout.
void emitCOFFFeatureSymbol(Module &M)
Emits the @feat.00 symbol indicating the features enabled in this module.
virtual void emitFunctionEntryLabel()
EmitFunctionEntryLabel - Emit the label that is the entrypoint for the function.
void emitInitialRawDwarfLocDirective(const MachineFunction &MF)
Emits inital debug location directive.
MCSymbol * GetExternalSymbolSymbol(const Twine &Sym) const
Return the MCSymbol for the specified ExternalSymbol.
void handleCallsiteForCallgraph(FunctionCallGraphInfo &FuncCGInfo, const MachineFunction::CallSiteInfoMap &CallSitesInfoMap, const MachineInstr &MI)
If MI is an indirect call, add expected type IDs to indirect type ids list.
void emitInt64(uint64_t Value) const
Emit a long long directive and value.
uint16_t getDwarfVersion() const
dwarf::FormParams getDwarfFormParams() const
Returns information about the byte size of DW_FORM values.
const MCSubtargetInfo & getSubtargetInfo() const
Return information about subtarget.
void emitCOFFReplaceableFunctionData(Module &M)
Emits symbols and data to allow functions marked with the loader-replaceable attribute to be replacea...
bool usesCFIWithoutEH() const
Since emitting CFI unwind information is entangled with supporting the exceptions,...
bool doesDwarfUseRelocationsAcrossSections() const
Definition AsmPrinter.h:364
@ None
Do not emit either .eh_frame or .debug_frame.
Definition AsmPrinter.h:167
@ Debug
Emit .debug_frame.
Definition AsmPrinter.h:169
void addAsmPrinterHandler(std::unique_ptr< AsmPrinterHandler > Handler)
virtual std::tuple< const MCSymbol *, uint64_t, const MCSymbol *, codeview::JumpTableEntrySize > getCodeViewJumpTableInfo(int JTI, const MachineInstr *BranchInstr, const MCSymbol *BranchLabel) const
Gets information required to create a CodeView debug symbol for a jump table.
void emitLabelDifferenceAsULEB128(const MCSymbol *Hi, const MCSymbol *Lo) const
Emit something like ".uleb128 Hi-Lo".
virtual const MCExpr * lowerBlockAddressConstant(const BlockAddress &BA)
Lower the specified BlockAddress to an MCExpr.
const CFGProfile * getFunctionCFGProfile(StringRef FuncName) const
LLVM Basic Block Representation.
Definition BasicBlock.h:62
unsigned getNumber() const
Definition BasicBlock.h:95
const Function * getParent() const
Return the enclosing method, or null if none.
Definition BasicBlock.h:213
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches,...
Definition BasicBlock.h:690
The address of a basic block.
Definition Constants.h:904
BasicBlock * getBasicBlock() const
Definition Constants.h:939
uint64_t getFrequency() const
Returns the frequency as a fixpoint number scaled by the entry frequency.
uint32_t getNumerator() const
Value handle with callbacks on RAUW and destruction.
ConstMIBundleOperands - Iterate over all operands in a const bundle of machine instructions.
ConstantArray - Constant Array Declarations.
Definition Constants.h:438
ArrayType * getType() const
Specialize the getType() method to always return an ArrayType, which reduces the amount of casting ne...
Definition Constants.h:457
static Constant * get(LLVMContext &Context, ArrayRef< ElementTy > Elts)
get() constructor - Return a constant with array type with an element count and element type matching...
Definition Constants.h:720
ConstantDataSequential - A vector or array constant whose element type is a simple 1/2/4/8-byte integ...
Definition Constants.h:598
LLVM_ABI APFloat getElementAsAPFloat(uint64_t i) const
If this is a sequential container of floating point type, return the specified element as an APFloat.
LLVM_ABI uint64_t getElementAsInteger(uint64_t i) const
If this is a sequential container of integers (of any size), return the specified element in the low ...
StringRef getAsString() const
If this array is isString(), then this method returns the array as a StringRef.
Definition Constants.h:673
LLVM_ABI uint64_t getElementByteSize() const
Return the size (in bytes) of each element in the array/vector.
LLVM_ABI bool isString(unsigned CharSize=8) const
This method returns true if this is an array of CharSize integers.
LLVM_ABI uint64_t getNumElements() const
Return the number of elements in the array or vector.
LLVM_ABI Type * getElementType() const
Return the element type of the array/vector.
A constant value that is initialized with an expression using other constant values.
Definition Constants.h:1130
static LLVM_ABI Constant * getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced=false)
ConstantFP - Floating Point Values [float, double].
Definition Constants.h:282
const APFloat & getValueAPF() const
Definition Constants.h:325
This is the shared class of boolean and integer constants.
Definition Constants.h:87
uint64_t getLimitedValue(uint64_t Limit=~0ULL) const
getLimitedValue - If the value is smaller than the specified limit, return it, otherwise return the l...
Definition Constants.h:269
unsigned getBitWidth() const
getBitWidth - Return the scalar bitwidth of this constant.
Definition Constants.h:162
uint64_t getZExtValue() const
Return the constant as a 64-bit unsigned integer value after it has been zero extended as appropriate...
Definition Constants.h:168
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition Constants.h:159
A signed pointer, in the ptrauth sense.
Definition Constants.h:1037
StructType * getType() const
Specialization - reduce amount of casting.
Definition Constants.h:509
static Constant * getAnon(ArrayRef< Constant * > V, bool Packed=false)
Return an anonymous struct that has the specified elements.
Definition Constants.h:491
This is an important base class in LLVM.
Definition Constant.h:43
const Constant * stripPointerCasts() const
Definition Constant.h:222
LLVM_ABI Constant * getAggregateElement(unsigned Elt) const
For aggregates (struct/array/vector) return the constant that corresponds to the specified element if...
LLVM_ABI bool isNullValue() const
Return true if this is the value that would be returned by getNullValue.
Definition Constants.cpp:90
DWARF expression.
iterator_range< expr_op_iterator > expr_ops() const
unsigned getNumElements() const
static LLVM_ABI std::optional< const DIExpression * > convertToNonVariadicExpression(const DIExpression *Expr)
If Expr is a valid single-location expression, i.e.
Subprogram description. Uses SubclassData1.
Wrapper for a function that represents a value that functionally represents the original function.
Definition Constants.h:957
A parsed version of the target data layout string in and methods for querying it.
Definition DataLayout.h:64
bool isBigEndian() const
Definition DataLayout.h:215
TypeSize getTypeStoreSize(Type *Ty) const
Returns the maximum number of bytes that may be overwritten by storing the specified type.
Definition DataLayout.h:568
A debug info location.
Definition DebugLoc.h:123
iterator find(const_arg_type_t< KeyT > Val)
Definition DenseMap.h:178
iterator end()
Definition DenseMap.h:81
Collects and handles dwarf debug information.
Definition DwarfDebug.h:351
Emits exception handling directives.
Definition EHStreamer.h:30
bool hasPersonalityFn() const
Check whether this function has a personality function.
Definition Function.h:903
Constant * getPersonalityFn() const
Get the personality function associated with this function.
const Function & getFunction() const
Definition Function.h:164
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
Definition Function.cpp:359
GCMetadataPrinter - Emits GC metadata as assembly code.
An analysis pass which caches information about the entire Module.
Definition GCMetadata.h:237
SmallVector< std::unique_ptr< GCStrategy >, 1 >::const_iterator iterator
Definition GCMetadata.h:266
GCStrategy describes a garbage collector algorithm's code generation requirements,...
Definition GCStrategy.h:64
bool usesMetadata() const
If set, appropriate metadata tables must be emitted by the back-end (assembler, JIT,...
Definition GCStrategy.h:120
const std::string & getName() const
Return the name of the GC strategy.
Definition GCStrategy.h:90
LLVM_ABI const GlobalObject * getAliaseeObject() const
Definition Globals.cpp:636
const Constant * getAliasee() const
Definition GlobalAlias.h:87
LLVM_ABI const Function * getResolverFunction() const
Definition Globals.cpp:665
const Constant * getResolver() const
Definition GlobalIFunc.h:73
StringRef getSection() const
Get the custom section of this global if it has one.
bool hasMetadata() const
Return true if this value has any metadata attached to it.
Definition Value.h:602
bool hasSection() const
Check if this global has a custom object file section.
bool hasLinkOnceLinkage() const
bool hasExternalLinkage() const
bool isDSOLocal() const
bool isThreadLocal() const
If the value is "Thread Local", its value isn't shared by the threads.
VisibilityTypes getVisibility() const
LLVM_ABI bool isDeclaration() const
Return true if the primary definition of this global value is outside of the current translation unit...
Definition Globals.cpp:328
LinkageTypes getLinkage() const
bool hasLocalLinkage() const
static StringRef dropLLVMManglingEscape(StringRef Name)
If the given string begins with the GlobalValue name mangling escape character '\1',...
bool hasPrivateLinkage() const
bool isTagged() const
bool isDeclarationForLinker() const
Module * getParent()
Get the module that this global value is contained inside of...
PointerType * getType() const
Global values are always pointers.
VisibilityTypes
An enumeration for the kinds of visibility of global values.
Definition GlobalValue.h:67
@ DefaultVisibility
The GV is visible.
Definition GlobalValue.h:68
@ HiddenVisibility
The GV is hidden.
Definition GlobalValue.h:69
@ ProtectedVisibility
The GV is protected.
Definition GlobalValue.h:70
LLVM_ABI const DataLayout & getDataLayout() const
Get the data layout of the module this global belongs to.
Definition Globals.cpp:132
LLVM_ABI bool canBenefitFromLocalAlias() const
Definition Globals.cpp:114
bool hasComdat() const
bool hasWeakLinkage() const
bool hasCommonLinkage() const
bool hasGlobalUnnamedAddr() const
bool hasAppendingLinkage() const
static bool isDiscardableIfUnused(LinkageTypes Linkage)
Whether the definition of this global may be discarded if it is not used in its compilation unit.
LLVM_ABI bool canBeOmittedFromSymbolTable() const
True if GV can be left out of the object symbol table.
Definition Globals.cpp:457
bool hasAvailableExternallyLinkage() const
LinkageTypes
An enumeration for the kinds of linkage for global values.
Definition GlobalValue.h:52
@ PrivateLinkage
Like Internal, but omit from symbol table.
Definition GlobalValue.h:61
@ CommonLinkage
Tentative definitions.
Definition GlobalValue.h:63
@ InternalLinkage
Rename collisions when linking (static functions).
Definition GlobalValue.h:60
@ LinkOnceAnyLinkage
Keep one copy of function when linking (inline)
Definition GlobalValue.h:55
@ WeakODRLinkage
Same, but only replaced by something equivalent.
Definition GlobalValue.h:58
@ ExternalLinkage
Externally visible function.
Definition GlobalValue.h:53
@ WeakAnyLinkage
Keep one copy of named function when linking (weak)
Definition GlobalValue.h:57
@ AppendingLinkage
Special purpose, only applies to global arrays.
Definition GlobalValue.h:59
@ AvailableExternallyLinkage
Available for inspection, not emission.
Definition GlobalValue.h:54
@ ExternalWeakLinkage
ExternalWeak linkage description.
Definition GlobalValue.h:62
@ LinkOnceODRLinkage
Same, but only replaced by something equivalent.
Definition GlobalValue.h:56
Type * getValueType() const
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
bool hasInitializer() const
Definitions have initializers, declarations don't.
bool isConstant() const
If the value is a global constant, its value is immutable throughout the runtime execution of the pro...
Itinerary data supplied by a subtarget to be used by a target.
Class to represent integer types.
static LLVM_ABI IntegerType * get(LLVMContext &C, unsigned NumBits)
This static method is the primary way of constructing an IntegerType.
Definition Type.cpp:318
LLVM_ABI void emitError(const Instruction *I, const Twine &ErrorStr)
emitError - Emit an error message to the currently installed error handler with optional location inf...
This is an alternative analysis pass to MachineBlockFrequencyInfo.
A helper class to return the specified delimiter string after the first invocation of operator String...
bool isInnermost() const
Return true if the loop does not contain any (natural) loops.
BlockT * getHeader() const
unsigned getLoopDepth() const
Return the nesting level of this loop.
LoopT * getParentLoop() const
Return the parent loop if it exists or nullptr for top level loops.
LoopT * getLoopFor(const BlockT *BB) const
Return the inner most loop that BB lives in.
Represents a single loop in the control flow graph.
Definition LoopInfo.h:40
This class is intended to be used as a base class for asm properties and features specific to the tar...
Definition MCAsmInfo.h:64
bool hasWeakDefCanBeHiddenDirective() const
Definition MCAsmInfo.h:613
bool hasSubsectionsViaSymbols() const
Definition MCAsmInfo.h:457
const char * getWeakRefDirective() const
Definition MCAsmInfo.h:611
bool hasIdentDirective() const
Definition MCAsmInfo.h:608
static const MCBinaryExpr * createAdd(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx, SMLoc Loc=SMLoc())
Definition MCExpr.h:343
static const MCBinaryExpr * createSub(const MCExpr *LHS, const MCExpr *RHS, MCContext &Ctx)
Definition MCExpr.h:428
static LLVM_ABI const MCConstantExpr * create(int64_t Value, MCContext &Ctx, bool PrintInHex=false, unsigned SizeInBytes=0)
Definition MCExpr.cpp:212
Context object for machine code objects.
Definition MCContext.h:83
Base class for the full range of assembler expressions which are needed for parsing.
Definition MCExpr.h:34
Instances of this class represent a single low-level machine instruction.
Definition MCInst.h:188
unsigned getOpcode() const
Definition MCInst.h:202
void setOpcode(unsigned Op)
Definition MCInst.h:201
Interface to description of machine instruction set.
Definition MCInstrInfo.h:27
MCSection * getTLSBSSSection() const
MCSection * getStackSizesSection(const MCSection &TextSec) const
MCSection * getBBAddrMapSection(const MCSection &TextSec) const
MCSection * getTLSExtraDataSection() const
MCSection * getKCFITrapSection(const MCSection &TextSec) const
MCSection * getPCSection(StringRef Name, const MCSection *TextSec) const
MCSection * getCallGraphSection(const MCSection &TextSec) const
MCSection * getDataSection() const
This represents a section on Windows.
Instances of this class represent a uniqued identifier for a section in the current translation unit.
Definition MCSection.h:517
bool isBssSection() const
Check whether this section is "virtual", that is has no actual object file contents.
Definition MCSection.h:633
static constexpr unsigned NonUniqueID
Definition MCSection.h:522
Streaming machine code generation interface.
Definition MCStreamer.h:220
virtual void emitBinaryData(StringRef Data)
Functionally identical to EmitBytes.
virtual void emitInstruction(const MCInst &Inst, const MCSubtargetInfo &STI)
Emit the given Instruction into the current section.
virtual StringRef getMnemonic(const MCInst &MI) const
Returns the mnemonic for MI, if the streamer has access to a instruction printer and returns an empty...
Definition MCStreamer.h:471
void emitZeros(uint64_t NumBytes)
Emit NumBytes worth of zeros.
Generic base class for all target subtargets.
const MCSchedModel & getSchedModel() const
Get the machine model for this subtarget's CPU.
static const MCSymbolRefExpr * create(const MCSymbol *Symbol, MCContext &Ctx, SMLoc Loc=SMLoc())
Definition MCExpr.h:214
StringRef getSymbolTableName() const
bool hasRename() const
MCSymbol - Instances of this class represent a symbol name in the MC file, and MCSymbols are created ...
Definition MCSymbol.h:42
bool isDefined() const
isDefined - Check if this symbol is defined (i.e., it has an address).
Definition MCSymbol.h:233
bool isUndefined() const
isUndefined - Check if this symbol undefined (i.e., implicitly defined).
Definition MCSymbol.h:243
StringRef getName() const
getName - Get the symbol name.
Definition MCSymbol.h:188
bool isVariable() const
isVariable - Check if this is a variable symbol.
Definition MCSymbol.h:267
void redefineIfPossible()
Prepare this symbol to be redefined.
Definition MCSymbol.h:212
const MCSymbol * getAddSym() const
Definition MCValue.h:49
int64_t getConstant() const
Definition MCValue.h:44
const MCSymbol * getSubSym() const
Definition MCValue.h:51
bool isAbsolute() const
Is this an absolute (as opposed to relocatable) value.
Definition MCValue.h:54
Metadata node.
Definition Metadata.h:1078
const MDOperand & getOperand(unsigned I) const
Definition Metadata.h:1442
ArrayRef< MDOperand > operands() const
Definition Metadata.h:1440
Tracking metadata reference owned by Metadata.
Definition Metadata.h:900
A single uniqued string.
Definition Metadata.h:721
LLVM_ABI StringRef getString() const
Definition Metadata.cpp:618
LLVM_ABI MCSymbol * getSymbol() const
Return the MCSymbol for this basic block.
int getNumber() const
MachineBasicBlocks are uniquely numbered at the function level, unless they're not in a MachineFuncti...
MachineBlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate machine basic b...
LLVM_ABI BlockFrequency getBlockFreq(const MachineBasicBlock *MBB) const
getblockFreq - Return block frequency.
BranchProbability getEdgeProbability(const MachineBasicBlock *Src, const MachineBasicBlock *Dst) const
This class is a data container for one entry in a MachineConstantPool.
union llvm::MachineConstantPoolEntry::@004270020304201266316354007027341142157160323045 Val
The constant itself.
bool isMachineConstantPoolEntry() const
isMachineConstantPoolEntry - Return true if the MachineConstantPoolEntry is indeed a target specific ...
MachineConstantPoolValue * MachineCPVal
Align Alignment
The required alignment for this entry.
unsigned getSizeInBytes(const DataLayout &DL) const
SectionKind getSectionKind(const DataLayout *DL) const
Abstract base class for all machine specific constantpool value subclasses.
The MachineConstantPool class keeps track of constants referenced by a function which must be spilled...
const std::vector< MachineConstantPoolEntry > & getConstants() const
The MachineFrameInfo class represents an abstract stack frame until prolog/epilog code is inserted.
bool hasVarSizedObjects() const
This method may be called any time after instruction selection is complete to determine if the stack ...
uint64_t getStackSize() const
Return the number of bytes that must be allocated to hold all of the fixed size frame objects.
uint64_t getUnsafeStackSize() const
void getAnalysisUsage(AnalysisUsage &AU) const override
getAnalysisUsage - Subclasses that override getAnalysisUsage must call this.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
DenseMap< const MachineInstr *, CallSiteInfo > CallSiteInfoMap
bool hasBBSections() const
Returns true if this function has basic block sections enabled.
Function & getFunction()
Return the LLVM function that this machine code represents.
const std::vector< LandingPadInfo > & getLandingPads() const
Return a reference to the landing pad info for the current function.
const TargetMachine & getTarget() const
getTarget - Return the target machine this machine code is compiled with
Representation of each machine instruction.
LLVM_ABI unsigned getEntrySize(const DataLayout &TD) const
getEntrySize - Return the size of each entry in the jump table.
@ EK_GPRel32BlockAddress
EK_GPRel32BlockAddress - Each entry is an address of block, encoded with a relocation as gp-relative,...
@ EK_Inline
EK_Inline - Jump table entries are emitted inline at their point of use.
@ EK_LabelDifference32
EK_LabelDifference32 - Each entry is the address of the block minus the address of the jump table.
@ EK_Custom32
EK_Custom32 - Each entry is a 32-bit value that is custom lowered by the TargetLowering::LowerCustomJ...
@ EK_LabelDifference64
EK_LabelDifference64 - Each entry is the address of the block minus the address of the jump table.
@ EK_BlockAddress
EK_BlockAddress - Each entry is a plain address of block, e.g.: .word LBB123.
@ EK_GPRel64BlockAddress
EK_GPRel64BlockAddress - Each entry is an address of block, encoded with a relocation as gp-relative,...
LLVM_ABI unsigned getEntryAlignment(const DataLayout &TD) const
getEntryAlignment - Return the alignment of each entry in the jump table.
const std::vector< MachineJumpTableEntry > & getJumpTables() const
MachineModuleInfoCOFF - This is a MachineModuleInfoImpl implementation for COFF targets.
SymbolListTy GetGVStubList()
Accessor methods to return the set of stubs in sorted order.
MachineModuleInfoELF - This is a MachineModuleInfoImpl implementation for ELF targets.
SymbolListTy GetGVStubList()
Accessor methods to return the set of stubs in sorted order.
std::vector< std::pair< MCSymbol *, StubValueTy > > SymbolListTy
MachineOperand class - Representation of each machine instruction operand.
const GlobalValue * getGlobal() const
bool isSymbol() const
isSymbol - Tests if this is a MO_ExternalSymbol operand.
bool isGlobal() const
isGlobal - Tests if this is a MO_GlobalAddress operand.
MachineOperandType getType() const
getType - Returns the MachineOperandType for this operand.
const char * getSymbolName() const
@ MO_Immediate
Immediate operand.
@ MO_GlobalAddress
Address of a global value.
@ MO_CImmediate
Immediate >64bit operand.
@ MO_FrameIndex
Abstract Stack Frame Index.
@ MO_Register
Register operand.
@ MO_ExternalSymbol
Name of external global symbol.
@ MO_TargetIndex
Target-dependent index+offset operand.
@ MO_FPImmediate
Floating-point immediate operand.
Diagnostic information for optimization analysis remarks.
LLVM_ABI void getNameWithPrefix(raw_ostream &OS, const GlobalValue *GV, bool CannotUsePrivateLabel) const
Print the appropriate prefix and the specified global variable's name.
Definition Mangler.cpp:121
This class implements a map that also provides access to all stored values in a deterministic order.
Definition MapVector.h:36
A Module instance is used to store all the information related to an LLVM module.
Definition Module.h:67
A tuple of MDNodes.
Definition Metadata.h:1757
LLVM_ABI unsigned getNumOperands() const
iterator_range< op_iterator > operands()
Definition Metadata.h:1853
Wrapper for a value that won't be replaced with a CFI jump table pointer in LowerTypeTestsModule.
Definition Constants.h:996
AnalysisType & getAnalysis() const
getAnalysis<AnalysisType>() - This function is used by subclasses to get to the analysis information ...
AnalysisType * getAnalysisIfAvailable() const
getAnalysisIfAvailable<AnalysisType>() - Subclasses use this function to get analysis information tha...
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Wrapper class representing virtual and physical registers.
Definition Register.h:20
static iterator_range< iterator > entries()
Definition Registry.h:113
SimpleRegistryEntry< GCMetadataPrinter > entry
Definition Registry.h:47
Represents a location in source code.
Definition SMLoc.h:22
SectionKind - This is a simple POD value that classifies the properties of a section.
Definition SectionKind.h:22
bool isCommon() const
bool isBSS() const
static SectionKind getReadOnlyWithRel()
bool isBSSLocal() const
bool isThreadBSS() const
bool isThreadLocal() const
bool isThreadData() const
static SectionKind getReadOnly()
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
SmallString - A SmallString is just a SmallVector with methods and accessors that make it work better...
Definition SmallString.h:26
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
reference emplace_back(ArgTypes &&... Args)
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
int64_t getFixed() const
Returns the fixed component of the stack.
Definition TypeSize.h:46
StringRef - Represent a constant reference to a string, i.e.
Definition StringRef.h:55
constexpr StringRef substr(size_t Start, size_t N=npos) const
Return a reference to the substring from [Start, Start + N).
Definition StringRef.h:573
bool contains(StringRef Other) const
Return true if the given string is a substring of *this, and false otherwise.
Definition StringRef.h:426
size_t find(char C, size_t From=0) const
Search for the first character C in the string.
Definition StringRef.h:293
Used to lazily calculate structure layout information for a target machine, based on the DataLayout s...
Definition DataLayout.h:723
TypeSize getSizeInBytes() const
Definition DataLayout.h:732
TypeSize getElementOffset(unsigned Idx) const
Definition DataLayout.h:754
Class to represent struct types.
unsigned getNumElements() const
Random access to the elements.
Information about stack frame layout on the target.
virtual StackOffset getFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg) const
getFrameIndexReference - This method should return the base register and offset used to reference a f...
TargetInstrInfo - Interface to description of machine instruction set.
Align getMinFunctionAlignment() const
Return the minimum function alignment.
virtual const MCExpr * lowerDSOLocalEquivalent(const MCSymbol *LHS, const MCSymbol *RHS, int64_t Addend, std::optional< int64_t > PCRelativeOffset, const TargetMachine &TM) const
virtual MCSection * getSectionForCommandLines() const
If supported, return the section to use for the llvm.commandline metadata.
static SectionKind getKindForGlobal(const GlobalObject *GO, const TargetMachine &TM)
Classify the specified global variable into a set of target independent categories embodied in Sectio...
virtual MCSection * getSectionForJumpTable(const Function &F, const TargetMachine &TM) const
virtual bool shouldPutJumpTableInFunctionSection(bool UsesLabelDifference, const Function &F) const
virtual const MCExpr * getIndirectSymViaGOTPCRel(const GlobalValue *GV, const MCSymbol *Sym, const MCValue &MV, int64_t Offset, MachineModuleInfo *MMI, MCStreamer &Streamer) const
Get the target specific PC relative GOT entry relocation.
virtual void emitModuleMetadata(MCStreamer &Streamer, Module &M) const
Emit the module-level metadata that the platform cares about.
virtual MCSection * getSectionForConstant(const DataLayout &DL, SectionKind Kind, const Constant *C, Align &Alignment) const
Given a constant with the SectionKind, return a section that it should be placed in.
virtual const MCExpr * lowerRelativeReference(const GlobalValue *LHS, const GlobalValue *RHS, int64_t Addend, std::optional< int64_t > PCRelativeOffset, const TargetMachine &TM) const
MCSymbol * getSymbolWithGlobalValueBase(const GlobalValue *GV, StringRef Suffix, const TargetMachine &TM) const
Return the MCSymbol for a private symbol with global value name as its base, with the specified suffi...
bool supportGOTPCRelWithOffset() const
Target GOT "PC"-relative relocation supports encoding an additional binary expression with an offset?
bool supportIndirectSymViaGOTPCRel() const
Target supports replacing a data "PC"-relative access to a symbol through another symbol,...
virtual MCSymbol * getFunctionEntryPointSymbol(const GlobalValue *Func, const TargetMachine &TM) const
If supported, return the function entry point symbol.
MCSection * SectionForGlobal(const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const
This method computes the appropriate section to emit the specified global variable or function defini...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
Primary interface to the complete machine description for the target machine.
const Triple & getTargetTriple() const
TargetOptions Options
unsigned EnableStaticDataPartitioning
Enables the StaticDataSplitter pass.
virtual const TargetFrameLowering * getFrameLowering() const
virtual const TargetInstrInfo * getInstrInfo() const
virtual const TargetRegisterInfo * getRegisterInfo() const =0
Return the target's register information.
virtual const TargetLowering * getTargetLowering() const
Target - Wrapper for Target specific information.
TinyPtrVector - This class is specialized for cases where there are normally 0 or 1 element in a vect...
Triple - Helper class for working with autoconf configuration names.
Definition Triple.h:47
bool isOSBinFormatXCOFF() const
Tests whether the OS uses the XCOFF binary format.
Definition Triple.h:809
bool isOSBinFormatELF() const
Tests whether the OS uses the ELF binary format.
Definition Triple.h:786
Twine - A lightweight data structure for efficiently representing the concatenation of temporary valu...
Definition Twine.h:82
The instances of the Type class are immutable: once they are created, they are never changed.
Definition Type.h:45
static LLVM_ABI IntegerType * getInt64Ty(LLVMContext &C)
Definition Type.cpp:297
bool isFloatTy() const
Return true if this is 'float', a 32-bit IEEE fp type.
Definition Type.h:153
bool isBFloatTy() const
Return true if this is 'bfloat', a 16-bit bfloat type.
Definition Type.h:145
bool isPPC_FP128Ty() const
Return true if this is powerpc long double.
Definition Type.h:165
bool isSized(SmallPtrSetImpl< Type * > *Visited=nullptr) const
Return true if it makes sense to take the size of this type.
Definition Type.h:311
bool isHalfTy() const
Return true if this is 'half', a 16-bit IEEE fp type.
Definition Type.h:142
LLVM_ABI void print(raw_ostream &O, bool IsForDebug=false, bool NoDetails=false) const
Print the current type.
bool isDoubleTy() const
Return true if this is 'double', a 64-bit IEEE fp type.
Definition Type.h:156
bool isFunctionTy() const
True if this is an instance of FunctionType.
Definition Type.h:258
Value * getOperand(unsigned i) const
Definition User.h:232
unsigned getNumOperands() const
Definition User.h:254
Value * operator=(Value *RHS)
Definition ValueHandle.h:70
LLVM Value Representation.
Definition Value.h:75
Type * getType() const
All values are typed, get the type of this value.
Definition Value.h:256
LLVM_ABI std::string getNameOrAsOperand() const
Definition Value.cpp:457
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition Value.h:439
iterator_range< user_iterator > users()
Definition Value.h:426
User * user_back()
Definition Value.h:412
LLVM_ABI void printAsOperand(raw_ostream &O, bool PrintType=true, const Module *M=nullptr) const
Print the name of this Value out to the specified raw_ostream.
LLVM_ABI const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition Value.cpp:701
bool use_empty() const
Definition Value.h:346
LLVM_ABI LLVMContext & getContext() const
All values hold a context through their type.
Definition Value.cpp:1099
LLVM_ABI StringRef getName() const
Return a constant reference to the value's name.
Definition Value.cpp:322
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition raw_ostream.h:53
raw_ostream & indent(unsigned NumSpaces)
indent - Insert 'NumSpaces' spaces.
A raw_ostream that writes to an std::string.
std::string & str()
Returns the string's reference.
A raw_ostream that writes to an SmallVector or SmallString.
StringRef str() const
Return a StringRef for the vector contents.
LLVM_ABI StringRef OperationEncodingString(unsigned Encoding)
Definition Dwarf.cpp:138
This file contains the declaration of the Comdat class, which represents a single COMDAT in LLVM.
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE()
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
@ IMAGE_SCN_MEM_READ
Definition COFF.h:336
@ IMAGE_SCN_MEM_DISCARDABLE
Definition COFF.h:331
@ IMAGE_SCN_LNK_INFO
Definition COFF.h:307
@ IMAGE_SCN_CNT_INITIALIZED_DATA
Definition COFF.h:304
@ IMAGE_SCN_LNK_COMDAT
Definition COFF.h:309
@ IMAGE_SYM_CLASS_EXTERNAL
External symbol.
Definition COFF.h:224
@ IMAGE_SYM_CLASS_STATIC
Static.
Definition COFF.h:225
@ IMAGE_COMDAT_SELECT_ASSOCIATIVE
Definition COFF.h:459
@ IMAGE_COMDAT_SELECT_ANY
Definition COFF.h:456
@ SafeSEH
Definition COFF.h:847
@ GuardEHCont
Definition COFF.h:855
@ GuardCF
Definition COFF.h:853
@ Kernel
Definition COFF.h:857
@ IMAGE_SYM_DTYPE_NULL
No complex type; simple scalar variable.
Definition COFF.h:274
@ IMAGE_SYM_DTYPE_FUNCTION
A function that returns a base type.
Definition COFF.h:276
@ SCT_COMPLEX_TYPE_SHIFT
Type is formed as (base + (derived << SCT_COMPLEX_TYPE_SHIFT))
Definition COFF.h:280
@ C
The default llvm calling convention, compatible with C.
Definition CallingConv.h:34
@ SHF_ALLOC
Definition ELF.h:1248
@ SHF_LINK_ORDER
Definition ELF.h:1263
@ SHF_GROUP
Definition ELF.h:1270
@ SHF_WRITE
Definition ELF.h:1245
@ SHT_LLVM_JT_SIZES
Definition ELF.h:1188
@ SHT_PROGBITS
Definition ELF.h:1147
@ SHT_LLVM_SYMPART
Definition ELF.h:1180
@ S_ATTR_LIVE_SUPPORT
S_ATTR_LIVE_SUPPORT - Blocks are live if they reference live blocks.
Definition MachO.h:202
@ Itanium
Windows CE ARM, PowerPC, SH3, SH4.
Definition MCAsmInfo.h:49
@ X86
Windows x64, Windows Itanium (IA-64)
Definition MCAsmInfo.h:50
ValuesClass values(OptsTy... Options)
Helper to build a ValuesClass by forwarding a variable number of arguments as an initializer list to ...
initializer< Ty > init(const Ty &Val)
uint8_t getUnitLengthFieldByteSize(DwarfFormat Format)
Get the byte size of the unit length field depending on the DWARF format.
Definition Dwarf.h:1139
@ DWARF64
Definition Dwarf.h:93
uint8_t getDwarfOffsetByteSize(DwarfFormat Format)
The size of a reference determined by the DWARF 32/64-bit format.
Definition Dwarf.h:1097
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract_or_null(Y &&MD)
Extract a Value from Metadata, allowing null.
Definition Metadata.h:682
std::enable_if_t< detail::IsValidPointer< X, Y >::value, X * > extract(Y &&MD)
Extract a Value from Metadata.
Definition Metadata.h:667
DiagnosticInfoOptimizationBase::Argument NV
uint64_t MD5Hash(const FunctionId &Obj)
Definition FunctionId.h:167
@ OF_Text
The file should be opened in text mode on platforms like z/OS that make this distinction.
Definition FileSystem.h:755
LLVM_ABI std::error_code make_absolute(SmallVectorImpl< char > &path)
Make path an absolute path.
Definition Path.cpp:958
LLVM_ABI StringRef filename(StringRef path LLVM_LIFETIME_BOUND, Style style=Style::native)
Get filename.
Definition Path.cpp:578
This is an optimization pass for GlobalISel generic memory operations.
@ Offset
Definition DWP.cpp:532
FunctionAddr VTableAddr Value
Definition InstrProf.h:137
void stable_sort(R &&Range)
Definition STLExtras.h:2079
LLVM_ABI std::pair< StringRef, StringRef > getToken(StringRef Source, StringRef Delimiters=" \t\n\v\f\r")
getToken - This function extracts one token from source, ignoring any leading characters that appear ...
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:643
ExceptionHandling
Definition CodeGen.h:53
@ SjLj
setjmp/longjmp based exceptions
Definition CodeGen.h:56
@ ZOS
z/OS MVS Exception Handling.
Definition CodeGen.h:61
@ None
No exception support.
Definition CodeGen.h:54
@ AIX
AIX Exception Handling.
Definition CodeGen.h:60
@ DwarfCFI
DWARF-like instruction based exceptions.
Definition CodeGen.h:55
@ WinEH
Windows Exception Handling.
Definition CodeGen.h:58
@ Wasm
WebAssembly Exception Handling.
Definition CodeGen.h:59
LLVM_ABI bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, APInt &Offset, const DataLayout &DL, DSOLocalEquivalent **DSOEquiv=nullptr)
If this constant is a constant offset from a global, return the global and the constant.
void append_range(Container &C, Range &&R)
Wrapper function to append range R to container C.
Definition STLExtras.h:2157
Op::Description Desc
constexpr int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition bit.h:154
@ MCDR_DataRegionEnd
.end_data_region
@ MCDR_DataRegionJT32
.data_region jt32
bool isNoOpWithoutInvoke(EHPersonality Pers)
Return true if this personality may be safely removed if there are no invoke instructions remaining i...
LLVM_ABI Constant * ConstantFoldConstant(const Constant *C, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldConstant - Fold the constant using the specified DataLayout.
auto dyn_cast_or_null(const Y &Val)
Definition Casting.h:753
FunctionAddr VTableAddr uintptr_t uintptr_t Version
Definition InstrProf.h:302
auto reverse(ContainerTy &&C)
Definition STLExtras.h:406
void sort(IteratorTy Start, IteratorTy End)
Definition STLExtras.h:1634
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
Definition Error.cpp:167
SmallVector< ValueTypeFromRangeType< R >, Size > to_vector(R &&Range)
Given a range of type R, iterate the entire range and return a SmallVector with elements of the vecto...
LLVM_ABI EHPersonality classifyEHPersonality(const Value *Pers)
See if the given exception handling personality function is one that we understand.
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
Definition Casting.h:547
format_object< Ts... > format(const char *Fmt, const Ts &... Vals)
These are helper functions used to produce formatted output.
Definition Format.h:129
constexpr std::string_view HybridPatchableTargetSuffix
Definition Mangler.h:37
LLVM_ABI raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.
@ Global
Append to llvm.global_dtors.
FunctionAddr VTableAddr uintptr_t uintptr_t Data
Definition InstrProf.h:189
uint64_t alignTo(uint64_t Size, Align A)
Returns a multiple of A needed to store Size bytes.
Definition Alignment.h:144
DWARFExpression::Operation Op
ArrayRef(const T &OneElt) -> ArrayRef< T >
constexpr unsigned BitWidth
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition STLExtras.h:1888
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
Definition Casting.h:559
auto seq(T Begin, T End)
Iterate over an integral type from Begin up to - but not including - End.
Definition Sequence.h:305
@ TypeHash
Token ID based on allocated type hash.
Definition AllocToken.h:32
LLVM_ABI Constant * ConstantFoldIntegerCast(Constant *C, Type *DestTy, bool IsSigned, const DataLayout &DL)
Constant fold a zext, sext or trunc, depending on IsSigned and whether the DestTy is wider or narrowe...
LLVM_ABI Printable printReg(Register Reg, const TargetRegisterInfo *TRI=nullptr, unsigned SubIdx=0, const MachineRegisterInfo *MRI=nullptr)
Prints virtual and physical registers with or without a TRI instance.
@ MCSA_Local
.local (ELF)
@ MCSA_WeakDefAutoPrivate
.weak_def_can_be_hidden (MachO)
@ MCSA_Memtag
.memtag (ELF)
@ MCSA_WeakReference
.weak_reference (MachO)
@ MCSA_AltEntry
.alt_entry (MachO)
@ MCSA_ELF_TypeIndFunction
.type _foo, STT_GNU_IFUNC
@ MCSA_Weak
.weak
@ MCSA_WeakDefinition
.weak_definition (MachO)
@ MCSA_Global
.type _foo, @gnu_unique_object
@ MCSA_Cold
.cold (MachO)
@ MCSA_ELF_TypeObject
.type _foo, STT_OBJECT # aka @object
@ MCSA_ELF_TypeFunction
.type _foo, STT_FUNC # aka @function
@ MCSA_Invalid
Not a valid directive.
@ MCSA_NoDeadStrip
.no_dead_strip (MachO)
constexpr const char * PseudoProbeDescMetadataName
Definition PseudoProbe.h:26
LLVM_ABI void reportFatalUsageError(Error Err)
Report a fatal error that does not indicate a bug in LLVM.
Definition Error.cpp:180
Implement std::hash so that hash_code can be used in STL containers.
Definition BitVector.h:870
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
Definition BitVector.h:872
#define N
#define NC
Definition regutils.h:42
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition Alignment.h:39
Map a basic block section ID to the begin and end symbols of that section which determine the section...
Definition AsmPrinter.h:154
llvm.global_ctors and llvm.global_dtors are arrays of Structor structs.
Definition AsmPrinter.h:526
LLVM_ABI void emit(int, MCStreamer *) const
uint64_t getEdgeCount(const UniqueBBID &SrcBBID, const UniqueBBID &SinkBBID) const
uint64_t getBlockCount(const UniqueBBID &BBID) const
Machine model for scheduling, bundling, and heuristics.
Definition MCSchedule.h:258
static LLVM_ABI int computeInstrLatency(const MCSubtargetInfo &STI, const MCSchedClassDesc &SCDesc)
Returns the latency value for the scheduling class.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition Alignment.h:106
A helper struct providing information about the byte size of DW_FORM values that vary in size dependi...
Definition Dwarf.h:1110
This is the base class for a remark serializer.
virtual std::unique_ptr< MetaSerializer > metaSerializer(raw_ostream &OS, StringRef ExternalFilename)=0
Return the corresponding metadata serializer.