33#include "llvm/IR/IntrinsicsWebAssembly.h"
40#define DEBUG_TYPE "wasm-lower"
45 auto MVTPtr = Subtarget->
hasAddr64() ? MVT::i64 : MVT::i32;
55 Subtarget->
hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
84 for (
auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
89 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
102 for (
auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
123 for (
auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
159 for (
auto T : {MVT::i32, MVT::i64})
162 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
175 for (
auto T : {MVT::i32, MVT::i64})
206 for (
auto T : {MVT::v16i8, MVT::v8i16})
210 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
214 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
222 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
227 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
233 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
238 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
246 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
253 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
258 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
268 for (
auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
274 for (
auto T : {MVT::v4f32, MVT::v2f64})
284 for (
auto T : {MVT::v2i64, MVT::v2f64})
308 for (
auto T : {MVT::i8, MVT::i16, MVT::i32})
324 for (
auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
342 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
345 if (
MVT(
T) != MemT) {
383 setLibcallName(RTLIB::RETURN_ADDRESS,
"emscripten_return_address");
394 return MVT::externref;
403 return MVT::externref;
410WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(
AtomicRMWInst *AI)
const {
426bool WebAssemblyTargetLowering::shouldScalarizeBinop(
SDValue VecOp)
const {
446FastISel *WebAssemblyTargetLowering::createFastISel(
451MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(
const DataLayout & ,
462 "32-bit shift counts ought to be enough for anyone");
467 "Unable to represent scalar shift amount type");
477 bool IsUnsigned,
bool Int64,
478 bool Float64,
unsigned LoweredOpcode) {
484 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
485 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
486 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
487 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
488 unsigned IConst =
Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
489 unsigned Eqz = WebAssembly::EQZ_I32;
490 unsigned And = WebAssembly::AND_I32;
492 int64_t Substitute = IsUnsigned ? 0 : Limit;
493 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(
double)Limit;
504 F->insert(It, FalseMBB);
505 F->insert(It, TrueMBB);
506 F->insert(It, DoneMBB);
509 DoneMBB->
splice(DoneMBB->
begin(), BB, std::next(
MI.getIterator()), BB->
end());
517 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
518 Tmp0 =
MRI.createVirtualRegister(
MRI.getRegClass(InReg));
519 Tmp1 =
MRI.createVirtualRegister(
MRI.getRegClass(InReg));
520 CmpReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
521 EqzReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
522 FalseReg =
MRI.createVirtualRegister(
MRI.getRegClass(OutReg));
523 TrueReg =
MRI.createVirtualRegister(
MRI.getRegClass(OutReg));
525 MI.eraseFromParent();
534 .
addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
539 Tmp1 =
MRI.createVirtualRegister(
MRI.getRegClass(InReg));
541 MRI.createVirtualRegister(&WebAssembly::I32RegClass);
542 Register AndReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
544 .
addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
586 unsigned Eqz =
Int64 ? WebAssembly::EQZ_I64 : WebAssembly::EQZ_I32;
587 unsigned MemoryCopy =
588 Int64 ? WebAssembly::MEMORY_COPY_A64 : WebAssembly::MEMORY_COPY_A32;
599 F->insert(It, TrueMBB);
600 F->insert(It, DoneMBB);
603 DoneMBB->
splice(DoneMBB->
begin(), BB, std::next(
MI.getIterator()), BB->
end());
613 EqzReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
616 MI.eraseFromParent();
654 unsigned Eqz =
Int64 ? WebAssembly::EQZ_I64 : WebAssembly::EQZ_I32;
655 unsigned MemoryFill =
656 Int64 ? WebAssembly::MEMORY_FILL_A64 : WebAssembly::MEMORY_FILL_A32;
667 F->insert(It, TrueMBB);
668 F->insert(It, DoneMBB);
671 DoneMBB->
splice(DoneMBB->
begin(), BB, std::next(
MI.getIterator()), BB->
end());
681 EqzReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
684 MI.eraseFromParent();
706 CallResults.
getOpcode() == WebAssembly::RET_CALL_RESULTS);
710 bool IsRetCall = CallResults.
getOpcode() == WebAssembly::RET_CALL_RESULTS;
712 bool IsFuncrefCall =
false;
718 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
723 if (IsIndirect && IsRetCall) {
724 CallOp = WebAssembly::RET_CALL_INDIRECT;
725 }
else if (IsIndirect) {
726 CallOp = WebAssembly::CALL_INDIRECT;
727 }
else if (IsRetCall) {
728 CallOp = WebAssembly::RET_CALL;
730 CallOp = WebAssembly::CALL;
759 for (
auto Def : CallResults.
defs())
782 for (
auto Use : CallParams.
uses())
798 if (IsIndirect && IsFuncrefCall) {
810 BuildMI(MF,
DL,
TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
814 BuildMI(MF,
DL,
TII.get(WebAssembly::TABLE_SET_FUNCREF))
829 switch (
MI.getOpcode()) {
832 case WebAssembly::FP_TO_SINT_I32_F32:
834 WebAssembly::I32_TRUNC_S_F32);
835 case WebAssembly::FP_TO_UINT_I32_F32:
837 WebAssembly::I32_TRUNC_U_F32);
838 case WebAssembly::FP_TO_SINT_I64_F32:
840 WebAssembly::I64_TRUNC_S_F32);
841 case WebAssembly::FP_TO_UINT_I64_F32:
843 WebAssembly::I64_TRUNC_U_F32);
844 case WebAssembly::FP_TO_SINT_I32_F64:
846 WebAssembly::I32_TRUNC_S_F64);
847 case WebAssembly::FP_TO_UINT_I32_F64:
849 WebAssembly::I32_TRUNC_U_F64);
850 case WebAssembly::FP_TO_SINT_I64_F64:
852 WebAssembly::I64_TRUNC_S_F64);
853 case WebAssembly::FP_TO_UINT_I64_F64:
855 WebAssembly::I64_TRUNC_U_F64);
856 case WebAssembly::MEMCPY_A32:
858 case WebAssembly::MEMCPY_A64:
860 case WebAssembly::MEMSET_A32:
862 case WebAssembly::MEMSET_A64:
864 case WebAssembly::CALL_RESULTS:
865 case WebAssembly::RET_CALL_RESULTS:
871WebAssemblyTargetLowering::getTargetNodeName(
unsigned Opcode)
const {
875#define HANDLE_NODETYPE(NODE) \
876 case WebAssemblyISD::NODE: \
877 return "WebAssemblyISD::" #NODE;
878#include "WebAssemblyISD.def"
879#undef HANDLE_NODETYPE
884std::pair<unsigned, const TargetRegisterClass *>
885WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
889 if (Constraint.
size() == 1) {
890 switch (Constraint[0]) {
892 assert(VT != MVT::iPTR &&
"Pointer MVT not expected here");
895 return std::make_pair(0U, &WebAssembly::V128RegClass);
899 return std::make_pair(0U, &WebAssembly::I32RegClass);
901 return std::make_pair(0U, &WebAssembly::I64RegClass);
906 return std::make_pair(0U, &WebAssembly::F32RegClass);
908 return std::make_pair(0U, &WebAssembly::F64RegClass);
922bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(
Type *Ty)
const {
927bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(
Type *Ty)
const {
932bool WebAssemblyTargetLowering::isLegalAddressingMode(
const DataLayout &
DL,
934 Type *Ty,
unsigned AS,
950bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
964bool WebAssemblyTargetLowering::isIntDivCheap(
EVT VT,
971bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(
SDValue ExtVal)
const {
973 EVT MemT = cast<LoadSDNode>(ExtVal->
getOperand(0))->getValueType(0);
974 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
975 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
976 (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
979bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
999bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1002 unsigned Intrinsic)
const {
1003 switch (Intrinsic) {
1004 case Intrinsic::wasm_memory_atomic_notify:
1006 Info.memVT = MVT::i32;
1007 Info.ptrVal =
I.getArgOperand(0);
1018 case Intrinsic::wasm_memory_atomic_wait32:
1020 Info.memVT = MVT::i32;
1021 Info.ptrVal =
I.getArgOperand(0);
1026 case Intrinsic::wasm_memory_atomic_wait64:
1028 Info.memVT = MVT::i64;
1029 Info.ptrVal =
I.getArgOperand(0);
1034 case Intrinsic::wasm_loadf16_f32:
1036 Info.memVT = MVT::f16;
1037 Info.ptrVal =
I.getArgOperand(0);
1042 case Intrinsic::wasm_storef16_f32:
1044 Info.memVT = MVT::f16;
1045 Info.ptrVal =
I.getArgOperand(1);
1055void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
1058 switch (
Op.getOpcode()) {
1062 unsigned IntNo =
Op.getConstantOperandVal(0);
1066 case Intrinsic::wasm_bitmask: {
1068 EVT VT =
Op.getOperand(1).getSimpleValueType();
1071 Known.
Zero |= ZeroMask;
1080WebAssemblyTargetLowering::getPreferredVectorAction(
MVT VT)
const {
1086 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
1087 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
1094bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts(
1095 SDValue Op,
const TargetLoweringOpt &TLO)
const {
1148WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
1160 "WebAssembly doesn't support language-specific or target-specific "
1161 "calling conventions yet");
1162 if (CLI.IsPatchPoint)
1163 fail(
DL, DAG,
"WebAssembly doesn't support patch point yet");
1165 if (CLI.IsTailCall) {
1166 auto NoTail = [&](
const char *Msg) {
1167 if (CLI.CB && CLI.CB->isMustTailCall())
1169 CLI.IsTailCall =
false;
1173 NoTail(
"WebAssembly 'tail-call' feature not enabled");
1177 NoTail(
"WebAssembly does not support varargs tail calls");
1187 bool TypesMatch = CallerRetTys.
size() == CalleeRetTys.
size() &&
1188 std::equal(CallerRetTys.
begin(), CallerRetTys.
end(),
1189 CalleeRetTys.
begin());
1191 NoTail(
"WebAssembly tail call requires caller and callee return types to "
1196 for (
auto &Arg : CLI.CB->args()) {
1197 Value *Val = Arg.get();
1201 if (
auto *
GEP = dyn_cast<GetElementPtrInst>(Src))
1202 Src =
GEP->getPointerOperand();
1207 if (isa<AllocaInst>(Val)) {
1209 "WebAssembly does not support tail calling with stack arguments");
1224 Outs[0].Flags.isSRet()) {
1229 bool HasSwiftSelfArg =
false;
1230 bool HasSwiftErrorArg =
false;
1232 for (
unsigned I = 0;
I < Outs.
size(); ++
I) {
1238 fail(
DL, DAG,
"WebAssembly hasn't implemented nest arguments");
1240 fail(
DL, DAG,
"WebAssembly hasn't implemented inalloca arguments");
1242 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs arguments");
1244 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs last arguments");
1253 Chain = DAG.
getMemcpy(Chain,
DL, FINode, OutVal, SizeNode,
1264 bool IsVarArg = CLI.IsVarArg;
1272 if (!HasSwiftSelfArg) {
1276 CLI.Outs.push_back(Arg);
1278 CLI.OutVals.push_back(ArgVal);
1280 if (!HasSwiftErrorArg) {
1284 CLI.Outs.push_back(Arg);
1286 CLI.OutVals.push_back(ArgVal);
1301 assert(VT != MVT::iPTR &&
"Legalized args should be concrete");
1306 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1313 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1316 if (IsVarArg && NumBytes) {
1319 MaybeAlign StackAlign = Layout.getStackAlignment();
1320 assert(StackAlign &&
"data layout string is missing stack alignment");
1326 assert(ArgLocs[ValNo].getValNo() == ValNo &&
1327 "ArgLocs should remain in order and only hold varargs args");
1328 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1336 if (!Chains.
empty())
1338 }
else if (IsVarArg) {
1368 for (
const auto &In : Ins) {
1369 assert(!
In.Flags.isByVal() &&
"byval is not valid for return values");
1370 assert(!
In.Flags.isNest() &&
"nest is not valid for return values");
1371 if (
In.Flags.isInAlloca())
1372 fail(
DL, DAG,
"WebAssembly hasn't implemented inalloca return values");
1373 if (
In.Flags.isInConsecutiveRegs())
1374 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs return values");
1375 if (
In.Flags.isInConsecutiveRegsLast())
1377 "WebAssembly hasn't implemented cons regs last return values");
1386 CLI.CB->getCalledOperand()->getType())) {
1401 WebAssemblyISD::TABLE_SET,
DL, DAG.
getVTList(MVT::Other), TableSetOps,
1406 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.
getDataLayout()),
1412 if (CLI.IsTailCall) {
1415 return DAG.
getNode(WebAssemblyISD::RET_CALL,
DL, NodeTys, Ops);
1422 for (
size_t I = 0;
I <
Ins.size(); ++
I)
1429bool WebAssemblyTargetLowering::CanLowerReturn(
1437SDValue WebAssemblyTargetLowering::LowerReturn(
1443 "MVP WebAssembly can only return up to one value");
1445 fail(
DL, DAG,
"WebAssembly doesn't support non-C calling conventions");
1448 RetOps.append(OutVals.
begin(), OutVals.
end());
1449 Chain = DAG.
getNode(WebAssemblyISD::RETURN,
DL, MVT::Other, RetOps);
1455 assert(Out.
IsFixed &&
"non-fixed return value is not valid");
1457 fail(
DL, DAG,
"WebAssembly hasn't implemented inalloca results");
1459 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs results");
1461 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs last results");
1467SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1472 fail(
DL, DAG,
"WebAssembly doesn't support non-C calling conventions");
1481 bool HasSwiftErrorArg =
false;
1482 bool HasSwiftSelfArg =
false;
1484 HasSwiftSelfArg |=
In.Flags.isSwiftSelf();
1485 HasSwiftErrorArg |=
In.Flags.isSwiftError();
1486 if (
In.Flags.isInAlloca())
1487 fail(
DL, DAG,
"WebAssembly hasn't implemented inalloca arguments");
1488 if (
In.Flags.isNest())
1489 fail(
DL, DAG,
"WebAssembly hasn't implemented nest arguments");
1490 if (
In.Flags.isInConsecutiveRegs())
1491 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs arguments");
1492 if (
In.Flags.isInConsecutiveRegsLast())
1493 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs last arguments");
1502 MFI->addParam(
In.VT);
1511 if (!HasSwiftSelfArg) {
1512 MFI->addParam(PtrVT);
1514 if (!HasSwiftErrorArg) {
1515 MFI->addParam(PtrVT);
1524 MFI->setVarargBufferVreg(VarargVreg);
1526 Chain,
DL, VarargVreg,
1527 DAG.
getNode(WebAssemblyISD::ARGUMENT,
DL, PtrVT,
1529 MFI->addParam(PtrVT);
1541 assert(MFI->getParams().size() == Params.
size() &&
1542 std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1548void WebAssemblyTargetLowering::ReplaceNodeResults(
1550 switch (
N->getOpcode()) {
1564 Results.push_back(Replace128Op(
N, DAG));
1568 "ReplaceNodeResults not implemented for this op for WebAssembly!");
1579 switch (
Op.getOpcode()) {
1584 return LowerFrameIndex(
Op, DAG);
1586 return LowerGlobalAddress(
Op, DAG);
1588 return LowerGlobalTLSAddress(
Op, DAG);
1590 return LowerExternalSymbol(
Op, DAG);
1592 return LowerJumpTable(
Op, DAG);
1594 return LowerBR_JT(
Op, DAG);
1596 return LowerVASTART(
Op, DAG);
1599 fail(
DL, DAG,
"WebAssembly hasn't implemented computed gotos");
1602 return LowerRETURNADDR(
Op, DAG);
1604 return LowerFRAMEADDR(
Op, DAG);
1606 return LowerCopyToReg(
Op, DAG);
1609 return LowerAccessVectorElement(
Op, DAG);
1613 return LowerIntrinsic(
Op, DAG);
1615 return LowerSIGN_EXTEND_INREG(
Op, DAG);
1618 return LowerEXTEND_VECTOR_INREG(
Op, DAG);
1620 return LowerBUILD_VECTOR(
Op, DAG);
1622 return LowerVECTOR_SHUFFLE(
Op, DAG);
1624 return LowerSETCC(
Op, DAG);
1628 return LowerShift(
Op, DAG);
1631 return LowerFP_TO_INT_SAT(
Op, DAG);
1633 return LowerLoad(
Op, DAG);
1635 return LowerStore(
Op, DAG);
1644 return LowerMUL_LOHI(
Op, DAG);
1659 return std::nullopt;
1692 return DAG.
getNode(WebAssemblyISD::LOCAL_SET,
DL, Tys, Ops);
1697 "Encountered an unlowerable store to the wasm_var address space",
1713 "unexpected offset when loading from webassembly global",
false);
1724 "unexpected offset when loading from webassembly local",
false);
1731 assert(
Result->getNumValues() == 2 &&
"Loads must carry a chain!");
1737 "Encountered an unlowerable load from the wasm_var address space",
1746 assert(
Op.getValueType() == MVT::i64);
1749 switch (
Op.getOpcode()) {
1751 Opcode = WebAssemblyISD::I64_MUL_WIDE_U;
1754 Opcode = WebAssemblyISD::I64_MUL_WIDE_S;
1771 assert(
N->getValueType(0) == MVT::i128);
1774 switch (
N->getOpcode()) {
1776 Opcode = WebAssemblyISD::I64_ADD128;
1779 Opcode = WebAssemblyISD::I64_SUB128;
1794 LHS_0, LHS_1, RHS_0, RHS_1);
1802 if (isa<FrameIndexSDNode>(Src.getNode())) {
1810 Register Reg = cast<RegisterSDNode>(
Op.getOperand(1))->getReg();
1811 EVT VT = Src.getValueType();
1813 : WebAssembly::COPY_I64,
1816 return Op.getNode()->getNumValues() == 1
1827 int FI = cast<FrameIndexSDNode>(
Op)->getIndex();
1837 "Non-Emscripten WebAssembly hasn't implemented "
1838 "__builtin_return_address");
1845 unsigned Depth =
Op.getConstantOperandVal(0);
1846 MakeLibCallOptions CallOptions;
1847 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS,
Op.getValueType(),
1848 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions,
DL)
1857 if (
Op.getConstantOperandVal(0) > 0)
1861 EVT VT =
Op.getValueType();
1868WebAssemblyTargetLowering::LowerGlobalTLSAddress(
SDValue Op,
1871 const auto *GA = cast<GlobalAddressSDNode>(
Op);
1898 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
1899 : WebAssembly::GLOBAL_GET_I32;
1910 DAG.
getNode(WebAssemblyISD::WrapperREL,
DL, PtrVT, TLSOffset);
1917 EVT VT =
Op.getValueType();
1918 return DAG.
getNode(WebAssemblyISD::Wrapper,
DL, VT,
1927 const auto *GA = cast<GlobalAddressSDNode>(
Op);
1928 EVT VT =
Op.getValueType();
1930 "Unexpected target flags on generic GlobalAddressSDNode");
1932 fail(
DL, DAG,
"Invalid address space for WebAssembly target");
1943 const char *BaseName;
1952 DAG.
getNode(WebAssemblyISD::Wrapper,
DL, PtrVT,
1956 WebAssemblyISD::WrapperREL,
DL, VT,
1965 return DAG.
getNode(WebAssemblyISD::Wrapper,
DL, VT,
1971WebAssemblyTargetLowering::LowerExternalSymbol(
SDValue Op,
1974 const auto *ES = cast<ExternalSymbolSDNode>(
Op);
1975 EVT VT =
Op.getValueType();
1976 assert(ES->getTargetFlags() == 0 &&
1977 "Unexpected target flags on generic ExternalSymbolSDNode");
1978 return DAG.
getNode(WebAssemblyISD::Wrapper,
DL, VT,
1989 JT->getTargetFlags());
1996 const auto *
JT = cast<JumpTableSDNode>(
Op.getOperand(1));
1998 assert(
JT->getTargetFlags() == 0 &&
"WebAssembly doesn't set target flags");
2008 for (
auto *
MBB : MBBs)
2015 return DAG.
getNode(WebAssemblyISD::BR_TABLE,
DL, MVT::Other, Ops);
2024 const Value *SV = cast<SrcValueSDNode>(
Op.getOperand(2))->getValue();
2027 MFI->getVarargBufferVreg(), PtrVT);
2028 return DAG.
getStore(
Op.getOperand(0),
DL, ArgN,
Op.getOperand(1),
2036 switch (
Op.getOpcode()) {
2039 IntNo =
Op.getConstantOperandVal(1);
2042 IntNo =
Op.getConstantOperandVal(0);
2053 case Intrinsic::wasm_lsda: {
2062 DAG.
getNode(WebAssemblyISD::Wrapper,
DL, PtrVT,
2069 return DAG.
getNode(WebAssemblyISD::Wrapper,
DL, PtrVT,
Node);
2072 case Intrinsic::wasm_shuffle: {
2076 Ops[OpIdx++] =
Op.getOperand(1);
2077 Ops[OpIdx++] =
Op.getOperand(2);
2078 while (OpIdx < 18) {
2079 const SDValue &MaskIdx =
Op.getOperand(OpIdx + 1);
2084 Ops[OpIdx++] = MaskIdx;
2087 return DAG.
getNode(WebAssemblyISD::SHUFFLE,
DL,
Op.getValueType(), Ops);
2090 case Intrinsic::thread_pointer: {
2092 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
2093 : WebAssembly::GLOBAL_GET_I32;
2104WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(
SDValue Op,
2118 const SDValue &Extract =
Op.getOperand(0);
2122 MVT ExtractedLaneT =
2123 cast<VTSDNode>(
Op.getOperand(1).getNode())->
getVT().getSimpleVT();
2126 if (ExtractedVecT == VecT)
2131 if (!isa<ConstantSDNode>(Index))
2133 unsigned IndexVal =
Index->getAsZExtVal();
2147WebAssemblyTargetLowering::LowerEXTEND_VECTOR_INREG(
SDValue Op,
2150 EVT VT =
Op.getValueType();
2152 EVT SrcVT = Src.getValueType();
2159 "Unexpected extension factor.");
2162 if (Scale != 2 && Scale != 4 && Scale != 8)
2166 switch (
Op.getOpcode()) {
2168 Ext = WebAssemblyISD::EXTEND_LOW_U;
2171 Ext = WebAssemblyISD::EXTEND_LOW_S;
2176 while (Scale != 1) {
2179 .widenIntegerVectorElementType(*DAG.
getContext())
2180 .getHalfNumVectorElementsVT(*DAG.
getContext()),
2190 if (
Op.getValueType() != MVT::v2f64)
2194 unsigned &Index) ->
bool {
2195 switch (
Op.getOpcode()) {
2197 Opcode = WebAssemblyISD::CONVERT_LOW_S;
2200 Opcode = WebAssemblyISD::CONVERT_LOW_U;
2203 Opcode = WebAssemblyISD::PROMOTE_LOW;
2209 auto ExtractVector =
Op.getOperand(0);
2213 if (!isa<ConstantSDNode>(ExtractVector.getOperand(1).getNode()))
2216 SrcVec = ExtractVector.getOperand(0);
2217 Index = ExtractVector.getConstantOperandVal(1);
2221 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
2223 if (!GetConvertedLane(
Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
2224 !GetConvertedLane(
Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
2227 if (LHSOpcode != RHSOpcode)
2231 switch (LHSOpcode) {
2232 case WebAssemblyISD::CONVERT_LOW_S:
2233 case WebAssemblyISD::CONVERT_LOW_U:
2234 ExpectedSrcVT = MVT::v4i32;
2236 case WebAssemblyISD::PROMOTE_LOW:
2237 ExpectedSrcVT = MVT::v4f32;
2243 auto Src = LHSSrcVec;
2244 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
2247 ExpectedSrcVT,
DL, LHSSrcVec, RHSSrcVec,
2248 {
static_cast<int>(LHSIndex),
static_cast<int>(RHSIndex) + 4, -1, -1});
2250 return DAG.
getNode(LHSOpcode,
DL, MVT::v2f64, Src);
2255 MVT VT =
Op.getSimpleValueType();
2256 if (VT == MVT::v8f16) {
2271 const EVT VecT =
Op.getValueType();
2272 const EVT LaneT =
Op.getOperand(0).getValueType();
2274 bool CanSwizzle = VecT == MVT::v16i8;
2295 auto GetSwizzleSrcs = [](
size_t I,
const SDValue &Lane) {
2310 Index->getConstantOperandVal(1) !=
I)
2312 return std::make_pair(SwizzleSrc, SwizzleIndices);
2319 auto GetShuffleSrc = [&](
const SDValue &Lane) {
2322 if (!isa<ConstantSDNode>(Lane->getOperand(1).getNode()))
2324 if (Lane->getOperand(0).getValueType().getVectorNumElements() >
2330 using ValueEntry = std::pair<SDValue, size_t>;
2333 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>,
size_t>;
2336 using ShuffleEntry = std::pair<SDValue, size_t>;
2339 auto AddCount = [](
auto &Counts,
const auto &Val) {
2341 llvm::find_if(Counts, [&Val](
auto E) {
return E.first == Val; });
2342 if (CountIt == Counts.end()) {
2343 Counts.emplace_back(Val, 1);
2349 auto GetMostCommon = [](
auto &Counts) {
2352 assert(CommonIt != Counts.end() &&
"Unexpected all-undef build_vector");
2356 size_t NumConstantLanes = 0;
2359 for (
size_t I = 0;
I < Lanes; ++
I) {
2364 AddCount(SplatValueCounts, Lane);
2368 if (
auto ShuffleSrc = GetShuffleSrc(Lane))
2369 AddCount(ShuffleCounts, ShuffleSrc);
2371 auto SwizzleSrcs = GetSwizzleSrcs(
I, Lane);
2372 if (SwizzleSrcs.first)
2373 AddCount(SwizzleCounts, SwizzleSrcs);
2378 size_t NumSplatLanes;
2379 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
2383 size_t NumSwizzleLanes = 0;
2384 if (SwizzleCounts.
size())
2385 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
2386 NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
2390 SDValue ShuffleSrc1, ShuffleSrc2;
2391 size_t NumShuffleLanes = 0;
2392 if (ShuffleCounts.
size()) {
2393 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
2395 [&](
const auto &Pair) {
return Pair.first == ShuffleSrc1; });
2397 if (ShuffleCounts.
size()) {
2398 size_t AdditionalShuffleLanes;
2399 std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
2400 GetMostCommon(ShuffleCounts);
2401 NumShuffleLanes += AdditionalShuffleLanes;
2406 std::function<
bool(
size_t,
const SDValue &)> IsLaneConstructed;
2409 if (NumSwizzleLanes >= NumShuffleLanes &&
2410 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
2413 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
2414 IsLaneConstructed = [&, Swizzled](
size_t I,
const SDValue &Lane) {
2415 return Swizzled == GetSwizzleSrcs(
I, Lane);
2417 }
else if (NumShuffleLanes >= NumConstantLanes &&
2418 NumShuffleLanes >= NumSplatLanes) {
2428 assert(LaneSize > DestLaneSize);
2429 Scale1 = LaneSize / DestLaneSize;
2435 assert(LaneSize > DestLaneSize);
2436 Scale2 = LaneSize / DestLaneSize;
2441 assert(DestLaneCount <= 16);
2442 for (
size_t I = 0;
I < DestLaneCount; ++
I) {
2444 SDValue Src = GetShuffleSrc(Lane);
2445 if (Src == ShuffleSrc1) {
2447 }
else if (Src && Src == ShuffleSrc2) {
2455 IsLaneConstructed = [&](size_t,
const SDValue &Lane) {
2456 auto Src = GetShuffleSrc(Lane);
2457 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
2459 }
else if (NumConstantLanes >= NumSplatLanes) {
2461 for (
const SDValue &Lane :
Op->op_values()) {
2469 auto *
Const = dyn_cast<ConstantSDNode>(Lane.
getNode());
2470 int64_t Val =
Const ?
Const->getSExtValue() : 0;
2472 assert((LaneBits == 64 || Val >= -(1ll << (LaneBits - 1))) &&
2473 "Unexpected out of bounds negative value");
2474 if (Const && LaneBits != 64 && Val > (1ll << (LaneBits - 1)) - 1) {
2476 auto NewVal = (((
uint64_t)Val & Mask) - (1ll << LaneBits)) &
Mask;
2493 if (NumSplatLanes == 1 &&
Op->getOperand(0) == SplatValue &&
2494 (DestLaneSize == 32 || DestLaneSize == 64)) {
2501 IsLaneConstructed = [&SplatValue](
size_t _,
const SDValue &Lane) {
2502 return Lane == SplatValue;
2507 assert(IsLaneConstructed);
2510 for (
size_t I = 0;
I < Lanes; ++
I) {
2512 if (!Lane.
isUndef() && !IsLaneConstructed(
I, Lane))
2521WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(
SDValue Op,
2526 assert(
VecType.is128BitVector() &&
"Unexpected shuffle vector type");
2527 size_t LaneBytes =
VecType.getVectorElementType().getSizeInBits() / 8;
2532 Ops[OpIdx++] =
Op.getOperand(0);
2533 Ops[OpIdx++] =
Op.getOperand(1);
2536 for (
int M : Mask) {
2537 for (
size_t J = 0; J < LaneBytes; ++J) {
2546 return DAG.
getNode(WebAssemblyISD::SHUFFLE,
DL,
Op.getValueType(), Ops);
2554 assert(
Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2559 auto MakeLane = [&](
unsigned I) {
2565 {MakeLane(0), MakeLane(1)});
2569WebAssemblyTargetLowering::LowerAccessVectorElement(
SDValue Op,
2573 if (isa<ConstantSDNode>(IdxNode)) {
2586 EVT LaneT =
Op.getSimpleValueType().getVectorElementType();
2588 if (LaneT.
bitsGE(MVT::i32))
2592 size_t NumLanes =
Op.getSimpleValueType().getVectorNumElements();
2594 unsigned ShiftOpcode =
Op.getOpcode();
2600 for (
size_t i = 0; i < NumLanes; ++i) {
2603 SDValue ShiftedValue = ShiftedElements[i];
2608 DAG.
getNode(ShiftOpcode,
DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2618 assert(
Op.getSimpleValueType().isVector());
2620 uint64_t LaneBits =
Op.getValueType().getScalarSizeInBits();
2621 auto ShiftVal =
Op.getOperand(1);
2635 MaskVal == MaskBits)
2638 if (!isa<ConstantSDNode>(
RHS.getNode()))
2641 auto ConstantRHS = dyn_cast<ConstantSDNode>(
RHS.getNode());
2642 if (ConstantRHS && ConstantRHS->getAPIntValue() == MaskBits)
2650 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2656 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2661 switch (
Op.getOpcode()) {
2663 Opcode = WebAssemblyISD::VEC_SHL;
2666 Opcode = WebAssemblyISD::VEC_SHR_S;
2669 Opcode = WebAssemblyISD::VEC_SHR_U;
2675 return DAG.
getNode(Opcode,
DL,
Op.getValueType(),
Op.getOperand(0), ShiftVal);
2681 EVT ResT =
Op.getValueType();
2682 EVT SatVT = cast<VTSDNode>(
Op.getOperand(1))->getVT();
2684 if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2685 (SatVT == MVT::i32 || SatVT == MVT::i64))
2688 if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2691 if (ResT == MVT::v8i16 && SatVT == MVT::i16)
2702 auto &DAG = DCI.
DAG;
2703 auto Shuffle = cast<ShuffleVectorSDNode>(
N);
2709 SDValue Bitcast =
N->getOperand(0);
2712 if (!
N->getOperand(1).isUndef())
2714 SDValue CastOp = Bitcast.getOperand(0);
2716 EVT DstType = Bitcast.getValueType();
2721 SrcType,
SDLoc(
N), CastOp, DAG.
getUNDEF(SrcType), Shuffle->getMask());
2731 auto &DAG = DCI.
DAG;
2735 EVT InVT =
N->getOperand(0)->getValueType(0);
2736 EVT ResVT =
N->getValueType(0);
2738 if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8))
2740 else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8))
2753 auto &DAG = DCI.
DAG;
2759 auto Extract =
N->getOperand(0);
2763 auto *IndexNode = dyn_cast<ConstantSDNode>(Extract.
getOperand(1));
2764 if (IndexNode ==
nullptr)
2766 auto Index = IndexNode->getZExtValue();
2770 EVT ResVT =
N->getValueType(0);
2771 if (ResVT == MVT::v8i16) {
2773 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2775 }
else if (ResVT == MVT::v4i32) {
2777 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2779 }
else if (ResVT == MVT::v2i64) {
2781 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2788 bool IsLow = Index == 0;
2790 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2791 : WebAssemblyISD::EXTEND_HIGH_S)
2792 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2793 : WebAssemblyISD::EXTEND_HIGH_U);
2800 auto &DAG = DCI.
DAG;
2802 auto GetWasmConversionOp = [](
unsigned Op) {
2805 return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2807 return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2809 return WebAssemblyISD::DEMOTE_ZERO;
2814 auto IsZeroSplat = [](
SDValue SplatVal) {
2815 auto *
Splat = dyn_cast<BuildVectorSDNode>(SplatVal.getNode());
2816 APInt SplatValue, SplatUndef;
2817 unsigned SplatBitSize;
2822 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
2840 EVT ExpectedConversionType;
2843 switch (ConversionOp) {
2847 ExpectedConversionType = MVT::v2i32;
2851 ExpectedConversionType = MVT::v2f32;
2857 if (
N->getValueType(0) != ResVT)
2860 if (
Conversion.getValueType() != ExpectedConversionType)
2864 if (Source.getValueType() != MVT::v2f64)
2867 if (!IsZeroSplat(
N->getOperand(1)) ||
2868 N->getOperand(1).getValueType() != ExpectedConversionType)
2871 unsigned Op = GetWasmConversionOp(ConversionOp);
2887 auto ConversionOp =
N->getOpcode();
2888 switch (ConversionOp) {
2900 if (
N->getValueType(0) != ResVT)
2903 auto Concat =
N->getOperand(0);
2904 if (
Concat.getValueType() != MVT::v4f64)
2907 auto Source =
Concat.getOperand(0);
2908 if (Source.getValueType() != MVT::v2f64)
2911 if (!IsZeroSplat(
Concat.getOperand(1)) ||
2912 Concat.getOperand(1).getValueType() != MVT::v2f64)
2915 unsigned Op = GetWasmConversionOp(ConversionOp);
2921 const SDLoc &
DL,
unsigned VectorWidth) {
2929 unsigned ElemsPerChunk = VectorWidth / ElVT.
getSizeInBits();
2934 IdxVal &= ~(ElemsPerChunk - 1);
2939 Vec->
ops().slice(IdxVal, ElemsPerChunk));
2951 EVT SrcVT = In.getValueType();
2969 EVT InVT = MVT::i16, OutVT = MVT::i8;
2974 unsigned SubSizeInBits = SrcSizeInBits / 2;
2976 OutVT =
EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
3002 auto &DAG = DCI.
DAG;
3005 EVT InVT = In.getValueType();
3009 EVT OutVT =
N->getValueType(0);
3016 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
3017 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.
is128BitVector()))
3029 auto &DAG = DCI.
DAG;
3032 EVT VT =
N->getValueType(0);
3033 EVT SrcVT = Src.getValueType();
3040 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3045 {DAG.getConstant(Intrinsic::wasm_bitmask, DL, MVT::i32),
3046 DAG.getSExtOrTrunc(N->getOperand(0), DL,
3047 SrcVT.changeVectorElementType(Width))}),
3056 auto &DAG = DCI.
DAG;
3062 EVT VT =
N->getValueType(0);
3076 EVT FromVT =
LHS->getOperand(0).getValueType();
3080 : Intrinsic::wasm_alltrue;
3082 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3088 {DAG.getConstant(Intrin, DL, MVT::i32),
3089 DAG.getSExtOrTrunc(LHS->getOperand(0), DL,
3090 FromVT.changeVectorElementType(Width))}),
3094 Ret = DAG.
getNOT(
DL, Ret, MVT::i1);
3104WebAssemblyTargetLowering::PerformDAGCombine(
SDNode *
N,
3105 DAGCombinerInfo &DCI)
const {
3106 switch (
N->getOpcode()) {
unsigned const MachineRegisterInfo * MRI
static SDValue performTruncateCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI)
static SDValue performSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG)
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis Results
static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg, SDValue Val={})
Analysis containing CSE Info
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
const HexagonInstrInfo * TII
static unsigned NumFixedArgs
unsigned const TargetRegisterInfo * TRI
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
static MachineBasicBlock * LowerFPToInt(MachineInstr &MI, DebugLoc DL, MachineBasicBlock *BB, const TargetInstrInfo &TII, bool IsUnsigned, bool Int64, bool Float64, unsigned LoweredOpcode)
static bool callingConvSupported(CallingConv::ID CallConv)
static MachineBasicBlock * LowerMemcpy(MachineInstr &MI, DebugLoc DL, MachineBasicBlock *BB, const TargetInstrInfo &TII, bool Int64)
static std::optional< unsigned > IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG)
static SDValue performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG)
static MachineBasicBlock * LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, const WebAssemblySubtarget *Subtarget, const TargetInstrInfo &TII)
static SDValue performVECTOR_SHUFFLECombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static bool IsWebAssemblyGlobal(SDValue Op)
static MachineBasicBlock * LowerMemset(MachineInstr &MI, DebugLoc DL, MachineBasicBlock *BB, const TargetInstrInfo &TII, bool Int64)
static SDValue performVectorExtendToFPCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get split up into scalar instr...
static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG)
static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, const SDLoc &DL, unsigned VectorWidth)
static SDValue performBitcastCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL, SelectionDAG &DAG)
This file defines the interfaces that WebAssembly uses to lower LLVM code into a selection DAG.
This file provides WebAssembly-specific target descriptions.
This file declares WebAssembly-specific per-machine-function information.
This file declares the WebAssembly-specific subclass of TargetSubtarget.
This file declares the WebAssembly-specific subclass of TargetMachine.
This file contains the declaration of the WebAssembly-specific type parsing utility functions.
This file contains the declaration of the WebAssembly-specific utility functions.
static constexpr int Concat[]
Class for arbitrary precision integers.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
an instruction that atomically reads a memory location, combines it with another value,...
BinOp getOperation() const
LLVM Basic Block Representation.
CCState - This class holds information needed while lowering arguments and return values.
static CCValAssign getMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP, bool IsCustom=false)
This class represents a function call, abstracting a target machine's calling convention.
This class represents an Operation in the Expression.
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
Diagnostic information for unsupported feature in backend.
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
FunctionType * getFunctionType() const
Returns the FunctionType for me.
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
int64_t getOffset() const
unsigned getAddressSpace() const
unsigned getTargetFlags() const
const GlobalValue * getGlobal() const
ThreadLocalMode getThreadLocalMode() const
Type * getValueType() const
This is an important class for using LLVM in a threaded context.
void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
This class is used to represent ISD::LOAD nodes.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
Describe properties that are true of each instruction in the target description file.
@ INVALID_SIMPLE_VALUE_TYPE
static auto integer_fixedlen_vector_valuetypes()
MVT changeVectorElementType(MVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
static MVT getVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
static auto integer_valuetypes()
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static auto fixedlen_vector_valuetypes()
bool isFixedLengthVector() const
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
iterator insertAfter(iterator I, MachineInstr *MI)
Insert MI into the instruction list after I.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
void setFrameAddressIsTaken(bool T)
unsigned getFunctionNumber() const
getFunctionNumber - Return a unique ID for the current function.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineInstr * CreateMachineInstr(const MCInstrDesc &MCID, DebugLoc DL, bool NoImplicit=false)
CreateMachineInstr - Allocate a new MachineInstr.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
const char * createExternalSymbolName(StringRef Name)
Allocate a string and populate it with the given external symbol name.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineJumpTableInfo * getJumpTableInfo() const
getJumpTableInfo - Return the jump table info object for the current function.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addFPImm(const ConstantFP *Val) const
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
Representation of each machine instruction.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
iterator_range< mop_iterator > uses()
Returns a range that includes all operands which may be register uses.
void addOperand(MachineFunction &MF, const MachineOperand &Op)
Add the specified operand to the instruction.
iterator_range< mop_iterator > defs()
Returns a range over all explicit operands that are register definitions.
void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
const MachineOperand & getOperand(unsigned i) const
const std::vector< MachineJumpTableEntry > & getJumpTables() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
void setIsKill(bool Val=true)
Register getReg() const
getReg - Returns the register number.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
void addLiveIn(MCRegister Reg, Register vreg=Register())
addLiveIn - Add the specified register as a live-in.
unsigned getAddressSpace() const
Return the address space for the associated pointer.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const SDValue & getChain() const
EVT getMemoryVT() const
Return the type of the in-memory value.
Wrapper class representing virtual and physical registers.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), AAResults *AA=nullptr)
SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
const DataLayout & getDataLayout() const
SDValue getTargetFrameIndex(int FI, EVT VT)
SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
SDValue getBasicBlock(MachineBasicBlock *MBB)
const TargetMachine & getTarget() const
SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
SDValue getValueType(EVT)
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
MachineFunction & getMachineFunction() const
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVMContext * getContext() const
SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=0, const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void append(ItTy in_start, ItTy in_end)
Add the specified range to the end of the SmallVector.
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
This class is used to represent ISD::STORE nodes.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
const SDValue & getValue() const
StringRef - Represent a constant reference to a string, i.e.
constexpr size_t size() const
size - Get the string size.
TargetInstrInfo - Interface to description of machine instruction set.
Provides information about what library functions are available for the current target.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setLibcallName(RTLIB::Libcall Call, const char *Name)
Rename the default libcall routine name for the specified libcall.
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrOneBooleanContent
@ ZeroOrNegativeOneBooleanContent
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
bool isPositionIndependent() const
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
bool verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
Primary interface to the complete machine description for the target machine.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
bool isOSEmscripten() const
Tests whether the OS is Emscripten.
The instances of the Type class are immutable: once they are created, they are never changed.
static Type * getDoubleTy(LLVMContext &C)
bool isFunctionTy() const
True if this is an instance of FunctionType.
static Type * getFloatTy(LLVMContext &C)
A Use represents the edge between a Value definition and its users.
LLVM Value Representation.
const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
static std::optional< unsigned > getLocalForStackObject(MachineFunction &MF, int FrameIndex)
This class is derived from MachineFunctionInfo and contains private WebAssembly-specific information ...
Register getFrameRegister(const MachineFunction &MF) const override
bool hasCallIndirectOverlong() const
const Triple & getTargetTriple() const
const WebAssemblyInstrInfo * getInstrInfo() const override
bool hasBulkMemory() const
const WebAssemblyRegisterInfo * getRegisterInfo() const override
bool hasWideArithmetic() const
bool hasReferenceTypes() const
bool hasExceptionHandling() const
bool hasNontrappingFPToInt() const
WebAssemblyTargetLowering(const TargetMachine &TM, const WebAssemblySubtarget &STI)
MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const override
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const override
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
@ Swift
Calling convention for Swift.
@ PreserveMost
Used for runtime calls that preserves most registers.
@ CXX_FAST_TLS
Used for access functions.
@ WASM_EmscriptenInvoke
For emscripten __invoke_* functions.
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ BSWAP
Byte Swap and Counting operators.
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ FP16_TO_FP
FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-preci...
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ BR_CC
BR_CC - Conditional branch.
@ BRIND
BRIND - Indirect branch.
@ BR_JT
BR_JT - Jumptable branch.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
ID ArrayRef< Type * > Tys
OperandFlags
These are flags set on operands, but should be considered private, all access should go through the M...
MCSymbolWasm * getOrCreateFunctionTableSymbol(MCContext &Ctx, const WebAssemblySubtarget *Subtarget)
Returns the __indirect_function_table, for use in call_indirect and in function bitcasts.
@ WASM_ADDRESS_SPACE_EXTERNREF
@ WASM_ADDRESS_SPACE_FUNCREF
bool isWebAssemblyFuncrefType(const Type *Ty)
Return true if this is a WebAssembly Funcref Type.
bool isWebAssemblyTableType(const Type *Ty)
Return true if the table represents a WebAssembly table type.
MCSymbolWasm * getOrCreateFuncrefCallTableSymbol(MCContext &Ctx, const WebAssemblySubtarget *Subtarget)
Returns the __funcref_call_table, for use in funcref calls when lowered to table.set + call_indirect.
FastISel * createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo)
bool isValidAddressSpace(unsigned AS)
bool canLowerReturn(size_t ResultSize, const WebAssemblySubtarget *Subtarget)
Returns true if the function's return value(s) can be lowered directly, i.e., not indirectly via a po...
bool isWasmVarAddressSpace(unsigned AS)
Reg
All possible values of the reg field in the ModR/M byte.
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
void computeSignatureVTs(const FunctionType *Ty, const Function *TargetFunc, const Function &ContextFunc, const TargetMachine &TM, SmallVectorImpl< MVT > &Params, SmallVectorImpl< MVT > &Results)
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
@ And
Bitwise or logical AND of integers.
DWARFExpression::Operation Op
constexpr unsigned BitWidth
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
void computeLegalValueVTs(const WebAssemblyTargetLowering &TLI, LLVMContext &Ctx, const DataLayout &DL, Type *Ty, SmallVectorImpl< MVT > &ValueVTs)
bool isAllOnesConstant(SDValue V)
Returns true if V is an integer constant with all bits set.
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
uint64_t getScalarSizeInBits() const
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
bool is128BitVector() const
Return true if this is a 128-bit vector type.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool is256BitVector() const
Return true if this is a 256-bit vector type.
Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
bool isInConsecutiveRegs() const
Align getNonZeroOrigAlign() const
bool isSwiftError() const
unsigned getByValSize() const
bool isInConsecutiveRegsLast() const
Align getNonZeroByValAlign() const
OutputArg - This struct carries flags and a value for a single outgoing (actual) argument or outgoing...
bool IsFixed
IsFixed - Is this a "fixed" value, ie not passed through a vararg "...".
unsigned getBitWidth() const
Get the bit width of this value.
This class contains a discriminated union of information about pointers in memory operands,...
static MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
This represents a list of ValueType's that has been intern'd by a SelectionDAG.
bool isBeforeLegalize() const
Function object to check whether the second component of a container supported by std::get (like std:...