35#include "llvm/IR/IntrinsicsWebAssembly.h"
42#define DEBUG_TYPE "wasm-lower"
47 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
61 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
67 if (Subtarget->hasSIMD128()) {
75 if (Subtarget->hasFP16()) {
78 if (Subtarget->hasReferenceTypes()) {
81 if (Subtarget->hasExceptionHandling()) {
90 for (
auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) {
94 if (Subtarget->hasSIMD128()) {
95 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
101 if (Subtarget->hasFP16()) {
105 if (Subtarget->hasReferenceTypes()) {
108 for (
auto T : {MVT::externref, MVT::funcref, MVT::Other}) {
129 for (
auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64, MVT::v8f16}) {
130 if (!Subtarget->hasFP16() &&
T == MVT::v8f16) {
143 if (
MVT(
T).isVector())
157 if (
T != MVT::v8f16) {
170 for (
auto T : {MVT::i32, MVT::i64})
172 if (Subtarget->hasSIMD128())
173 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
177 if (Subtarget->hasWideArithmetic()) {
185 if (Subtarget->hasNontrappingFPToInt())
187 for (
auto T : {MVT::i32, MVT::i64})
190 if (Subtarget->hasRelaxedSIMD()) {
193 {MVT::v4f32, MVT::v2f64},
Legal);
196 if (Subtarget->hasSIMD128()) {
230 for (
auto T : {MVT::v16i8, MVT::v8i16})
234 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
238 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
242 if (Subtarget->hasFP16())
246 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
250 if (Subtarget->hasFP16())
254 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
262 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
267 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
275 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32, MVT::v2i64,
282 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64})
287 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
297 for (
auto T : {MVT::v8i16, MVT::v4i32, MVT::v2i64})
303 for (
auto T : {MVT::v4f32, MVT::v2f64})
313 for (
auto T : {MVT::v2i64, MVT::v2f64})
319 if (Subtarget->hasFP16()) {
331 if (Subtarget->hasFP16()) {
335 if (Subtarget->hasRelaxedSIMD()) {
350 if (!Subtarget->hasSignExt()) {
352 auto Action = Subtarget->hasSIMD128() ?
Custom :
Expand;
353 for (
auto T : {MVT::i8, MVT::i16, MVT::i32})
369 for (
auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
386 if (Subtarget->hasSIMD128()) {
387 for (
auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
390 if (
MVT(
T) != MemT) {
429 return MVT::externref;
438 return MVT::externref;
445WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(
462bool WebAssemblyTargetLowering::shouldScalarizeBinop(
SDValue VecOp)
const {
482FastISel *WebAssemblyTargetLowering::createFastISel(
487MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(
const DataLayout & ,
498 "32-bit shift counts ought to be enough for anyone");
503 "Unable to represent scalar shift amount type");
513 bool IsUnsigned,
bool Int64,
514 bool Float64,
unsigned LoweredOpcode) {
520 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
521 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
522 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
523 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
524 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
525 unsigned Eqz = WebAssembly::EQZ_I32;
526 unsigned And = WebAssembly::AND_I32;
527 int64_t Limit = Int64 ?
INT64_MIN : INT32_MIN;
528 int64_t Substitute = IsUnsigned ? 0 : Limit;
529 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
540 F->insert(It, FalseMBB);
541 F->insert(It, TrueMBB);
542 F->insert(It, DoneMBB);
545 DoneMBB->
splice(DoneMBB->
begin(), BB, std::next(
MI.getIterator()), BB->
end());
553 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
554 Tmp0 =
MRI.createVirtualRegister(
MRI.getRegClass(InReg));
555 Tmp1 =
MRI.createVirtualRegister(
MRI.getRegClass(InReg));
556 CmpReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
557 EqzReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
558 FalseReg =
MRI.createVirtualRegister(
MRI.getRegClass(OutReg));
559 TrueReg =
MRI.createVirtualRegister(
MRI.getRegClass(OutReg));
561 MI.eraseFromParent();
575 Tmp1 =
MRI.createVirtualRegister(
MRI.getRegClass(InReg));
577 MRI.createVirtualRegister(&WebAssembly::I32RegClass);
578 Register AndReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
618 if (Def->getOpcode() == WebAssembly::CONST_I32 ||
619 Def->getOpcode() == WebAssembly::CONST_I64) {
620 if (Def->getOperand(1).getImm() == 0) {
622 MI.eraseFromParent();
626 unsigned MemoryCopy =
627 Int64 ? WebAssembly::MEMORY_COPY_A64 : WebAssembly::MEMORY_COPY_A32;
634 MI.eraseFromParent();
645 unsigned Eqz = Int64 ? WebAssembly::EQZ_I64 : WebAssembly::EQZ_I32;
646 unsigned MemoryCopy =
647 Int64 ? WebAssembly::MEMORY_COPY_A64 : WebAssembly::MEMORY_COPY_A32;
658 F->insert(It, TrueMBB);
659 F->insert(It, DoneMBB);
662 DoneMBB->
splice(DoneMBB->
begin(), BB, std::next(
MI.getIterator()), BB->
end());
672 EqzReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
675 MI.eraseFromParent();
709 if (Def->getOpcode() == WebAssembly::CONST_I32 ||
710 Def->getOpcode() == WebAssembly::CONST_I64) {
711 if (Def->getOperand(1).getImm() == 0) {
713 MI.eraseFromParent();
717 unsigned MemoryFill =
718 Int64 ? WebAssembly::MEMORY_FILL_A64 : WebAssembly::MEMORY_FILL_A32;
724 MI.eraseFromParent();
735 unsigned Eqz = Int64 ? WebAssembly::EQZ_I64 : WebAssembly::EQZ_I32;
736 unsigned MemoryFill =
737 Int64 ? WebAssembly::MEMORY_FILL_A64 : WebAssembly::MEMORY_FILL_A32;
748 F->insert(It, TrueMBB);
749 F->insert(It, DoneMBB);
752 DoneMBB->
splice(DoneMBB->
begin(), BB, std::next(
MI.getIterator()), BB->
end());
762 EqzReg =
MRI.createVirtualRegister(&WebAssembly::I32RegClass);
765 MI.eraseFromParent();
787 CallResults.
getOpcode() == WebAssembly::RET_CALL_RESULTS);
791 bool IsRetCall = CallResults.
getOpcode() == WebAssembly::RET_CALL_RESULTS;
793 bool IsFuncrefCall =
false;
799 IsFuncrefCall = (TRC == &WebAssembly::FUNCREFRegClass);
804 if (IsIndirect && IsRetCall) {
805 CallOp = WebAssembly::RET_CALL_INDIRECT;
806 }
else if (IsIndirect) {
807 CallOp = WebAssembly::CALL_INDIRECT;
808 }
else if (IsRetCall) {
809 CallOp = WebAssembly::RET_CALL;
811 CallOp = WebAssembly::CALL;
840 for (
auto Def : CallResults.
defs())
864 for (
auto Use : CallParams.
uses())
880 if (IsIndirect && IsFuncrefCall) {
892 BuildMI(MF,
DL,
TII.get(WebAssembly::REF_NULL_FUNCREF), RegFuncref);
896 BuildMI(MF,
DL,
TII.get(WebAssembly::TABLE_SET_FUNCREF))
908 const TargetInstrInfo &
TII = *Subtarget->getInstrInfo();
911 switch (
MI.getOpcode()) {
914 case WebAssembly::FP_TO_SINT_I32_F32:
916 WebAssembly::I32_TRUNC_S_F32);
917 case WebAssembly::FP_TO_UINT_I32_F32:
919 WebAssembly::I32_TRUNC_U_F32);
920 case WebAssembly::FP_TO_SINT_I64_F32:
922 WebAssembly::I64_TRUNC_S_F32);
923 case WebAssembly::FP_TO_UINT_I64_F32:
925 WebAssembly::I64_TRUNC_U_F32);
926 case WebAssembly::FP_TO_SINT_I32_F64:
928 WebAssembly::I32_TRUNC_S_F64);
929 case WebAssembly::FP_TO_UINT_I32_F64:
931 WebAssembly::I32_TRUNC_U_F64);
932 case WebAssembly::FP_TO_SINT_I64_F64:
934 WebAssembly::I64_TRUNC_S_F64);
935 case WebAssembly::FP_TO_UINT_I64_F64:
937 WebAssembly::I64_TRUNC_U_F64);
938 case WebAssembly::MEMCPY_A32:
940 case WebAssembly::MEMCPY_A64:
942 case WebAssembly::MEMSET_A32:
944 case WebAssembly::MEMSET_A64:
946 case WebAssembly::CALL_RESULTS:
947 case WebAssembly::RET_CALL_RESULTS:
952std::pair<unsigned, const TargetRegisterClass *>
953WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
957 if (Constraint.
size() == 1) {
958 switch (Constraint[0]) {
960 assert(VT != MVT::iPTR &&
"Pointer MVT not expected here");
961 if (Subtarget->hasSIMD128() && VT.
isVector()) {
963 return std::make_pair(0U, &WebAssembly::V128RegClass);
967 return std::make_pair(0U, &WebAssembly::I32RegClass);
969 return std::make_pair(0U, &WebAssembly::I64RegClass);
974 return std::make_pair(0U, &WebAssembly::F32RegClass);
976 return std::make_pair(0U, &WebAssembly::F64RegClass);
990bool WebAssemblyTargetLowering::isCheapToSpeculateCttz(
Type *Ty)
const {
995bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz(
Type *Ty)
const {
1000bool WebAssemblyTargetLowering::isLegalAddressingMode(
const DataLayout &
DL,
1002 Type *Ty,
unsigned AS,
1007 if (AM.BaseOffs < 0)
1018bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
1032bool WebAssemblyTargetLowering::isIntDivCheap(
EVT VT,
1033 AttributeList Attr)
const {
1039bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(
SDValue ExtVal)
const {
1042 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
1043 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
1044 (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
1047bool WebAssemblyTargetLowering::isOffsetFoldingLegal(
1050 const GlobalValue *GV = GA->
getGlobal();
1054EVT WebAssemblyTargetLowering::getSetCCResultType(
const DataLayout &
DL,
1067bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &
Info,
1071 switch (Intrinsic) {
1072 case Intrinsic::wasm_memory_atomic_notify:
1074 Info.memVT = MVT::i32;
1075 Info.ptrVal =
I.getArgOperand(0);
1086 case Intrinsic::wasm_memory_atomic_wait32:
1088 Info.memVT = MVT::i32;
1089 Info.ptrVal =
I.getArgOperand(0);
1094 case Intrinsic::wasm_memory_atomic_wait64:
1096 Info.memVT = MVT::i64;
1097 Info.ptrVal =
I.getArgOperand(0);
1102 case Intrinsic::wasm_loadf16_f32:
1104 Info.memVT = MVT::f16;
1105 Info.ptrVal =
I.getArgOperand(0);
1110 case Intrinsic::wasm_storef16_f32:
1112 Info.memVT = MVT::f16;
1113 Info.ptrVal =
I.getArgOperand(1);
1123void WebAssemblyTargetLowering::computeKnownBitsForTargetNode(
1126 switch (
Op.getOpcode()) {
1130 unsigned IntNo =
Op.getConstantOperandVal(0);
1134 case Intrinsic::wasm_bitmask: {
1136 EVT VT =
Op.getOperand(1).getSimpleValueType();
1139 Known.
Zero |= ZeroMask;
1145 case WebAssemblyISD::EXTEND_LOW_U:
1146 case WebAssemblyISD::EXTEND_HIGH_U: {
1151 if (VT == MVT::v8i8 || VT == MVT::v16i8) {
1155 }
else if (VT == MVT::v4i16 || VT == MVT::v8i16) {
1159 }
else if (VT == MVT::v2i32 || VT == MVT::v4i32) {
1169 case WebAssemblyISD::I64_ADD128:
1170 if (
Op.getResNo() == 1) {
1181WebAssemblyTargetLowering::getPreferredVectorAction(
MVT VT)
const {
1187 if (EltVT == MVT::i8 || EltVT == MVT::i16 || EltVT == MVT::i32 ||
1188 EltVT == MVT::i64 || EltVT == MVT::f32 || EltVT == MVT::f64)
1195bool WebAssemblyTargetLowering::isFMAFasterThanFMulAndFAdd(
1197 if (!Subtarget->hasFP16() || !VT.
isVector())
1207bool WebAssemblyTargetLowering::shouldSimplifyDemandedVectorElts(
1208 SDValue Op,
const TargetLoweringOpt &TLO)
const {
1261WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
1263 SelectionDAG &DAG = CLI.DAG;
1273 "WebAssembly doesn't support language-specific or target-specific "
1274 "calling conventions yet");
1275 if (CLI.IsPatchPoint)
1276 fail(
DL, DAG,
"WebAssembly doesn't support patch point yet");
1278 if (CLI.IsTailCall) {
1279 auto NoTail = [&](
const char *Msg) {
1280 if (CLI.CB && CLI.CB->isMustTailCall())
1282 CLI.IsTailCall =
false;
1285 if (!Subtarget->hasTailCall())
1286 NoTail(
"WebAssembly 'tail-call' feature not enabled");
1290 NoTail(
"WebAssembly does not support varargs tail calls");
1295 Type *RetTy =
F.getReturnType();
1300 bool TypesMatch = CallerRetTys.
size() == CalleeRetTys.
size() &&
1301 std::equal(CallerRetTys.
begin(), CallerRetTys.
end(),
1302 CalleeRetTys.
begin());
1304 NoTail(
"WebAssembly tail call requires caller and callee return types to "
1309 for (
auto &Arg : CLI.CB->args()) {
1310 Value *Val = Arg.get();
1315 Src =
GEP->getPointerOperand();
1322 "WebAssembly does not support tail calling with stack arguments");
1329 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1330 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1331 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1337 Outs[0].Flags.isSRet()) {
1342 bool HasSwiftSelfArg =
false;
1343 bool HasSwiftErrorArg =
false;
1344 unsigned NumFixedArgs = 0;
1345 for (
unsigned I = 0;
I < Outs.
size(); ++
I) {
1346 const ISD::OutputArg &Out = Outs[
I];
1351 fail(
DL, DAG,
"WebAssembly hasn't implemented nest arguments");
1353 fail(
DL, DAG,
"WebAssembly hasn't implemented inalloca arguments");
1355 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs arguments");
1357 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs last arguments");
1366 Chain = DAG.
getMemcpy(Chain,
DL, FINode, OutVal, SizeNode,
1369 nullptr, std::nullopt, MachinePointerInfo(),
1370 MachinePointerInfo());
1377 bool IsVarArg = CLI.IsVarArg;
1386 if (!HasSwiftSelfArg) {
1388 ISD::ArgFlagsTy
Flags;
1389 Flags.setSwiftSelf();
1390 ISD::OutputArg Arg(Flags, PtrVT, EVT(PtrVT), PtrTy, 0, 0);
1391 CLI.Outs.push_back(Arg);
1393 CLI.OutVals.push_back(ArgVal);
1395 if (!HasSwiftErrorArg) {
1397 ISD::ArgFlagsTy
Flags;
1398 Flags.setSwiftError();
1399 ISD::OutputArg Arg(Flags, PtrVT, EVT(PtrVT), PtrTy, 0, 0);
1400 CLI.Outs.push_back(Arg);
1402 CLI.OutVals.push_back(ArgVal);
1408 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.
getContext());
1413 for (
unsigned I = NumFixedArgs;
I < Outs.
size(); ++
I) {
1414 const ISD::OutputArg &Out = Outs[
I];
1417 assert(VT != MVT::iPTR &&
"Legalized args should be concrete");
1422 CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), Alignment);
1429 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
1432 if (IsVarArg && NumBytes) {
1435 MaybeAlign StackAlign = Layout.getStackAlignment();
1436 assert(StackAlign &&
"data layout string is missing stack alignment");
1442 assert(ArgLocs[ValNo].getValNo() == ValNo &&
1443 "ArgLocs should remain in order and only hold varargs args");
1444 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
1452 if (!Chains.
empty())
1454 }
else if (IsVarArg) {
1472 Ops.push_back(Chain);
1473 Ops.push_back(Callee);
1478 IsVarArg ? OutVals.
begin() + NumFixedArgs : OutVals.
end());
1481 Ops.push_back(FINode);
1484 for (
const auto &In : Ins) {
1485 assert(!
In.Flags.isByVal() &&
"byval is not valid for return values");
1486 assert(!
In.Flags.isNest() &&
"nest is not valid for return values");
1487 if (
In.Flags.isInAlloca())
1488 fail(
DL, DAG,
"WebAssembly hasn't implemented inalloca return values");
1489 if (
In.Flags.isInConsecutiveRegs())
1490 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs return values");
1491 if (
In.Flags.isInConsecutiveRegsLast())
1493 "WebAssembly hasn't implemented cons regs last return values");
1502 CLI.CB->getCalledOperand()->getType())) {
1517 WebAssemblyISD::TABLE_SET,
DL, DAG.
getVTList(MVT::Other), TableSetOps,
1522 CLI.CB->getCalledOperand()->getPointerAlignment(DAG.
getDataLayout()),
1528 if (CLI.IsTailCall) {
1530 SDVTList NodeTys = DAG.
getVTList(MVT::Other, MVT::Glue);
1535 SDVTList InTyList = DAG.
getVTList(InTys);
1538 for (
size_t I = 0;
I < Ins.size(); ++
I)
1545bool WebAssemblyTargetLowering::CanLowerReturn(
1548 const Type *RetTy)
const {
1553SDValue WebAssemblyTargetLowering::LowerReturn(
1559 "MVP WebAssembly can only return up to one value");
1561 fail(
DL, DAG,
"WebAssembly doesn't support non-C calling conventions");
1564 RetOps.append(OutVals.
begin(), OutVals.
end());
1565 Chain = DAG.
getNode(WebAssemblyISD::RETURN,
DL, MVT::Other, RetOps);
1568 for (
const ISD::OutputArg &Out : Outs) {
1573 fail(
DL, DAG,
"WebAssembly hasn't implemented inalloca results");
1575 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs results");
1577 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs last results");
1583SDValue WebAssemblyTargetLowering::LowerFormalArguments(
1588 fail(
DL, DAG,
"WebAssembly doesn't support non-C calling conventions");
1591 auto *MFI = MF.
getInfo<WebAssemblyFunctionInfo>();
1597 bool HasSwiftErrorArg =
false;
1598 bool HasSwiftSelfArg =
false;
1599 for (
const ISD::InputArg &In : Ins) {
1600 HasSwiftSelfArg |=
In.Flags.isSwiftSelf();
1601 HasSwiftErrorArg |=
In.Flags.isSwiftError();
1602 if (
In.Flags.isInAlloca())
1603 fail(
DL, DAG,
"WebAssembly hasn't implemented inalloca arguments");
1604 if (
In.Flags.isNest())
1605 fail(
DL, DAG,
"WebAssembly hasn't implemented nest arguments");
1606 if (
In.Flags.isInConsecutiveRegs())
1607 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs arguments");
1608 if (
In.Flags.isInConsecutiveRegsLast())
1609 fail(
DL, DAG,
"WebAssembly hasn't implemented cons regs last arguments");
1618 MFI->addParam(
In.VT);
1627 if (!HasSwiftSelfArg) {
1628 MFI->addParam(PtrVT);
1630 if (!HasSwiftErrorArg) {
1631 MFI->addParam(PtrVT);
1640 MFI->setVarargBufferVreg(VarargVreg);
1642 Chain,
DL, VarargVreg,
1643 DAG.
getNode(WebAssemblyISD::ARGUMENT,
DL, PtrVT,
1645 MFI->addParam(PtrVT);
1657 assert(MFI->getParams().size() == Params.
size() &&
1658 std::equal(MFI->getParams().begin(), MFI->getParams().end(),
1664void WebAssemblyTargetLowering::ReplaceNodeResults(
1666 switch (
N->getOpcode()) {
1680 Results.push_back(Replace128Op(
N, DAG));
1684 "ReplaceNodeResults not implemented for this op for WebAssembly!");
1695 switch (
Op.getOpcode()) {
1700 return LowerFrameIndex(
Op, DAG);
1702 return LowerGlobalAddress(
Op, DAG);
1704 return LowerGlobalTLSAddress(
Op, DAG);
1706 return LowerExternalSymbol(
Op, DAG);
1708 return LowerJumpTable(
Op, DAG);
1710 return LowerBR_JT(
Op, DAG);
1712 return LowerVASTART(
Op, DAG);
1715 fail(
DL, DAG,
"WebAssembly hasn't implemented computed gotos");
1718 return LowerRETURNADDR(
Op, DAG);
1720 return LowerFRAMEADDR(
Op, DAG);
1722 return LowerCopyToReg(
Op, DAG);
1725 return LowerAccessVectorElement(
Op, DAG);
1729 return LowerIntrinsic(
Op, DAG);
1731 return LowerSIGN_EXTEND_INREG(
Op, DAG);
1735 return LowerEXTEND_VECTOR_INREG(
Op, DAG);
1737 return LowerBUILD_VECTOR(
Op, DAG);
1739 return LowerVECTOR_SHUFFLE(
Op, DAG);
1741 return LowerSETCC(
Op, DAG);
1745 return LowerShift(
Op, DAG);
1748 return LowerFP_TO_INT_SAT(
Op, DAG);
1750 return LowerLoad(
Op, DAG);
1752 return LowerStore(
Op, DAG);
1761 return LowerMUL_LOHI(
Op, DAG);
1763 return LowerUADDO(
Op, DAG);
1778 return std::nullopt;
1797 SDVTList Tys = DAG.
getVTList(MVT::Other);
1809 SDVTList Tys = DAG.
getVTList(MVT::Other);
1811 return DAG.
getNode(WebAssemblyISD::LOCAL_SET,
DL, Tys,
Ops);
1816 "Encountered an unlowerable store to the wasm_var address space",
1832 "unexpected offset when loading from webassembly global",
false);
1843 "unexpected offset when loading from webassembly local",
false);
1847 return DAG.
getNode(WebAssemblyISD::LOCAL_GET,
DL, {LocalVT, MVT::Other},
1853 "Encountered an unlowerable load from the wasm_var address space",
1861 assert(Subtarget->hasWideArithmetic());
1862 assert(
Op.getValueType() == MVT::i64);
1865 switch (
Op.getOpcode()) {
1867 Opcode = WebAssemblyISD::I64_MUL_WIDE_U;
1870 Opcode = WebAssemblyISD::I64_MUL_WIDE_S;
1891 assert(Subtarget->hasWideArithmetic());
1892 assert(
Op.getValueType() == MVT::i64);
1899 DAG.
getNode(WebAssemblyISD::I64_ADD128,
DL,
1909 assert(Subtarget->hasWideArithmetic());
1910 assert(
N->getValueType(0) == MVT::i128);
1913 switch (
N->getOpcode()) {
1915 Opcode = WebAssemblyISD::I64_ADD128;
1918 Opcode = WebAssemblyISD::I64_SUB128;
1933 LHS_0, LHS_1, RHS_0, RHS_1);
1950 EVT VT = Src.getValueType();
1952 : WebAssembly::COPY_I64,
1955 return Op.getNode()->getNumValues() == 1
1974 if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1976 "Non-Emscripten WebAssembly hasn't implemented "
1977 "__builtin_return_address");
1981 unsigned Depth =
Op.getConstantOperandVal(0);
1983 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS,
Op.getValueType(),
1984 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions,
DL)
1993 if (
Op.getConstantOperandVal(0) > 0)
1997 EVT VT =
Op.getValueType();
2004WebAssemblyTargetLowering::LowerGlobalTLSAddress(
SDValue Op,
2010 if (!MF.
getSubtarget<WebAssemblySubtarget>().hasBulkMemory())
2014 const GlobalValue *GV = GA->
getGlobal();
2019 auto model = Subtarget->getTargetTriple().isOSEmscripten()
2034 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
2035 : WebAssembly::GLOBAL_GET_I32;
2046 DAG.
getNode(WebAssemblyISD::WrapperREL,
DL, PtrVT, TLSOffset);
2053 EVT VT =
Op.getValueType();
2054 return DAG.
getNode(WebAssemblyISD::Wrapper,
DL, VT,
2064 EVT VT =
Op.getValueType();
2066 "Unexpected target flags on generic GlobalAddressSDNode");
2068 fail(
DL, DAG,
"Invalid address space for WebAssembly target");
2071 const GlobalValue *GV = GA->
getGlobal();
2079 const char *BaseName;
2088 DAG.
getNode(WebAssemblyISD::Wrapper,
DL, PtrVT,
2092 WebAssemblyISD::WrapperREL,
DL, VT,
2101 return DAG.
getNode(WebAssemblyISD::Wrapper,
DL, VT,
2107WebAssemblyTargetLowering::LowerExternalSymbol(
SDValue Op,
2111 EVT VT =
Op.getValueType();
2112 assert(ES->getTargetFlags() == 0 &&
2113 "Unexpected target flags on generic ExternalSymbolSDNode");
2114 return DAG.
getNode(WebAssemblyISD::Wrapper,
DL, VT,
2137 Ops.push_back(Chain);
2138 Ops.push_back(Index);
2144 for (
auto *
MBB : MBBs)
2151 return DAG.
getNode(WebAssemblyISD::BR_TABLE,
DL, MVT::Other,
Ops);
2163 MFI->getVarargBufferVreg(), PtrVT);
2164 return DAG.
getStore(
Op.getOperand(0),
DL, ArgN,
Op.getOperand(1),
2165 MachinePointerInfo(SV));
2172 switch (
Op.getOpcode()) {
2175 IntNo =
Op.getConstantOperandVal(1);
2178 IntNo =
Op.getConstantOperandVal(0);
2189 case Intrinsic::wasm_lsda: {
2198 DAG.
getNode(WebAssemblyISD::Wrapper,
DL, PtrVT,
2201 DAG.
getNode(WebAssemblyISD::WrapperREL,
DL, PtrVT, Node);
2205 return DAG.
getNode(WebAssemblyISD::Wrapper,
DL, PtrVT, Node);
2208 case Intrinsic::wasm_shuffle: {
2214 while (
OpIdx < 18) {
2223 return DAG.
getNode(WebAssemblyISD::SHUFFLE,
DL,
Op.getValueType(),
Ops);
2226 case Intrinsic::thread_pointer: {
2228 auto GlobalGet = PtrVT == MVT::i64 ? WebAssembly::GLOBAL_GET_I64
2229 : WebAssembly::GLOBAL_GET_I32;
2240WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(
SDValue Op,
2250 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
2254 const SDValue &Extract =
Op.getOperand(0);
2258 MVT ExtractedLaneT =
2262 if (ExtractedVecT == VecT)
2269 unsigned IndexVal =
Index->getAsZExtVal();
2287 assert((UserOpc == WebAssemblyISD::EXTEND_LOW_U ||
2288 UserOpc == WebAssemblyISD::EXTEND_LOW_S) &&
2289 "expected extend_low");
2294 size_t FirstIdx = Mask.size() / 2;
2295 for (
size_t i = 0; i < Mask.size() / 2; ++i) {
2296 if (Mask[i] !=
static_cast<int>(FirstIdx + i)) {
2302 unsigned Opc = UserOpc == WebAssemblyISD::EXTEND_LOW_S
2303 ? WebAssemblyISD::EXTEND_HIGH_S
2304 : WebAssemblyISD::EXTEND_HIGH_U;
2305 return DAG.
getNode(
Opc,
DL, VT, Shuffle->getOperand(0));
2309WebAssemblyTargetLowering::LowerEXTEND_VECTOR_INREG(
SDValue Op,
2312 EVT VT =
Op.getValueType();
2314 EVT SrcVT = Src.getValueType();
2321 "Unexpected extension factor.");
2324 if (Scale != 2 && Scale != 4 && Scale != 8)
2328 switch (
Op.getOpcode()) {
2333 Ext = WebAssemblyISD::EXTEND_LOW_U;
2336 Ext = WebAssemblyISD::EXTEND_LOW_S;
2347 while (Scale != 1) {
2361 if (
Op.getValueType() != MVT::v2f64)
2365 unsigned &Index) ->
bool {
2366 switch (
Op.getOpcode()) {
2368 Opcode = WebAssemblyISD::CONVERT_LOW_S;
2371 Opcode = WebAssemblyISD::CONVERT_LOW_U;
2374 Opcode = WebAssemblyISD::PROMOTE_LOW;
2380 auto ExtractVector =
Op.getOperand(0);
2387 SrcVec = ExtractVector.getOperand(0);
2388 Index = ExtractVector.getConstantOperandVal(1);
2392 unsigned LHSOpcode, RHSOpcode, LHSIndex, RHSIndex;
2394 if (!GetConvertedLane(
Op.getOperand(0), LHSOpcode, LHSSrcVec, LHSIndex) ||
2395 !GetConvertedLane(
Op.getOperand(1), RHSOpcode, RHSSrcVec, RHSIndex))
2398 if (LHSOpcode != RHSOpcode)
2402 switch (LHSOpcode) {
2403 case WebAssemblyISD::CONVERT_LOW_S:
2404 case WebAssemblyISD::CONVERT_LOW_U:
2405 ExpectedSrcVT = MVT::v4i32;
2407 case WebAssemblyISD::PROMOTE_LOW:
2408 ExpectedSrcVT = MVT::v4f32;
2414 auto Src = LHSSrcVec;
2415 if (LHSIndex != 0 || RHSIndex != 1 || LHSSrcVec != RHSSrcVec) {
2418 ExpectedSrcVT,
DL, LHSSrcVec, RHSSrcVec,
2419 {
static_cast<int>(LHSIndex),
static_cast<int>(RHSIndex) + 4, -1, -1});
2421 return DAG.
getNode(LHSOpcode,
DL, MVT::v2f64, Src);
2426 MVT VT =
Op.getSimpleValueType();
2427 if (VT == MVT::v8f16) {
2442 const EVT VecT =
Op.getValueType();
2443 const EVT LaneT =
Op.getOperand(0).getValueType();
2445 bool CanSwizzle = VecT == MVT::v16i8;
2466 auto GetSwizzleSrcs = [](
size_t I,
const SDValue &Lane) {
2470 const SDValue &SwizzleSrc = Lane->getOperand(0);
2471 const SDValue &IndexExt = Lane->getOperand(1);
2481 Index->getConstantOperandVal(1) !=
I)
2483 return std::make_pair(SwizzleSrc, SwizzleIndices);
2490 auto GetShuffleSrc = [&](
const SDValue &Lane) {
2495 if (Lane->getOperand(0).getValueType().getVectorNumElements() >
2498 return Lane->getOperand(0);
2501 using ValueEntry = std::pair<SDValue, size_t>;
2504 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>,
size_t>;
2507 using ShuffleEntry = std::pair<SDValue, size_t>;
2510 auto AddCount = [](
auto &Counts,
const auto &Val) {
2513 if (CountIt == Counts.end()) {
2514 Counts.emplace_back(Val, 1);
2520 auto GetMostCommon = [](
auto &Counts) {
2522 assert(CommonIt != Counts.end() &&
"Unexpected all-undef build_vector");
2526 size_t NumConstantLanes = 0;
2529 for (
size_t I = 0;
I < Lanes; ++
I) {
2534 AddCount(SplatValueCounts, Lane);
2538 if (
auto ShuffleSrc = GetShuffleSrc(Lane))
2539 AddCount(ShuffleCounts, ShuffleSrc);
2541 auto SwizzleSrcs = GetSwizzleSrcs(
I, Lane);
2542 if (SwizzleSrcs.first)
2543 AddCount(SwizzleCounts, SwizzleSrcs);
2548 size_t NumSplatLanes;
2549 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
2553 size_t NumSwizzleLanes = 0;
2554 if (SwizzleCounts.
size())
2555 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
2556 NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
2560 SDValue ShuffleSrc1, ShuffleSrc2;
2561 size_t NumShuffleLanes = 0;
2562 if (ShuffleCounts.
size()) {
2563 std::tie(ShuffleSrc1, NumShuffleLanes) = GetMostCommon(ShuffleCounts);
2565 [&](
const auto &Pair) {
return Pair.first == ShuffleSrc1; });
2567 if (ShuffleCounts.
size()) {
2568 size_t AdditionalShuffleLanes;
2569 std::tie(ShuffleSrc2, AdditionalShuffleLanes) =
2570 GetMostCommon(ShuffleCounts);
2571 NumShuffleLanes += AdditionalShuffleLanes;
2576 std::function<bool(
size_t,
const SDValue &)> IsLaneConstructed;
2579 if (NumSwizzleLanes >= NumShuffleLanes &&
2580 NumSwizzleLanes >= NumConstantLanes && NumSwizzleLanes >= NumSplatLanes) {
2583 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
2584 IsLaneConstructed = [&, Swizzled](
size_t I,
const SDValue &Lane) {
2585 return Swizzled == GetSwizzleSrcs(
I, Lane);
2587 }
else if (NumShuffleLanes >= NumConstantLanes &&
2588 NumShuffleLanes >= NumSplatLanes) {
2598 assert(LaneSize > DestLaneSize);
2599 Scale1 = LaneSize / DestLaneSize;
2605 assert(LaneSize > DestLaneSize);
2606 Scale2 = LaneSize / DestLaneSize;
2611 assert(DestLaneCount <= 16);
2612 for (
size_t I = 0;
I < DestLaneCount; ++
I) {
2614 SDValue Src = GetShuffleSrc(Lane);
2615 if (Src == ShuffleSrc1) {
2617 }
else if (Src && Src == ShuffleSrc2) {
2623 ArrayRef<int> MaskRef(Mask, DestLaneCount);
2625 IsLaneConstructed = [&](size_t,
const SDValue &Lane) {
2626 auto Src = GetShuffleSrc(Lane);
2627 return Src == ShuffleSrc1 || (Src && Src == ShuffleSrc2);
2629 }
else if (NumConstantLanes >= NumSplatLanes) {
2631 for (
const SDValue &Lane :
Op->op_values()) {
2637 uint64_t LaneBits = 128 / Lanes;
2640 Const->getAPIntValue().trunc(LaneBits).getZExtValue(),
2641 SDLoc(Lane), LaneT));
2657 if (NumSplatLanes == 1 &&
Op->getOperand(0) == SplatValue &&
2658 (DestLaneSize == 32 || DestLaneSize == 64)) {
2665 IsLaneConstructed = [&SplatValue](
size_t _,
const SDValue &Lane) {
2666 return Lane == SplatValue;
2671 assert(IsLaneConstructed);
2674 for (
size_t I = 0;
I < Lanes; ++
I) {
2676 if (!Lane.
isUndef() && !IsLaneConstructed(
I, Lane))
2685WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(
SDValue Op,
2689 MVT VecType =
Op.getOperand(0).getSimpleValueType();
2700 for (
int M : Mask) {
2701 for (
size_t J = 0; J < LaneBytes; ++J) {
2705 uint64_t ByteIndex =
M == -1 ? J : (uint64_t)M * LaneBytes + J;
2710 return DAG.
getNode(WebAssemblyISD::SHUFFLE,
DL,
Op.getValueType(),
Ops);
2718 assert(
Op->getOperand(0)->getSimpleValueType(0) == MVT::v2i64);
2723 auto MakeLane = [&](
unsigned I) {
2729 {MakeLane(0), MakeLane(1)});
2733WebAssemblyTargetLowering::LowerAccessVectorElement(
SDValue Op,
2750 EVT LaneT =
Op.getSimpleValueType().getVectorElementType();
2752 if (LaneT.
bitsGE(MVT::i32))
2756 size_t NumLanes =
Op.getSimpleValueType().getVectorNumElements();
2758 unsigned ShiftOpcode =
Op.getOpcode();
2764 for (
size_t i = 0; i < NumLanes; ++i) {
2767 SDValue ShiftedValue = ShiftedElements[i];
2772 DAG.
getNode(ShiftOpcode,
DL, MVT::i32, ShiftedValue, MaskedShiftValue));
2782 assert(
Op.getSimpleValueType().isVector());
2784 uint64_t LaneBits =
Op.getValueType().getScalarSizeInBits();
2785 auto ShiftVal =
Op.getOperand(1);
2788 auto SkipImpliedMask = [](
SDValue MaskOp, uint64_t MaskBits) {
2799 MaskVal == MaskBits)
2806 if (ConstantRHS && ConstantRHS->getAPIntValue() == MaskBits)
2814 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2820 ShiftVal = SkipImpliedMask(ShiftVal, LaneBits - 1);
2825 switch (
Op.getOpcode()) {
2827 Opcode = WebAssemblyISD::VEC_SHL;
2830 Opcode = WebAssemblyISD::VEC_SHR_S;
2833 Opcode = WebAssemblyISD::VEC_SHR_U;
2839 return DAG.
getNode(Opcode,
DL,
Op.getValueType(),
Op.getOperand(0), ShiftVal);
2844 EVT ResT =
Op.getValueType();
2847 if ((ResT == MVT::i32 || ResT == MVT::i64) &&
2848 (SatVT == MVT::i32 || SatVT == MVT::i64))
2851 if (ResT == MVT::v4i32 && SatVT == MVT::i32)
2854 if (ResT == MVT::v8i16 && SatVT == MVT::i16)
2865 auto &DAG = DCI.
DAG;
2872 SDValue Bitcast =
N->getOperand(0);
2875 if (!
N->getOperand(1).isUndef())
2877 SDValue CastOp = Bitcast.getOperand(0);
2879 EVT DstType = Bitcast.getValueType();
2880 if (!SrcType.is128BitVector() ||
2881 SrcType.getVectorNumElements() != DstType.getVectorNumElements())
2884 SrcType,
SDLoc(
N), CastOp, DAG.
getUNDEF(SrcType), Shuffle->getMask());
2894 auto &DAG = DCI.
DAG;
2898 EVT InVT =
N->getOperand(0)->getValueType(0);
2899 EVT ResVT =
N->getValueType(0);
2901 if (ResVT == MVT::v4f32 && (InVT == MVT::v4i16 || InVT == MVT::v4i8))
2903 else if (ResVT == MVT::v2f64 && (InVT == MVT::v2i16 || InVT == MVT::v2i8))
2917 auto &DAG = DCI.
DAG;
2921 EVT VT =
N->getValueType(0);
2935 auto &DAG = DCI.
DAG;
2941 auto Extract =
N->getOperand(0);
2946 if (IndexNode ==
nullptr)
2948 auto Index = IndexNode->getZExtValue();
2952 EVT ResVT =
N->getValueType(0);
2953 if (ResVT == MVT::v8i16) {
2955 Source.getValueType() != MVT::v16i8 || (Index != 0 && Index != 8))
2957 }
else if (ResVT == MVT::v4i32) {
2959 Source.getValueType() != MVT::v8i16 || (Index != 0 && Index != 4))
2961 }
else if (ResVT == MVT::v2i64) {
2963 Source.getValueType() != MVT::v4i32 || (Index != 0 && Index != 2))
2970 bool IsLow = Index == 0;
2972 unsigned Op = IsSext ? (IsLow ? WebAssemblyISD::EXTEND_LOW_S
2973 : WebAssemblyISD::EXTEND_HIGH_S)
2974 : (IsLow ? WebAssemblyISD::EXTEND_LOW_U
2975 : WebAssemblyISD::EXTEND_HIGH_U);
2982 auto &DAG = DCI.
DAG;
2984 auto GetWasmConversionOp = [](
unsigned Op) {
2987 return WebAssemblyISD::TRUNC_SAT_ZERO_S;
2989 return WebAssemblyISD::TRUNC_SAT_ZERO_U;
2991 return WebAssemblyISD::DEMOTE_ZERO;
2996 auto IsZeroSplat = [](
SDValue SplatVal) {
2998 APInt SplatValue, SplatUndef;
2999 unsigned SplatBitSize;
3004 Splat->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
3022 EVT ExpectedConversionType;
3025 switch (ConversionOp) {
3029 ExpectedConversionType = MVT::v2i32;
3033 ExpectedConversionType = MVT::v2f32;
3039 if (
N->getValueType(0) != ResVT)
3042 if (
Conversion.getValueType() != ExpectedConversionType)
3046 if (Source.getValueType() != MVT::v2f64)
3049 if (!IsZeroSplat(
N->getOperand(1)) ||
3050 N->getOperand(1).getValueType() != ExpectedConversionType)
3053 unsigned Op = GetWasmConversionOp(ConversionOp);
3069 auto ConversionOp =
N->getOpcode();
3070 switch (ConversionOp) {
3082 if (
N->getValueType(0) != ResVT)
3085 auto Concat =
N->getOperand(0);
3086 if (
Concat.getValueType() != MVT::v4f64)
3089 auto Source =
Concat.getOperand(0);
3090 if (Source.getValueType() != MVT::v2f64)
3093 if (!IsZeroSplat(
Concat.getOperand(1)) ||
3094 Concat.getOperand(1).getValueType() != MVT::v2f64)
3097 unsigned Op = GetWasmConversionOp(ConversionOp);
3103 const SDLoc &
DL,
unsigned VectorWidth) {
3111 unsigned ElemsPerChunk = VectorWidth / ElVT.
getSizeInBits();
3116 IdxVal &= ~(ElemsPerChunk - 1);
3121 Vec->
ops().slice(IdxVal, ElemsPerChunk));
3133 EVT SrcVT = In.getValueType();
3151 EVT InVT = MVT::i16, OutVT = MVT::i8;
3156 unsigned SubSizeInBits = SrcSizeInBits / 2;
3158 OutVT =
EVT::getVectorVT(Ctx, OutVT, SubSizeInBits / OutVT.getSizeInBits());
3184 auto &DAG = DCI.
DAG;
3187 EVT InVT = In.getValueType();
3191 EVT OutVT =
N->getValueType(0);
3198 if (!((InSVT == MVT::i16 || InSVT == MVT::i32 || InSVT == MVT::i64) &&
3199 (OutSVT == MVT::i8 || OutSVT == MVT::i16) && OutVT.
is128BitVector()))
3212 auto &DAG = DCI.
DAG;
3215 EVT VT =
N->getValueType(0);
3216 EVT SrcVT = Src.getValueType();
3227 if (NumElts == 2 || NumElts == 4 || NumElts == 8 || NumElts == 16) {
3230 {DAG.getConstant(Intrinsic::wasm_bitmask, DL, MVT::i32),
3231 DAG.getSExtOrTrunc(N->getOperand(0), DL,
3232 SrcVT.changeVectorElementType(
3233 *DAG.getContext(), Width))}),
3238 if (NumElts == 32 || NumElts == 64) {
3264 MVT ReturnType = VectorsToShuffle.
size() == 2 ? MVT::i32 : MVT::i64;
3267 for (
SDValue V : VectorsToShuffle) {
3268 ReturningInteger = DAG.
getNode(
3277 return ReturningInteger;
3292 if (
N->getNumOperands() < 2 ||
3296 EVT LT =
LHS.getValueType();
3297 if (LT.getScalarSizeInBits() > 128 / LT.getVectorNumElements())
3300 auto CombineSetCC = [&
N, &DAG](Intrinsic::WASMIntrinsics InPre,
3302 Intrinsic::WASMIntrinsics InPost) {
3303 if (
N->getConstantOperandVal(0) != InPre)
3314 {DAG.getConstant(InPost, DL, MVT::i32), LHS}),
3317 Ret = DAG.
getNOT(
DL, Ret, MVT::i1);
3322 Intrinsic::wasm_alltrue))
3325 Intrinsic::wasm_anytrue))
3328 Intrinsic::wasm_anytrue))
3331 Intrinsic::wasm_alltrue))
3337template <
int MatchRHS,
ISD::CondCode MatchCond,
bool RequiresNegate,
3352 {DAG.getConstant(Intrin, DL, MVT::i32),
3353 DAG.getSExtOrTrunc(LHS->getOperand(0), DL, VecVT)}),
3356 Ret = DAG.
getNOT(
DL, Ret, MVT::i1);
3369 EVT VT =
N->getValueType(0);
3370 EVT OpVT =
X.getValueType();
3374 Attribute::NoImplicitFloat))
3380 !Subtarget->
hasSIMD128() || !isIntEqualitySetCC(CC))
3384 auto IsVectorBitCastCheap = [](
SDValue X) {
3389 if (!IsVectorBitCastCheap(
X) || !IsVectorBitCastCheap(
Y))
3399 : Intrinsic::wasm_anytrue,
3413 EVT VT =
N->getValueType(0);
3424 EVT FromVT =
LHS->getOperand(0).getValueType();
3429 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3435 auto &DAG = DCI.
DAG;
3466 EVT VT =
N->getValueType(0);
3467 if (VT != MVT::v8i32 && VT != MVT::v16i32)
3473 if (
LHS.getOpcode() !=
RHS.getOpcode())
3480 if (
LHS->getOperand(0).getValueType() !=
RHS->getOperand(0).getValueType())
3483 EVT FromVT =
LHS->getOperand(0).getValueType();
3485 if (EltTy != MVT::i8)
3513 unsigned ExtendLowOpc =
3514 IsSigned ? WebAssemblyISD::EXTEND_LOW_S : WebAssemblyISD::EXTEND_LOW_U;
3515 unsigned ExtendHighOpc =
3516 IsSigned ? WebAssemblyISD::EXTEND_HIGH_S : WebAssemblyISD::EXTEND_HIGH_U;
3518 auto GetExtendLow = [&DAG, &
DL, &ExtendLowOpc](
EVT VT,
SDValue Op) {
3525 if (NumElts == 16) {
3526 SDValue LowLHS = GetExtendLow(MVT::v8i16, ExtendInLHS);
3527 SDValue LowRHS = GetExtendLow(MVT::v8i16, ExtendInRHS);
3533 GetExtendLow(MVT::v4i32, MulLow),
3535 GetExtendLow(MVT::v4i32, MulHigh),
3544 SDValue Lo = GetExtendLow(MVT::v4i32, MulLow);
3554 EVT VT =
N->getValueType(0);
3563 if (VT != MVT::v8i8 && VT != MVT::v16i8)
3570 EVT MulVT = MVT::v8i16;
3572 if (VT == MVT::v8i8) {
3578 DAG.
getNode(WebAssemblyISD::EXTEND_LOW_U,
DL, MulVT, PromotedLHS);
3580 DAG.
getNode(WebAssemblyISD::EXTEND_LOW_U,
DL, MulVT, PromotedRHS);
3585 MVT::v16i8,
DL, MulLow, DAG.
getUNDEF(MVT::v16i8),
3586 {0, 2, 4, 6, 8, 10, 12, 14, -1, -1, -1, -1, -1, -1, -1, -1});
3589 assert(VT == MVT::v16i8 &&
"Expected v16i8");
3593 DAG.
getNode(WebAssemblyISD::EXTEND_HIGH_U,
DL, MulVT,
LHS);
3595 DAG.
getNode(WebAssemblyISD::EXTEND_HIGH_U,
DL, MulVT,
RHS);
3604 VT,
DL, MulLow, MulHigh,
3605 {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30});
3613 EVT InVT = In.getValueType();
3618 if (NumElems < RequiredNumElems) {
3625 EVT OutVT =
N->getValueType(0);
3630 if (OutElTy != MVT::i8 && OutElTy != MVT::i16)
3637 EVT FPVT =
N->getOperand(0)->getValueType(0);
3655 EVT NarrowedVT = OutElTy == MVT::i8 ? MVT::v16i8 : MVT::v8i16;
3668WebAssemblyTargetLowering::PerformDAGCombine(
SDNode *
N,
3669 DAGCombinerInfo &DCI)
const {
3670 switch (
N->getOpcode()) {
unsigned const MachineRegisterInfo * MRI
static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI, const AArch64Subtarget *Subtarget)
static SDValue performTruncateCombine(SDNode *N, SelectionDAG &DAG, TargetLowering::DAGCombinerInfo &DCI)
static SDValue performSETCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG)
assert(UImm &&(UImm !=~static_cast< T >(0)) &&"Invalid immediate!")
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
Function Alias Analysis false
Function Alias Analysis Results
static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg, SDValue Val={})
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Analysis containing CSE Info
const HexagonInstrInfo * TII
const AbstractManglingParser< Derived, Alloc >::OperatorInfo AbstractManglingParser< Derived, Alloc >::Ops[]
Register const TargetRegisterInfo * TRI
Promote Memory to Register
MachineInstr unsigned OpIdx
static SDValue performVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG, const RISCVSubtarget &Subtarget, const RISCVTargetLowering &TLI)
static SDValue combineVectorSizedSetCCEquality(EVT VT, SDValue X, SDValue Y, ISD::CondCode CC, const SDLoc &DL, SelectionDAG &DAG, const RISCVSubtarget &Subtarget)
Try to map an integer comparison with size > XLEN to vector instructions before type legalization spl...
const SmallVectorImpl< MachineOperand > & Cond
Contains matchers for matching SelectionDAG nodes and values.
static TableGen::Emitter::Opt Y("gen-skeleton-entry", EmitSkeleton, "Generate example skeleton entry")
static TableGen::Emitter::OptClass< SkeletonEmitter > X("gen-skeleton-class", "Generate example skeleton class")
static MachineBasicBlock * LowerFPToInt(MachineInstr &MI, DebugLoc DL, MachineBasicBlock *BB, const TargetInstrInfo &TII, bool IsUnsigned, bool Int64, bool Float64, unsigned LoweredOpcode)
static bool callingConvSupported(CallingConv::ID CallConv)
static SDValue TryWideExtMulCombine(SDNode *N, SelectionDAG &DAG)
static MachineBasicBlock * LowerMemcpy(MachineInstr &MI, DebugLoc DL, MachineBasicBlock *BB, const TargetInstrInfo &TII, bool Int64)
static std::optional< unsigned > IsWebAssemblyLocal(SDValue Op, SelectionDAG &DAG)
static SDValue performVectorExtendCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue performVectorNonNegToFPCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG)
static SDValue performAnyAllCombine(SDNode *N, SelectionDAG &DAG)
static MachineBasicBlock * LowerCallResults(MachineInstr &CallResults, DebugLoc DL, MachineBasicBlock *BB, const WebAssemblySubtarget *Subtarget, const TargetInstrInfo &TII)
static SDValue TryMatchTrue(SDNode *N, EVT VecVT, SelectionDAG &DAG)
static SDValue GetExtendHigh(SDValue Op, unsigned UserOpc, EVT VT, SelectionDAG &DAG)
SDValue performConvertFPCombine(SDNode *N, SelectionDAG &DAG)
static SDValue performVectorTruncZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static bool IsWebAssemblyGlobal(SDValue Op)
static MachineBasicBlock * LowerMemset(MachineInstr &MI, DebugLoc DL, MachineBasicBlock *BB, const TargetInstrInfo &TII, bool Int64)
SDValue DoubleVectorWidth(SDValue In, unsigned RequiredNumElems, SelectionDAG &DAG)
static SDValue performVectorExtendToFPCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
Convert ({u,s}itofp vec) --> ({u,s}itofp ({s,z}ext vec)) so it doesn't get split up into scalar instr...
static SDValue LowerConvertLow(SDValue Op, SelectionDAG &DAG)
static SDValue extractSubVector(SDValue Vec, unsigned IdxVal, SelectionDAG &DAG, const SDLoc &DL, unsigned VectorWidth)
static SDValue performBitcastCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI)
static SDValue truncateVectorWithNARROW(EVT DstVT, SDValue In, const SDLoc &DL, SelectionDAG &DAG)
This file defines the interfaces that WebAssembly uses to lower LLVM code into a selection DAG.
This file provides WebAssembly-specific target descriptions.
This file declares WebAssembly-specific per-machine-function information.
This file declares the WebAssembly-specific subclass of TargetSubtarget.
This file declares the WebAssembly-specific subclass of TargetMachine.
This file contains the declaration of the WebAssembly-specific type parsing utility functions.
This file contains the declaration of the WebAssembly-specific utility functions.
static constexpr int Concat[]
Class for arbitrary precision integers.
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
an instruction that atomically reads a memory location, combines it with another value,...
BinOp getOperation() const
LLVM Basic Block Representation.
static CCValAssign getMem(unsigned ValNo, MVT ValVT, int64_t Offset, MVT LocVT, LocInfo HTP, bool IsCustom=false)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
uint64_t getNumOperands() const
A parsed version of the target data layout string in and methods for querying it.
Diagnostic information for unsupported feature in backend.
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
FunctionType * getFunctionType() const
Returns the FunctionType for me.
LLVMContext & getContext() const
getContext - Return a reference to the LLVMContext associated with this function.
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
int64_t getOffset() const
LLVM_ABI unsigned getAddressSpace() const
unsigned getTargetFlags() const
const GlobalValue * getGlobal() const
ThreadLocalMode getThreadLocalMode() const
Type * getValueType() const
unsigned getTargetFlags() const
This is an important class for using LLVM in a threaded context.
LLVM_ABI void diagnose(const DiagnosticInfo &DI)
Report a message to the currently installed diagnostic handler.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
Describe properties that are true of each instruction in the target description file.
bool is128BitVector() const
Return true if this is a 128-bit vector type.
@ INVALID_SIMPLE_VALUE_TYPE
static auto integer_fixedlen_vector_valuetypes()
MVT changeVectorElementType(MVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
unsigned getVectorNumElements() const
bool isVector() const
Return true if this is a vector value type.
bool isInteger() const
Return true if this is an integer or a vector integer type.
static auto integer_valuetypes()
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
static auto fixedlen_vector_valuetypes()
bool isFixedLengthVector() const
static MVT getVectorVT(MVT VT, unsigned NumElements)
MVT getVectorElementType() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
static MVT getIntegerVT(unsigned BitWidth)
LLVM_ABI void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB)
Transfers all the successors, as in transferSuccessors, and update PHI operands in the successor bloc...
LLVM_ABI instr_iterator insert(instr_iterator I, MachineInstr *M)
Insert MI into the instruction list before I, possibly inside a bundle.
const BasicBlock * getBasicBlock() const
Return the LLVM basic block that this instance corresponded to originally.
LLVM_ABI void addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob=BranchProbability::getUnknown())
Add Succ as a successor of this MachineBasicBlock.
const MachineFunction * getParent() const
Return the MachineFunction containing this basic block.
iterator insertAfter(iterator I, MachineInstr *MI)
Insert MI into the instruction list after I.
void splice(iterator Where, MachineBasicBlock *Other, iterator From)
Take an instruction from MBB 'Other' at the position From, and insert it into this MBB right before '...
LLVM_ABI int CreateStackObject(uint64_t Size, Align Alignment, bool isSpillSlot, const AllocaInst *Alloca=nullptr, uint8_t ID=0)
Create a new statically sized stack object, returning a nonnegative identifier to represent it.
void setFrameAddressIsTaken(bool T)
unsigned getFunctionNumber() const
getFunctionNumber - Return a unique ID for the current function.
const TargetSubtargetInfo & getSubtarget() const
getSubtarget - Return the subtarget for which this machine code is being compiled.
MachineFrameInfo & getFrameInfo()
getFrameInfo - Return the frame info object for the current function.
const char * createExternalSymbolName(StringRef Name)
Allocate a string and populate it with the given external symbol name.
MCContext & getContext() const
MachineRegisterInfo & getRegInfo()
getRegInfo - Return information about the registers currently in use.
const DataLayout & getDataLayout() const
Return the DataLayout attached to the Module associated to this MF.
Function & getFunction()
Return the LLVM function that this machine code represents.
BasicBlockListType::iterator iterator
Ty * getInfo()
getInfo - Keep track of various per-function pieces of information for backends that would like to do...
const MachineJumpTableInfo * getJumpTableInfo() const
getJumpTableInfo - Return the jump table info object for the current function.
const MachineInstrBuilder & addImm(int64_t Val) const
Add a new immediate operand.
const MachineInstrBuilder & add(const MachineOperand &MO) const
const MachineInstrBuilder & addSym(MCSymbol *Sym, unsigned char TargetFlags=0) const
const MachineInstrBuilder & addFPImm(const ConstantFP *Val) const
const MachineInstrBuilder & addReg(Register RegNo, unsigned Flags=0, unsigned SubReg=0) const
Add a new virtual register operand.
const MachineInstrBuilder & addMBB(MachineBasicBlock *MBB, unsigned TargetFlags=0) const
MachineInstr * getInstr() const
If conversion operators fail, use this method to get the MachineInstr explicitly.
Representation of each machine instruction.
mop_range defs()
Returns all explicit operands that are register definitions.
unsigned getOpcode() const
Returns the opcode of this MachineInstr.
LLVM_ABI void addOperand(MachineFunction &MF, const MachineOperand &Op)
Add the specified operand to the instruction.
mop_range uses()
Returns all operands which may be register uses.
LLVM_ABI void eraseFromParent()
Unlink 'this' from the containing basic block and delete it.
LLVM_ABI void removeOperand(unsigned OpNo)
Erase an operand from an instruction, leaving it with one fewer operand than it started with.
const MachineOperand & getOperand(unsigned i) const
const std::vector< MachineJumpTableEntry > & getJumpTables() const
Flags
Flags values. These may be or'd together.
@ MOVolatile
The memory access is volatile.
@ MOLoad
The memory access reads data.
@ MOStore
The memory access writes data.
MachineOperand class - Representation of each machine instruction operand.
bool isReg() const
isReg - Tests if this is a MO_Register operand.
void setIsKill(bool Val=true)
Register getReg() const
getReg - Returns the register number.
bool isFI() const
isFI - Tests if this is a MO_FrameIndex operand.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
LLVM_ABI Register createVirtualRegister(const TargetRegisterClass *RegClass, StringRef Name="")
createVirtualRegister - Create and return a new virtual register in the function with the specified r...
void addLiveIn(MCRegister Reg, Register vreg=Register())
addLiveIn - Add the specified register as a live-in.
unsigned getAddressSpace() const
Return the address space for the associated pointer.
MachineMemOperand * getMemOperand() const
Return a MachineMemOperand object describing the memory reference performed by operation.
const SDValue & getChain() const
EVT getMemoryVT() const
Return the type of the in-memory value.
static PointerType * getUnqual(Type *ElementType)
This constructs a pointer to an object of the specified type in the default address space (address sp...
Wrapper class representing virtual and physical registers.
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
ArrayRef< SDUse > ops() const
unsigned getOpcode() const
Return the SelectionDAG opcode value for this node.
uint64_t getAsZExtVal() const
Helper method returns the zero-extended integer value of a ConstantSDNode.
const SDValue & getOperand(unsigned Num) const
uint64_t getConstantOperandVal(unsigned Num) const
Helper method returns the integer value of a ConstantSDNode operand.
EVT getValueType(unsigned ResNo) const
Return the type of a specified result.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
SDValue getValue(unsigned R) const
EVT getValueType() const
Return the ValueType of the referenced return value.
const SDValue & getOperand(unsigned i) const
MVT getSimpleValueType() const
Return the simple ValueType of the referenced return value.
unsigned getOpcode() const
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset=0, unsigned TargetFlags=0)
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, Register Reg, SDValue N)
LLVM_ABI SDValue getMergeValues(ArrayRef< SDValue > Ops, const SDLoc &dl)
Create a MERGE_VALUES node from the given operands.
LLVM_ABI SDVTList getVTList(EVT VT)
Return an SDVTList that represents the list of values specified.
LLVM_ABI SDValue getShiftAmountConstant(uint64_t Val, EVT VT, const SDLoc &DL)
LLVM_ABI SDValue getSplatValue(SDValue V, bool LegalTypes=false)
If V is a splat vector, return its scalar source operand by extracting that element from the source v...
LLVM_ABI MachineSDNode * getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT)
These are used for target selectors to create a new node with specified return type(s),...
LLVM_ABI void ExtractVectorElements(SDValue Op, SmallVectorImpl< SDValue > &Args, unsigned Start=0, unsigned Count=0, EVT EltVT=EVT())
Append the extracted elements from Start to Count out of the vector Op in Args.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond, SDValue Chain=SDValue(), bool IsSignaling=false)
Helper function to make it easier to build SetCC's if you just have an ISD::CondCode instead of an SD...
LLVM_ABI SDValue UnrollVectorOp(SDNode *N, unsigned ResNE=0)
Utility function used by legalize and lowering to "unroll" a vector operation by splitting out the sc...
LLVM_ABI SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
LLVM_ABI SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef< SDValue > Ops, EVT MemVT, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags Flags=MachineMemOperand::MOLoad|MachineMemOperand::MOStore, LocationSize Size=LocationSize::precise(0), const AAMDNodes &AAInfo=AAMDNodes())
Creates a MemIntrinsicNode that may produce a result and takes a list of operands.
LLVM_ABI SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, Align Alignment, bool isVol, bool AlwaysInline, const CallInst *CI, std::optional< bool > OverrideTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo, const AAMDNodes &AAInfo=AAMDNodes(), BatchAAResults *BatchAA=nullptr)
LLVM_ABI SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT)
Create a bitwise NOT operation as (XOR Val, -1).
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned TargetFlags=0)
SDValue getUNDEF(EVT VT)
Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef< SDValue > Ops)
Return an ISD::BUILD_VECTOR node.
LLVM_ABI SDValue getBitcast(EVT VT, SDValue V)
Return a bitcast using the SDLoc of the value operand, and casting to the provided type.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, Register Reg, EVT VT)
const DataLayout & getDataLayout() const
SDValue getTargetFrameIndex(int FI, EVT VT)
LLVM_ABI SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget=false, bool isOpaque=false)
Create a ConstantSDNode wrapping a constant value.
LLVM_ABI SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, Align Alignment, MachineMemOperand::Flags MMOFlags=MachineMemOperand::MONone, const AAMDNodes &AAInfo=AAMDNodes())
Helper function to build ISD::STORE nodes.
LLVM_ABI bool SignBitIsZero(SDValue Op, unsigned Depth=0) const
Return true if the sign bit of Op is known to be zero.
LLVM_ABI SDValue getBasicBlock(MachineBasicBlock *MBB)
const TargetMachine & getTarget() const
LLVM_ABI SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either any-extending or truncat...
LLVM_ABI SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget=false)
LLVM_ABI SDValue getValueType(EVT)
LLVM_ABI SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque=false)
MachineFunction & getMachineFunction() const
SDValue getPOISON(EVT VT)
Return a POISON node. POISON does not have a useful SDLoc.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op)
Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all elements.
LLVM_ABI SDValue getFrameIndex(int FI, EVT VT, bool isTarget=false)
LLVM_ABI SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT)
Convert Op, which must be of integer type, to the integer type VT, by either zero-extending or trunca...
LLVMContext * getContext() const
LLVM_ABI SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned TargetFlags=0)
LLVM_ABI SDValue getMCSymbol(MCSymbol *Sym, EVT VT)
SDValue getEntryNode() const
Return the token chain corresponding to the entry of the function.
LLVM_ABI SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef< int > Mask)
Return an ISD::VECTOR_SHUFFLE node.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
void push_back(const T &Elt)
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
const SDValue & getBasePtr() const
const SDValue & getOffset() const
const SDValue & getValue() const
StringRef - Represent a constant reference to a string, i.e.
constexpr size_t size() const
size - Get the string size.
TargetInstrInfo - Interface to description of machine instruction set.
Provides information about what library functions are available for the current target.
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
void setPartialReduceMLAAction(unsigned Opc, MVT AccVT, MVT InputVT, LegalizeAction Action)
Indicate how a PARTIAL_REDUCE_U/SMLA node with Acc type AccVT and Input type InputVT should be treate...
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
@ ZeroOrOneBooleanContent
@ ZeroOrNegativeOneBooleanContent
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
bool isPositionIndependent() const
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
TargetLowering(const TargetLowering &)=delete
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::LibcallImpl LibcallImpl, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
Primary interface to the complete machine description for the target machine.
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
The instances of the Type class are immutable: once they are created, they are never changed.
bool isFunctionTy() const
True if this is an instance of FunctionType.
static LLVM_ABI Type * getDoubleTy(LLVMContext &C)
static LLVM_ABI Type * getFloatTy(LLVMContext &C)
A Use represents the edge between a Value definition and its users.
LLVM_ABI const Value * stripPointerCastsAndAliases() const
Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
static std::optional< unsigned > getLocalForStackObject(MachineFunction &MF, int FrameIndex)
bool hasCallIndirectOverlong() const
bool hasReferenceTypes() const
WebAssemblyTargetLowering(const TargetMachine &TM, const WebAssemblySubtarget &STI)
MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const override
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const override
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
self_iterator getIterator()
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
constexpr char Align[]
Key for Kernel::Arg::Metadata::mAlign.
constexpr std::underlying_type_t< E > Mask()
Get a bitmask with 1s in all places up to the high-order bit of E's largest value.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
@ Swift
Calling convention for Swift.
@ PreserveMost
Used for runtime calls that preserves most registers.
@ CXX_FAST_TLS
Used for access functions.
@ WASM_EmscriptenInvoke
For emscripten __invoke_* functions.
@ Cold
Attempts to make code in the caller as efficient as possible under the assumption that the call is no...
@ PreserveAll
Used for runtime calls that preserves (almost) all registers.
@ Fast
Attempts to make calls as fast as possible (e.g.
@ C
The default llvm calling convention, compatible with C.
@ SETCC
SetCC operator - This evaluates to a true value iff the condition is true.
@ STACKRESTORE
STACKRESTORE has two operands, an input chain and a pointer to restore to it returns an output chain.
@ STACKSAVE
STACKSAVE - STACKSAVE has one operand, an input chain.
@ PARTIAL_REDUCE_SMLA
PARTIAL_REDUCE_[U|S]MLA(Accumulator, Input1, Input2) The partial reduction nodes sign or zero extend ...
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
@ BSWAP
Byte Swap and Counting operators.
@ VAEND
VAEND, VASTART - VAEND and VASTART have three operands: an input chain, pointer, and a SRCVALUE.
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
@ ADD
Simple integer binary arithmetic operators.
@ LOAD
LOAD and STORE have token chains as their first operand, then the same operands as an LLVM load/store...
@ FMA
FMA - Perform a * b + c with no intermediate rounding step.
@ INTRINSIC_VOID
OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...) This node represents a target intrin...
@ SINT_TO_FP
[SU]INT_TO_FP - These operators convert integers (whose interpreted sign depends on the first letter)...
@ CONCAT_VECTORS
CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of vector type with the same length ...
@ ABS
ABS - Determine the unsigned absolute value of a signed integer value of the same bitwidth.
@ SIGN_EXTEND_VECTOR_INREG
SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register sign-extension of the low ...
@ SDIVREM
SDIVREM/UDIVREM - Divide two integers and produce both a quotient and remainder result.
@ FP16_TO_FP
FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions and truncation for half-preci...
@ FMULADD
FMULADD - Performs a * b + c, with, or without, intermediate rounding.
@ BITCAST
BITCAST - This operator converts between integer, vector and FP values, as if the value was stored to...
@ BUILD_PAIR
BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
@ SIGN_EXTEND
Conversion operators.
@ SCALAR_TO_VECTOR
SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a scalar value into element 0 of the...
@ FSINCOS
FSINCOS - Compute both fsin and fcos as a single operation.
@ BR_CC
BR_CC - Conditional branch.
@ BRIND
BRIND - Indirect branch.
@ BR_JT
BR_JT - Jumptable branch.
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
@ EXTRACT_ELEMENT
EXTRACT_ELEMENT - This is used to get the lower or upper (determined by a Constant,...
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
@ VACOPY
VACOPY - VACOPY has 5 operands: an input chain, a destination pointer, a source pointer,...
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
@ SHL
Shift and rotation operations.
@ VECTOR_SHUFFLE
VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as VEC1/VEC2.
@ EXTRACT_SUBVECTOR
EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR.
@ EXTRACT_VECTOR_ELT
EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR identified by the (potentially...
@ CopyToReg
CopyToReg - This node has three operands: a chain, a register number to set to this value,...
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
@ DEBUGTRAP
DEBUGTRAP - Trap intended to get the attention of a debugger.
@ SELECT_CC
Select with condition operator - This selects between a true value and a false value (ops #2 and #3) ...
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum maximum on two values, following IEEE-754 definition...
@ DYNAMIC_STACKALLOC
DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned to a specified boundary.
@ ANY_EXTEND_VECTOR_INREG
ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register any-extension of the low la...
@ SIGN_EXTEND_INREG
SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to sign extend a small value in ...
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
@ FP_EXTEND
X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
@ FRAMEADDR
FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and llvm.returnaddress on the DAG.
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
@ FP_TO_SINT
FP_TO_[US]INT - Convert a floating point value to a signed or unsigned integer.
@ TargetConstant
TargetConstant* - Like Constant*, but the DAG does not do any folding, simplification,...
@ AND
Bitwise operators - logical and, logical or, logical xor.
@ TRAP
TRAP - Trapping instruction.
@ INTRINSIC_WO_CHAIN
RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...) This node represents a target intrinsic fun...
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
@ INSERT_VECTOR_ELT
INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element at IDX replaced with VAL.
@ TokenFactor
TokenFactor - This node takes multiple tokens as input and produces a single token result.
@ FP_ROUND
X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type down to the precision of the ...
@ CLEAR_CACHE
llvm.clear_cache intrinsic Operands: Input Chain, Start Addres, End Address Outputs: Output Chain
@ ZERO_EXTEND_VECTOR_INREG
ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an in-register zero-extension of the low ...
@ FP_TO_SINT_SAT
FP_TO_[US]INT_SAT - Convert floating point value in operand 0 to a signed or unsigned scalar integer ...
@ TRUNCATE
TRUNCATE - Completely drop the high bits.
@ VAARG
VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE, and the alignment.
@ SHL_PARTS
SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded integer shift operations.
@ FCOPYSIGN
FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
@ FMINIMUMNUM
FMINIMUMNUM/FMAXIMUMNUM - minimumnum/maximumnum that is same with FMINNUM_IEEE and FMAXNUM_IEEE besid...
@ INTRINSIC_W_CHAIN
RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...) This node represents a target in...
@ BUILD_VECTOR
BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a fixed-width vector with the specified,...
LLVM_ABI bool isConstantSplatVector(const SDNode *N, APInt &SplatValue)
Node predicates.
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
This namespace contains an enum with a value for every intrinsic/builtin function known by LLVM.
OperandFlags
These are flags set on operands, but should be considered private, all access should go through the M...
CastOperator_match< OpTy, Instruction::BitCast > m_BitCast(const OpTy &Op)
Matches BitCast.
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
is_zero m_Zero()
Match any null constant or a vector with all elements equal to 0.
bool sd_match(SDNode *N, const SelectionDAG *DAG, Pattern &&P)
CondCode_match m_SpecificCondCode(ISD::CondCode CC)
Match a conditional code SDNode with a specific ISD::CondCode.
CondCode_match m_CondCode()
Match any conditional code SDNode.
TernaryOpc_match< T0_P, T1_P, T2_P, true, false > m_c_SetCC(const T0_P &LHS, const T1_P &RHS, const T2_P &CC)
MCSymbolWasm * getOrCreateFunctionTableSymbol(MCContext &Ctx, const WebAssemblySubtarget *Subtarget)
Returns the __indirect_function_table, for use in call_indirect and in function bitcasts.
@ WASM_ADDRESS_SPACE_EXTERNREF
@ WASM_ADDRESS_SPACE_FUNCREF
bool isWebAssemblyFuncrefType(const Type *Ty)
Return true if this is a WebAssembly Funcref Type.
bool isWebAssemblyTableType(const Type *Ty)
Return true if the table represents a WebAssembly table type.
MCSymbolWasm * getOrCreateFuncrefCallTableSymbol(MCContext &Ctx, const WebAssemblySubtarget *Subtarget)
Returns the __funcref_call_table, for use in funcref calls when lowered to table.set + call_indirect.
FastISel * createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo)
bool isValidAddressSpace(unsigned AS)
bool canLowerReturn(size_t ResultSize, const WebAssemblySubtarget *Subtarget)
Returns true if the function's return value(s) can be lowered directly, i.e., not indirectly via a po...
bool isWasmVarAddressSpace(unsigned AS)
NodeAddr< NodeBase * > Node
This is an optimization pass for GlobalISel generic memory operations.
auto drop_begin(T &&RangeOrContainer, size_t N=1)
Return a range covering RangeOrContainer with the first N elements excluded.
unsigned Log2_32_Ceil(uint32_t Value)
Return the ceil log base 2 of the specified value, 32 if the value is zero.
FunctionAddr VTableAddr Value
void computeSignatureVTs(const FunctionType *Ty, const Function *TargetFunc, const Function &ContextFunc, const TargetMachine &TM, SmallVectorImpl< MVT > &Params, SmallVectorImpl< MVT > &Results)
auto size(R &&Range, std::enable_if_t< std::is_base_of< std::random_access_iterator_tag, typename std::iterator_traits< decltype(Range.begin())>::iterator_category >::value, void > *=nullptr)
Get the size of a range.
MachineInstrBuilder BuildMI(MachineFunction &MF, const MIMetadata &MIMD, const MCInstrDesc &MCID)
Builder interface. Specify how to create the initial instruction itself.
LLVM_ABI bool isNullConstant(SDValue V)
Returns true if V is a constant integer zero.
LLVM_ABI SDValue peekThroughBitcasts(SDValue V)
Return the non-bitcasted source operand of V if it exists.
decltype(auto) dyn_cast(const From &Val)
dyn_cast<X> - Return the argument parameter cast to the specified type.
constexpr bool isPowerOf2_32(uint32_t Value)
Return true if the argument is a power of two > 0.
decltype(auto) get(const PointerIntPair< PointerTy, IntBits, IntType, PtrTraits, Info > &Pair)
LLVM_ABI void report_fatal_error(Error Err, bool gen_crash_diag=true)
class LLVM_GSL_OWNER SmallVector
Forward declaration of SmallVector so that calculateSmallVectorDefaultInlinedElements can reference s...
bool isa(const From &Val)
isa<X> - Return true if the parameter to the template is an instance of one of the template type argu...
DWARFExpression::Operation Op
auto max_element(R &&Range)
Provide wrappers to std::max_element which take ranges instead of having to pass begin/end explicitly...
constexpr unsigned BitWidth
decltype(auto) cast(const From &Val)
cast<X> - Return the argument parameter cast to the specified type.
auto find_if(R &&Range, UnaryPredicate P)
Provide wrappers to std::find_if which take ranges instead of having to pass begin/end explicitly.
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
void computeLegalValueVTs(const WebAssemblyTargetLowering &TLI, LLVMContext &Ctx, const DataLayout &DL, Type *Ty, SmallVectorImpl< MVT > &ValueVTs)
constexpr uint64_t NextPowerOf2(uint64_t A)
Returns the next power of two (in 64-bits) that is strictly greater than A.
void swap(llvm::BitVector &LHS, llvm::BitVector &RHS)
Implement std::swap in terms of BitVector swap.
This struct is a compact representation of a valid (non-zero power of two) alignment.
EVT changeVectorElementTypeToInteger() const
Return a vector with the same number of elements as this vector, but with the element type converted ...
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
bool isByteSized() const
Return true if the bit size is a multiple of 8.
uint64_t getScalarSizeInBits() const
EVT changeVectorElementType(LLVMContext &Context, EVT EltVT) const
Return a VT for a vector type whose attributes match ourselves with the exception of the element type...
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
bool is128BitVector() const
Return true if this is a 128-bit vector type.
static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth)
Returns the EVT that represents an integer with the given number of bits.
uint64_t getFixedSizeInBits() const
Return the size of the specified fixed width value type in bits.
EVT widenIntegerVectorElementType(LLVMContext &Context) const
Return a VT for an integer vector type with the size of the elements doubled.
bool isFixedLengthVector() const
bool isVector() const
Return true if this is a vector value type.
EVT getScalarType() const
If this is a vector type, return the element type, otherwise return this.
bool bitsGE(EVT VT) const
Return true if this has no less bits than VT.
bool is256BitVector() const
Return true if this is a 256-bit vector type.
LLVM_ABI Type * getTypeForEVT(LLVMContext &Context) const
This method returns an LLVM type corresponding to the specified EVT.
EVT getVectorElementType() const
Given a vector type, return the type of each element.
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
unsigned getVectorNumElements() const
Given a vector type, return the number of elements it contains.
EVT getHalfNumVectorElementsVT(LLVMContext &Context) const
bool isInConsecutiveRegs() const
Align getNonZeroOrigAlign() const
bool isSwiftError() const
unsigned getByValSize() const
bool isInConsecutiveRegsLast() const
Align getNonZeroByValAlign() const
unsigned getBitWidth() const
Get the bit width of this value.
static LLVM_ABI MachinePointerInfo getFixedStack(MachineFunction &MF, int FI, int64_t Offset=0)
Return a MachinePointerInfo record that refers to the specified FrameIndex.
These are IR-level optimization flags that may be propagated to SDNodes.
bool isBeforeLegalize() const
This structure is used to pass arguments to makeLibCall function.